
Infusing Fundamental Competencies of Computational
Science to the General Undergraduate Curriculum

Ana C. González-Ríos
University of Puerto Rico - Mayagüez

anacarmen.gonzalez@upr.edu

ABSTRACT
The growing need for a workforce that can analyze, model, and

interpret real-world data strongly points to the importance of

imparting fundamental concepts of computational and data science

to the current student generation regardless of their intended

majors. This paper describes the experiences in developing and

implementing a course in computation, modeling, and simulation.

The main goal of the course was to infuse fundamental

competencies of computational science to the undergraduate

curriculum. The course also aimed at making students aware that

modeling and simulation have become an essential part of the

research and development process in the sciences, social sciences,

and engineering. The course was targeted to students of all majors.

Keywords
Computational science, Flipped classroom, Computational and data

science literacy, General education, Python, Curriculum

development

1. INTRODUCTION
Computational science (CS) is an interdisciplinary field that can be

defined as the intersection of the domain area of the problem of

interest, computer science, and mathematics. It requires

mathematical modeling capability and the skills for its efficient

implementation using computing techniques. CS allows us to build

models, visualize phenomena, and conduct experiments difficult or

impossible in the laboratory. So, it plays a critical role in the future

of the scientific discovery process and engineering design

[11, 8, 12].

It is important to reach not only the undergraduate curriculum in

science, technology, engineering, and mathematics (STEM). All

undergraduate students should be exposed to the fundamentals of

CS. Hence, students can be better equipped to apply CS techniques

in their fields and to better understand society and their

environment [8, 12].

All students, independent of their area of study, should have access

to a course that will help them develop fundamental CS

competencies. After reviewing the curriculum at a public Minority

Serving Institution, it was observed that the courses that address the

topics of modeling, simulation, and data science have multiple

advanced pre-requisites, so it is hard for many students to take those

courses. Sometimes students who do have the pre-requisites cannot

fit the courses in their curricula. It was also noted that these courses

are offered randomly depending on enrollment and professor

availability.

With the main goal of infusing fundamental concepts of

computational science into the undergraduate general education

curriculum; we proposed, developed, and implemented a new

elective course with only college algebra as a pre-requisite.

All undergraduate students could benefit from this course including

students who planned on participating in undergraduate research.

Pre-service teachers were also an important target so that they

would be better able to integrate CS in their K–12 courses.

Computer science students had the opportunity to see how

programming skills can be applied to science, social sciences, and

engineering. The course could provide a panoramic view of the

field and act as a catalyst to continue with more advanced courses.

This paper describes the set of basic learning outcomes upon which

the course content rested, course description, course objectives,

resources developed, and overall format of the course.

Observations on students’ perception of the course are also

discussed.

2. COURSE LEARNING OBJECTIVES
The primary goal of the course was to introduce basic concepts of

computational science to a diverse student body. The aim was not

to produce experts in computational science but to provide the tools

and skills that can benefit the personal and professional lives of

individuals and allow them to better collaborate with computational

scientists. With this mindset and the fact that the course would only

require college algebra, we proceeded to determine the learning

outcomes of the course. The learning outcomes represented the

framework for the course content.

The computational science educational competencies that guided

the course design derived from the work developed as part of a

project at the Ohio Supercomputer Center sponsored by the

National Science Foundation [17]. The competencies were created

by the participating faculty and then reviewed by a business

advisory committee [9].

The group identified seven competency areas shown in Table 1. As

shown in Figure 1, each area was further subdivided to describe the

level of the skills and knowledge necessary to master the

competencies [17].

Consistent with [11, 7, 9], we believed that an introduction to

computational science must equip learners with a basic

understanding and an integration of both modeling and computer

programming principles. Learners should be provided with

experiences on how to translate the relationships within a system

being modeled into a set of mathematical functions that accurately

portray the behavior of that system and then translate the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/3/3

Journal of Computational Science Education Volume 12, Issue 3

December 2021 ISSN 2153-4136 27

mathematics into computer code that correctly simulates those

relationships.

Table 1. Competency areas [17].

1 Simulation and Modeling

2 Programming and Algorithms

3 Differential Equations and Discrete Dynamical Systems

4 Numerical Methods

5 Optimization

6 Parallel Programming

7 Scientific Visualization

Figure 1. Subset of competency subdivisions [17].

Table 2. Course learning outcomes.

1. Explain the role of modeling in the sciences and

engineering.

2. Explain the terms of modeling in the sciences and

engineering.

3. Create a conceptual model.

4. Write code in a programming language.

5. Use subprograms in program design.

6. Understand and write pseudocode.

7. Describe the fundamentals of problem solving.

8. Use different approaches to data I/O in a program.

9. Understanding and use of fundamental programming

algorithms.

10. Understand discrete and difference-based computer

models.

11. Understand the use of empirical data.

12. Understand the modeling process.

13. Verification and validation.

14. Technical communication.

15. Demonstrate computational programming.

We believed that an introductory course should cover the skills and

knowledge described in the first two areas: simulation and

modeling, programming, and algorithms. The selected learning

outcomes as shown in Table 2 represented what the students would

be able to do at course completion.

Guided by the HPC University [17] competencies, the learning

outcomes as shown in Tables 3a and 3b were further subdivided for

a more detailed description of the skills and knowledge that needed

to be acquired.

Table 3a. Learning outcomes subdivision.
1 Explain the role of modeling in the sciences and

engineering.

a) Describe the importance of modeling to science and

engineering.

b) Describe the history and need for modeling.

c) Describe the cost effectiveness of modeling.

d) Describe the time-effect of modeling.

2 Explain the terms of modeling in the sciences and

engineering.

a) Define modeling terms.

b) List questions that would check/validate model

results.

c) Describe future trends and issues in science and

engineering.

d) Identify specific examples of modeling in science.

3 Create a conceptual model.

a) Utilize the modeling process to identify key

parameters of a model.

b) Estimate model outcomes.

c) Use Python to implement the mathematical

representation of the model.

4 Write code in a programming language.

a) Understand the concept of syntax in a programming

language.

b) Describe the syntax of the programming language

constructs.

c) Understand the difference between a compiled and

interpreted language.

d) Write and run basic programs in the language of

choice.

e) Understand how to de-bug code.

f) Understand the numerical limits of various data types

and the implications for numerical accuracy of results.

5 Use subprograms in program design.

a) Describe how logical tasks can be implemented as

subprograms.

b) Explain the control flow when a function is called.

c) Explain how function output is used.

d) Understand how languages handle passed data into

functions and subprograms, especially one- and two-

dimensional arrays.

6 Understand and write pseudocode.

a) List the basic programming elements of pseudocode.

b) Explain the logic behind an if/then/else statement.

c) Understand the iterative behavior of loops.

d) Describe the difference between several looping

constructs.

e) Write pseudocode to solve basic problems.

Volume 12, Issue 3 Journal of Computational Science Education

28 ISSN 2153-4136 December 2021

Table 3b. Learning outcomes subdivision.
7 Describe the fundamentals of problem solving.

a) Understand top-down thinking and program design.

Discuss breaking up a problem into its component

tasks. Understand how tasks acquire data.

b) Describe how tasks should be ordered.

c) Represent tasks in a flow-chart style format.

8 Use different approaches to data I/O in a program.

a) Explain the advantages and disadvantages of file I/O.

b) Describe the syntax for file I/O in your programming

language.

c) Write code using file I/O and keyboard/monitor I/O.

9 Understanding and use of fundamental programming

algorithms.

a) Explain an algorithm as an ordered series of solution

steps.

b) Describe an algorithm for a simple programming

problem.

c) Describe what a software library is.

d) Construct difference-based computer models.

10 Understand discrete and difference-based computer

models.

a) Write simple Python programs performing numerical

calculations as needed for modeling and simulation.

b) Implement finite difference modeling equations and

create simulations in Python.

11 Understand the use of empirical data.

a) Visualize empirical data and the fitting function

using Python.

b) Use data science techniques to illustrate data

relevant to social change issues and interpret the

results.

12 Understand the modeling process.

a) Identify different types of models and simulations.

b) Describe iterative development of a model.

c) Explain use of models and simulation for hypothesis

testing.

13 Verification and validation.

a) Discuss methods for reviewing models their

verification and validation.

b) Describe the differences between predictions of

model, actual results, and relevance of these differences

to the problem.

c) Suitability/limits of models.

14 Technical communication.

a) Document the development and implementation of a

model and present it in oral and written form.

15 Demonstrate computational programming.

a) Describe the computational programming system

environment.

b) Define elementary representations, functions,

matrices and arrays, script files.

c) Explain relational operations, logical operations,

condition statements, loops, debugging programs.

d) Create tabular and visual outputs.

e) Translate the conceptual models to run with this

system and assess the model results.

3. COURSE DESCRIPTION, COURSE

OBJECTIVES
Based on the selected learning outcomes, the course description as

stated in the University’s Course Catalog was as follows:

Introduction to the principles of modeling and simulation;

progressive introduction of programming principles and skills

using a high-level programming language; application of

programming skills to the solution of different classes of models.

The course did not require programming experience and the

mathematics pre-requisite was college algebra.

The course objectives were:

1. Provide a background for more advanced modeling

courses.

2. Provide the students with an introduction to modeling

and its importance to current practices in different subject

domains; like science, social sciences, and engineering.

3. Introduce programming principles and apply them to the

solution of different classes of models.

4. Provide an overview of the modeling process and the

terminology associated with modeling and simulation.

5. Study the mathematical representation of different

classes of models.

6. Introduce techniques for fitting a function to an

experimental data set.

7. Provide the opportunity for students to document the

development and implementation of a model and present

it in oral and written from.

4. COURSE ELEMENTS
Tables 4a and 4b show a mapping of the course topics and course

learning outcomes. Each topic was covered as a unit that included

instructional materials, learning activities, and assessments.

Table 4a. Course topics and learning outcome mapping.

 Topic Learning

Outcomes

1 Introduction to modeling; modeling

concepts and definitions

1a,b,c,d

2a,b,c,d

13c

12c

2 Introduction to the Programming

Environment

4a,b,c,d,e

9c

3 Deterministic Linear Models 3a,b,c

12a,b

4f

4 Array Mathematics and Python 15a,b

5d

5 Plotting in Python 11a,b

15d

6 Problem solving 7a,b,c 9a,b

6a,e

7 Conditional Statements 6b,15c

8 Iteration and Loops 4b,6c,d,e

9 Nonlinear and Dynamic Models 10a,b 12a,b

9d

Journal of Computational Science Education Volume 12, Issue 3

December 2021 ISSN 2153-4136 29

Table 4b. Course topics and learning outcome mapping.

10 Estimating Models from Empirical Data 3a,b,c

8a,b,c

11a,b

15d,e

11 Stochastic Models 12a,b

12 Functions in Python 5a,b,c,d

13 Verification, Validation, and Errors 13a,b,c

12c

14 Project implementation,

Students are given in-class time to work in

groups in their final project presentations

14a

4.1 Course Textbook
The textbook selected for the course was Introduction to Modeling

and Simulation with MATLAB® and Python by Steven I. Gordon

and Brian Guilfoos [11]. The reason for selecting the book was that

its content focuses on meeting the set of basic modeling and

simulation competencies as defined in HPC University [17], and it

uses a just-in-time approach to introduce both programming and

modeling concepts.

4.2 Python Programming Language
Python [15] and the Spyder integrated development environment

[19] were selected as the platform to develop the programming

skills.

Python is a popular general-purpose programming language; it is

Free and Open-Source Software that can be acquired and used at

no cost. It provides powerful tools and libraries like SciPy and

NumPy for scientific computing and Matplotlib and Seaborn for

data visualization. Python has a rich web ecosystem of pedagogical

resources.

5. PEDAGOGICAL MODEL
The course was designed to combine face-to-face interventions

with online, web-enabled strategies, a pedagogical model known as

flipped classroom [6]. The flipped classroom switches the typical

face-to-face lectures and homework elements of a course. Instead

of attending the traditional lecture, students engage with short video

presentations or other multimedia content asynchronously before

the class period [13]. The in-class period is spent in student-

centered learning strategies such as active learning activities like

discussions, assignments, laboratories, and mini projects; allowing

the instructor to spend more time guiding and supporting the

students’ progress [16]. This teaching approach has been

documented to benefit students’ learning outcomes [10, 2, 1].

6. RESOURCES DEVELOPED
The development of all course materials was guided by the course

learning outcomes and by taking into consideration the expected

students’ mathematical background. The created instructional

material consisted of videos (equivalent to a lecture but divided in

segments of 5-to-15 minutes), practice exercises, walkthroughs,

multiple choice questions, and recorded demonstrations. These as

well as the course evaluations were made available through the

course management system, Moodle [14]. The course and

instructional materials were designed following the best practices

for using technology and the theory for the creation of courses [5,

4]. The center of resources for distance education, CREAD [3], at

the author’s institution offered the necessary guidance and support

during the design and development of the instructional materials

and assessments.

7. COURSE FORMAT
The course met twice a week, Tuesdays and Thursdays, for two

hours each time. New material was made available in cycles of one

week. A new cycle started at the end of the class period on

Thursdays. During the in-class time of the second half of a cycle

(Thursdays), the students took a 15-minute, multiple-choice quiz of

the material on the current cycle. The idea was to provide an

incentive to the students to stay on top of the material.

The students also had to work and submit what was denoted as the

module’s activity (a list of which is provided in Appendix A). The

purpose was to practice and develop the skills introduced in the

module. On occasion, the activity was a mini project in which the

students organized and developed their work to present/share at the

next in-class time. The students were given an outline of what was

expected in the presentation, for example, to include four slides and

the topic to discuss in each slide.

The students were allowed to work by themselves or in groups of

at most three students. They were encouraged to share ideas with

one another. The instructor was always available to answer

questions and give feedback as needed.

A solution was discussed at the end of the period. On occasion, a

student volunteer presented his/her solution to the rest of the class.

During the first half of the cycle (Tuesdays), the students were

expected, but not required, to have studied all the online materials.

At the beginning of the period, the students could ask questions

about the module’s materials. The instructor also delivered a short

lecture, of at most 15 minutes, that covered core concepts and

examples from the videos. This lecture also aimed at focusing and

guiding the students on how to study videos and other online

materials. Students could spend time working on the practice

activities. Practice exercises were similar to what was discussed in

the video. The students were also asked to modify the mathematical

models or code and to comment on the results. On the other hand,

the module’s activity and mini project could be described as an

open-ended problem. The students needed to recognize the

mathematical model and corresponding coding from the videos and

other online materials to develop their solution.

7.1 Examples of Course Materials
Some examples of course materials are presented in Appendix C.

Individuals interested in reviewing additional materials or

resources from other topics are encouraged to contact the author.

8. COURSE EVALUATIONS
Two types of evaluations of the students were offered: those that

required the students’ individual efforts and those that could be

done collaboratively.

The individual evaluations were in the form of timed, multiple-

choice questions quizzes. One 15-minute quiz was offered at the

end of each cycle. Toward the end of the semester, the students took

a 60-minute, multiple-choice exam that covered all the material

discussed to the that point. This type of evaluation assessed

students’ knowledge on terminology and basic concepts.

The collaborative evaluations included the module’s activity, the

mini projects, and the end of semester project.

9. FINAL PROJECT: COMMENTS
As a final evaluation, students were required to develop, document,

and present a project. Keeping in mind that this is a foundational

course, the aim of the project was to provide the means for students

Volume 12, Issue 3 Journal of Computational Science Education

30 ISSN 2153-4136 December 2021

consciously to go through all the steps of the modeling process. The

objective of the project was to build and test a model of a system

and use that model to derive insights into the system behavior [11].

The project specifications indicated that the code be written in

Python and that students must use graphs to discuss part of the

results.

Two weeks before the end of the semester, the students had to

submit a project proposal. In the proposal, the students explained

the goals and motivations of the project, why the project was of

interest, and what question(s) they would like to answer or what

problem(s) they were trying to solve.

To help guide in the project topic selection and development,

students were directed to the course textbook where the last chapter

provides a list of project topics and a set of reference materials for

each topic [11]. Other reference materials were available at Shodor

[18]. The students could design, develop, and implement the final

project either in groups or individually. A written report and an oral

presentation were required. A list of project topics is presented in

Appendix B.

10. FINAL DISCUSSION
There have been two offerings of the course, the first during spring

2019 and the second during spring 2020. The first time, it was

offered in the format as described in the paper. The second time,

due to the COVID-19 pandemic, it was offered completely online.

On both occasions, the course was advertised through the

University internal e-mail system.

In spring 2019, 16 students registered to take the course, and only

one withdrew due to health conditions. For the spring 2020 cohort,

there were a total of 13 students. The breakdown by year is shown

is Table 5.

Table 5. Year breakdown

Year Spring 2019 Spring 2020

Freshman 0 0

Sophomore 3 5

Junior 6 7

Senior 7 1

At the beginning of the semester, the students were asked to write

two or three paragraphs describing why they had taken the course.

Of the spring 2019 group, there was one student from the Physics

Department, one student from the Economics Department, and the

rest of the students were from the Computer Science program. Their

answers to why they were taking the course can be described as

follows: the student from the Physics Department mentioned that

the course would provide an introduction to more advanced courses

in the topic of modeling and simulation and would help develop

programming skills. The student from the Economics department

mentioned that, according to the search she had done on necessary

skills for the modern workforce, this course would help her acquire

some of those competencies. Seven of the students from the

Computer Science program mentioned that they had taken the

course to fulfill a required elective and secondly to learn about

Python. The rest of the students also took the course to fulfill an

elective requirement and said they were curious about the modeling

and simulation topics and felt that learning the skills of problem

solving and Python would be advantageous for their careers.

In the spring 2020 group, there were six students from the Physics

department, one student from the Business faculty, one student

from Mathematics, and the rest of the students from the Computer

Science program. Their answers to why they were taking the course

can be described as follows. The students from the Physics

department were taking the course because it was recommended by

other students who had taken the course or had heard about the

course. According to their comments, these students were looking

for an introductory course in computational science that would

provide experience in implementing solutions using a

programming language rather than focusing on the programming

language itself. The rest of the students were taking the course to

fulfill an elective requirement. They also mentioned being

interested in learning about the programming language Python.

A list of selected questions from the end-of-semester student survey

is shown in Table 6. The answers to the first two questions

enumerate the preferred activities and course concepts most

frequently mentioned. From the answers to the last three questions,

it can be said that by the end of the semester the students preferred

the flipped classroom model to face-to-face. It was often mentioned

that they appreciated the immediate feedback and guidance from

the instructor. The high percentages of affirmative answers to

recommending the course to other students and mentioning in the

resume having taken the course suggest that they valued and

recognized the importance of the skills and concepts acquired

through the course.

Table 6. Selected questions.

Questions Most frequent answers

1. From the

module activities

and mini projects,

which were the

ones that you

enjoyed the most?

Concept map, linear models plotting with

Python, linear regression, curve fit,

modeling process.

2. List three

concepts that you

remember from

the course.

The Traffic Model, calculating prices of

car rentals, compound interest, designing

an app for the best gas station selection.

 Affirmative Answers

 Spring 2019 Spring 2020

3. Do you prefer

the flipped model

vs. the face-to-

face?

77% N/A

4. Would you

recommend this

course to other

students?

100% 90%

5. Do you think

that you can

benefit from

mentioning in your

resume that you

have taken this

course?

92% 80%

Journal of Computational Science Education Volume 12, Issue 3

December 2021 ISSN 2153-4136 31

After offering the course in both the flipped classroom and online

modalities, two final observations are described. First, for the end-

of-semester project, the students had to submit both written and oral

reports. The oral presentation needed to be supported by a

PowerPoint (PPT) presentation. For spring 2019, the oral

presentation was face-to-face. It was noticed that most of the

students for the PPT did a copy and paste of parts of the written

report, tended to read from the PPT, and had problems keeping to

the presentation time limits. For spring 2020, the students formed

virtual groups, and for the oral presentation, they had to submit an

audio recording. This worked well because they were forced to

reflect about their work and organize their thoughts to prepare a

script before recording. Each member of the group had to submit

his/her own audio recording.

Secondly, as a distance course, it was observed that only a few

students made use of the virtual office hours, and the main feedback

they received was from the graded evaluations as opposed to the

immediate feedback obtained from the flipped classroom model.

To conclude, the experience of developing and implementing a

course in computation, modeling, and simulation has been very

gratifying. We believe that such a course provides the means to

facilitate, to a diverse student body, the access to the much-needed

fundamental CS competencies. From the students’ comments, we

believe that they recognize the importance of having knowledge in

modeling and simulation as well as the leading edge it provides in

entering today’s workforce. The students also valued the

pedagogical model that allowed for active learning activities as well

as immediate feedback from the instructor. We are hoping that for

our next cohort we can impact pre-service teachers as well as

provide professional development to K–12 teachers.

11. ACKNOWLEDGEMENTS
This work was supported by the National Science Foundation

funded Grant CyberTraining: CUI: Computational and Data

Science Literacy Exchange (CSE-1829717). The author would like

to acknowledge the support of Linda Akli from SURA and

Katharine Cahill from OSC and the rest of the C2Exchange team

for providing a five-star space for our curriculum development

discussions.

12. REFERENCES
[1] Netravathi Basavaraj Angadi, Avinash Kavi, Kimi Shetty,

and Nayana Kamalnayan Hashilkar. 2019. Effectiveness of

flipped classroom as a teaching-learning method among

undergraduate medical students — An interventional study.

Journal of Education and Health Promotion, 8, Article 211

(Oct. 2019). DOI: https://doi.org/10.4103/jehp.jehp_163_19

[2] R. Brewer and S. Movahedazarhouligh. 2018. Successful

stories and conflicts: A literature review on the effectiveness

of flipped learning in higher education. Journal of Computer

Assisted Learning 34 (Feb. 2018), 409–416. DOI:

https://doi.org/10.1111/jcal.12250

[3] Centro de Recursos para la Educación a Distancia. 2019.

CREAD. Retrieved September 8, 2021 from

https://www.uprm.edu/cread/

[4] Centro de Recursos para la Educación a Distancia. 2019.

Mejor Prácticas. Retrieved June 11, 2021 from

https://www.uprm.edu/cread/mejores10practicas/

[5] José Ferrer. 2017. Diseño y creación de materiales

educativos: Guía de la mínimo a lo óptimo para cursos en

línea (Spanish Edition).

[6] Flipped Learning Network (FLN). 2014. What Is Flipped

Learning? Retrieved September 8, 2021 from

https://flippedlearning.org/wp-

content/uploads/2016/07/FLIP_handout_FNL_Web.pdf

[7] Steven I. Gordon. 2010. Creating Computational Science

Programs for the Existing and Future Workforce. In

Proceedings ACM / IEEE SC2010 — International

Conference for High Performance Computing, Networking,

Storage and Analysis SC10, Nov. 13–19, 2010, New Orleans,

LA.

[8] Steven I. Gordon and Katharine Cahill. 2020. The State of

Undergraduate Computational Science Programs. Journal of

Computational Science Education (Apr. 2020), 7–11. DOI:

https://doi.org/10.22369/issn.2153-4136/11/2/2

[9] Steven I. Gordon, Kate Carey, and Ignatios Vakalis. 2008. A

Shared, Interinstitutional Undergraduate Minor Program in

Computational Science., Comput. Sci. Eng., 10, 5 (Aug.

2008), 12–16. DOI: https://doi.org/10.1109/MCSE.2008.127

[10] Steven I. Gordon, James Demmel, Lizanne Destefano, and

Lorna Rivera. 2015. Implementing a Collaborative Online

Course to Extend Access to HPC Skills, Comput. Sci. Eng.

18, 1 (Dec. 2015), 73–79. DOI:

https://doi.org/10.1109/MCSE.2016.6

[11] Steven I. Gordon and Brian Guilfoos. 2017. Introduction to

Modeling and Simulation with MATLAB® and Python (1st.

ed.). Chapman and Hall/CRC. London, UK.

[12] Scott A. Lathrop, Katharine Cahill, Steven I. Gordon,

Jennifer Houchins, Robert M. Panoff, and Aaron Weeden.

2020. Preparing a Computationally Literate Workforce.

Comput. Sci. Eng. 22, 4 (May 2020), 7–16. DOI:

https://doi.org/10.1109/MCSE.2020.2994763

[13] Michigan State University. What, Why, and How to

Implement a Flipped Classroom Model. Retrieved September

8, 2021 from https://omerad.msu.edu/teaching/teaching-

skills-strategies/27-teaching/162-what-why-and-how-to-

implement-a-flipped-classroom-model

[14] Moodle Pty Ltd. 2021. Moodle: Online Learning with the

World’s Most Popular LMS. Retrieved September 8, 2021

from https://moodle.com/

[15] Python Software Foundation. 2021. Welcome to Python.org.

Retrieved September 14, 2021 from https://www.python.org/

[16] Ashley Radder-Renter. 2020. The Flipped Classroom Model:

What It Is and How It Works. (Sept. 2020). Retrived

September 8, 2021 from https://www.yeseep.org/blog/the-

flipped-classroom-model-what-it-is-and-how-it-works

[17] Shodor. 2011. HPC University: Minor Program in

Computational Science Competency/Topic Overview.

Retrieved June 7, 2021 from

http://hpcuniversity.org/educators/undergradCompetencies/

[18] Shodor. 2021. Shodor: A National Resourse for

Computational Science Education. Retrieved August 26,

2021 from http://www.shodor.org/

[19] Spyder Website Contributors. 2021. Home — Spyder IDE.

Retrieved September 14, 2021 from https://www.spyder-

ide.org/

Volume 12, Issue 3 Journal of Computational Science Education

32 ISSN 2153-4136 December 2021

APPENDIX A
List of Module Activities and Mini Projects

1. Watch a video and:

a. Describe how the scientific method and

simulation were mentioned in the video

b. Describe the hypothesis mentioned in the video

c. Describe if experiments are used to confirm or

deny the hypothesis

2. Given an open-ended problem (best gas station option),

design an app, and state:

a. List of assumptions, concept map,

mathematical model

3. Converting mathematical expressions to Python

expressions

a. Creating and editing Matrices.

b. Using IDE Spyder.

c. Using Numpy arrays.

4. Deterministic Linear Models: Modeling and

Implementing a Traffic Model

5. Arrays Mathematics in Python using NumPy

6. Visualization with Python, storytelling with a dataset

7. Describe an algorithm for the problem of solving the real

roots of a quadratic equation, create a flow chart as part

of the solution, Calculating car rental price

8. Implementing different situations, where repetition

structures are required, implement a guessing game.

9. Practice exercises on population growth, bank account

interest rates, use of visualization to answer what-if

questions.

10. Best fit from empirical data: implementing a model to

predict the weight of a dog at any time during its life.

11. Using a dataset find the coefficients for a linear model

using at least two of the different procedures in Python.

APPENDIX B
List of some of the topics of the final project

1. Finding the fastest route from home to UPRM, using

traffic data and precipitation data

2. Effect of altitude on projectile moving at fast speeds

3. Ball Toss

4. Modeling predator prey population

5. SIR Model of COVID-19 in the USA

6. Prey-Predator Model with carrying capacity

7. Natural Disaster Model for Future Economic Losses

APPENDIX C

Topic 1
Activity 1
Watch the video in the provided link:

https://youtu.be/T9qoU9_tGhA

And answer the following questions:

1. Describe how the scientific method and simulation are

mentioned in this video.

2. What is the hypothesis mentioned in the video?

3. Is it possible to make experiments to confirm or deny the

hypothesis? Explain.

Activity 2
(based on an Example presented by Daniel Teague of North

Carolina School of Science and Mathematics)

Suppose there is a local radio station that broadcasts the locations

and prices for all the gas stations in your area. The question is,

which should you buy from?

Make a PPT. Imagine you want to make an app for the phone, that

can be used to answer that question. Turn in five PPT slides to

illustrate your ideas.

Slide 1: List the assumptions.

Slide 2: Show the concept map.

Slide 3: Show the mathematical model.

Slides 4 & 5:

Create screens for an app based on your model. The first screen

should request essential information from the user, and the second

should show the app’s response.

Attach your PPT document in the Moodle platform. In addition to

the PPT, each student will also submit a script consisting of the

explanation of your work. It is recommended that you also submit

an audio version of the script.

Topic 2
Sample exercise:

Using IDE Spyder, write code to:

1. Create a NumPy array with values 1, 7, 13, 105 and

determine the size of the memory occupied by the array.

2. Create and print a NumPy array of integers from 30 to 70

in steps of 10.

Convert a list of numeric values into a one-dimensional NumPy

array.

Journal of Computational Science Education Volume 12, Issue 3

December 2021 ISSN 2153-4136 33

Topic 5
A figure of what is shown in Moodle

Topic 7
If else demo:

https://youtu.be/F8QwAhOiuq4

Topic 8
Sample of video (while):

https://youtu.be/a72XiszmKE8

Topic 10
Sample of videos:

https://youtu.be/bsopgKEdBF0

https://youtu.be/BzvYO13HDuk

https://youtu.be/6I9d7FVGEoo

Volume 12, Issue 3 Journal of Computational Science Education

34 ISSN 2153-4136 December 2021

	1. INTRODUCTION
	2. COURSE LEARNING OBJECTIVES
	3. COURSE DESCRIPTION, COURSE OBJECTIVES
	4. COURSE ELEMENTS
	4.1 Course Textbook
	4.2 Python Programming Language

	5. PEDAGOGICAL MODEL
	6. RESOURCES DEVELOPED
	7. COURSE FORMAT
	7.1 Examples of Course Materials

	8. COURSE EVALUATIONS
	9. FINAL PROJECT: COMMENTS
	10. FINAL DISCUSSION
	11. ACKNOWLEDGEMENTS
	12. REFERENCES
	APPENDIX A
	APPENDIX B
	APPENDIX C
	Topic 1
	Activity 1
	Activity 2

	Topic 2
	Topic 5
	Topic 7
	Topic 8
	Topic 10

