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ABSTRACT 
Wildfire simulations are developed for interactive use in online 

geography classes under the course titled Disasters. Development 

of local capability to design and offer computational activities in 

courses at a small, rural college is a long-term activity based on 

integrated scientific research and education efforts. 
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1. INTRODUCTION 
A wildfire is one of the events studied in the Fond du Lac Tribal & 

Community College (FDLTCC) geography course titled Disasters. 

This course has been offered online for several years, so spring 

2020 and planned spring 2021 delivery have not been affected by 

COVID-19. It has minimal prerequisites and serves to satisfy a 

liberal education requirement for associate degrees. The material is 

often newsworthy enough to command headlines, but history and 

dramatic video footage are not interactive. We sought to add a 

“hands-on” component through computer simulation exercises so 

that students could directly explore some of these events. This is 

also an opportunity to add special value to an online course; we 

know every student has a capable computer in hand with a good 

connection to the Internet. 

Rather than study wildfires as a general topic, we wanted students 

to experiment with specific wildfire variables using local and 

familiar geographic areas, say surrounding our campus forest or at 

the Big Lake meeting grounds. Simulations cannot have too fine a 

scale where individual trees are resolved, but at a reasonable scale, 

we can model fire behavior in ways interesting to students (they 

recognize the land) and illustrating key drivers of wildfire growth 

that they can control by selection: fuel, wind, topography, and 

moisture. Our needs for this particular class defined the modeling 

application. 

Wildfire propagation is difficult to predict because of the 

complexity of fuel, terrain, induced weather, and other variables; 

yet modeling can still be helpful, and several kinds of models are 

used. WRF-fire and Sfire [5] were developed to study wildfires 

within the Weather Research Forecast (WRF [6]) code framework. 

WRF-fire and Sfire are designed for large-scale fires, say within a 

50 km x 50 km area or larger, and these codes require considerable 

wall-clock time to evolve as grid resolution increases. At this scale, 

the size of an individual cell might contain our entire campus forest. 

These are 2D fire-line propagation models driven by external 

conditions provided by WRF. 

The grid size of WRF can be refined arbitrarily in horizontal 

directions, and the vertical resolution can also be refined by 

creating more pressure/eta levels. Sfire and WRF-fire run on a 

separate finer grid that is coupled to the finest WRF grid. It is a 2D 

model with inputs from the WRF grid and outputs to WRF grid 

variables. Sfire is used for large-scale wildfire simulations which 

may cover an entire mountain-side and burn for days and even 

weeks. Sfire scales using the same WRF mechanisms for use on 

multiple processes so that simulations can be run on large clusters. 

The Sfire group created configuration, runtime, post-run, and 

display tools so that wildfire simulation results are more easily used 

by researchers and viewed by the public. In fact, the Sfire group 

offered to conduct simulations specifically for our Disasters class 

(given a location and date of a past fire in their catalog) so that 

students could examine results through the web interface. 

We wanted students to set up and run simulations in some 

interactive fashion, and we could not run Sfire fast enough on our 

local machines. Our target for a real-time simulation was 15 

minutes maximum. This figure can be achieved on modest 

workstations with a sufficiently coarse grid, and we did just this for 

classes in previous years using WRF-fire instead by directly 

modifying the stock ideal wildfire problem provided. A straight-

line plume expanding in the wind direction was the consistent 

result, and visualization quality was poor because of the coarse 

grid. This is not surprising, because WRF is a meso-scale model 

designed to predict Earth weather. 

We are more interested in small-scale fires that evolve, say, within 

a 1 km x 1 km area. This scale is suitable for educational uses. Our 

technical goals are several. 

1. Problem evolution is fast enough for immediate feedback. 

Students—like researchers—want to see results from their 

experiments in short order. 

2. Recognizable local terrain features are clear in visualization. 

3. Students set the fire ignition point or line, fuel moisture, and 

wind conditions in a visual fashion. 

4. Running simulations are viewable by everyone, and finished 

results are archived and viewable by everyone. 

5. Controls for setting fire simulations, tracking jobs on the 

queue, and viewing results are simple and intuitive. 

6. Students in 2 sections of 35 students each can make several 

runs over a period of 1–2 weeks. 

7. An ordinary stock web browser front-end to the simulation 

exercise is sufficient, i.e., there are no machine-specific 

requirements, and no special web browser plug-ins are needed. 
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2. HISTORY 
Our problem came first. Wildfires are a local concern for practical 

and historical reasons. The “Fire of 1918” destroyed Cloquet, 

Minnesota, and much of the surrounding region, and it is still the 

deadliest in the United States for loss of life (453 deaths). In fall 

1918, when local WWI and flu epidemic casualties were peaking, 

fire driven by high winds consumed towns and forests within a 

1,000 mi2 region in a matter of hours. 

 

Figure 1. 1918 Fire (Duluth News Tribune, 2018). 

102 years later, the region surrounding Cloquet is again mostly 

forest, and it is now used for a mix of production and recreation. 

The FDLTCC campus was built within a planted red pine 

production “farm” that grew past its ideal thinning and harvesting 

times. It now looks much like ordinary “wild” forest in surrounding 

areas, except that the tallest red pines are aligned in neat rows at 

somewhat uniform height. 

This particular stand of trees would have been harvested for 

telephone poles earlier had it remained in production, and there 

would have been periodic brushing (removing undergrowth) to 

reduce fire danger to the canopy. It is more of a fire hazard than 

necessary, and future aesthetic value of tall red pines (up to 250 

feet) is eliminated by over-crowding. 

In fact, there was a wildfire in the campus forest within a year after 

the campus was built in 1993. At that time, the undergrowth was 

low, so an undergrowth fire burned for several hours during the 

night without any damage and before notice. Tall red pines can 

easily survive a surface fire, and the Cloquet fire department 

quickly put out the fire because ordinary trucks could move 

between trees over low brush. 

3. SIMULATION DETAILS 
Earlier, we had developed fluid code for use at FDLTCC in 

collaboration with The Laboratory for Computational Science and 

Engineering at The University of Minnesota (LCSE). This was 

done in order to simulate tracer flow over complex terrain for a 

different problem: track flow and dispersion of a benzene cloud. 

This disaster occurred in Duluth-Superior during 1991 from a 

railroad tanker derailment and rupture off the Nemadji River 

Bridge. 

The code tracks tracers well toward visualization of smoke and 

gaseous products. For fire propagation, the movement and state of 

the fluid can be used directly. Heat dries out vegetation, which is 

then easier to ignite, and hot gas rises for a chimney effect on 

slopes. We can add radiation from burning vegetation and then add 

a cellular probability function for cell ignition based on fuel, 

proximity to burning cells, moisture, and temperature. This allows 

for a physics-based simulation to a degree practical for the course. 

3.1 Fluid Code 
The fluid code Piecewise Linear Advection and Boltzmann (PLAB) 

is a finite volume Godunov method [4] code similar to Piecewise 

Parabolic Method (PPM [3]) and Piecewise Parabolic Boltzmann 

(PPB [11]) codes but with linear sub-cell reconstruction and 

representation, respectively. Linear methods are simpler and 

sufficient for our relatively low-speed flow fluid problems. Higher-

order parabolic methods were used at this time by Woodward’s 

Blue Waters (BW [1]) Petascale Team to study evolution of a 

Sakurai’s Object-class star [10]. The star burns a different fuel (H 

and He) and at a vastly different scale, yet these codes are alike in 

key principles and implementation details that matter for successful 

execution. 

An interesting aspect of this type of fluid code is that, while details 

can be complex, it is a straightforward application of conservation 

and ideal gas laws that students already know. We can explain the 

essence of how it works in visual fashion to our lower division 

students. This may seem to be a tall claim that a research code 

suitable for leading-edge astrophysical simulations on BW is 

something lower division students in a liberal arts course can follow 

in some fashion. Some explanation is due. 

The Euler equations in one dimension for a compressible fluid are 

usually used to describe the situation. 

 

 

 

These express the relationship of mass ρ, velocity u, momentum ρu, 

pressure p, and energy E across space x and time t, and they are 

linked through an equation of state. They apply, but a more intuitive 

view of the situation is actually used.  

We have cells in a 3D rectangular grid that all affect each other 

eventually. Yet, over a sufficiently small time increment in which 

sound waves move less than a cell width, we just have to figure out 

what crosses each face between every pair of adjoining cells in each 

x, y, and z direction. Every cell has an average state: pressure p, 

density ρ, and velocity u in the direction across the cell face.  

 

Figure 2. Cell face from a Cartesian grid. 

From surrounding cells, we then reconstruct the value of each of 

these variables against the common cell face—left and right shown 

in Figure 3 for density ρ—by sub-cell distribution curves. 

 

Figure 3. Reconstruction. 
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These curves model how real fluids behave at a sub-cell level. Our 

PLAB code uses linear curves sufficient for gentle fluid dynamics, 

while PPM uses parabolas, which are important for stronger shock 

waves driven by, say, thermonuclear explosions. 

The Riemann solution is the state of the “star region” about the 

moving interface (between light dashed lines). The interface (heavy 

dashed line) moves with velocity u*—left for the case shown in 

Figure 4. The star region expands at the speed of sound with a 

common pressure p* and densities ρR* and ρL* on each side of the 

moving interface. 

 

Figure 4. Riemann solution. 

Mass, momentum, and energy pass from one cell to another. This 

is the flux. The little gray piece in Figure 4 that has moved left 

across the face represents flux, and we calculate this from the star 

region state. We do this for all cells sequentially in x, y, and z 

directions, then we repeat to evolve the problem over time. For us, 

the solution is an illustrative video of the wildfire. 

The tracer (smoke and other fire products) carried within the fluid 

is represented explicitly in each cell, a Boltzmann-style sub-cell 

distribution. This method accurately tracks tracers, and it doubles 

the effective resolution in each dimension toward visualization. In 

fact, multiple tracers can be represented within the fluid, each with 

its own distribution, but one tracer is enough for this wildfire 

simulation.  

Expressing this sub-cell distribution in usable form amounts to 

calculating the volume fraction and moments with respect to x, y, 

and z of the tracer in a [- ½, ½]3 cell then limiting the slope so that 

our distribution function returns a value in [0,1] for each point in 

the cell. 

 

The constants Tx, Ty, and Tz are each 12 times the moment in the x, 

y, and z axis direction, respectively. Tracer is just advected with 

density in our wildfire code, and we set the mass T0 for the air cell 

at or immediately above a burning cell. After each advection step, 

the new tracer distribution is calculated for each cell. 

Work with this function employs standard techniques from our 

Calculus 1 & 2 courses, a nice applied example used for these 

classes. It is easier to illustrate the idea first in 2D so that the density 

z is a function of the position (x,y) in a [-½,½]2 square, i.e., we have 

a plane in space to view:  

.  

Students can see that it really works, too: crisp, realistic tracer flow. 

We feel that these methods play well to intuition and experience 

held by our liberal arts students. We can explain how this wildfire 

simulation works, more or less, depending on what students want 

to know. 

Our PLAB code also uses the Simple Line Interface Calculation 

(SLIC [7]) method for solid boundaries, so we can embed the solid 

surface terrain, buildings, and partial solid items like tree canopy 

within the fluid code. Thus, dynamical features of wildfires such as 

eddies and chimney-like effects of slopes are simulated directly. 

PLAB is not an adaptive mesh refinement (AMR) code, nor is it 

nestable like WRF, so we stretched the lateral and top boundaries 

outward from the focus of the simulation within a fine grid center. 

Stretching provides dampening of high frequencies generated 

within the fine grid, and it also provides a way to maintain outer 

fluid boundaries during relatively brief student simulations. Smoke 

does “pile up” within the boundaries in our visualizations because 

of these; this is a visual flaw we currently accept. 

3.2 Visualization Code 
Visualization code in various forms was built into earlier 

educational applications at FDLTCC. A ray casting volume 

rendering code Srend [9] was developed for use within BW Sakurai 

Object simulation code, and the same visualization code was used 

in new educational applications at FDLTCC, including this wildfire 

simulation. Running simulations wrote rendered images to website 

directories, then these images were drawn as available by web 

applications to show imagery and also turn sequences of frames 

into movies. 

Visualization is a special challenge when the number of processes 

rises. Traditional strategies of dumping data to disk for post-

processing do work, and BW is designed for this. BW storage can 

be written to by simulation XE nodes; then a separate job on XC 

nodes (the visualization cluster) can read the data, process it to 

imagery, then write results to storage. However, data can be 

condensed significantly through rendering in-place and deliver 

useful imagery during running simulations. This is a worthwhile 

strategy if in-core volume rendering is fast enough and if pre-

defined rendering parameters are sufficient to explore simulation 

results. 

Our BW team had investigated the idea that an in-core method for 

volume rendering could simplify aspects of imagery generation, 

handling, and delivery on BW as well as other machines toward 

exascale performance. Other significant benefits from embedding 

in-core visualization within simulation code are elimination of 

dependencies and delay associated with visualization codes and 

post-processing. This is a high-value convenience for research 

using petascale clusters, but it is an essential feature for our 

educational applications. 

Of note—which may be surprising—is that scalable fluid and 

visualization code capable of employing every node of the largest 

clusters also runs perfectly on laptop and desktop machines, just 

slower or on smaller problems. 

A rendering of stellar fusion fuel was done using 13,824 MPI ranks 

on BW compute nodes, and “smoke” was rendered by 32 MPI ranks 

on a local machine: same code, different numbers. 

 

Figure 5. Stellar fuel and wildfire “smoke” visualization. 
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We can scale our wildfire application on machines we have 

available to suit the class, i.e., adjust the grid size and evolution 

time to get results delivered to students within acceptable limits.  

3.3 Wildfire Simulation 
We integrated the PLAB fluid code with Srend for runtime 

visualization, then we added variables and physics for wildfires. 

The tracer variable T for the simulation injected in a cell was 

defined to be mass of fuel (wood, grass, ...) consumed by the fire. 

This tracer includes smoke particles, CO2, water, and other gases. 

Students define ignition points by drawing an ignition line using a 

mouse on a web image of a pre-defined, 1 km area surrounding the 

FDLTCC campus. They can switch between an image, an elevation 

map, and a fuel category map of the same area when they set the 

ignition line. The wind speed and direction can be set by clicking 

on a compass rose. Fuel moisture percentage is set using a slider. 

Fire evolution itself is generated by a combination of physics and 

cellular methods. The fire grid is a 2D array at the same resolution 

as the fine horizontal inner grid of the fluid code. Each fire grid cell 

has variables: 

1) Remaining fuel: in kg, initialized by the fuel category 

value by cell position. 

2) Moisture: in percent, initialized by the student using the 

slider, where kg of water = kg of fuel * percent of initial 

moisture. 

3) Ignition status: burning (1) or not burning (0), initialized 

to 1 if on the student ignition line and 0 if not. 

4) Energy in from burning step: in J, initialized at 0. 

For each fire evolution step, there is a burning step followed by an 

ignition step. In the burning step for each cell with burning = 1, a 

fraction of remaining fuel is burned, then: 

1) The mass burned is injected within the same fluid cell as 

a tracer. 

2) The energy production (1.4 MJ/kg burned fuel) from 

burning is radiated. Surface cells in the line of sight can 

absorb energy. 

3) Each cell transfers energy in to evaporation of moisture, 

and this energy is added to the fluid. 

The ignition step is a cellular model but driven by physics. As the 

moisture content approaches zero and more touching cells are 

burning, the cell’s probability of ignition rises. The temperature of 

the fluid (air) also changes the probability of ignition. Wind 

direction and relative elevation of cells are not used directly; the 

fluid code advects fluid in the direction of the wind and allows hot 

gas to rise. A random number is generated then input to the 

probability function to determine ignition. 

This fire evolution model was tweaked through trials and guided by 

appearance of real wildfires. For limitations, we do not formally 

validate our models against other wildfire models or real fires but 

focus on educational uses; we make no claims about predicting real 

fires. On the other hand, we observe fire-line propagation in our 

models similar to that of real fires and research-grade wildfire 

models. 

3.4 Delivery to Students 
Our original server for this exercise was a 4-core Linux machine 

running an Apache webserver. There is JavaScript within the 

student web page so that students can navigate between views and 

define parameters visually, but form and CGI methods are mostly 

unchanged from the mid-1990s. The CGI script fire2.pl checks the 

key and form variables then loads a job within the queue by writing 

variables to a file in the queue q2/ directory. Another CGI script 

queue2.pl shows the queue to students and displays results from 

any running simulation whenever the page is reloaded. The queue 

itself is processed by a perpetually running script runfire.pl that 

sequentially runs jobs (files in the queue directory) ordered by file 

creation time. The fire simulation code plab_fire is launched by the 

runfire.pl script after modifying the namelist file with the run 

parameters, then the simulation code runs the simulation according 

to the namelist file. 

Completed runs—with parameters, a selection of images, and a 

movie generated from all images—are written to the html/runs2/ 

directory by ID for public viewing. 

3.5 Directions 
The tutorial for the wildfire exercise comes after material and class 

discussion. A sequence of slides from the tutorial follow in the 

Appendix. 

4. RESULTS 
The wildfire activity has been used in several classes with very 

similar results. 

4.1 Student Commentary 
Students completed a post-simulation survey (spring 2017), and we 

include questions and responses from 4–7. Their comments are 

especially valuable; something can be done about specific 

complaints. We include their words complete with some minor 

punctuation corrections for clarity. 

Q4: Did you find the wildfire simulation and 

visualization activity engaging? 
• It was interesting. Better graphics and more variables 

would be nice. 

• Yes, I enjoyed seeing the different effects that can cause 

fire to act differently. 

• It was confusing and not very interesting at first, but then 

once I understood it better and was able to see the 

simulation and how my decisions affected the end result, 

it was much more engaging. 

• Yes, I found it very interesting. I thought it was very well 

set up. 

• Yes, after I got the simulations going and could see what 

they were all about, I really enjoyed it. 

• I found it confusing at first, but once I got the hang of it, 

I did think it was engaging. 

• Not really. I was kind of confused how to run it, even 

after directions. I did not really understand what I was 

trying to see or figure out. I wish it were explained to me 

better. 

• It was kind of boring until I understood what I was doing. 

• Yes, it was engaging. 

• Definitely, I enjoy doing visualization activity. I get more 

out of doing things like that and hands on. 

• Yes, but it could be a little faster and maybe updated. It 

did do its job, though. 

• Yes, I found the simulation very engaging and enjoyable. 

It was very easy to navigate. 

• Absolutely! 

• The simulation was very neat in the fact that when you 

predict the way the wildfire would be, the wildfire does 

Journal of Computational Science Education Volume 12, Issue 3

December 2021 ISSN 2153-4136 5



something else. The fires did many different things that 

were unpredictable, but it showed how different each one 

was with the alternate factors. 

• Yes, I did. It was interesting watching how things could 

develop though this activity. 

• Yes, once I got the hang of it, it was very intriguing to see 

what my simulation would end up being like, being that 

the results are not given right away. 

Q5: What was the most effective part of this learning 

module? 
• How the change of different elements can affect the force 

of the wildfire. 

• It gave me an idea of how wildfire actually works. It was 

nice to try new things and to be able to watch all of my 

runs. 

• After doing this, you are able to actually visualize how 

different changes can affect wildfires. 

• Seeing the results. Just wish it didn’t take so long. 

• I figured out that different spots strike up different fires. 

Maybe big ones or small ones. 

• I would say the video were the most effective aspect of 

the module. 

• Seeing how fast and hot fires can be and what fuel and 

wind factor into it. 

• Actually getting to create the simulations ourselves rather 

than just watching ones that were already created. 

• Everything about the module was effective because it 

shows us the dangers that could happen and gives us an 

opportunity on what to look out for. 

• The most effective part of the module was seeing the fires 

counteract the predictions. The many factors that make 

each fire different makes them unique and spread 

differently. I learned that fires can spread just about 

anywhere, even if it’s in an empty field or over a concrete 

highway. 

• See how it all played out in the video. 

• The most effective part were the different views that 

could be accessed by the clicking of a few simple buttons. 

• That I was able to see the way the fire was going. 

• Watching the fires, and how the winds and fire line play 

a role together. 

• Having to write a summary about the simulations 

reinforced them. 

Q6: Were there barriers to completing the activity? If 

so, please discuss. 
• It was very confusing at first and lacked direction. You 

just kind of had to play with it and figure everything out 

for yourself. 

• No. 

• Just waiting for my simulations to run. 

• I would say the only barrier would be the fact that the 

simulations run one at a time so it can get to be time 

consuming to get your simulations done. With proper 

planning this minor issue can be curbed. 

• Yeah like sometimes it would not zoom in for me. That 

got super frustrating. 

• I thought it was a little confusing how to find my way 

around the website after clicking on submit job. 

• Yes, if you typed in the wrong code. You would have to 

re-enter everything. Also sometimes it would take a long 

time for the simulations to run. 

• Yes, one I was sure if it was land cover in dirt over a very 

dry area. When trying to produce a fire, it was 

unsuccessful. 

• Time was the major barrier. It took a lot of time from one 

run to another. 

• I didn’t encounter any issues in particular. 

• Just too many people trying to complete runs at the same 

time. 

• The barriers of completing this activity was that the video 

simulations did not work on my computer at home. I had 

to go to the school and play the video modules so I could 

summarize each one accurately. 

• No. 

• Following the directions closely. It gives you enough 

structure to do it. 

• It was a little difficult to understand how the pass worked 

at first. I know it took me more than one try to really 

understand what I was doing even though there was a 

tutorial provided. 

Q7: What are your suggestions for improvement, if 
any? 

• Graphics and more variables. 

• Maybe a better system to find your code within everyone 

else’s code. 

• I just suggest that the tutorial be supplied right away 

because it was very stressful trying to figure it out 

without it. Other than that, it was all right. 

• More direction on how to use the website. 

• I would try to explain the simulation better. Like inform 

the students what they are doing and explain to them what 

will happen. Make it more user friendly. 

• I have no other suggestions. 

• None. 

• Make the process faster. This took me 5 hours to 

complete because of waiting time. 

• Nothing really. 

• Offer ways to configure computers at home like HP and 

Mac to play the videos from changing the settings. 

• Longer video. 

• I would try and maybe have weather conditions, such as 

light rain, rain, snow covered, just to add another 

seasonal variable. 

• Update the system so it is less time between runs and 

better graphics. 

• Maybe have different modules with different agriculture. 

• The only thing I could suggest would be to have the 

simulations run faster. 

• It would be interesting to pick completely different 

locations all around the country. 

4.2 Notes on Student Comments 

4.2.1 Engagement 
Some student yeas for “engaging” were qualified with something 

like, “after I figured out what I was doing.” This is not a terrible 

sign. A bit of initial mystery to solve is a wonderful spice. Our 

thoughts on the ideal instructions and user-interface are formed 
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about compromise between an interesting, educational puzzle and 

a sure-fire recipe. We definitely do shoot for pizzazz! Student 

opinions on the matter are there to guide us in this aspect. 

4.2.2 Waiting in the Queue 
Many students complained that simulations took too much time to 

run. This is a familiar complaint, and this was mostly about their 

job waiting in the queue. Everyone appreciates speedup when it is 

about solving their own problem. It brings up memories of 

researchers complaining, say about “those chemists hogging the 

machine.” We agree with almost all student complaints, and this is 

one that can be addressed in a straightforward fashion because this 

is a scalable simulation code. There are practical issues to think 

about, however, on the idea of migrating a scalable code to a faster 

but remote machine. 

Setting up and using a remote machine is more complex than using 

a local machine, and queue waiting can make optimization efforts 

pointless. On the other hand, it can work well. For a previous 

project, we used SDSC Trestles, TACC Lonestar, and LONI 

Queenbee successfully for remote runs on demand handled by a 

local intermediate portal server, and these particular machines 

consistently had short queue wait times for small jobs—a feature 

carefully sought. Currently, the XSEDE project features SDSC 

machines aimed squarely at this kind of on-demand service [8]. 

For an interesting cluster management paradigm, we also formerly 

used LCSE clusters for educational applications from FDLTCC. 

The principle for LCSE clusters was that educational usage trumps 

production jobs, and interactive usage trumps all. LCSE cluster 

users were expected to write production codes with restart dumps 

so that they could be killed any time then gracefully restarted. 

Production is important, but a 336-hour production job can be 

delayed a bit to accommodate educational and interactive usage. 

A newer machine reduced the simulation run time from 15 minutes 

to 4 minutes, so we partly addressed the complaint about delay. 

Longer simulation runs would be nice to do. Obviously, students 

wanted to see what else would have happened when their 

simulation ended. 

4.2.3 Add Simulation Variables and Places 
Students want more variables in the simulation, namely arbitrary 

locations and weather conditions. We do, too. There are difficulties 

for some. 

Real-time weather conditions are easiest to obtain because point 

conditions are sufficient in these fine-scale simulations. It is 

possible to obtain historical and contemporary forecast data from 

online sources then interpolate to desired position and date. A 

realistic method to incorporate rain or snow is an unknown to us 

other than by ramping up the moisture level in fuel. We might do 

well for this class exercise to have students simply look up current 

conditions or create their own. The current GUI allows wind speed 

and direction input as this is highly significant for wildfire 

evolution. 

Fine-scale terrain and imagery data is obtainable online at various 

refinements. Fine-scale land cover data was not available at the fine 

scale of our simulations. We processed fine-scale imagery to 4 

categories (grass, forest, buildings, and non-burnable) using Gimp 

raster features then edited 4-color raster images by hand over the 

simulation area using our knowledge of the land. Rather than try to 

store terrain, land cover, and imagery data for a large region (say 

Minnesota), or download and process data from a larger region (say 

continental US), we could practically prepare a selection of smaller 

yet representative regions of interest and allow students to select 

one. These could be somewhat larger regions than our 1 km square 

region currently used. 

4.2.4 More and Better Graphics 

These are the easiest to address. Our visualization software (Srend) 

can deliver several sets of imagery using different views 

simultaneously, and volume rendering does not take much time 

compared to problem evolution. We used FFmpeg to convert 

sequences of images to video, and we can create alternative formats 

that work in more browsers. MP4 for video seems to be favored 

today. 
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otherwise available, within limits. (This activity was not funded 

directly.) LCSE researchers usually have answers to problems with 

fluid dynamics, HPC techniques, visualization, and N-body codes, 

and they helped make resources available for development, testing, 

and running educational applications. It is impossible to overstate 

the value of research and education partners willing to help 

cultivate institutional capacity. 

Allocations from TeraGrid [2] and the San Diego Supercomputing 

Center for development and testing were available and ready to use 

within 24 hours of request. Similar XSEDE response (swift and 

certain) is available, and there are specific services available for 

applications of this sort, i.e., web access to applications for use in 

classes running on remote machines. 

NASA’s project Center for Applied Atmospheric Research and 

Education (NASA-CAARE NNX15AQ02A) supported refinement of 

wildfire modeling activities, and the current FDLTCC KNL node 

was purchased with NASA CAARE funds. A NASA funded project 

at FDLTCC (Elizabeth Jones, “Environmental Modeling And 

Research Experience”, NNX11AQ96G) provided startup funding 

for tracer flow modeling. 

FDLTCC and Minnesota State College and Universities funds 

sabbaticals for community college faculty with the proviso that 

efforts contribute to the mission of teaching and learning. Faculty 

research activities are viewed as important components, and 

internal FDLTCC support is also available. We have enjoyed 

strong, continuous internal administrative support for these specific 

efforts described. 

6. FUTURE PLANS 
The current stretched grid wildfire model still works so we are 

using it for the spring 2021 classes, but we are working on an AMR 

code as a replacement for similar simulations which involve fluid 

flow over complex terrain. Incorporating external data is easier 

with a fixed 2:1 grid refinement ratio vs. stretched grids. Also, 

visualization of AMR data is an Srend capability to exploit. 

Stretching the grid was a solution to get this problem running in 

time for the Disasters class. The AMR code would not evolve this 

wildfire problem faster using the same number of finest grid cells, 

but it would be easier to scale and would apply to a broader set of 

problems. 
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