
Student Simulations of Local Wildfires in a Liberal Arts
Geography Course

Ted Wetherbee
Fond du Lac Tribal & Community College

ted@fdltcc.edu

Elizabeth Jones
Fond du Lac Tribal & Community College

ejones@fdltcc.edu

ABSTRACT
Wildfire simulations are developed for interactive use in online

geography classes under the course titled Disasters. Development

of local capability to design and offer computational activities in

courses at a small, rural college is a long-term activity based on

integrated scientific research and education efforts.

Keywords
Wildfires, Simulations, Computational science partnerships

1. INTRODUCTION
A wildfire is one of the events studied in the Fond du Lac Tribal &

Community College (FDLTCC) geography course titled Disasters.

This course has been offered online for several years, so spring

2020 and planned spring 2021 delivery have not been affected by

COVID-19. It has minimal prerequisites and serves to satisfy a

liberal education requirement for associate degrees. The material is

often newsworthy enough to command headlines, but history and

dramatic video footage are not interactive. We sought to add a

“hands-on” component through computer simulation exercises so

that students could directly explore some of these events. This is

also an opportunity to add special value to an online course; we

know every student has a capable computer in hand with a good

connection to the Internet.

Rather than study wildfires as a general topic, we wanted students

to experiment with specific wildfire variables using local and

familiar geographic areas, say surrounding our campus forest or at

the Big Lake meeting grounds. Simulations cannot have too fine a

scale where individual trees are resolved, but at a reasonable scale,

we can model fire behavior in ways interesting to students (they

recognize the land) and illustrating key drivers of wildfire growth

that they can control by selection: fuel, wind, topography, and

moisture. Our needs for this particular class defined the modeling

application.

Wildfire propagation is difficult to predict because of the

complexity of fuel, terrain, induced weather, and other variables;

yet modeling can still be helpful, and several kinds of models are

used. WRF-fire and Sfire [5] were developed to study wildfires

within the Weather Research Forecast (WRF [6]) code framework.

WRF-fire and Sfire are designed for large-scale fires, say within a

50 km x 50 km area or larger, and these codes require considerable

wall-clock time to evolve as grid resolution increases. At this scale,

the size of an individual cell might contain our entire campus forest.

These are 2D fire-line propagation models driven by external

conditions provided by WRF.

The grid size of WRF can be refined arbitrarily in horizontal

directions, and the vertical resolution can also be refined by

creating more pressure/eta levels. Sfire and WRF-fire run on a

separate finer grid that is coupled to the finest WRF grid. It is a 2D

model with inputs from the WRF grid and outputs to WRF grid

variables. Sfire is used for large-scale wildfire simulations which

may cover an entire mountain-side and burn for days and even

weeks. Sfire scales using the same WRF mechanisms for use on

multiple processes so that simulations can be run on large clusters.

The Sfire group created configuration, runtime, post-run, and

display tools so that wildfire simulation results are more easily used

by researchers and viewed by the public. In fact, the Sfire group

offered to conduct simulations specifically for our Disasters class

(given a location and date of a past fire in their catalog) so that

students could examine results through the web interface.

We wanted students to set up and run simulations in some

interactive fashion, and we could not run Sfire fast enough on our

local machines. Our target for a real-time simulation was 15

minutes maximum. This figure can be achieved on modest

workstations with a sufficiently coarse grid, and we did just this for

classes in previous years using WRF-fire instead by directly

modifying the stock ideal wildfire problem provided. A straight-

line plume expanding in the wind direction was the consistent

result, and visualization quality was poor because of the coarse

grid. This is not surprising, because WRF is a meso-scale model

designed to predict Earth weather.

We are more interested in small-scale fires that evolve, say, within

a 1 km x 1 km area. This scale is suitable for educational uses. Our

technical goals are several.

1. Problem evolution is fast enough for immediate feedback.

Students—like researchers—want to see results from their

experiments in short order.

2. Recognizable local terrain features are clear in visualization.

3. Students set the fire ignition point or line, fuel moisture, and

wind conditions in a visual fashion.

4. Running simulations are viewable by everyone, and finished

results are archived and viewable by everyone.

5. Controls for setting fire simulations, tracking jobs on the

queue, and viewing results are simple and intuitive.

6. Students in 2 sections of 35 students each can make several

runs over a period of 1–2 weeks.

7. An ordinary stock web browser front-end to the simulation

exercise is sufficient, i.e., there are no machine-specific

requirements, and no special web browser plug-ins are needed.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/3/1

Volume 12, Issue 3 Journal of Computational Science Education

2 ISSN 2153-4136 December 2021

2. HISTORY
Our problem came first. Wildfires are a local concern for practical

and historical reasons. The “Fire of 1918” destroyed Cloquet,

Minnesota, and much of the surrounding region, and it is still the

deadliest in the United States for loss of life (453 deaths). In fall

1918, when local WWI and flu epidemic casualties were peaking,

fire driven by high winds consumed towns and forests within a

1,000 mi2 region in a matter of hours.

Figure 1. 1918 Fire (Duluth News Tribune, 2018).

102 years later, the region surrounding Cloquet is again mostly

forest, and it is now used for a mix of production and recreation.

The FDLTCC campus was built within a planted red pine

production “farm” that grew past its ideal thinning and harvesting

times. It now looks much like ordinary “wild” forest in surrounding

areas, except that the tallest red pines are aligned in neat rows at

somewhat uniform height.

This particular stand of trees would have been harvested for

telephone poles earlier had it remained in production, and there

would have been periodic brushing (removing undergrowth) to

reduce fire danger to the canopy. It is more of a fire hazard than

necessary, and future aesthetic value of tall red pines (up to 250

feet) is eliminated by over-crowding.

In fact, there was a wildfire in the campus forest within a year after

the campus was built in 1993. At that time, the undergrowth was

low, so an undergrowth fire burned for several hours during the

night without any damage and before notice. Tall red pines can

easily survive a surface fire, and the Cloquet fire department

quickly put out the fire because ordinary trucks could move

between trees over low brush.

3. SIMULATION DETAILS
Earlier, we had developed fluid code for use at FDLTCC in

collaboration with The Laboratory for Computational Science and

Engineering at The University of Minnesota (LCSE). This was

done in order to simulate tracer flow over complex terrain for a

different problem: track flow and dispersion of a benzene cloud.

This disaster occurred in Duluth-Superior during 1991 from a

railroad tanker derailment and rupture off the Nemadji River

Bridge.

The code tracks tracers well toward visualization of smoke and

gaseous products. For fire propagation, the movement and state of

the fluid can be used directly. Heat dries out vegetation, which is

then easier to ignite, and hot gas rises for a chimney effect on

slopes. We can add radiation from burning vegetation and then add

a cellular probability function for cell ignition based on fuel,

proximity to burning cells, moisture, and temperature. This allows

for a physics-based simulation to a degree practical for the course.

3.1 Fluid Code
The fluid code Piecewise Linear Advection and Boltzmann (PLAB)

is a finite volume Godunov method [4] code similar to Piecewise

Parabolic Method (PPM [3]) and Piecewise Parabolic Boltzmann

(PPB [11]) codes but with linear sub-cell reconstruction and

representation, respectively. Linear methods are simpler and

sufficient for our relatively low-speed flow fluid problems. Higher-

order parabolic methods were used at this time by Woodward’s

Blue Waters (BW [1]) Petascale Team to study evolution of a

Sakurai’s Object-class star [10]. The star burns a different fuel (H

and He) and at a vastly different scale, yet these codes are alike in

key principles and implementation details that matter for successful

execution.

An interesting aspect of this type of fluid code is that, while details

can be complex, it is a straightforward application of conservation

and ideal gas laws that students already know. We can explain the

essence of how it works in visual fashion to our lower division

students. This may seem to be a tall claim that a research code

suitable for leading-edge astrophysical simulations on BW is

something lower division students in a liberal arts course can follow

in some fashion. Some explanation is due.

The Euler equations in one dimension for a compressible fluid are

usually used to describe the situation.

These express the relationship of mass ρ, velocity u, momentum ρu,

pressure p, and energy E across space x and time t, and they are

linked through an equation of state. They apply, but a more intuitive

view of the situation is actually used.

We have cells in a 3D rectangular grid that all affect each other

eventually. Yet, over a sufficiently small time increment in which

sound waves move less than a cell width, we just have to figure out

what crosses each face between every pair of adjoining cells in each

x, y, and z direction. Every cell has an average state: pressure p,

density ρ, and velocity u in the direction across the cell face.

Figure 2. Cell face from a Cartesian grid.

From surrounding cells, we then reconstruct the value of each of

these variables against the common cell face—left and right shown

in Figure 3 for density ρ—by sub-cell distribution curves.

Figure 3. Reconstruction.

Journal of Computational Science Education Volume 12, Issue 3

December 2021 ISSN 2153-4136 3

These curves model how real fluids behave at a sub-cell level. Our

PLAB code uses linear curves sufficient for gentle fluid dynamics,

while PPM uses parabolas, which are important for stronger shock

waves driven by, say, thermonuclear explosions.

The Riemann solution is the state of the “star region” about the

moving interface (between light dashed lines). The interface (heavy

dashed line) moves with velocity u*—left for the case shown in

Figure 4. The star region expands at the speed of sound with a

common pressure p* and densities ρR* and ρL* on each side of the

moving interface.

Figure 4. Riemann solution.

Mass, momentum, and energy pass from one cell to another. This

is the flux. The little gray piece in Figure 4 that has moved left

across the face represents flux, and we calculate this from the star

region state. We do this for all cells sequentially in x, y, and z

directions, then we repeat to evolve the problem over time. For us,

the solution is an illustrative video of the wildfire.

The tracer (smoke and other fire products) carried within the fluid

is represented explicitly in each cell, a Boltzmann-style sub-cell

distribution. This method accurately tracks tracers, and it doubles

the effective resolution in each dimension toward visualization. In

fact, multiple tracers can be represented within the fluid, each with

its own distribution, but one tracer is enough for this wildfire

simulation.

Expressing this sub-cell distribution in usable form amounts to

calculating the volume fraction and moments with respect to x, y,

and z of the tracer in a [- ½, ½]3 cell then limiting the slope so that

our distribution function returns a value in [0,1] for each point in

the cell.

The constants Tx, Ty, and Tz are each 12 times the moment in the x,

y, and z axis direction, respectively. Tracer is just advected with

density in our wildfire code, and we set the mass T0 for the air cell

at or immediately above a burning cell. After each advection step,

the new tracer distribution is calculated for each cell.

Work with this function employs standard techniques from our

Calculus 1 & 2 courses, a nice applied example used for these

classes. It is easier to illustrate the idea first in 2D so that the density

z is a function of the position (x,y) in a [-½,½]2 square, i.e., we have

a plane in space to view:

.

Students can see that it really works, too: crisp, realistic tracer flow.

We feel that these methods play well to intuition and experience

held by our liberal arts students. We can explain how this wildfire

simulation works, more or less, depending on what students want

to know.

Our PLAB code also uses the Simple Line Interface Calculation

(SLIC [7]) method for solid boundaries, so we can embed the solid

surface terrain, buildings, and partial solid items like tree canopy

within the fluid code. Thus, dynamical features of wildfires such as

eddies and chimney-like effects of slopes are simulated directly.

PLAB is not an adaptive mesh refinement (AMR) code, nor is it

nestable like WRF, so we stretched the lateral and top boundaries

outward from the focus of the simulation within a fine grid center.

Stretching provides dampening of high frequencies generated

within the fine grid, and it also provides a way to maintain outer

fluid boundaries during relatively brief student simulations. Smoke

does “pile up” within the boundaries in our visualizations because

of these; this is a visual flaw we currently accept.

3.2 Visualization Code
Visualization code in various forms was built into earlier

educational applications at FDLTCC. A ray casting volume

rendering code Srend [9] was developed for use within BW Sakurai

Object simulation code, and the same visualization code was used

in new educational applications at FDLTCC, including this wildfire

simulation. Running simulations wrote rendered images to website

directories, then these images were drawn as available by web

applications to show imagery and also turn sequences of frames

into movies.

Visualization is a special challenge when the number of processes

rises. Traditional strategies of dumping data to disk for post-

processing do work, and BW is designed for this. BW storage can

be written to by simulation XE nodes; then a separate job on XC

nodes (the visualization cluster) can read the data, process it to

imagery, then write results to storage. However, data can be

condensed significantly through rendering in-place and deliver

useful imagery during running simulations. This is a worthwhile

strategy if in-core volume rendering is fast enough and if pre-

defined rendering parameters are sufficient to explore simulation

results.

Our BW team had investigated the idea that an in-core method for

volume rendering could simplify aspects of imagery generation,

handling, and delivery on BW as well as other machines toward

exascale performance. Other significant benefits from embedding

in-core visualization within simulation code are elimination of

dependencies and delay associated with visualization codes and

post-processing. This is a high-value convenience for research

using petascale clusters, but it is an essential feature for our

educational applications.

Of note—which may be surprising—is that scalable fluid and

visualization code capable of employing every node of the largest

clusters also runs perfectly on laptop and desktop machines, just

slower or on smaller problems.

A rendering of stellar fusion fuel was done using 13,824 MPI ranks

on BW compute nodes, and “smoke” was rendered by 32 MPI ranks

on a local machine: same code, different numbers.

Figure 5. Stellar fuel and wildfire “smoke” visualization.

Volume 12, Issue 3 Journal of Computational Science Education

4 ISSN 2153-4136 December 2021

We can scale our wildfire application on machines we have

available to suit the class, i.e., adjust the grid size and evolution

time to get results delivered to students within acceptable limits.

3.3 Wildfire Simulation
We integrated the PLAB fluid code with Srend for runtime

visualization, then we added variables and physics for wildfires.

The tracer variable T for the simulation injected in a cell was

defined to be mass of fuel (wood, grass, ...) consumed by the fire.

This tracer includes smoke particles, CO2, water, and other gases.

Students define ignition points by drawing an ignition line using a

mouse on a web image of a pre-defined, 1 km area surrounding the

FDLTCC campus. They can switch between an image, an elevation

map, and a fuel category map of the same area when they set the

ignition line. The wind speed and direction can be set by clicking

on a compass rose. Fuel moisture percentage is set using a slider.

Fire evolution itself is generated by a combination of physics and

cellular methods. The fire grid is a 2D array at the same resolution

as the fine horizontal inner grid of the fluid code. Each fire grid cell

has variables:

1) Remaining fuel: in kg, initialized by the fuel category

value by cell position.

2) Moisture: in percent, initialized by the student using the

slider, where kg of water = kg of fuel * percent of initial

moisture.

3) Ignition status: burning (1) or not burning (0), initialized

to 1 if on the student ignition line and 0 if not.

4) Energy in from burning step: in J, initialized at 0.

For each fire evolution step, there is a burning step followed by an

ignition step. In the burning step for each cell with burning = 1, a

fraction of remaining fuel is burned, then:

1) The mass burned is injected within the same fluid cell as

a tracer.

2) The energy production (1.4 MJ/kg burned fuel) from

burning is radiated. Surface cells in the line of sight can

absorb energy.

3) Each cell transfers energy in to evaporation of moisture,

and this energy is added to the fluid.

The ignition step is a cellular model but driven by physics. As the

moisture content approaches zero and more touching cells are

burning, the cell’s probability of ignition rises. The temperature of

the fluid (air) also changes the probability of ignition. Wind

direction and relative elevation of cells are not used directly; the

fluid code advects fluid in the direction of the wind and allows hot

gas to rise. A random number is generated then input to the

probability function to determine ignition.

This fire evolution model was tweaked through trials and guided by

appearance of real wildfires. For limitations, we do not formally

validate our models against other wildfire models or real fires but

focus on educational uses; we make no claims about predicting real

fires. On the other hand, we observe fire-line propagation in our

models similar to that of real fires and research-grade wildfire

models.

3.4 Delivery to Students
Our original server for this exercise was a 4-core Linux machine

running an Apache webserver. There is JavaScript within the

student web page so that students can navigate between views and

define parameters visually, but form and CGI methods are mostly

unchanged from the mid-1990s. The CGI script fire2.pl checks the

key and form variables then loads a job within the queue by writing

variables to a file in the queue q2/ directory. Another CGI script

queue2.pl shows the queue to students and displays results from

any running simulation whenever the page is reloaded. The queue

itself is processed by a perpetually running script runfire.pl that

sequentially runs jobs (files in the queue directory) ordered by file

creation time. The fire simulation code plab_fire is launched by the

runfire.pl script after modifying the namelist file with the run

parameters, then the simulation code runs the simulation according

to the namelist file.

Completed runs—with parameters, a selection of images, and a

movie generated from all images—are written to the html/runs2/

directory by ID for public viewing.

3.5 Directions
The tutorial for the wildfire exercise comes after material and class

discussion. A sequence of slides from the tutorial follow in the

Appendix.

4. RESULTS
The wildfire activity has been used in several classes with very

similar results.

4.1 Student Commentary
Students completed a post-simulation survey (spring 2017), and we

include questions and responses from 4–7. Their comments are

especially valuable; something can be done about specific

complaints. We include their words complete with some minor

punctuation corrections for clarity.

Q4: Did you find the wildfire simulation and

visualization activity engaging?
• It was interesting. Better graphics and more variables

would be nice.

• Yes, I enjoyed seeing the different effects that can cause

fire to act differently.

• It was confusing and not very interesting at first, but then

once I understood it better and was able to see the

simulation and how my decisions affected the end result,

it was much more engaging.

• Yes, I found it very interesting. I thought it was very well

set up.

• Yes, after I got the simulations going and could see what

they were all about, I really enjoyed it.

• I found it confusing at first, but once I got the hang of it,

I did think it was engaging.

• Not really. I was kind of confused how to run it, even

after directions. I did not really understand what I was

trying to see or figure out. I wish it were explained to me

better.

• It was kind of boring until I understood what I was doing.

• Yes, it was engaging.

• Definitely, I enjoy doing visualization activity. I get more

out of doing things like that and hands on.

• Yes, but it could be a little faster and maybe updated. It

did do its job, though.

• Yes, I found the simulation very engaging and enjoyable.

It was very easy to navigate.

• Absolutely!

• The simulation was very neat in the fact that when you

predict the way the wildfire would be, the wildfire does

Journal of Computational Science Education Volume 12, Issue 3

December 2021 ISSN 2153-4136 5

something else. The fires did many different things that

were unpredictable, but it showed how different each one

was with the alternate factors.

• Yes, I did. It was interesting watching how things could

develop though this activity.

• Yes, once I got the hang of it, it was very intriguing to see

what my simulation would end up being like, being that

the results are not given right away.

Q5: What was the most effective part of this learning

module?
• How the change of different elements can affect the force

of the wildfire.

• It gave me an idea of how wildfire actually works. It was

nice to try new things and to be able to watch all of my

runs.

• After doing this, you are able to actually visualize how

different changes can affect wildfires.

• Seeing the results. Just wish it didn’t take so long.

• I figured out that different spots strike up different fires.

Maybe big ones or small ones.

• I would say the video were the most effective aspect of

the module.

• Seeing how fast and hot fires can be and what fuel and

wind factor into it.

• Actually getting to create the simulations ourselves rather

than just watching ones that were already created.

• Everything about the module was effective because it

shows us the dangers that could happen and gives us an

opportunity on what to look out for.

• The most effective part of the module was seeing the fires

counteract the predictions. The many factors that make

each fire different makes them unique and spread

differently. I learned that fires can spread just about

anywhere, even if it’s in an empty field or over a concrete

highway.

• See how it all played out in the video.

• The most effective part were the different views that

could be accessed by the clicking of a few simple buttons.

• That I was able to see the way the fire was going.

• Watching the fires, and how the winds and fire line play

a role together.

• Having to write a summary about the simulations

reinforced them.

Q6: Were there barriers to completing the activity? If

so, please discuss.
• It was very confusing at first and lacked direction. You

just kind of had to play with it and figure everything out

for yourself.

• No.

• Just waiting for my simulations to run.

• I would say the only barrier would be the fact that the

simulations run one at a time so it can get to be time

consuming to get your simulations done. With proper

planning this minor issue can be curbed.

• Yeah like sometimes it would not zoom in for me. That

got super frustrating.

• I thought it was a little confusing how to find my way

around the website after clicking on submit job.

• Yes, if you typed in the wrong code. You would have to

re-enter everything. Also sometimes it would take a long

time for the simulations to run.

• Yes, one I was sure if it was land cover in dirt over a very

dry area. When trying to produce a fire, it was

unsuccessful.

• Time was the major barrier. It took a lot of time from one

run to another.

• I didn’t encounter any issues in particular.

• Just too many people trying to complete runs at the same

time.

• The barriers of completing this activity was that the video

simulations did not work on my computer at home. I had

to go to the school and play the video modules so I could

summarize each one accurately.

• No.

• Following the directions closely. It gives you enough

structure to do it.

• It was a little difficult to understand how the pass worked

at first. I know it took me more than one try to really

understand what I was doing even though there was a

tutorial provided.

Q7: What are your suggestions for improvement, if
any?

• Graphics and more variables.

• Maybe a better system to find your code within everyone

else’s code.

• I just suggest that the tutorial be supplied right away

because it was very stressful trying to figure it out

without it. Other than that, it was all right.

• More direction on how to use the website.

• I would try to explain the simulation better. Like inform

the students what they are doing and explain to them what

will happen. Make it more user friendly.

• I have no other suggestions.

• None.

• Make the process faster. This took me 5 hours to

complete because of waiting time.

• Nothing really.

• Offer ways to configure computers at home like HP and

Mac to play the videos from changing the settings.

• Longer video.

• I would try and maybe have weather conditions, such as

light rain, rain, snow covered, just to add another

seasonal variable.

• Update the system so it is less time between runs and

better graphics.

• Maybe have different modules with different agriculture.

• The only thing I could suggest would be to have the

simulations run faster.

• It would be interesting to pick completely different

locations all around the country.

4.2 Notes on Student Comments

4.2.1 Engagement
Some student yeas for “engaging” were qualified with something

like, “after I figured out what I was doing.” This is not a terrible

sign. A bit of initial mystery to solve is a wonderful spice. Our

thoughts on the ideal instructions and user-interface are formed

Volume 12, Issue 3 Journal of Computational Science Education

6 ISSN 2153-4136 December 2021

about compromise between an interesting, educational puzzle and

a sure-fire recipe. We definitely do shoot for pizzazz! Student

opinions on the matter are there to guide us in this aspect.

4.2.2 Waiting in the Queue
Many students complained that simulations took too much time to

run. This is a familiar complaint, and this was mostly about their

job waiting in the queue. Everyone appreciates speedup when it is

about solving their own problem. It brings up memories of

researchers complaining, say about “those chemists hogging the

machine.” We agree with almost all student complaints, and this is

one that can be addressed in a straightforward fashion because this

is a scalable simulation code. There are practical issues to think

about, however, on the idea of migrating a scalable code to a faster

but remote machine.

Setting up and using a remote machine is more complex than using

a local machine, and queue waiting can make optimization efforts

pointless. On the other hand, it can work well. For a previous

project, we used SDSC Trestles, TACC Lonestar, and LONI

Queenbee successfully for remote runs on demand handled by a

local intermediate portal server, and these particular machines

consistently had short queue wait times for small jobs—a feature

carefully sought. Currently, the XSEDE project features SDSC

machines aimed squarely at this kind of on-demand service [8].

For an interesting cluster management paradigm, we also formerly

used LCSE clusters for educational applications from FDLTCC.

The principle for LCSE clusters was that educational usage trumps

production jobs, and interactive usage trumps all. LCSE cluster

users were expected to write production codes with restart dumps

so that they could be killed any time then gracefully restarted.

Production is important, but a 336-hour production job can be

delayed a bit to accommodate educational and interactive usage.

A newer machine reduced the simulation run time from 15 minutes

to 4 minutes, so we partly addressed the complaint about delay.

Longer simulation runs would be nice to do. Obviously, students

wanted to see what else would have happened when their

simulation ended.

4.2.3 Add Simulation Variables and Places
Students want more variables in the simulation, namely arbitrary

locations and weather conditions. We do, too. There are difficulties

for some.

Real-time weather conditions are easiest to obtain because point

conditions are sufficient in these fine-scale simulations. It is

possible to obtain historical and contemporary forecast data from

online sources then interpolate to desired position and date. A

realistic method to incorporate rain or snow is an unknown to us

other than by ramping up the moisture level in fuel. We might do

well for this class exercise to have students simply look up current

conditions or create their own. The current GUI allows wind speed

and direction input as this is highly significant for wildfire

evolution.

Fine-scale terrain and imagery data is obtainable online at various

refinements. Fine-scale land cover data was not available at the fine

scale of our simulations. We processed fine-scale imagery to 4

categories (grass, forest, buildings, and non-burnable) using Gimp

raster features then edited 4-color raster images by hand over the

simulation area using our knowledge of the land. Rather than try to

store terrain, land cover, and imagery data for a large region (say

Minnesota), or download and process data from a larger region (say

continental US), we could practically prepare a selection of smaller

yet representative regions of interest and allow students to select

one. These could be somewhat larger regions than our 1 km square

region currently used.

4.2.4 More and Better Graphics

These are the easiest to address. Our visualization software (Srend)

can deliver several sets of imagery using different views

simultaneously, and volume rendering does not take much time

compared to problem evolution. We used FFmpeg to convert

sequences of images to video, and we can create alternative formats

that work in more browsers. MP4 for video seems to be favored

today.

5. ACKNOWLEDGMENTS
For some things which LCSE partners did not do, writing code,

developing local techniques, and defining specific FDLTCC

activities were done at FDLTCC. LCSE researchers could have just

done these things, surely a lot easier and faster. However,

encouragement and support in the form of technical advice was

otherwise available, within limits. (This activity was not funded

directly.) LCSE researchers usually have answers to problems with

fluid dynamics, HPC techniques, visualization, and N-body codes,

and they helped make resources available for development, testing,

and running educational applications. It is impossible to overstate

the value of research and education partners willing to help

cultivate institutional capacity.

Allocations from TeraGrid [2] and the San Diego Supercomputing

Center for development and testing were available and ready to use

within 24 hours of request. Similar XSEDE response (swift and

certain) is available, and there are specific services available for

applications of this sort, i.e., web access to applications for use in

classes running on remote machines.

NASA’s project Center for Applied Atmospheric Research and

Education (NASA-CAARE NNX15AQ02A) supported refinement of

wildfire modeling activities, and the current FDLTCC KNL node

was purchased with NASA CAARE funds. A NASA funded project

at FDLTCC (Elizabeth Jones, “Environmental Modeling And

Research Experience”, NNX11AQ96G) provided startup funding

for tracer flow modeling.

FDLTCC and Minnesota State College and Universities funds

sabbaticals for community college faculty with the proviso that

efforts contribute to the mission of teaching and learning. Faculty

research activities are viewed as important components, and

internal FDLTCC support is also available. We have enjoyed

strong, continuous internal administrative support for these specific

efforts described.

6. FUTURE PLANS
The current stretched grid wildfire model still works so we are

using it for the spring 2021 classes, but we are working on an AMR

code as a replacement for similar simulations which involve fluid

flow over complex terrain. Incorporating external data is easier

with a fixed 2:1 grid refinement ratio vs. stretched grids. Also,

visualization of AMR data is an Srend capability to exploit.

Stretching the grid was a solution to get this problem running in

time for the Disasters class. The AMR code would not evolve this

wildfire problem faster using the same number of finest grid cells,

but it would be easier to scale and would apply to a broader set of

problems.

Journal of Computational Science Education Volume 12, Issue 3

December 2021 ISSN 2153-4136 7

7. REFERENCES
[1] Brett Bode, Michelle Butler, Thom Dunning, Torsten

Hoefler, William Kramer, William Gropp, and Wen-mei

Hwu. 2013. The Blue Waters Super-System for Super-

Science. Contemporary High Performance Computing: From

Petascale toward Exascale (1st. ed.). Chapman and

Hall/CRC, Boca Raton, FL.

[2] Charlie Catlett. 2002. The Philosophy of TeraGrid: Building

an Open, Extensible, Distributed TeraScale Facility. In 2nd

IEEE/ACM International Symposium on Cluster Computing

and the Grid (CCGRID’02), May 21–24, 2002, Berlin,

Germany. IEEE Inc., Piscataway, NJ, 8. DOI:

https://doi.org/10.1109/CCGRID.2002.1017101

[3] Phillip Colella and Paul R. Woodward. 1984. The piecewise

parabolic method for gas dynamical simulations. J. Comput.

Phys. 54, 1 (April 1984), 174–201. DOI:

https://doi.org/10.1016/0021-9991(84)90143-8

[4] Sergei Godunov, I. Bohachevsky. 1959. Finite Difference

Method for Numerical Computation of Discontinuous

Solutions of the Equations of Fluid Dynamics.

Matematicheskii Sbornik, 47(89), 3 (1959), 271–306. hal-

01620642

[5] J. Mandel., J. D. Beezley, and A. K. Kochanski. 2011.

Coupled atmosphere-wildland fire modeling with WRF 3.3

and SFIRE. Geosci. Model Dev. 4, 3 (July 2011), 591–610.

DOI: https://doi.org/10.5194/gmd-4-591-2011

[6] J. Michalakes, S. Chen, J. Dudhia, L. Hart, J. Klemp, J.

Middlecoff, and W. Skamarock. 2001. Development of a

Next Generation Regional Weather Research and Forecast

Model. In Developments in Teracomputing: Proceedings of

the Ninth ECMWF Workshop on the Use of High

Performance Computing in Meteorology, November 13–17,

2000, Reading, UK. World Scientific, Singapore. 269–276.

DOI: https://doi.org/10.1142/9789812799685_0024

[7] William F. Noh and Paul Woodward. 1976. SLIC (Simple

Line Interface Calculation). In Proceedings of the Fifth

International Conference on Numerical Methods in Fluid

Dynamics June 28 – July 2, 1976, Enschede, The

Netherlands. Lecture Notes in Physics, Vol 59. Springer,

Berlin/Heidelberg, Germany, 330–340. DOI:

https://doi.org/10.1007/3-540-08004-X_336

[8] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster,

Kelly Gaither, Andrew Grimshaw, Victor Hazlewood, Scott

Lathrop, Dave Lifka, Gregory D. Peterson, Ralph Roskies, J.

Ray Scott, and Nancy Wilkins-Diehr. 2014. XSEDE:

Accelerating Scientific Discovery. Comput. Sci. Eng. 16, 5

(Sept.–Oct. 2014), 62–74, DOI:

https://doi.org/10.1109/MCSE.2014.80

[9] Ted Wetherbee, Elizabeth Jones, Michael Knox, Stou

Sandalski, and Paul Woodward. 2015. In-core volume

rendering for Cartesian grid fluid dynamics simulations. In

XSEDE ‘15: Proceedings of the 2015 XSEDE Conference:

Scientific Advancements Enabled by Enhanced

Cyberinfrastructure, July 26–30, 2015, St. Louis, MO. ACM,

New York, NY, 1–8. DOI:

https://doi.org/10.1145/2792745.2792780

[10] Paul R. Woodward, Falk Herwig, and Ted Wetherbee. 2018.

Simulating Stellar Hydrodynamics at Extreme Scale.

Comput. Sci. Eng. 20, 5 (Sep./Oct. 2018), 8–17. DOI:

https://doi.org/10.1109/MCSE.2018.05329811

[11] Paul R. Woodward, David Porter, William Dai, Tyler Fuchs,

Tony Nowatzki, Michael Knox, Guy Dimonte, Falk Herwig,

and Chris Fryer. 2010. The Piecewise-Parabolic Boltzmann

Advection Scheme (PPB) Applied to Multifluid

Hydrodynamics. In Proceedings of the International

Conference on Computational Science (ICCS 2010), May 31

– June 2, 2010, Amsterdam, The Netherlands. Elsevier,

Amsterdam, The Netherlands, 10 pages.

Volume 12, Issue 3 Journal of Computational Science Education

8 ISSN 2153-4136 December 2021

APPENDIX: SLIDES

Journal of Computational Science Education Volume 12, Issue 3

December 2021 ISSN 2153-4136 9

Volume 12, Issue 3 Journal of Computational Science Education

10 ISSN 2153-4136 December 2021

Journal of Computational Science Education Volume 12, Issue 3

December 2021 ISSN 2153-4136 11

Volume 12, Issue 3 Journal of Computational Science Education

12 ISSN 2153-4136 December 2021

	1. INTRODUCTION
	2. HISTORY
	3. SIMULATION DETAILS
	3.1 Fluid Code
	3.2 Visualization Code
	3.3 Wildfire Simulation
	3.4 Delivery to Students
	3.5 Directions

	4. RESULTS
	4.1 Student Commentary
	Q4: Did you find the wildfire simulation and visualization activity engaging?
	Q5: What was the most effective part of this learning module?
	Q6: Were there barriers to completing the activity? If so, please discuss.
	Q7: What are your suggestions for improvement, if any?

	4.2 Notes on Student Comments
	4.2.1 Engagement
	4.2.2 Waiting in the Queue
	4.2.3 Add Simulation Variables and Places
	4.2.4 More and Better Graphics

	5. ACKNOWLEDGMENTS
	6. FUTURE PLANS
	7. REFERENCES
	APPENDIX: SLIDES

