

	

Volume 12, Issue 2 February 2021

Editor: Steven Gordon
Associate Editors: Thomas Hacker, Holly Hirst, David Joiner,

Ashok Krishnamurthy, Robert Panoff,
Helen Piontkivska, Susan Ragan, Shawn Sendlinger,
D.E. Stevenson, Mayya Tokman, Theresa Windus

Technical Editor: Aaron Weeden
Web Development: Jennifer Houchins, Valerie Gartland, Aaron Weeden
Graphics: Steven Behun, Heather Marvin

The Journal Of Computational Science Education (JOCSE), ISSN 2153-4136,
published in online form, is a supported publication of the Shodor Education
Foundation Incorporated. Materials accepted by JOCSE will be hosted on the
JOCSE website and will be catalogued by the Computational Science Education
Reference Desk (CSERD) for inclusion in the National Science Digital Library
(NSDL).

Subscription: JOCSE is a freely available online peer-reviewed publication
which can be accessed at http://jocse.org.

Copyright c©JOCSE 2021 by the Journal Of Computational Science Education,
a supported publication of the Shodor Education Foundation Incorporated.

	

Contents
Introduction to Volume 12 Issue 2 1
Nitin Sukhija, Guest Editor

DeapSECURE Computational Training for Cybersecurity Students: 3
Improvements, Mid-Stage Evaluation, and Lessons Learned
Wirawan Purwanto, Yuming He, Jewel Ossom, Qiao Zhang, Liuwan Zhu,

Karina Arcaute, Masha Sosonkina, and Hongyi Wu

Exploring Remote Learning Methods for User Training in Research 11
Computing
Dhruva K. Chakravorty, Lisa M. Perez, Honggao Liu, Braden Yosko,

Keith Jackson, Dylan Rodriguez, Stuti H. Trivedi, Levi Jordan, and Shaina Le

Transitioning Education and Training to a Virtual World, Lessons Learned 18
S. Charlie Dey, Victor Eijkhout, Lars Koesterke, Je’aime Powell, Susan Lindsey,

Rosalia Gomez, Brandi Kuritz, Joshua Freeze

Bringing GPU Accelerated Computing and Deep Learning to the Classroom 21
Joseph Bungo and Daniel Wong

XSEDE EMPOWER: Engaging Undergraduates in the Work of Advanced
Digital Services and Resources

22

Aaron Weeden

Pawsey Training Goes Remote: Experiences and Best Practices 25
Ann Backhaus, Sarah Beecroft, Lachlan Campbell, Maciej Cytowski,

Marco De La Pierre, Luke Edwards, Pascal Elahi, Alexis Espinosa Gayosso, and

Yathu Sivarajah

High-Performance Computing Course Development for Cultivating the 31
Generalized System-level Comprehensive Capability
Juan Chen

Employing Directed Internship and Apprenticeship for Fostering HPC 33
Training and Education
Elizabeth Bautista and Nitin Sukhija

Ask.Cyberinfrastructure.org: Creating a Platform for Self-Service Learning
and Collaboration in the Rapidly Changing Environment of Research

37

Computing
Julie Ma, Torey Battelle, Katia Bulekova, Aaron Culich, John Goodhue,

Jacob Pessin, Vanessa Sochat, Dana Brunson, Tom Cheatham, Sia Najafi,

Chris Hill, Adrian Del Maestro, Bruce Segee, Ralph Zottola, Scott Valcourt,

Zoe Braiterman, Raminder Singh, Robert Thoelen, and Jack Smith

The Design of a Practical Flipped Classroom Model for Teaching Parallel
Programming to Undergraduates

41

Dirk Colbry

Creative Assessment Design on a Master of Science Degree in Professional
Software Development

46

Cathryn Peoples

What Influences Students? Understanding of Scalability Issues in Parallel
Computing?

58

Juan Chen, Brett A. Becker, Youwen Ouyang, and Li Shen

Promoting HPC Best Practices with the POP Methodology 66
Fouzhan Hosseini and Craig Lucas

Introduction to Volume 12 Issue 2:
Special Issue on HPC Training and Education

Nitin Sukhija
Guest Editor

Slippery Rock University of Pennsylvania
Slippery Rock, PA

FOREWORD
High performance computing is becoming central for empowering

scientific progress in the most fundamental research in various

science and engineering, as well as societal, domains. It is

remarkable to observe that the recent rapid advancements in today’s

and future computing and software environments provide both

challenges and opportunities for cyberinfrastructure facilitators,

trainers, and educators to develop, deliver, support, and prepare a

diverse community of students and professionals for careers that

utilize high performance computing to advance discovery. This

special issue focuses on original research papers submitted to the

Second Workshop on HPC Education and Training for Emerging

Technologies (HETET20), which was held in conjunction with the

ISC20 Digital conference, June 25, 2020; the third Workshop on

Strategies for Enhancing HPC Education and Training (SEHET20),

which was held in conjunction with the PEARC20 conference, July

27, 2020; and the Seventh SC Workshop on Best Practices for HPC

Training and Education (BPHTE20), which was held in

conjunction with the SC20 conference, November 11, 2020.

This special issue begins with an article by Purwanto et al. that

presents a non-degree computational training program,

DeapSECURE, that provides significant high-performance

computing (HPC) and big-data foundations for cybersecurity

students. The authors detail major improvements of the

DeapSECURE lesson modules by grouping them into the

“compute-intensive” and “data-intensive” categories, more tightly

integrating the modules to streamline the learning experience. The

assessment results of the cohort group trained indicate the need for

further adjustments to improve learning experience and outcome.

Moreover, the piloted workshop showed great promise to address

some challenges encountered through the second year project.

The article by Chakravorty et al. reports on two educational

approaches that were implemented in the informal program hosted

by Texas A&M High Performance Research Computing (HPRC)

in the Spring, Summer, and Fall semesters of 2020. The two

approaches employed were: 1) traditional in-person sessions taught

by the staff that focused on offering a lot of information online and

2) a primer approach involving a peer-learning environment

engaging learners via shorter pop-up courses in which participants

chose the topic matter and students taught and moderated the

training sessions. These were supplemented with YouTube videos

and continued engagement over a community Slack workspace.

The authors conclude by highlighting the data collected as part of

this study, indicating that the Primer format could be a suitable

pedagogical approach that enhances learner engagement while

scaling back on staff time.

The article by Dey et al. describes the efforts taken at the Texas

Advanced Computing Center to develop a successful academic and

training curriculum with the goal of making virtual classrooms

more engaging, and more collaborative, thus delivering a better

educational experience. The authors report on the approach to

teaching with multiple instructors and integrating aspects of

gamification, open curriculum, casual classroom, and flipped

classroom along with spending more class time focused on

applying learned concepts versus lecturing on concepts, resulting

in much-needed teacher-student interaction to create a positive

learning environment.

The article by Bungo and Wong describes the NVIDIA Deep

Learning Institute (DLI) kits that offer a complete course solution

to lower the barrier of incorporating AI and GPU computing in the

classroom. The authors discuss the DLI University Ambassador

Program that enables qualified educators to teach DLI workshops

at no cost across campuses and academic conferences to faculty,

students, and researchers. The authors conclude by illustrating real

examples of leading academics leveraging Teaching Kits and

Ambassador workshops in the classroom.

The article by Weeden describes the XSEDE EMPOWER (Expert

Mentoring Producing Opportunities for Work, Education, and

Research) program coordinated by the Shodor Education

Foundation for the Extreme Science and Engineering Discovery

Environment (XSEDE). The author discusses the goal of the

program, which is to engage a diverse group of undergraduate

students in the work of XSEDE, matching them with faculty and

staff mentors who have projects that make use of XSEDE services

and resources or that otherwise prepare students to use these types

of services and resources. The author concludes by discussing the

impact of the program on advancing careers and conference

participation of the underrepresented undergraduate students.

The article by Backhaus et al. presents the challenges faced by the

Pawsey Supercomputing Centre in making transition to virtual

training, including how to creatively motivate and engage learners,

build our virtual training delivery skills, and build communities

across Australia. The authors detail the self-guided learning, using

Nimbus cloud and containers for improving the training content,

ensuring alignment with learning objectives and learning outcomes,

and incorporating best practices in (virtual) learner interaction and

engagement. The authors conclude by discussing that there is no

universal, one-size-fits-all learning solution to address virtual

training challenges and there exist various solutions and platforms

that need to be carefully selected for different groups of learners.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Copyright ©JOCSE, a supported

publication of the Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 1

Chen summarizes the development of a set of HPC courses to meet

the needs of multidisciplinary students at the National University

of Defense Technology. The courses emphasize both vertical

understanding of HPC systems (parallel computer architecture,

operating system/resource management system, compilation,

library optimization) and the understanding of multiple HPC

application areas.

The article by Bautista and Sukhija describes a new approach at

National Energy Research Scientific Computing Center (NERSC)

at Lawrence Berkeley National Laboratory (LBNL) patterned after

the apprenticeship program within the High Performance

Computing domain. This approach requires an intern or apprentice

to fulfill milestones during their internship or apprenticeship

timeframe, with constant evaluation, feedback, mentorship, and

hands-on work that allows candidates to demonstrate their growing

skill that will eventually lead to winning a career position. The

authors conclude by reporting the positive outcomes of the program

such as recruitment of quality talent, improved retention, and

encouragement to individuals to further their education.

The article by Ma et al. details the infrastructure and the outcomes

of Ask.cyberinfrastructure.org, which is a collaborative, crowd-

sourced Q&A site specifically curated for the research computing

community. The authors discuss various technologies employed to

build the site and the Locales, which allow institutions to create

subcategories on Ask.CI where they can experiment with posting

institution-specific content and use of the site as a component of

their user support strategy. The authors report on lessons learned,

plans to foster outreach efforts to reach out to other communities

and mailing lists to expand Ask.CI’s presence, and to invite any

suggestions/recommendations from the community.

The article by Colbry presents a newly developed course at the

Department of Computational Mathematics Science and

Engineering (CMSE) at Michigan State University (MSU) for

teaching parallel programming to undergraduates. The author

describes the flipped classroom model and a “hands-on” approach

used in the “Methods in parallel Programming” (CMSE 401)

course for learning with multiple real-world examples from a wide

range of science and engineering problems. The author concludes

by discussing the feedback and challenges reported by the students

and plans to improve the course.

The article by Peoples describes the learning outcomes that are

focused on the transferable skills intended to be gained because of

the assessment design. The author discusses assessments which

were disseminated to a cohort of students on a Master of Science

degree in Professional Software Development at Ulster University,

United Kingdom. This Master’s degree is a conversion degree into

Information Technology for students from non-IT backgrounds.

The author report that the creative assessment design helped to

bridge these gaps by exposing students to state-of-the-art

technology on an international basis, helping them to understand

the software developments which are essential in their support at

the back-end, and encouraging the application of knowledge in new

way.

The article by Chen et al. presents the design of a parallel

computing course offered at the College of Meteorologic

Oceanography at the National University of Defense Technology

in China. The authors discuss the design of the course, focusing on

addressing the scalability challenges presented by non-computer

science majors who lack a background in fundamental computer

architecture, systems, and algorithms. The authors also present a set

of assignments and projects that leverage the Tianhe-2A

supercomputer for testing. The authors conclude by reporting in the

result of the present pre- and post-questionnaires to explore the

effectiveness of the class design.

The article by Hosseini and Lucas describes a quantitative

methodology, POP, for the assessment of parallel codes at the

Performance Optimisation and Productivity (POP) Centre of

Excellence, funded by the EU under the Horizon 2020 Research

and Innovation Programme. The authors detail the POP

methodology as a scalable performance analysis methodology

based on a set of hierarchical metrics, where each metric represents

a common cause of inefficiency in parallel applications based on a

set of hierarchical metrics, where the metrics at the bottom of the

hierarchy represent common causes of poor performance. The

authors conclude by illustrating the advantages of employing the

POP methodology by describing two real-world examples that

employ the POP methodology to help HPC users understand

performance bottlenecks of their code.

Volume 12, Issue 2 Journal of Computational Science Education

2 ISSN 2153-4136 February 2021

DeapSECURE Computational Training for Cybersecurity
Students: Improvements, Mid-Stage Evaluation, and Lessons

Learned
Wirawan Purwanto
Old Dominion University

Norfolk, VA
wpurwant@odu.edu

Yuming He
Old Dominion University

Norfolk, VA
yhe004@odu.edu

Jewel Ossom
Old Dominion University

Norfolk, VA
josso001@odu.edu

Qiao Zhang
Old Dominion University

Norfolk, VA
qzhan002@odu.edu

Liuwan Zhu
Old Dominion University

Norfolk, VA
lzhu001@odu.edu

Karina Arcaute
Old Dominion University

Norfolk, VA
karcaute@odu.edu

Masha Sosonkina
Old Dominion University

Norfolk, VA
msosonki@odu.edu

Hongyi Wu
Old Dominion University

Norfolk, VA
h1wu@odu.edu

ABSTRACT
DeapSECURE is a non-degree computational training program that
provides a solid high-performance computing (HPC) and big-data
foundation for cybersecurity students. DeapSECURE consists of six
modules covering a broad spectrum of topics such as HPC platforms,
big-data analytics, machine learning, privacy-preserving methods,
and parallel programming. In the second year of this program, to
improve the learning experience, we implemented a number of
changes, such as grouping modules into two broad categories, “big-
data” and “HPC”; creating a single cybersecurity storyline across the
modules; and introducing post-workshop (optional) “hackshops”.
Two major goals of these changes are, firstly, to effectively engage
students to maintain high interest and attendance in such a non-
degree program, and, secondly, to increase knowledge and skill
acquisition. To assess the program, and in particular the changes
made in the second year, we evaluated and compared the execution
and outcomes of the training in Year 1 and Year 2. The assessment
data shows that the implemented changes have partially achieved
our goals, while simultaneously providing indications where we
can further improve. The development of a fully on-line training
mode is planned for the next year, along with a reproducibility pilot
study to broaden the subject domain from cybersecurity to other
areas, such as computations with sensitive data.

KEYWORDS
Parallel computing, Big data, Machine learning, Cybersecurity, Non-
degree training, Hands-on

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/12/2/1

1 INTRODUCTION
State-of-the-art cybersecurity research is increasingly reliant upon
advanced computing, also known as advanced cyberinfrastructure
(CI) to strengthen cyber systems against attacks. This includes
research areas such as penetration testing, intelligent intrusion
detection, run-time malware detection, and secure and privacy-
preserving machine learning. DeapSECURE (Data-Enabled Ad-
vanced Training Program for Cybersecurity Research and Edu-
cation) is a non-degree computational training program that pro-
vides solid foundations in high-performance computing (HPC) and
big data for cybersecurity students. DeapSECURE aims to comple-
ment the degree programs in cybersecurity, considering the ever-
increasing scale of cybersecurity challenges. The goals, approach,
and philosophy of the training program have been elaborated in
our previous publication [18].

DeapSECURE consists of six modules covering a broad spectrum
of topics such as the HPC platform (“HPC”), big-data analytics (BD),
machine learning (ML) including neural networks (NN), privacy-
preserving methods (CRYPT), and parallel programming (PAR) [18].
Each module is delivered as a three-hour workshop, combining a
presentation on current cybersecurity research topics and basic
introduction to the CI methods. DeapSECURE emphasizes hands-
on experience in CI tools and frameworks as applied to solving
cybersecurity research problems. Currently, the six modules con-
sider topics such as: spam/phishing analysis, mobile device security,
encryption (privacy protection), and hardware security. We built
the detailed content and activities for the modules and delivered
them as six workshops during the 2018–2019 academic year and a
week-long summer institute in June 2019.

This paper is focused on the changes made in the second aca-
demic year (2019–2020) of the DeapSECURE workshop series pro-
gram in order to improve the learning experience. This paper is
organized as follows: In Section 2, we recap our experience of the
first year of the workshop series (2018–2019) as well as the lessons

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 3

https://doi.org/10.22369/issn.2153-4136/12/2/1

learned. Then, we detail in Section 3 the improvements to the train-
ing program implemented in the second year. Section 4 covers the
assessment results and lessons learned from the second year of
the training. In Section 5, we briefly cover the pilot online work-
shop conducted in Summer 2020 as an online virtual event during
the time when all the educational activities were held virtually
nationwide. We briefly outline our future direction in Section 6,
then conclude in Section 7.

2 FIRST-YEAR RECAP
The DeapSECURE’s six lesson modules were delivered as a se-
ries of six workshops during the 2018–2019 academic year (three
workshops per semester). They were all offered again as a sum-
mer institute in June 2019. In this paper, we will focus primarily
on our workshop series experience. Each workshop began with
a 30-minute cybersecurity research presentation by an Old Do-
minion University (ODU) faculty, followed by an introduction of
a CI technique, such as big data or machine learning, featuring
rather extensive hands-on activities on ODU’s Turing HPC cluster.
Because the workshops would run during the school semesters,
we decided to limit the length of each workshop to three hours.
This time duration would give an opportunity for students to do
the exercises during the workshop, while preventing a long-drawn
session, which may discourage participation.

Starting already in the first year of the training program, we have
been employing pre- and post-workshop surveys, focus groups, as
well as our own observation to constantly evaluate and improve
our workshops. As initially reported in our previous paper [18],
our training received positive response from the students in the
first year. The majority of the survey respondents were satisfied or
very satisfied with the workshops, and many would recommend the
training to others. Students considered the hands-on activities as
the most valuable aspects of the workshop. Students were exposed
to technologies, methodologies, software tools, and computational
resources far beyond their regular coursework.

While our training yielded many positive outcomes, we saw
much room for improvement, as evidenced by the challenges we
encountered then. The first notable issue was that the attendance of
the workshops faltered towards the end of the semester, when the
regular coursework put an increasing demand on students’ atten-
tion and time. For example, in the Fall 2018, the first workshop was
attended by more than 30 students, but the last one was attended
by 24, a decrease of 2̃5%. In Spring 2019, the workshops were con-
sistently attended by 11–12 students, considerably lower than half
of the preceding semester’s attendance.

Each workshop considered its own cybersecurity research topic
[18], which means that a sizable fraction of the workshop time had
to be devoted to introducing a new cybersecurity topic, thereby
reducing the amount of time available for the hands-on activi-
ties. Indeed, it is a challenge to design a training program, such as
DeapSECURE, which aims to provide a broad yet sufficient introduc-
tion to advanced computing topics under the tight time constraints
of a workshop format. To overcome the limited length of the time
available, we developed a written-lesson website for each training
module [17]. These websites are available publicly and can be used
by learners to further their learning after the workshops.

Another challenge that we have observed is that learners had
difficulty in effectively applying high-level concepts taught from ei-
ther the CI methods or cybersecurity during the hands-on activities.
We have determined that this problem stemmed from the mismatch
between a rather low-level command-line interface that is used to
access supercomputing resources and students’ habit of interfacing
with computers via graphical interfaces and plug-and-play environ-
ments. Hence, the learners fell behind in the hands-on exercises. To
solve this problem in the following years, we have decided to resort
to more high-level tools, such as Jupyter notebooks, minimize the
set of command-line tools used, and select workshop participants
that already have some coding skills.

3 SECOND-YEAR IMPROVEMENTS
In the second year of this program, we implemented a number of
changes with the goal to improve the learning experience. Among
the most significant changes are (a) grouping modules broadly
into the “big-data” (data-intensive) and “HPC” (compute-intensive)
categories; (b) providing more continuity across several modules
by creating a single cybersecurity storyline spanning them; and
(c) introducing an optional post-module “hackshop” to enhance
the hands-on experience. The changes are expected to facilitate
maintaining students’ interest and attendance across the entire year
of this non-degree program. To take into account semester course
load, we shifted the workshop schedule towards the beginning of
the semesters by having a workshop approximately every other
week with hackshops conducted in-between. As elaborated later in
this paper, we also began training teaching assistants to contribute
to the development of the lesson materials.

3.1 Revised Workshop Schedule
We reordered the modules taught in the workshops, recognizing
that they fall roughly under two categories:
1. The compute-intensive category (the HPC, CRYPT, and PAR

modules): The key question for this category is how to deal with
the computational complexity of cybersecurity problems that
take a long time to compute. A common theme in these three
modules is the need to split the computational workload across
many worker-processes on a modern HPC cluster to greatly
reduce the time to solution. Further consideration for high per-
formance will be part of the PAR module.

2. The data-intensive category (the BD, ML, and NN modules):
The key issue for this category is how to leverage “big data”
to detect and defend against cyber threats. Moden computing
technologies have generated and made use of enormous amounts
of data. From the perspective of cybersecurity, big data can be
a two-edged sword. One the one hand, data are assets that are
frequently targeted in cyber attacks such as data breaches, denial
of service, and botnets. On the other hand, leveraging the state-of-
the-art, data-intensive techniques such as machine learning and
deep learning has become an indispensable skill for cybersecurity
professionals to stay ahead the increasing level of malice and
sophistication used to evade detection and defensemeasures. The
three modules in this category aim to introduce these techniques
to cybersecurity students.

Volume 12, Issue 2 Journal of Computational Science Education

4 ISSN 2153-4136 February 2021

Table 1: The revised DeapSECURE modules for the 2019–2020 workshop series.

Module Research Presentation, Presenter,
Affiliation

Workshop Hands-on Hackshop Hands-on Toolkits

HPC High Performance Computing and
Cybercrime: “An Ounce of Prevention
Is Worth a Pound of Cure”
(Roderick Graham, Sociology and
Criminal Justice)

Determining country of
origin of a large collection
of spam emails

Making an IP address
scanner using UNIX tools

UNIX shell
(bash)

CRYPT Security and Privacy of AI
(Cong Wang, Computer Science)

AES and Pailier encryption
and decryption

Brute-force AES encryption
cracking

AES-
Python [22],
Python-
paillier [5]

PAR Introduction to Hardware Security and
Physical Unclonable Function (PUF)
Devices
(Yiming Wen, Electrical and Computer
Engineering)

Hands-on introduction of
MPI for Python

Parallel homomorphic
encryption of a bitmap data

mpi4py [6],
Python-paillier

BD QoS Assurance in Cloud Services
(Xianrong Zheng, Information
Technology & Decision Sciences)

Analytics on a large dataset
of smartphone app activity
using Pandas

Visualization and
exploratory data analysis

Pandas [15],
seaborn [7]

ML Radio Frequency Signal Classification
and Detection of Drones Based on
Machine Learning
(Michael Nilsen, Electrical and
Computer Engineering)

Classification of
smartphone apps based on
system utilization data
using classic ML methods

Exploration of various ML
models to compare
performance

scikit-
learn [16]

NN Virtual MAC Spoofing Detection
through Deep Learning
(Chunsheng Xin, Electrical and
Computer Engineering)

Building neural networks to
classify smartphone apps
based on system utilization
data

Tuning the networks for
the best performance
(hackshop was cancelled)

TensorFlow
and KERAS [3]

We started the 2019–2020 workshop series with three workshops
focusing on diverse aspects of parallel computing in the Fall se-
mester, followed by the workshops on data-intensive computing in
the Spring. Table 1 shows the updated sequence of CI and cyber-
security topics, as well as the hands-on activities, which we will
elaborate in the upcoming section. Each row of the table shows
the module name, the cybersecurity research presentation (along
with the presenter and affiliated department at ODU), the hands-on
activities chosen for the workshop and the hackshop, as well as
the toolkits introduced. The overall flow of the training program is
shown in Figure 1.

3.2 Rewriting the “Data-Intensive” Modules
In the present era where cyber attacks are proliferating and be-
coming increasingly sophisticated, the application of big data and
machine learning techniques to derive timely, actionable intelli-
gence from streams of data in real-time is rapidly becoming an
indispensable need to increase cybersecurity posture [8, 13]. As
we realize that the use of data-intensive techniques has gradually
become a critical skill for cybersecurity students, researchers, and
professionals to possess, we rewrote the three modules (BD, ML,
and NN) in order to streamline the learning experience and maxi-
mize the learning outcome. Unlike the compute-intensive modules,
techniques covered in the three data-intensive modules are closely

related to one another and are frequently employed together in real-
world applcations. The BD module covers the skill to handle large
amounts of data as well as making sense of them using exploratory
data analysis and visualization. TheML and NNmodules build upon
this foundation to introduce predictive techniques at increasing
levels of accuracy. For this reason, we select a single cybersecurity
use case to motivate the needs of BD, ML, and NN techniques. As
the key points of these techniques gradually expand throughout
the three modules, learners will see the entire pipeline by which
the raw data are transformed into final insights and predictions,
leveraging state-of-the-art techniques.

We choose the topic of malware detection in smartphones in
our new data-intensive modules. This topic is a very relevant cy-
bersecurity issue, which is also relatively easy to understand for
anyone with little to no formal training in cybersecurity, as most
students today have smartphones and use them extensively. In the
near future, smart device users can expect a significant increase in
malware and advancements in malware-related attacks, particularly
on the mobile open-source platform as the user base is growing
exponentially [4]. We make use of the publicly available sample
of the “SherLock” Android smartphone dataset created by Mirsky
et al. [14]. The SherLock dataset contains detailed information
collected from smartphones used by volunteers over an extended
period time. Using this dataset, Wassermann et al. [19] explored

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 5

Workshop Preparation
WTA initial training
Module grouping
Improve/rewrite web-based lessons
Hands-on and overall testing

On-site Workshop Teaching
Pre-workshop survey
Cybersecurity research presentation
Introduction of CI techniques
Hands-on learning assisted by WTAs
Post-workshop survey

Selection of participants
with coding skill

Hackshop
Hands-on problem solving assisted by WTAs
Apply and reinforce skills
Build own solutions

Repeat for six modules

Assessment
Compare effectiveness
Further improvement

Improve/rewrite web-based lessons
Hands-on and overall testing

Figure 1: Overall process of the workshop series.

an approach to identify running applications and detect malware
activity by analyzing this dataset. Based on their idea, we devised a
simplified application classification task and split the entire analysis
process into three parts in order to fit it into our rewritten lesson
modules. Over the course of the workshop series, the approach of
using a single cybersecurity topic would help conserve more time
to use in teaching and/or hands-on activities.

For the BD module, we switched our choice of toolkit from PyS-
park [21] to Pandas [15]. Both are widely used tools that have their
own use cases. While Spark is a scalable data processing platform
capable of handling extremely large amounts of data (on the order
of many terabytes and beyond), Pandas has a more gentle learning
curve than PySpark for novice learners, and it is also more popu-
lar in the data science community. Although Pandas focuses more
exclusively on tabular data, and its scalability is limited to a single
computer’s random access memory, it is nevertheless sufficient for
the purposes of our training program. With this switch, Pandas
becomes the base toolkit for all the three data-intensive modules.

3.3 "Hackshops"
To enhance the students’ learning experience, we added a “hack-
shop” as a follow-on session to each workshop. A hackshop is a
largely unstructured hands-on session, where learners will actively
work on a pre-selected problem and come up with a solution in a
small group setting, assisted by instructors and/or teaching assis-
tants. The list of the problems we chose for the hackshops are also
listed on Table 1. For the hackshops, we gave the learners some
basic instructions and guidelines as well as the goal to achieve,
then let them try to work it out on their own for the most part. A
hackshop provides an additional opportunity for learners to “hack
away” and to sharpen the skills they just learned in the workshop.
Unlike the workshops, we made this activity optional to all the
learners. Hackshop is a feature we experimented in the second year,
as we observed in the first year’s workshops that learners did not
get sufficient time to freely explore the hands-on materials on their
own. We set the hackshop to take place on the same three-hour
time slot the week following the workshop.

3.4 Participant Recruitment and Selection
We opened a short enrollment window at the beginning of the
Fall semester. We advertised the training through the University

Announcements channel, as well as through targeted emails to
students in cybersecurity, electrical and computer engineering, and
modeling and simulation programs. The participants were expected
to attend all six workshops (Fall and Spring); we incentivized this
by offering a certificate of completion for those participating in at
least five workshops. In the enrollment form, we collected their
basic demographic information (gender, ethnicity, study area), as
well as self-assessment of their computer competencies, such as
programming languages (whether they know how to read and write
and the level of complexity of the program written). We accepted
participants that have basic programming skills (i.e. those who
have at least written a short program—fewer than 100 lines in any
language). We did so because the computational techniques require
some experience of programming to apply them. As a result of this
selection, the Fall workshops were attended by significantly fewer
participants than our expected number of around 20. We therefore
reopened enrollment at the beginning of the Spring semester, where
we also promoted the training program to the HPC user community
at ODU. This resulted in a large initial spike of attendees in the
Spring (around 30), which dropped to 10 in the last workshop.

3.5 Lesson Developers’ Training
Once the basic contents of each module were developed after the
first year, it became necessary to refine and prepare them for the
continuity of development in a plug-and-play fashion. To ensure
continuity of the lesson maintenance, development, and improve-
ment, we trained four workshop teaching assistants (WTAs), who
are co-authors of this paper, to become content developers. This
effort is seeding a community of contributors for this training
program, which will be needed when the training project moves
toward an open, community-driven development lifecycle in the
near future.

Before the Spring workshop series, a PI held weekly meetings
for several months to train the WTAs. The training began with an
introduction to pedagogy, lesson development methodology, and
tools such as Git/Gitlab, Jupyter notebooks [12], and Jekyll [11].
These initial training sessions prepared the WTAs for a smooth
collaborative development process with the PIs to update and/or
rework the modules.

The three data-intensive modules (BD, ML, NN) were rewritten
collaboratively by the WTAs and the PIs immediately following

Volume 12, Issue 2 Journal of Computational Science Education

6 ISSN 2153-4136 February 2021

Pre-workshop Meeting Series
Basic pedagogy
Lesson development methodology
Skills on lesson development tools

Pre-workshop Discussion
Refine concrete outline
Work assignment to WTAs

Workshop Lesson Development
Jupytor notebooks for hands-on
Git for material exchange/merge
Collaborative discussion
test-drover entire lesson

Repeat for six modules

Figure 2: Overall process of the lesson developers’ training.

the initial training. First, the team applied the reverse instructional
design approach [20] to identify the core concepts needed to achieve
the objectives of a lesson. These core concepts were weaved into
the lesson outline and the hands-on activities. Each WTA was
assigned to build specific parts of the written lesson and/or the
hands-on activities by utilizing the knowledge learned from the
training. Jupyter notebooks were extensively used to draft and
refine the hands-on activities, and a private Gitlab repository was
used to exchange and merge lesson materials under development.
The WTAs also test-drove the entire lessons, ensuring that the
involved steps/operations were clearly understood and making the
necessary adjustments. These exercises proved especially valuable
to prepare theWTAs to lead breakout sessions in the online delivery
mode, because eachWTA could separately lead the help session that
was tuned by them to suit their own teaching style and preferences.
The process of WTA training is shown in Figure 2.

4 ASSESSMENTS AND LESSONS LEARNED
Training assessments were conducted both in the first (Y1) and sec-
ond (Y2) years of the program. They included online demographic
data collection, pre- (PRE) and post-workshop (POST) knowledge
questions, and post-workshop opinion questions to evaluate the
content and format of the workshops. Figure 3 shows the partici-
pants’ profiles for Y1 and Y2, including the demographics that show
the diversity of participants in race and gender, student classifica-
tion, and major. In both years, we had a similar total number of
unique people participating in at least one of our workshops (44 in
Y1 and 43 in Y2). In both years, we had a diverse mix of people in
terms of their ethnicity, gender, academic classification, and major.
In Y2, more cybersecurity students were drawn into this training,
which indicates a positive increase in their interest to what we
teach in this program.

In Y2’s enrollment form, we added three new questions to shed
light on students’ familiarity with UNIX, Python, and C/C++. We
asked students to self-evaluate their familiarity with these basic
tools: not familiar, novice, intermediate, or expert. In the Fall semes-
ter, a large majority indicated that they were not familiar or were
novice (about 80%, 90%, and 62% for UNIX, Python, and C/C++).
Since UNIX and Python form a critical base for the training, in the
first two workshops, we added a brief introduction to these tools.
In the Spring semester, we had a better mix of competence, where
there were significantly fewer of those who claimed to be unlearned
or novice (about 39%, 51%, and 62% for UNIX, Python, and C/C++).

The questionnaires in both years were very similar, which en-
abled us to compare the effectiveness of our mid-project changes.

However, the focus of the evaluation during Y1 was to obtain for-
mative information to improve the workshops as they were being
delivered. The post-workshop opinion questionnaire for Y1 was
very comprehensive, with 15 questions, including rating of spe-
cific components (content, organization, pace, etc.) and open-ended
questions to gather qualitative information from participants on
what needed improvement and what they found to be most and
least valuable from each workshop. For Y2, the rating and opinion
questionnaire was shortened to five questions. There were no rad-
ical differences in answers to the opinion rating and open-ended
questions between the two years. All the workshops in each year
were rated as good or extremely good by more than 80% of partici-
pants. In Y2, two out of six workshops were rated as “neither good
nor bad” by one person; in Y1, the opinions on the very first work-
shop differed greatly, which we took into account right away and
remedied in all the subsequent workshops. (See our description on
the necessary adjustments in [18]). Overall, the students received
the training program very well in both Y1 and Y2; many of them
indicated the hands-on exercises and new knowledge as the most
valuable takeaways of the workshops.

Two important metrics that we strive to improve by implement-
ing the changes in the second year are (1) attendance retention
and (2) knowledge acquisition. We will consider both quantitative
measures (such as number of participants, knowledge assessment
results) as well as qualitative and anedoctal feedback to evaluate
the impact of our effort in Y2. While the quantitative measures shed
light on the areas we need to further improve, we still receive many
encouraging feedback from our own observation of, and direct
interaction with, the participants.

4.1 Attendance Retention
Figure 4 shows the number of attendees for every workshop we
held in Y1 and Y2. Our target is to have 20–25 participants on aver-
age per workshop. In Y1, due to the late start of the project in the
semester, we held two workshops in the Fall and four workshops in
the Spring semester. The first workshop in Fall 2018 was attended
by more than 30 students; by the end of Spring 2019, the workshops
were consistently attended by 11–13 students, representing 3̃0% of
the original number of participants in the first workshop. As we
mentioned earlier, in Y2 we started with a lower number of partic-
ipants, because we required participants to have basic computer
programming experience. A second enrollment in the Spring led
to another spike in attendance (30), which leveled to 13 at the end.
Figure 5 shows a measure of attendees’ retention by counting the
number of participants who attended any N = 1, 2, ...6 number

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 7

(a) Ethnicity (b) Gender

(c) Academic Classification (d) Major

Figure 3: Demographic distribution of the workshop participants, comparing the first year (“Y1”, 2018–2019) and the second
year (“Y2”, 2019–2020).

Figure 4: Number of participants attending each workshop.

Figure 5: Number of participants that attended any N work-
shops (N shown on the horizontal axis).

of workshops. The result is also mixed, where Y2 shows better
participation for N = 2, while Y1 shows better participation in 4 or
5 workshops.

From this we learn that for a non-credit workshop series, atten-
dance tends to spike only on the first workshop; later on participants
who remain would do so because they are truly interested in the
topic of the workshop. It is worth commenting that while we were
not able to achieve our targeted number of 20, from our interac-
tions with the learners, those who remained were very engaged
and interested in the materials. The numbers 10–15 may very well
be the natural size of the cohort for our local community. Given
that our lesson modules are divided into two categories, it seems
reasonable that we would open the enrollment twice a year, one
for each category, thereby allowing students to pick three modules
that better align with their interests.

4.2 Knowledge Assessment
A second metric of interest is whether there is an improvement
in the knowledge acquisition as the result of the content changes
implemented this year (reorder of the module sequence, rewrite
of the data-intensive modules, change in tools). To compare the
knowledge acquired by participants, we selected two workshops in
each year on the same topics (BD and CRYPT). In each workshop,
we asked 5–8 questions on the fundamentals of the CI topics at the
beginning of the workshop and at the end to assess the impact of the
workshop on the participants’ understanding about the topic. These

Volume 12, Issue 2 Journal of Computational Science Education

8 ISSN 2153-4136 February 2021

are high-level questions such as, “What is considered the primary
goal of looking at big data/large data sets?” and, “Exploratory Data
Analytics is ...(mark all that apply)” (for BD module); “What is
the homomorphic encryption?” and, “Without the key, you cannot
recover the message from a ciphertext. Which statement is true?”
(for CRYPT module).

In Y2, the CRYPT module was offered in the Fall, and a short
introduction to Python was added due to the fact that the majority
of the learners were very new or not familiar with Python. The
analysis of the knowledge questions in aggregate for the CRYPT
workshops shows that the knowledge acquisition was better in
Y1 than Y2. It is likely that participants missed some of the key
knowledge due to the inadequate amount of time to cover the less
familiar topic of encryption.

In the BD workshop, which was offered in Y2 in the Spring,
comparing the PRE- and POST-knowledge responses shows an
improvement in four out of five questions, as compared with Y1,
where only two out of five questions show an improvement. The
BD module was reworked this year, and this improvement may
indicate that our improved lesson and delivery resulted in better
understanding of the topic.

These numerical results need to be taken with a grain of salt.
The sample size, i.e. the number of responses, was very small in
these surveys. For the CRYPT workshops, the sample size is 5 and
6, for Y1 and Y2 respectively, whereas for the BD workshops, they
are 6 and 11. Hence, an analysis of knowledge acquisition will have
to be done at the respondent level to draw deeper conclusions.

In general, the mixed results suggest that we need to adapt fur-
ther our materials to better fit into the 3-hour workshop duration.
For example, in Fall 2019, much time was spent to introduce UNIX
shell in the HPC module and basic Python syntax in the CRYPT
module. As a result, more pertinent topics (such as job scheduler,
parallel processing, and Paillier encryption), were short-handed,
and may have lead to weaker results in the POST test after the
CRYPT module. In Spring 2020, we adhered better to relative time
constraints during workshops, the downside of which was a per-
ception of rushing though the material, as expressed during the
focus-group interviews conducted post-workshops. We continue
our search to strike a right balance of topic coverage within a work-
shop. Our current solution is to carefully select topics to cover in
depth during a workshop, while leaving the remaining ones for in-
terested learners to pursue on their own using, e.g., our web-based
lesson materials and/or Jupyter notebooks.

4.3 Hackshops
In Y2, we provided the new “hackshop” session, which provided a
much higher level of interactivity and engagement of the learners
with the materials, as well as with TAs and instructors. According
to the statistics, over 55% participants came to the hackshop, and we
are happy to see five learners from the Y1 workshop series coming
back in our new hackshops at least once. They gave us positive
feedback on how the workshop synergistically helped them in their
coursework. We consider this a promising seed towards building
a local community of practice for computational techniques in
cybersecurity.

Based on our observation, participants who came to hackshops
were able to engage with the hands-on tasks with great interest. In
this respect, the hackshops accomplished their purpose. However,
the desired goals in these hackshops (e.g., cracking a secret message)
were not achieved, partly due to the gap between participants’
programming competence and the required skills to complete these
goals. We learned that participants may need more scaffolding, i.e.
more guidance and stepping stones, to solve the challenge questions
within a three-hour timeframe.

5 PILOT ONLINE WORKSHOP
DeapSECURE workshops were originally designed for in-person
workshops, although the sessions were recorded with an intention
to build an online version of the training in the future for scalability.
The COVID-19 pandemic hit shortly after we finished our last work-
shop in Spring 2020, which provided us a strong impetus to convert
our training to a fully online (remote) format. We decided to try
out one pilot online workshop using the BD module in the summer
2020 in lieu of a Summer Institute. This conversion required a thor-
ough redesign of the workshop format to suit the online delivery
and learning experience. The planning and redesign process took a
substantial amount of time (about three months). A great challenge
with the online format was the lack of interpersonal interactions
and the inability to directly assist learners on their own computers.
Another significant challenge was the limited screen real-estate
available for the hands-on format. To help learners overcome these
challenges, we developed three Jupyter notebooks which closely
mirror the progression of the hands-on activities in the web-based
lesson module. The key points as well as incomplete code snip-
pets from the web-based lesson were incorporated concisely in the
notebooks, thereby removing the need to open two browser tabs
to follow the instructor. Participants accessed the Jupyter environ-
ment on ODU’s Wahab HPC cluster via the newly deployed Open
OnDemand [9] web-based interface. This proved to alleviate most
of the technical difficulties encountered in the past workshop series.

The pilot workshop consisted of three one-hour sessions with
15-minute breaks in between. About ten participants joined the
workshop via the Zoom platform. Each session started off with a
brief explanation of the basic concepts as well as hands-on demon-
stration using the Jupyter notebooks, followed by a hands-on ex-
ercise held within smaller groups in Zoom breakout rooms led by
WTAs. To maintain participants’ level of interest, we conducted a
5-minute interactive yet competitive quiz session using the Kahoot!
platform [1] at the end of each session. The results of the quiz pro-
vided feedback by measuring the learning success of the session.
The Slack [2] platform was used for nonverbal communications
(chats) during the workshop, which we leveraged to maintain con-
tact with learners after the workshop. Slack messages are persistent,
thus previously answered questions and addressed challenges can
be recalled in the future. Overall, based on the informal feedback
from participants, the pilot workshop was successful. A detailed
assessment of this event is outside the scope of this paper.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 9

6 SUMMARY AND FUTURE DIRECTION
In summary, we performedmajor improvement of the DeapSECURE
lesson modules by grouping them into the “compute-intensive” and
“data-intensive” categories, more tightly integrating the modules to
streamline the learning experience. The current version of the web-
based lesson materials can be accessed from our main website [17].
We added “hackshop” into our training schedule to increase par-
ticipants’ engagement with the hands-on materials. We trained a
cohort of workshop teaching assistants to be contributors to further
development and refinement of the lesson materials. The assess-
ment results indicate the need for further adjustments to improve
learning experience and outcome. The pilot workshop showed great
promise to address some challenges we encountered through the
second year project. We believe that the improvements we imple-
mented in the second year will put us in a good position to offer
the entire portfolio of DeapSECURE modules online and provide
learners with the best online learning experience.

The online pilot workshop in Summer 2020 has shown that on-
line training is not only feasible but even more effective in reaching
out to trainees who otherwise could not be part of the program. In
the next project year, the development of a fully online training
format utilizing all the six modules is planned. Efforts will be made
to ensure the online training is engaging and effective. The training
modules will be streamlined for online delivery. Lectures will be
completed in a large group format while labs and games will be
completed in small groups facilitated through Zoom breakout room.
Effort is underway to ensure that the training materials (lessons and
hands-on) can be ported to other institutions and HPC sites. The
PIs will also reach cybersecurity as well as CI professional commu-
nities throughout the U.S. to promote the adoption of DeapSECURE
in other parts of the country. Once the preparation for fully on-
line workshops have been completed, this training can be offered
across universities the Commonwealth of Virginia on “ACCORD”,
a shared cyberinfrastructure currently being built for computation
of protected data as well as training and education [10]. The online
workshops will be fully assessed along with a reproducibility pilot
study to broaden the subject domain from cybersecurity to another
area, such as computations with sensitive data.

ACKNOWLEDGMENTS
The development of DeapSECURE training program is supported by
NSF CyberTraining grant #1829771. The workshops utilized Turing
and Wahab HPC clusters provided by ODU Research Computing
Services, part of Information Technology Services. Wahab cluster
was acquired in part using NSF Major Research Instrumentation
grant #1828593. We thank Issakar Doude, who assisted the lesson
development throughout the first year and part of the second year.
We also thank the ODU Distance Learning for their support in
recording the workshop sessions.

REFERENCES
[1] 2020. Kahoot! Game-based Learning Platform. https://kahoot.com
[2] 2020. Slack. https://slack.com
[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.

Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. 2015. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/
Software available from tensorflow.org.

[4] Abdullahi Arabo and Bernardi Pranggono. 2013. Mobile malware and smart
device security: Trends, challenges and solutions. In 2013 19th international
conference on control systems and computer science. IEEE, 526–531.

[5] CSIRO’s Data61. 2013. Python Paillier Library. https://github.com/data61/
python-paillier

[6] Lisandro D. Dalcin, Rodrigo R. Paz, Pablo A. Kler, and Alejandro Cosimo. 2011.
Parallel distributed computing using Python. Advances in Water Resources 34,
9 (2011), 1124 – 1139. https://doi.org/10.1016/j.advwatres.2011.04.013 New
Computational Methods and Software Tools.

[7] Michael Waskom et al. 2017. Seaborn: statistical data visualization. https:
//doi.org/10.5281/zenodo.592845

[8] B Geluvaraj, P.M. Satwik, and T.A. Ashok Kumar. 2019. The Future of Cybersecu-
rity: Major Role of Artificial Intelligence, Machine Learning, and Deep Learning
in Cyberspace. In International Conference on Computer Networks and Commu-
nication Technologies (Lecture Notes on Data Engineering and Communications
Technology), S. Smys, R. Bestak, J.Z. Chen, and I. Kotuliak (Eds.), Vol. 15. Springer,
Singapore, 739–747.

[9] David E. Hudak, Douglas Johnson, Jeremy Nicklas, Eric Franz, Brian McMichael,
and Basil Gohar. 2016. Open OnDemand: Transforming Computational Science
Through Omnidisciplinary Software Cyberinfrastructure. In Proceedings of the
XSEDE16 Conference on Diversity, Big Data, and Science at Scale (XSEDE16). ACM,
New York, NY, USA, Article 43, 7 pages. https://doi.org/10.1145/2949550.2949644

[10] Ron Hutchins, Scott Midkiff, Masha Sosonkina, Thomas Cheatham, Deborah
Crawford, and ACCORD Team. [n. d.]. The Virginia ACCORD Project. https:
//www.va-accord.org/

[11] The jekyll team. 2018. Jekyll—static site generator. https://jekyllrb.com
[12] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian Granger,

Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica Hamrick, Jason Grout,
Sylvain Corlay, Paul Ivanov, Damián Avila, Safia Abdalla, Carol Willing, and
Jupyter Development Team. 2016. Jupyter Notebooks—a publishing format for
reproducible computational workflows. In Positioning and Power in Academic Pub-
lishing: Players, Agents and Agendas, Fernando Loizides and Birgit Schmidt (Eds.).
IOS Press, Amsterdam, 87–90. https://doi.org/10.3233/978-1-61499-649-1-87

[13] Tariq Mahmood and Uzma Afzal. 2013. Security Analytics: Big Data Analytics for
Cybersecurity: A Review of Trends, Techniques and Tools. In 2013 2nd National
Conference on Information Assurance (NCIA). IEEE, 129–134. https://doi.org/10.
1109/NCIA.2013.6725337

[14] Yisroel Mirsky, Asaf Shabtai, Lior Rokach, Bracha Shapira, and Yuval Elovici.
2016. SherLock vs Moriarty: A Smartphone Dataset for Cybersecurity Research.
In Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security
(AISec ’16). ACM, 1–12. https://doi.org/10.1145/2996758.2996764

[15] The pandas development team. 2020. pandas-dev/pandas: Pandas. https:
//doi.org/10.5281/zenodo.3630805

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. J. Mach. Learn. Res. 12 (2011), 2825–2830.

[17] Wirawan Purwanto, Issakar Doude, Yuming He, Jewel Ossom, Qiao Zhang, Li-
wuan Zhu, Masha Sosonkina, and Hongyi Wu. 2020. DeapSECURE Lesson
Modules. https://deapsecure.gitlab.io/lessons/

[18] Wirawan Purwanto, Hongyi Wu, Masha Sosonkina, and Karina Arcaute. 2019.
DeapSECURE: Empowering Students for Data- and Compute-Intensive Research
in Cybersecurity through Training. In Proceedings of the Practice and Experience
in Advanced Research Computing on Rise of the Machines (learning) (PEARC ’19).
ACM, New York, NY, USA, Article 81, 8 pages. https://doi.org/10.1145/3332186.
3332247

[19] Sarah Wassermann and Pedro Casas. 2018. BIGMOMAL: Big Data Analytics
for Mobile Malware Detection. In Proceedings of the 2018 Workshop on Traffic
Measurements for Cybersecurity (WTMC ’18). 33–39. https://doi.org/10.1145/
3229598.3229600

[20] Grant P. Wiggins and Jay McTighe. 2008. Understanding by Design (2nd ed.).
Association for Supervision and Curriculum Development, Alexandria, VA.

[21] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, and I. Stoica.
2016. Apache Spark: A Unified Engine for Big Data Processing. Commun. ACM
59, 11 (Oct. 2016), 56âĂŞ65. https://doi.org/10.1145/2934664

[22] Bo Zhu. 2015. A pure Python implementation of AES. https://github.com/bozhu/
AES-Python.git

Volume 12, Issue 2 Journal of Computational Science Education

10 ISSN 2153-4136 February 2021

https://kahoot.com
https://slack.com
https://www.tensorflow.org/
https://github.com/data61/python-paillier
https://github.com/data61/python-paillier
https://doi.org/10.1016/j.advwatres.2011.04.013
https://doi.org/10.5281/zenodo.592845
https://doi.org/10.5281/zenodo.592845
https://doi.org/10.1145/2949550.2949644
https://www.va-accord.org/
https://www.va-accord.org/
https://jekyllrb.com
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1109/NCIA.2013.6725337
https://doi.org/10.1109/NCIA.2013.6725337
https://doi.org/10.1145/2996758.2996764
https://doi.org/10.5281/zenodo.3630805
https://doi.org/10.5281/zenodo.3630805
https://deapsecure.gitlab.io/lessons/
https://doi.org/10.1145/3332186.3332247
https://doi.org/10.1145/3332186.3332247
https://doi.org/10.1145/3229598.3229600
https://doi.org/10.1145/3229598.3229600
https://doi.org/10.1145/2934664
https://github.com/bozhu/AES-Python.git
https://github.com/bozhu/AES-Python.git

Exploring Remote Learning Methods for User Training in
Research Computing

Dhruva K. Chakravorty1
chakravorty@tamu.edu

Braden Yosko1
byosko@tamu.edu

Stuti H. Trivedi1
stutitrivedi1373@tamu.edu

Lisa M. Perez1
perez@tamu.edu

Keith Jackson1
kjackson@tamu.edu

Levi Jordan1
ljordan56@tamu.edu

Honggao Liu1
honggao@tamu.edu

Dylan Rodriguez1
dylan@tamu.edu

Shaina Le1
sle1019@tamu.edu

ABSTRACT
The COVID-19 national health crisis forced a sudden and drastic

move to online delivery of instruction across the nation. This almost

instantaneous transition from a predominantly traditional “in-

person” instruction model to a predominantly online model has

forced programs to rethink instructional approaches. Before

COVID-19 and mandatory social distancing, online training in

research computing (RC) was typically limited to “live-streaming”

informal in-person training sessions. These sessions were

augmented with hands-on exercises on live notebooks for remote

participants, with almost no assessment of student learning. Unlike

select instances that focused on an international audience, local

training curricula were designed with the in-person attendee in

mind. Sustained training for RC became more important since

when several other avenues of research were diminished. Here we

report on two educational approaches that were implemented in the

informal program hosted by Texas A&M High Performance

Research Computing (HPRC) in the Spring, Summer, and Fall

semesters of 2020. These sessions were offered over Zoom, with

the instructor assisted by moderators using the chat features. The

first approach duplicated our traditional in-person sessions in an

online setting. These sessions were taught by staff, and the focus

was on offering a lot of information. A second approach focused on

engaging learners via shorter pop-up courses in which participants

chose the topic matter. This approach implemented a peer-learning

environment, in which students taught and moderated the training

sessions. These sessions were supplemented with YouTube videos

and continued engagement over a community Slack workspace. An

analysis of these approaches is presented.

CCS CONCEPTS
•CS→Computer Science; •Cybertraining→training on using

cyberinfrastructure; •HPC→high performance computing

Keywords

Online education, COVID-19, YouTube education, Cybertraining

1. INTRODUCTION
The COVID-19 national health crisis forced a sudden and drastic

move to online delivery of instruction across the nation. This almost

instantaneous transition from a predominantly traditional “in-

person” instruction model to a predominantly online model has

forced programs to rethink instructional approaches. Unlike select

instances, such as the Petascale Institute, that have traditionally

focused on a geographically-distributed audience, local campus

computing training curricula were primarily designed with the in-

person learner in mind. Prior to the changes brought by COVID 19-

related national social distancing norms, online training in research

computing (RC) was typically limited to “live-streaming” informal

in-person training sessions. For example, training and educational

sessions offered by Texas A&M HPRC [1] primarily focused on

the “in-person” participants, with tracking, support, and strong

assessments. The online experience was augmented with hands-on

exercises on live notebooks for remote participants, with limited

assessments of efficacy and student learning.

The impact of these adopted social norms affected research

computing as well. In the Spring months of 2020, with a view

toward combatting the spread of COVID-19, several institutions

staggered, limited, or closed research facilities that required in-

person interactions. While researchers were asked to practice social

distancing at some institutions, at others they were encouraged to

stay off campuses. Unable to perform physical experiments,

computationally-curious, albeit untrained, researchers flocked to

campus RC sites. For example, at Texas A&M HPRC, we saw a

significant increase in both new users and the number of job

submissions on our clusters. This influx of new researchers offered

opportunities to experiment with sustainable and scalable training

approaches for researchers new to RC.

2. ONLINE TRAINING AND EDUCATION
Much like other campus research computing efforts, Texas A&M

HPRC has offered a series of training, outreach, and educational

efforts that supports our researcher community [2–6]. Our user

training program has been operational for several years, with

thousands of participants signing up for events. At its heart are two-

and-a-half-hour sessions, called the short course program, that are

built along the idea of active-learning approaches [7–10]. Prior to

March 2020, these sessions were offered both in-person and over

live remote (Zoom/WebEx) modalities. These sessions were

augmented with day-long workshops that were traditionally

1 High Performance Research Computing, Texas A&M University, College

Station, TX

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/2

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 11

focused on in-person attendees. Both the short courses and

workshops largely relied on our production environments —

Jupyter notebooks, virtual machines, and command line interface

(CLI). While instructional aids (slide decks and Jupyter notebooks)

were available on our website, video recordings of the courses were

not available. These courses have been included in several formal

curricular efforts at Texas A&M. A detailed report on them has

been presented elsewhere [2–6].

In response to social distancing policies recommended due to the

COVID pandemic, we realized that we had to change our approach

toward user training. We adopted two distinct approaches toward

user training. For the Summer and Fall 2020 semesters, Texas

A&M HPRC chose to offer both versions of its informal learning

program in an online modality. These programs continue to evolve

as we experiment with pedagogical approaches to strengthen our

curricula. Here we report on the progress, strengths, weaknesses,

and opportunities to improve on these approaches. At the outset,

these programs were offered over Zoom, with the instructor

assisted by moderators using the chat features.

2.1 Short Courses
The first approach, called shortcourses, closely mirrored our

traditional in-person focused sessions, albeit in an online-only

setting. By design, these courses are detailed, information-

intensive, and built as information resources that can be revisited

by participating students. These are typically taught by experienced

HPRC staff, Texas A&M faculty, or scientists. Curricular materials

are available for download from Github or the HPRC website.

These courses are two-and-a-half hours long and are tiered with

other short courses. To further establish a learning structure, these

courses are often combined with complementary offerings, such as

workshops or user group meetings. In the now online format, the

course instructor was supported by other HPRC scientists over

Zoom chat. The goal here is to offer a deeper introductory dive into

computing. These courses are built on a tiered instruction model

where the topics covered during the courses build on each other. As

such, a learner can participate in courses throughout a semester and

develop a comprehensive understanding of RC software and tools.

To enable effective delivery, we developed a document describing

expectations from presenters and participants on Zoom. To collect

participant feedback on our courses, we migrated our surveys to

Google Forms.

2.2 Primers
Toward the end of the Spring 2020 semester, we realized that our

now online short course program was probably competing with

other online commitments for a learner’s time. We were also

concerned that the short course program took a considerable

amount of staff time away from responding to our growing user-

needs. We also realized that, traditionally, new users often

belonged to research groups that had roots in RC. In this scenario,

we could rely on existing computing expertise within the new

user’s group to bring him/her/them up to speed. Due to the COVID-

19 crisis, we had a new set of researchers join research computing.

These computationally-curious researchers belonged to research

groups (or facilities) that didn’t provide the scaffolding that our

short course program relied on. Since these researchers came from

varied backgrounds, we also didn’t have a pre-existing framework

that informed us what and how these researchers wanted to learn.

Despite the curricular strengths of our short course program, we felt

the need for a new pedagogical approach that taught the new

generation of users while focusing on learner engagement [11].

Admiring the success of short videos on social media platforms

such as TikTok and YouTube, we realized that online informal

education could be offered as bursts of information rather than

relying on a structured tiered learning approach. In a related vein,

platforms such as Discord have successfully coupled “live

streaming” with “live chat” to engage the audience. Here, the

presenter performs a task and converses using the video feed, while

the audience participates in a “live chat” where they react or add to

the presenter’s actions. During this time, we also noticed that users

were requesting information via our Helpdesk ticketing system that

could be scaled out via informational videos. These requests were

typically handled by our experienced student technician group that

includes members from current and previous Super Computing

Student Cluster competition teams.

3. EXPERIMENTAL DESIGN
Driven by the need to innovate, and inspired by the opportunities

in our operations group, we developed a second approach that

focused on high learner engagement by offering information on

demand. This program, called Primers, relied on 60-minute courses

and moved away from the focus on a semester-long learning

experience. The Primer courses were intended to provide a burst of

information for learners in an online-learning-friendly format. For

the Primers, we first identified core competencies that RC

researchers need to know. These core competencies were identified

via discussions with HPRC staff, consultation with groups working

in this area, HPRC user tickers, our “Introduction to HPRC” short

course, and its corresponding assessments.

As part of this design, we took a cue from pop-up courses and

crowd sourced when and how often these topics should be taught.

Towards this, the registration form allowed participants to vote on

the courses that would be offered, the sub-topics to be covered

during the course, and suggestions on what should be taught. As a

rule, we required that a minimum of five learners had to register for

a Primer course for it to be offered. The program was geared to

offer quick information and get a user to actively work on the

problem. Unlike our short course program, it had no explicit tiered

or prolonged learning structure. As such, we anticipated learners

signing up for one-off courses, with the learning limited to a single

semester. Building on the depth of expertise in our student

technician program, we implemented a peer-learning environment

in which two experienced undergraduate or graduate students

taught and moderated the training sessions.

Instructional materials for the Primers were prepared by Texas

A&M HPRC staff and students. While one student technician

presented the material and guided the class through the hands-on

sessions, the second student technician posted comments on Zoom

chat and added additional information. Scaffolding was offered via

materials like Jupyter notebooks [12]. Each 60-minute session was

followed by a 15-minute informal “Open Mic” session during

which, participants could chat or talk about any topic related to RC.

To ensure success, we endeavored to build a support structure along

the live courses. To capture these discussions and foster closer

collaborations among researchers, participants were invited to use

the NSF CC* Cyberteam SWEETER Slack workspace [1]. In

addition to offering course-related resources, such as slide decks

and Jupyter Notebooks, these sessions were recorded and offered

as YouTube videos. These recordings are available free-of-charge

via the Texas A&M HPRC YouTube channel. Closed captioning

was included on each video, and the videos met Texas A&M’s

requirements for the Americans with Disabilities Act.

Volume 12, Issue 2 Journal of Computational Science Education

12 ISSN 2153-4136 February 2021

Figure 1. A screenshot of the teaching interface. Here the

peer-instructor is working on a Jupyter Notebook while the

peer-moderator encourages and supports a parallel discussion

in the Zoom chat window.

4. RESULTS AND FUTURE WORK
Here, we briefly describe the results from our online short course

and Primer programs. A complete list of our training activities is

available on the HPRC website.

4.1 Short Courses Offered
In Spring 2020, we completed our planned bouquet of Spring 2020

short courses in an online-only format using the Zoom platform.

This was followed by an online series of short courses on Quantum

Mechanics offered in Summer 2020. In Fall 2020, the shortcourses

returned to our offering. The move to an online-only platform did

not impact the number of participants registering for our short

courses. Registration and participation in the Spring 2020 short

courses mimicked that of previous semesters, when the courses

were taught in the hybrid in-person and online format. Since all

interactions were now via Zoom, we noticed that the interactions

between the instructor and the attendees were much more limited.

This was a marked change from the in-person interactions between

the instructor and the participants, and it has been ascribed to

variety of factors, ranging from technology limitations, poor

internet connections, participant hesitation to speak out in front of

a larger audience, a reluctance to enter questions into chat forums,

competing online distractions, and a lack of engagement with

instructor or course materials.

4.2 Primer Courses Offered
The Primer courses were launched in late Spring 2020. The Primers

were advertised and managed using our regular broadcast email,

and registration and content was managed via our website and

Google Forms. To our pleasant surprise, and perhaps an indicator

of the rising demand for research computing, all course offerings

were selected, and we rapidly reached the minimum threshold of

five learners for each Primer course. Primers were offered on

introductory topics related to Linux, CLI, Cluster Usage, scheduler

usage (SLURM and IBM Spectrum Scale LSF), using the

OpenOnDemand Portal, Data Management Practices, and using

Jupyter notebooks. A listing of all Primer courses offered in 2020,

and the number of students registered per course are presented in

Table 1.

For the purposes of brevity and maintaing clarity, Primer courses

are grouped in terms of Operating Systems (Linux), Technology

(Jupyter Notebooks and Data Management Practices), Schedulers

(LSF and SLURM), and Clusters (Ada and Terra) in this

manuscript. The portal refers to Texas A&M HPRC’s

implementation of the OpenOnDemand portal developed by Ohio

Supercomputer Center. In all, 15 Primers were offered.

Table 1. List of Primer courses, and the number of registered

attendees for each session, from Spring 2020 to Fall 2020. The

primers are listed in the order in which they were presented.

Semester Courses Registered

Spring

2020

Introduction to Linux w/

MobaXterm

126

Introduction to the Ada Cluster 98

LSF: Job Scheduling 44

Introduction to the Terra Cluster 92

SLURM: Job Scheduling 27

Data Management Practices 96

Summer

2020

Introduction to HPRC – Clusters,

Duo, VPN

63

Jupyter Notebooks on the Portal 59

Introduction to Linux w/

MobaXterm

40

Introduction to Linux w/ Portal 39

Introduction to the Ada Cluster 42

LSF Job Scheduler 44

Introduction to the Terra Cluster 43

SLURM Job Scheduler 69

Data Management Practices 91

Fall 2020

Introduction to Linux w/ Portal 71

Introduction to the Terra Cluster 54

Introduction to the Ada Cluster 64

Data Management Practices 70

SLURM: Job Scheduling 53

LSF: Job Scheduling 55

Jupyter Notebooks on the Portal 67

On average, about 55 participants registered for each Primer course.

Due to the unique registration format, registered participant counts

include those who showed interest in the topic and didn’t have a

preference for the day on which the course was offered. It is

noteworthy that since new graduate student enrollment is typically

highest in Fall semester, we see typically see a drop-off in

participation in our Introductory short courses in the Spring

semester. The registration numbers for Spring reflect enthusiasm

for both computing and the new learning format at that time. In

response to the continued demand for quick online programs, the

Primers were offered a second time in Summer of 2020.

Summer attendance in the Primers series was encouraged by the

summer research learning programs such as the Online Research

Experiences for Undergraduates program at Texas A&M. A slight

drop in registrations was observed. In Fall 2020, we continued to

work in an online-only setting. As such, the Primers program ran in

parallel with the Short course program. Figure 2 shows that a

greater number of learners registered for the Primers in the Spring,

Summer, and Fall semesters of 2020, as compared to those

registered for similarly-themed Introductory short courses that

were offered in the hybrid in-person and online format in Fall 2019.

Perhaps a testament to the success of this online-only format is the

continuing participation in Fall 2020.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 13

Figure 2. Total number of participants registered for Primer

courses in Spring (red), Summer (green), and Fall (gray)

semesters of 2020. For comparison, we show the number of

students who participate in the 2.5-hour-long course in Fall

2019 (blue).

4.3 Participation Trends
Primers maintained student interest in all the major categories, as

shown in Figure 3. Consistent with the class of new researchers

using our facilities, we saw increased participation in courses

related to using the campus clusters and interactive technologies

like Jupyter notebooks. Polling data collected during the

registration process found that nearly all participants voted for all

the topics. As such, beyond telling us that the pre-selected topics

were of interest, crowd-sourcing did not provide clear guidance on

what sub-topics to teach. Our SWEETER Slack workspace offers a

rich collaborative space that connects over 470 researchers from

several countries. It includes several public and private channels

related to research computing and software usage. We also find that

while several learners joined the SWEETER slack, most

discussions took place on private topic-specific channels rather

than on a public channel. As the courses progressed we learned that

while the interactive sessions were scheduled for 10 minutes, they

may carry on for up to 30 minutes after a primer course. As such,

we assume that the Primers filled a significant knowledge gap for

researchers new to research computing clusters environments.

Figure 3. Participation in Primers in the Spring, Summer, and

Fall semsters of 2020. Participation in the 2.5-hour version of

short courses in Fall 2019 is shown as a benchmark for when

longer sessions were offered on these topics.

Texas A&M HPRC supports users from several fields of science.

Figure 4 shows the participation of learners from various colleges

representing different fields of science. We find that the courses

maintained the cross-disciplinary appeal that was observed in our

short courses program in Fall 2019. Increased participation from

Engineering disciplines was observed. This possibly ties into the

increased use of computing in engineering research, students

wanting to learn new research skills during the downtime brought

about by the COVID-19-implied norm, and possibly because

learners were now able to tune into an online course, rather than

travel to a classroom on the other end of campus.

Figure 4. Participants per college for Spring, Summer, and

Fall semesters of 2020. For comparative purposes, we include

data from Fall 2019.

4.4 Learner Persistence
Tracking how students approach the topics offered by the program

and learner persistence are key considerations for improvements in

future iterations. For each of these live-streamed Primer courses,

persistence was tracked along two lines of enquiry. First we

observed how long a participant remained on during a course, and

next we saw how many Primers courses were attend by a learner.

Here, we report on our findings for the Primers offered in the 2020

calendar year. As described above, our original target participation

for our courses was five participants per course. In order to track

persistence, i.e. what percentage of students complete the session,

across a Primer course, we observed how long a participant

remained on the Zoom session. The data from the calendar year is

shown in Figure 5. Here we find a slight drop-off in the first 15

minutes. The majority of learners (greater than 60%) complete the

hour-long exercises and stay for the Open Mic session. We

hypothesize that the early drop rate could be reflective of various

factors. Learners could have realized that they have either signed

up for the wrong class, that the class materials and course recording

are available for later viewing, that the materials do not meet with

their expectations, or perhaps they have unstable Internet

connectivity. We find that as we got into the Summer and Fall

semesters, more students remained until the conclusion of the

course. We surmise this is because learners are becoming more

familiar with the platform and adjusting their expectations. Noting

that this metric may be an indicator of the popularity of the Open

Mic session that happens after the Primer, we point out that

participation in these sessions varies depending on the topic and the

audience on a given day.

Volume 12, Issue 2 Journal of Computational Science Education

14 ISSN 2153-4136 February 2021

Figure 5. Learner persistence in each Primer session. Number

of minutes spent by Zoom attendees (Y-axis) in Spring,

Summer, and Fall Semesters of 2020.

Learner participation in the program was tracked across each

semester, and across multiple semesters. As described previously,

the Primers are geared to give relatively quick bursts of information

and are not tiered for a longer or sustained learning effort. As shown

in Figure 6 (a), we find that consistent with our intended goals, 45%

of learners attended a primer on a given topic, and 43% of learners

continued to participate in two or more classes. Figure 6 (b) shows

the distribution of learning across semesters. We find that

consistent with the goals of the program, the overwhelming number

of learners attend Primers in a single semester. A small percentage

of learners availed of the primers across two semesters.

Figure 6 (a). Total courses registered per learner across the

Fall, Summer, and Spring 2020 semesters.

Figure 6 (b). Number of learners registered for multiple

semesters across the Fall, Summer, and Spring 2020

semesters.

4.5 Staged Curricular Materials
We have continued to stage our teaching materials and exercises on

online platforms. Our website [1] hosts a collection of our training

materials. These materials are updated by the instructors each time

the Primers are offered. For the Fall 2020 semester, we find that the

Primer course slide decks and notebooks for the Primers were

downloaded 517 times by individuals and ~30 times by bot

services. Details of downloads per course and thematic areas are

shown in Table 2, and the breakdown across thematic areas is

shown in Figure 7. Consistent with Primer registration, we find that

cluster usage dominated among these categories.

Table 2. List of Primer and short videos offered on the Texas

A&M YouTube channel and associated views.

Type Courses Views

Introductory

Videos

(5 minutes

or less)

What is Texas A&M HPRC? 174

Applying for Accounts 141

Cluster Access using SSH 113

Accessing Cluster from Windows 33

File Management on Clusters 99

Managing Allocations 122

Modules System 56

Submitting a Job using LSF 162

Submitting a Job using SLURM 23

Submitting a Job File using

Tamubatch

100

Primers

(45 to 60

minutes)

Introduction to HPRC – Clusters,

Duo, VPN

77

Jupyter Notebooks on the Portal 65

Introduction to Linux 13

Introduction to Linux on a portal 96

Using the Ada Cluster 173

LSF Job Scheduler 34

Using the Terra Cluster 93

SLURM Job Scheduler 64

Data Management Practices 34

Figure 7. Distribution of downloaded primer course materials

by themes for Fall 2020.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 15

4.6 Efficacy of Online Videos
Recordings of the hour-long Primer sessions are offered on the

Texas A&M HPRC YouTube Channel. The channel hosts 34

instructional videos in short (five-minute), medium (45-to-60-

minute), and long (two-hour) durations that have amassed over

2,500 views. All videos are indexed (bookmarked) and checked for

the accuracy of the closed captioning. Since its launch in late April

2020, the channel has gained over 139 subscribers as of November

2020. Complementing the Primer videos are short (less than 5-

minute) videos on topics such as how to access the HPRC clusters.

An analysis of the videos shows that learners are more likely to

gravitate toward shorter videos as opposed to more detailed videos.

A detailed breakdown of viewership statistics is presented in Table

3. Viewership and subscription data were collected at the time of

writing this manuscript to show the differential impact of vlength

versus usage.

Table 3. List of course material downloaded by individuals for

HPRC Primers offered in Fall 2020.

Courses Learner Downloads

Introduction to Linux 168

Introduction to the Ada Cluster 83

Introduction to the Terra Cluster 52

Data Management Practices 62

Introduction to HPRC 32

Jupyter Notebooks on OOD 70

LSF Job Scheduler 10

SLURM Job Scheduler 40

In keeping with the philosophy of Open Science, all materials are

available free-of-charge for use and adoption to the larger research

computing community. The encouraging viewership of YouTube

videos by the Research community, while heartening, revealed that

a significant portion of our viewership came from outside the

United States. Approximately a third of our viewers used the closed

captioning service on these videos. Figure 8 shows the viewership

trends for the shorter 5-minute videos versus the longer Primer-

recorded (1-hour) videos on YouTube. The total viewership

minutes per category, calculated by multiplying the total

viewership of a video by the duration of the video, remains

approximately the same in each category. As such, one may

hypothesize that while shorter videos are more likely to reach out

to a broader audience, the longer one-hour videos serve an

important purpose by helping learners who are interested in a

slightly deeper dive into the topic. We once again note that courses

on cluster usage get the most viewership.

5. CONCLUSIONS
The data collected as part of this study show that the Primer format

could be a suitable pedagogical approach that enhances learner

engagement, makes the materials more relatable, and leverages

peer-learning and peer-led-discussion approaches while scaling

back on staff time. The courses in conjunction with the online

communities, pre-staged materials, and online videos showed

increased participation from learners and were a better fit for an

online-only educational platform. It is heartening to note that

despite these viewership of materials on YouTube and availability

of course materials on our website, the Primers consistently

engaged new learners, and participation remained high in the

Summer and Fall semesters of 2020.

Figure 8. Distribution of short video (<5 minute) versus longer

(1-hour) videos in topic areas.

6. CHALLENGES AND FUTURE WORK
While the Primer course format is better suited for an exclusively-

online instruction-dependent world, challenges remain. Getting

participants to complete evaluations that gauge the effectiveness of

our program is a challenge. While we traditionally had over 70% of

participants respond to surveys, we saw responses drop to 10%

upon switching to Google Forms. We have since switched to

polling participants over Zoom and observe upwards of 50%

participation. We note that Zoom is a limited medium compared to

the richness of Google Forms. Our questions today are limited to:

1. Did you attend this course for research, personal, and/or class

needs?

2. Did the course meet your objectives?

3. Would you like future courses to be more generalized,

specialized, or both?

Moving to online-only usage of resources encouraged us to explore

mechanisms to improve and scale our training operations. The last

couple of semesters have shown us the strengths of adopting an

online-only approach. As a nation, we have collectively observed

that training over online resources has its own share of questions

related to access, inclusivity, equity, and diversity [6]. While we

celebrate the expanded reach enabled by offering training over the

Internet, we sadly realize that students with limited access to

technology and reliable Internet connectivity are in danger of being

left behind. Today, HPRC is experimenting with a new online

pedagogical approach, called the “technology labs” [1]. These labs

are geared toward placing the participants in a real-world scenario

on entry. At the time of writing this manuscript, it is hard not to

acknowledge that we stand at the crux of a “twindemic” that could

well progress the remote-only settings to the Summer of 2021 or

beyond. Indeed, at Texas A&M University, the Spring 2021

semester has been adjusted. Based on the usage characteristics, we

plan to offer these courses in an online setting into the foreseeable

future.

7. SUPPORTING INFORMATION
All training materials used in this study are available to the

community via the Texas A&M HPRC website at

https://www.hprc.tamu.edu/training. Videos and course recordings

may be accessed via the Texas A&M HPRC channel on YouTube.

The community is invited to join the SWEETER Slack workspace

at https://hprc.tamu.edu/sweeter. Surveys and review exercises that

will be developed as part of this longitudinal study may be

requested from the author. Please send us feedback about your

adoption experience via an email to help@hprc.tamu.edu.

Volume 12, Issue 2 Journal of Computational Science Education

16 ISSN 2153-4136 February 2021

8. ACKNOWLEDGEMENTS
The authors thank the staff at Texas A&M HPRC for assisting with

the research related to this study. We gratefully acknowledge

support from the National Science Foundation (NSF). We thank the

NSF for award #1649062, “NSF Workshop: Broadening

Participation in Chemical and Biological Computing at the Early

Undergraduate Level,” award #1730695, “NSF CyberTraining:

CIP: CiSE-ProS: Cyberinfrastructure Security Education for

Professionals and Students,” award #2019136, “NSF CC*

BRICCs: Building Research Innovation at Community Colleges,”

and award # 1925764, “NSF CC* SWEETER: South West

Expertise in Expanding Training Education and Research.”

9. REFERENCES
[1] Texas A&M High Performance Research Computing

website. URL: https://hprc.tamu.edu

[2] D. K. Chakravorty, M. Pennings, H. Liu, Z. Wei, D. M.

Rodriguez, Levi T. Jordan, D. F. McMullen, N. Ghaffari, and

S. D. Le. “Effectively Extending Computational Training

Using Informal Means at Larger Institutions,” Journal of

Computational Science Education 2018, 40–47 DOI:

10.22369/issn.2153-4136/10/1/7

[3] D. K. Chakravorty, M. Pennings, H. Liu, Z. Wei, D. M.

Rodriguez, L. T. Jordan, D.F. McMullen, N. Ghaffari, S. D.

Le, D. Rodriquez, C. Buchanan, and N. Gober. “Evaluating

Active Learning Approaches for Teaching Intermediate

Programming at an Early Undergraduate Level,” Journal of

Computational Science Education 2018, 61–66 DOI

10.22369/issn.2153-4136/10/1/10

[4] D. K. Chakravorty, D. F. McMullen, N. Gober, J. H. Seo, M.

Bruner, and A. Payne. “Using Virtual Reality to Enforce

Principles of Cybersecurity,” Journal of Computational

Science Education 2018, 81–87 DOI 10.22369/issn.2153-

4136/10/1/13

[5] D. K. Chakravorty, M. Pennings, H. Liu, X. Thomas, D. M.

Rodriguez, and L.M. Perez. “Incorporating Complexity in

Computing Camps for High School Students – A Report on

the Summer Computing Academy Program at Texas A&M

University,” Journal of Computational Science Education

2020, 11, 1 12–20 DOI https://doi.org/10.22369/issn.2153-

4136/11/1/3

[6] D. K. Chakravorty, M. T. Pham “Evaluating the

Effectiveness of an Online Learning Platform in

Transitioning from High Performance Computing to a

Commercial Cloud Computing Environment,” Journal of

Computational Science Education 2020, 11, 1, 93–99.

[7] Diverse Education News: Impact on Disadvantaged students

https://diverseeducation.com/article/189597/

[8] K. Saichaie, D. C. Brooks, P. Long, R. Smith, R. Holeton, C.

Meyers, A. Finkelstein, S. Dugdale, "7 Things You Should

Know About Research on Active Learning Classrooms," in

ELI 7 Things You Should Know, Educause Learning

Initiative (ELI), 2017.

[9] P. Baepler, J. D. Walker, D. C. Brooks, K. Saichaie, C. I.

Petersen, B. A. Cohen, "A Guide to Teaching in the Active

Learning Classroom: History, Research, and Practice," Stylus

Publishing, ISBN-13: 978-1620363003, 2016.

[10] Student-Centered Active Learning Environment with

Upside-down Pedagogies: http://scaleup.ncsu.edu/

[11] M. Prince, “Does active learning work? a review of the

research,” Journal of engineering education, vol. 93, no. 3,

pp. 223–231, 2004.

[12] J. Parsons and L. Taylor, “Improving student engagement,”

Current issues in education, vol. 14, no. 1, 2011.

[13] Larkin, M. (2002). Using scaffolded instruction to optimize

learning. http://www.vtaide.com/png/ERIC/Scaffolding.htm

A. REPRODUCIBILTY INDEX
All training materials are available via our website at

https://hprc.tamu.edu. Videos are available free-of-cost via the

Texas A&M HPRC channel on YouTube. Surveys, analytics for

Slack and YouTube, and review exercises that will be developed as

part of this longitudinal study may be requested from the author.

Please send us feedback about your adoption experience, questions,

and requests to join our training Slack (SWEETER Slack) via an

email to help@hprc.tamu.edu.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 17

http://scaleup.ncsu.edu/

Transitioning Education and Training to a Virtual World,
Lessons Learned

S. Charlie Dey1
charlie@tacc.utexas.edu

Je'aime Powell1
jpowell@tacc.utexas.edu

Brandi Kuritz1
bkuritz@tacc.utexas.edu

Victor Eijkhout1
eijkhout@tacc.utexas.edu

Susan Lindsey1
slindey@tacc.utexas.edu

Joshua Freeze1
jfreeze@tacc.utexas.edu

Lars Koesterke1
lars@tacc.utexas.edu

Rosalia Gomez1
rosie@tacc.utexas.edu

ABSTRACT
Interaction is the key to making education more engaging. Effective

interaction is difficult enough to achieve in a live classroom, and it

is extremely challenging in a virtual environment. To keep the

degree of instruction and learning at the levels our students have

come to expect, additional efforts are required to focus efforts on

other facets to motivate learning, whether the learning is relative to

students in our academic courses, student internship programs,

Summer Institute Series, or NSF/TACC's Frontera Fellowship

Program. We focus our efforts in lecturing less and interacting

more.

Interaction now comes in the form of:

● taking a more casual approach to teaching

● gamifying the classroom

● giving students more choices regarding the path the

curriculum follows

● constantly relating the educational material to the

students’ current and future projects

● flipping the lessons where the students apply concepts in

class

● integrating peer programming groups

● taking advantage of all the technology options at our

disposal

We have refocused our efforts on interacting with students using

alternative means. As a result, we have built a successful academic

and training curriculum, making our virtual classrooms more

engaging and more collaborative, thus delivering a better

educational experience.

This paper will detail those efforts, what worked well, what aspects

needed adjusting, how those adjustments were implemented, and

how those efforts were received by our students.

1. RATIONALE
TACC has a wide array of training and educational offerings, aimed

at everyone from IT professionals to research scientists to graduate

and undergraduate students to high school and elementary school

students. Our approach to training and education is very similar no

matter the audience, to build a sense of community.

Teacher-student interaction is important. The more interaction

there is, the stronger the learning experience can be. To create a

positive learning environment, capable of meeting all of the

educational needs, teachers must build a positive relationship with

their students. Positive teacher-student interaction can be defined

by shared acceptance, understanding, engagement, trust, respect,

care, and cooperation. In a face-to-face classroom, this is a much

simpler task. Trying to build a community with students online, can

be more of a challenge.

For this reason, TACC took a step back on our traditional approach,

and through an iterative process, reimagined the classroom while

still providing representation, recognition, understanding,

intimacy, expectation, respect, care, and cooperation to bring the

aforementioned community together online. By taking a more

casual approach to teaching with multiple instructors and then

integrating aspects of gamification, loosening the curriculum,

applying lessons to current events, spending more class time

focused on applying learned concepts versus lecturing on concepts,

breaking the class into groups to make learning more intimate, and

using all available resources and technologies into our classes, we

were able build the needed teacher-student interaction to create a

positive learning environment.

2. DISCUSSION

2.1 Casual Classroom
When standing in front of a classroom, you have an automatic lead

position where all students' eyes are upon you. It is easy to tell if

students are paying attention or not, to read the classroom on how

well they are understanding the material, when you should ask

leading questions, when another example is in order, or when the

students have reached their saturation point. This is not an easy task

in the virtual classroom.

The virtual classroom requires a stronger relationship with

students. By taking a casual or more informal approach to teaching,

students feel more comfortable to ask and answer questions and ask

for clarification. TACC implements this technique by utilizing

multiple instructors in the classroom. The instructors work off one

another. As one instructor focuses on the context of the lecture, the

1 Texas Advanced Computing Center (TACC), Austin, TX

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/3

Volume 12, Issue 2 Journal of Computational Science Education

18 ISSN 2153-4136 February 2021

other instructors add to or highlight important concepts. This also

allows the secondary instructors to conduct discussions and polls

during the lecture to get a better read on how the class is absorbing

the information, then bringing any items needing an immediate or

more involved response to the attention of the primary instructor.

The secondary instructor also helps highlight any errors the primary

instructor may make during any programming demonstrations.

Keeping the comments and critiques light and in jest accomplishes

three things. The errors in the code are brought to the students’

attention and therefore more easily recognized in their own code.

Students realize that everyone at every level makes mistakes.

Lastly, students are more willing to open up, unmute their mics, and

point out errors that the professor might have made, thereby making

it so students are more willing to share their code and screens with

the rest of the class and not be disconcerted about their error.

With a more casual approach to leading a class, having multiple

instructors with secondary instructors leading discussions and

polling the class during lectures, light conversations between the

instructors, and pointing out errors during live coding examples,

students are able to form a bond with the teachers and are more

adept to learn and participate during class.

2.2 Gamifying the Classroom
Gamification is defined as the use of activities and external rewards

to encourage motivation in non-game contexts. It is designed to

increase a person’s experience and engagement with a course, goal,

or system. It helps bring a level of competitiveness and active

participation to class, motivating students to learn. Gamification

motivates people by making the learning process more enjoyable

and engages the student more with a course.

Gamifying tasks are implemented in our courses and hackathons in

particular. Sometimes the tasks are directly related to the learning

process, and sometimes they are meant as an icebreaker to

encourage students to open up. Some gamification tasks come as

badges that students collect as they progress through the material

and coding tasks. Other times, badges can be given to students who

answer questions, ask questions, or share their screens and code

with the rest of the class in order to get help debugging efforts.

Students are also encouraged to hand out virtual badges to their

peers, if a peer helps answer a question asked over chat.

Bringing healthy competition to the classroom can have positive

effects, especially if it is a competition that helps move the class

forward as a group instead of a competition between peers. This

brings about a shared experience with mutual respect and

cooperation.

2.3 Open Curriculum In The Classroom
Open curricula, where the student is open to take relevant courses

in differing order with a faculty mentor, are normally associated

with directing a field of study. This idea has been applied to our

educational activities. Though each course and training activity

conducted at TACC has set curriculum goals that need to be met,

the route we take to achieve these goals can be fluid.

The experience of “open curriculum” classes allows students some

freedom in how the course is directed and gives students some

ownership regarding the course material. This helps create a culture

of learning in which students display motivation, innovation, and

self-direction. An open curriculum promotes independent thinking

and creative problem-solving. We implement this with different

types of projects and exercises during class time. Depending on

how the students react to the different challenges presented, the

next lesson can be modified to focus more or less on how the

concept was received.

2.4 Relating Material to Current Events
Students need a personal connection to the material, bridging the

new information with previously-acquired knowledge, or directly

applying new knowledge with current world events. One of the

keys to effective teaching is keeping the course material and

projects relevant. It keeps the learning experience engaging. After

key concepts are covered, the projects proposed for students to

investigate are ones relative to current world topics, such as disease

propagation, climate change, gerrymandering, and traffic patterns

in urban settings.

By keeping projects directly tied to the world around them, students

stay motivated, learning and retaining more of the material.

Creative and critical thinkers work for work’s own sake. They are

driven by the desire to understand how the current world is

progressing and where the world is heading. By being able to apply

what they learn directly to real world issues, students achieve a

better understanding of the role computational and data science

plays in day-to-day issues.

2.5 Flipping the Classroom
Flipping the classroom is a response to the idea that class time can

be used to engage students in learning through focused techniques,

rather than through delivering lectures alone. By blending normal

lectures with more student-centered learning strategies, instructors

have more opportunities to deal with mixed levels of student

comprehension, attend to any student difficulties, and differentiate

learning preferences during in-class time. The amount of flipping

varies from course to course, but for the majority of our training

offerings, our courses integrate 20–30 minutes of hands-on

activities through in-class exercises and less time lecturing. This

allows us to turn the class into an active learning environment.

After key concepts of the course material are learned, the focus is

turned to applying those concepts through in class challenges or

group exercises. As student reactions to the challenges are

observed, instructors can change the direction of the class based on

these observations. This allows instructors to verify students are

able to understand and apply their learned knowledge before

moving to the next concept. These concepts are then built upon

each other leading to a final project.

The flipped classroom environment allows students to better relate

the material to previous lessons and apply the material to the future

lessons. It also allows the instructors to make sure that the students

have a good grasp of the content and are capable of working

towards the major projects. This better engages the students and the

instructors for a more productive classroom experience. The

flipped classroom puts more control into students' hands regarding

their own learning processes.

2.6 Peer Groups and Paired Programming
Another teaching approach implemented in our educational efforts

is the use of peer groups and pair programming. Pair programming

allows students to learn from one another and reduces the risk of

going down an irrelevant path in trying to solve a problem. When

properly implemented, this method allows students to learn from

their peers. A student who may not be grasping a certain concept

may achieve a better understanding when paired with a student who

does. Due to the group environment, it also reduces the amount of

effort required by the instructors to make sure all students are at an

equal level.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 19

Taking advantage of technologies available, students are broken

into pairs and assigned to a virtual space to communicate and

collaborate within. Instructors will occasionally enter these spaces

to see how students are progressing and answer any questions that

may have arisen.

Another group activity in peered programming that TACC

implements is "programming out loud." This technique enables

students to clearly understand and articulate the complexities the

coding tasks may require. They follow the instructor's lead to build

an understanding of the coding steps involved to solve the exercise

and then replicate the technique in their groups. The goal of this

strategy, and all of our strategies, is to better engage students and

instructors.

2.7 Technology Options
Classroom interaction is very important. To achieve this properly,

every technical resource that enhances that interaction should be

implemented. Technology can be used to enhance the dynamic

between students and instructors. A combination of different

technologies may be needed to sufficiently support a positive

dynamic.

At TACC, we've used a combination of collaborative tools to

enable students and instructors to better communicate. Zoom is

used to conduct our training events, with breakout rooms for peer

and paired programming sessions. Slack is utilized for students to

engage with other students and instructors outside of normal

classroom hours. Git and Repl.it are used for collaborative coding,

while SSH is used to communicate with our classroom servers. This

combination of tools allows students to be better connected to each

other as well as the instructors, all in an effort to build a cohesive

online, virtual community.

3. LESSONS LEARNED, CONCLUSIONS
When the class went virtual, a new approach to the classroom was

very necessary. Progressive approaches to managing learning

needed to be implemented in a short amount of time to best secure

an accepting, understanding, and engaging environment where

trust, respect, care, and cooperation exist. The approach we took at

TACC included:

● taking a more casual approach to teaching

● gamifying the classroom

● giving students more choices regarding the path the

curriculum follows

● constantly relating the educational material to the

students current and future projects

● flipping the lessons where the students apply concepts in

class

● integrating peer programming groups

● taking better advantage of all the technology options at

our disposal

Unfortunately, there were some drawbacks during implementation,

and it took multiple iterations to balance out the approach. Too

casual of a classroom environment, and students lost some

discipline and felt less pressure to get work in on time. We had to

make sure that instructors maintained proper discipline through

grading the material and holding students to due dates with some

leniency. Gamification had a slight negative consequence with

certain students who felt upstaged by others. To counteract this, we

made sure that instructors kept lines of communication open with

students who felt upstaged and made sure all students had an

opportunity to interact in class. An open curriculum without a

proper introduction to the concepts can slow down the course.

Spending more time on key concepts actually can speed up the class

because there are less interruptions on repeating core material.

Occasionally the material can be dry, and making the material

relevant is not always an option, but the concepts still need to be

covered, and there is not much that can be done, aside from

following up a dry lecture with some interactive lessons. Regarding

flipping the classroom and peer programming groups, new and

inexperienced programmers might require more of a traditional

lecture from the instructor to better understand some concepts. We

have found that by involving instructors within the peer

programming groups, we can have "micro" lessons and still have

the benefits of a flipped classroom and peer/paired programming.

Once a balance was attained, we were able to move our classes

forward. We built an environment that encouraged interaction

between students and instructors, leading to a stronger learning

experience. This has led to a successful virtual training and

education program.

4. REFERENCES
[1] Brame, Cynthia. “Flipping the Classroom.” Vanderbilt

University, Vanderbilt University, 26 Mar. 2020,

cft.vanderbilt.edu/guides-sub-pages/flipping-the-classroom/.

[2] Cox, Janelle. “10 Ways to Keep Your Class Interesting.”

ThoughtCo, www.thoughtco.com/ways-to-keep-your-class-

interesting-4061719.

[3] Erenli, Kai. “The Impact of Gamification — Recommending

Education Scenarios.” International Journal of Emerging

Technologies in Learning (IJET), Publisher: International

Journal of Emerging Technology in Learning, Kassel,

Germany, 31 Jan. 2013, www.learntechlib.org/p/45224/.

[4] Wilson, L.A and S. C. Dey, "Computational Science

Education Focused on Future Domain Scientists," 2016

Workshop on Education for High-Performance Computing

(EduHPC), Salt Lake City, UT, 2016, pp. 19–24, doi:

10.1109/EduHPC.2016.008.

[5] “How Scientists Use Slack.” Nature News, Nature

Publishing Group, www.nature.com/news/how-scientists-

use-slack-1.21228.

[6] “Motivation in Education: What It Takes to Motivate Our

Kids.” PositivePsychology.com, 1 Sept. 2020,

positivepsychology.com/motivation-education/

Volume 12, Issue 2 Journal of Computational Science Education

20 ISSN 2153-4136 February 2021

Bringing GPU Accelerated Computing and Deep Learning
to the Classroom

Joseph Bungo
NVIDIA Corporation

Austin, Texas

jbungo@nvidia.com

Daniel Wong
University of California, Riverside

Riverside, California

danwong@ucr.edu

ABSTRACT
The call for accelerated computing and data science skills is

soaring, and classrooms are on the front lines of feeding the

demand. The NVIDIA Deep Learning Institute (DLI) offers hands-

on training in AI, accelerated computing, and accelerated data

science. Developers, data scientists, educators, researchers, and

students can get practical experience powered by GPUs in the

cloud. DLI Teaching Kits are complete course solutions that lower

the barrier of incorporating AI and GPU computing in the

classroom. The DLI University Ambassador Program enables

qualified educators to teach DLI workshops, at no cost, across

campuses and academic conferences to faculty, students, and

researchers. DLI workshops offer student certification that

demonstrates subject matter competency and supports career

growth. Join NVIDIA’s higher education leadership and leading

adopters from academia to learn how to get involved in these

programs.

By attending this talk, you will learn:

• How educators can access Teaching Kits with curriculum

materials in accelerated computing, Deep Learning, and

robotics.

• How to access free online training, certification, and

cloud access to GPUs for teachers and students.

• An overview of the NVIDIA DLI and University

Ambassador Program.

• How the Ambassador Program fits into larger programs

that support teaching.

• Real examples of leading academics leveraging Teaching

Kits and Ambassador workshops in the classroom.

Keywords

Hands-on learning, Training, HPC education, Deep learning,

Machine learning, Artificial intelligence, GPU, Data science,

Parallel computing, Accelerated computing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/4

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 21

XSEDE EMPOWER: Engaging Undergraduates in the Work
of Advanced Digital Services and Resources

Aaron Weeden
Shodor Education Foundation

Durham, NC

aweeden@shodor.org

ABSTRACT

To address the need for a diverse and capable workforce in

advanced digital services and resources, the Shodor Education

Foundation has been coordinating an undergraduate student

program for the Extreme Science and Engineering Discovery

Environment (XSEDE). The name of the program is EMPOWER

(Expert Mentoring Producing Opportunities for Work, Education,

and Research). The goal of the program is to engage a diverse group

of undergraduate students in the work of XSEDE, matching them

with faculty and staff mentors who have projects that make use of

XSEDE services and resources or that otherwise prepare students

to use these types of services and resources. Mentors have

coordinated projects in computational science and engineering

research in many fields of study as well as systems and user

support. Students work for a semester, quarter, or summer at a time

and can participate for up to a year supported by stipends from the

program, at different levels depending on experience. The program

has run for 11 iterations from summer 2017 through fall 2020. The

111 total student participants have been 28% female and 31%

underrepresented minority, and they have been selected from a pool

of 272 total student applicants who have been 31% female and 30%

underrepresented minority. We are pleased that the selection

process does not favor against women and minorities but would

also like to see these proportions increase. At least one fourth of the

students have presented their work in articles or at conferences, and

multiple credit the program with moving them towards graduate

study or otherwise advancing them in their careers.

Keywords

Undergraduate student programs, Advanced digital services and

resources, HPC, Computational science, Data science, Internships

1. INTRODUCTION
To address the need for a diverse and capable workforce in

advanced digital services and resources, the Shodor Education

Foundation [8] has been coordinating an undergraduate student

program since summer 2017 for the Extreme Science and

Engineering Discovery Environment (XSEDE) [10]. The name of

the program is EMPOWER (Expert Mentoring Producing

Opportunities for Work, Education, and Research). The goal of the

program is to engage a diverse group of undergraduate students in

the work of XSEDE, matching them with faculty and staff mentors

who have projects that make use of XSEDE services and resources

or that otherwise prepare students to use these types of services and

resources. Mentors have coordinated projects in computational

science and engineering research in many fields of study as well as

systems and user support. Students work for a semester, quarter, or

summer at a time and can participate for up to a year supported by

stipends from the program. Students participate at one of three

different levels depending on their existing experience: Learners

are trained on new skills and knowledge, Apprentices apply their

skills and knowledge to supervised tasks, and Interns work more

independently.

2. METHODS

2.1 Recruiting Mentors and Students
We recruit mentors and students by promoting the program in

XSEDE newsletters [12]; engaging with the Campus Champions

community [3], who participate themselves and/or spread the word

on their own campuses; and with help from the XSEDE Broadening

Participation team [1], who engage with historically

underrepresented faculty and students through conference and

campus visits.

2.2 Receiving and Reviewing Applications
Shodor maintains an in-house application website [9] and database,

originally developed to coordinate workshop registrations for the

National Computational Science Institute [7]. Student and mentor

application forms for EMPOWER have been developed based on

those of the Blue Waters Student Internship Program [4]. The

mentor form requests the mentor’s affiliation/role with XSEDE, the

project title and summary, student job description, use of XSEDE

resources, contribution to the community, start and end dates,

location, participation level, training plan, number of students the

mentor can support, student names (if already identified), and

additional student prerequisites and qualifications. The student

application form requests GPA; subject areas studied; subject

interests; relevant courses and grades; relevant work and internship

experiences; career goals; interests in contributing to XSEDE; and

experiences with mathematics, computing, application software,

programming languages, Unix/Linux, parallel computing,

visualization, data science, and machine learning.

When students apply, they can optionally indicate a gender (Male

or Female) and/or an ethnicity (African-American, American

Indian or Alaskan, Asian or Pacific Islander, Hispanic, Caucasian,

or Middle Eastern). For our analysis, we consider the following

ethnicities to be underrepresented minorities: African-American,

American Indian or Alaskan, and Hispanic.

As applications come in, the program coordinator reviews the

submissions, looking for issues that may need to be addressed, such

as start and end dates that do not line up with the dates of the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/5

Volume 12, Issue 2 Journal of Computational Science Education

22 ISSN 2153-4136 February 2021

program, or mentors indicating preferred students who have not

themselves submitted applications (or vice versa for students and

their preferred mentors). The coordinator corresponds with mentors

to identify which student applications should be matched with

which mentor applications during the review process.

With the goal of avoiding biases during the review process, an

anonymous review is conducted. The coordinator prepares a

Portable Document Format (PDF) file for each mentor/student

application pair in which names, pronouns, genders, ethnicities,

institutions, locations, and URLs are removed. The process of

preparing these PDF files is partially automated and partially

manual. A script written in the PHP programming language

automatically searches for gender pronouns and replaces them with

an indicator that a gender pronoun has been removed. The script

also allows for other search strings to be specified by the

coordinator manually (i.e. those indicating names, pronouns,

genders, ethnicities, institutions, locations, and URLs). These

search strings are automatically replaced with indicators that the

string has been removed. The coordinator reads each application

looking for search strings to include and types them into a

spreadsheet. The spreadsheet is set up to construct a URL that is

used to run the PHP script. A separate Bash script requests each

URL and downloads the resulting output into PDF files. The result

is a collection of anonymized PDF files that are given to reviewers.

The coordinator recruits three reviewers for each PDF file from the

community: primarily from the Campus Champions, the XSEDE

Community Engagement and Enrichment staff, and former mentor

participants of EMPOWER. Reviewers score each PDF using a

Google Form that presents ten prompts on a 1–5 scale: 1) the

project contributes to the work of XSEDE, 2) the proposed level of

participation (Learner, Apprentice, or Intern) is appropriate, 3) the

training plan is appropriate, 4) the project is suitably scoped given

the start and end dates, 5) the mentor is likely to do a good job

supporting the student, 6) the student is new to the XSEDE

community, 7) the project is a good fit for the student’s expressed

interests and skill level, 8) the student is likely to do a good job in

the project, 9) the student’s participation will advance them in their

career path as a user or facilitator of advanced digital services and

resources, and 10) the match of mentor, student, and position

should be selected for the program.

For a given PDF and reviewer, a weighted score is calculated based

on the reviewer’s scores for each prompt using the formula below.

4*(P10) + 3*(P1+P5+P8+P9) + 2*(P2+P3+P4+P7) + P6

A final score for each PDF is calculated using an iterative model

that takes into account the weighted scores and reviewer leniencies,

based on the Differential Model described in [5]. PDF files are

ranked by this final score, reviewer comments and other

considerations (such as previous participation) are taken into

account, and final selections are made by the coordinator.

2.3 Training Students
The student participants of the summer 2017 and summer 2018

programs were invited to participate in the Petascale Institute [11],

a two-week training event conducted by Shodor for the

undergraduate students of the Blue Waters Student Internship

Program. Students from EMPOWER who were interested and

available attended this training, where they learned how to apply

parallel and distributed computing concepts to computational

simulation and modeling using the Blue Waters supercomputer [2]

as the example architecture. Funding for the Petascale Institute

ended in 2018.

Outside of the Petascale Institute, Shodor has so far not conducted

training for the EMPOWER students. Instead, the mentor

participants in the program provide training to the students whom

they are mentoring. The modes of training have varied and include

formal courses, informal lectures and one-on-one tutoring, and self-

learning using online resources.

2.4 Reviewing Student Work
EMPOWER students complete monthly progress reports in which

they describe accomplishments, issues, and what they plan to

accomplish before the next report. In reading these reports, the

EMPOWER coordinator looks for mentions of publications or

presentations that have been produced or prepared by the students,

as well as other highlights of significant accomplishments. These

highlights are reported to XSEDE and the National Science

Foundation as evidence of impact of the program. Students receive

their stipend payments once they have completed all of their

required monthly reports.

The EMPOWER coordinator also occasionally conducts optional

small surveys of the students and mentors to obtain specific

information, such as the number of hours per week that mentors are

putting into mentoring their students or comments about the impact

of the program on students’ career paths.

3. RESULTS
There have been 11 iterations of the EMPOWER program from

summer 2017 through fall 2020 (one each per fall, spring, and

summer). The 111 total student participants have been 28% female

and 31% underrepresented minority, and they have been selected

from a pool of 272 total student applicants who have been 31%

female and 30% underrepresented minority.

At least one fourth of the students have published articles or

presented at conferences about their EMPOWER work. We have

also heard anecdotally from students about the impact of the

program on their career paths, including highlights such as being

selected as a college’s valedictorian, securing cooperative

education, receiving offers from Research Experience for

Undergraduate programs, deciding what to study in graduate

school, impressing job recruiters, improving public speaking skills,

leading and tutoring new student researchers, and networking and

meeting new collaborators.

In an optional survey, mentors reported putting in an average of

2–10 hours of mentoring per week per student.

4. DISCUSSION
The program has had essentially equal proportions of female

student applicants and female student participants, as well as

essentially equal proportions of underrepresented minority student

applicants and underrepresented minority student participants,

which suggests the selection process does not favor against female

or minority students. We would like to increase the proportions of

female and minority applicants and participants. We will change

the application form to use more standard and inclusive categories.

For example, we will update the optional “gender” prompt in our

account creation form to provide a “Non-binary” option as well as

a “Prefer to Self-describe” option. We will also use the race and

ethnicity categories from [6] as a starting point for updating our

form’s “ethnicity” prompt, as well as taking into account inclusivity

research about the categories. We would also like to do a more

thorough study of the impact of the program on student career paths

and do other analyses of our data. The EMPOWER program will

run for five more iterations through summer 2022.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 23

5. ACKNOWLEDGMENTS
This work used the Extreme Science and Engineering Discovery

Environment (XSEDE), which is supported by National Science

Foundation grant number ACI-1548562.

Robert M. Panoff set the vision of EMPOWER as executive

director of Shodor. Jennifer K. Houchins helped coordinate the

program in its first few iterations. The XSEDE Campus

Champions, External Relations, and Broadening Participation

teams have been immensely helpful in recruiting for the program

and reviewing applications. We are grateful to everyone who has

participated in the program as a mentor, student, or application

reviewer.

6. REFERENCES
[1] Linda Akli. 2018. XSEDE: Tackling Diversity and Inclusion

in Advanced Computing. Computing in Science &

Engineering 20, 3 (May–Jun. 2018), 71–72. DOI:

https://doi.org/10.1109/MCSE.2018.03202635.

[2] Brett Bode, Michelle Butler, Thom Dunning, Torsten Hoeer,

William Kramer, William Gropp, and Hwu Wen-Mei. 2013.

The Blue Waters Super-System for Super-Science.

Contemporary High Performance Computing: From

Petascale toward Exascale, 339–366. CRC Press.

[3] Marisa Brazil, Dana Brunson, Aaron Culich, Lizanne

DeStefano, Douglas M. Jennewein, Tiffany Jolley, Timothy

Middelkoop, Henry J. Neeman, Lorna I. Rivera, Jack A.

Smith, and Julie A. Wernert. 2019. Campus Champions:

Building and sustaining a thriving community of practice

around research computing and data. In PEARC ’19:

Proceedings of the Practice and Experience in Advanced

Research Computing on Rise of the Machines (Learning) 78

(July 2019), 1–7. DOI:

https://doi.org/10.1145/3332186.3332200

[4] Patricia Jacobs, Phillip List, Mobeen Ludin, Aaron Weeden,

and Robert M. Panoff. 2014. The Blue Waters Student

Internship Program: Promoting Competence and Confidence

for Next Generation Researchers in High-Performance

Computing. 2014 Workshop on Education for High

Performance Computing (Nov. 2014), 49–55. DOI:

https://doi.org/10.1109/EduHPC.2014.6

[5] Hady W. Lauw, Ee-Peng Lim, and Ke Wang. 2007.

Summarizing Review Scores of "Unequal" Reviewers. In

Proceedings of the 2007 SIAM International Conference on

Data Mining, April 26–28, 2007, Minneapolis, MN, 539–

544. DOI: https://doi.org/10.1137/1.9781611972771.58

[6] United States Office of Management and Budget (OMB).

1997. Revisions to the Standards for the Classification of

Federal Data on Race and Ethnicity. Notice 62 FR 58782. 9

pages. Document number 97-28653. Retrieved from

https://www.federalregister.gov/documents/1997/10/30/97-

28653/revisions-to-the-standards-for-the-classification-of-

federal-data-on-race-and-ethnicity/.

[7] Shodor. 2020. The National Computational Science Institute.

Retrieved from http://computationalscience.org/.

[8] Shodor. 2020. The Shodor Education Foundation, Inc.

Retrieved from http://www.shodor.org/.

[9] Shodor. 2020. XSEDE EMPOWER Program. Retrieved from

http://computationalscience.org/xsede-empower/.

[10] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster,

Kelly Gaither, Andrew Grimshaw, Victor Hazlewood, Scott

Lathrop, Dave Lifka, Gregory D. Peterson, Ralph Roskies, J.

Ray Scott, and Nancy Wilkins-Diehr. 2014. XSEDE:

Accelerating Scientific Discovery. Computing in Science &

Engineering 16, 5 (Sept.–Oct. 2014), 62–74. DOI:

https://doi.org/10.1109/MCSE.2014.80

[11] Aaron Weeden, Colleen Heinemann, Skylar Thompson,

Cameron Foss, Mobeen Ludin, and Jennifer K. Houchins.

2019. The Blue Waters Petascale Institute: Longitudinal

Impact and Assessment-Driven Development of an Intensive,

Hands-on Curriculum for Teaching Applications in HPC. In

PEARC ’19: Proceedings of the Practice and Experience in

Advanced Research Computing on Rise of the Machines

(Learning) 85 (July 2019), 1–8. DOI:

https://doi.org/10.1145/3332186.3337771

[12] XSEDE. 2020. Impact. Retrieved from

https://www.xsede.org/impact/.

Volume 12, Issue 2 Journal of Computational Science Education

24 ISSN 2153-4136 February 2021

Pawsey Training Goes Remote:
Experiences and Best Practices

Ann Backhaus1
ann.backhaus@pawsey.org.au

Maciej Cytowski1
maciej.cytowski@pawsey.org.au

Pascal Elahi1
pascal.elahi@pawsey.org.au

Sarah Beecroft1
sarah.beecroft@pawsey.org.au

Marco De La Pierre1
marco.delapierre@pawsey.org.au

Alexis Espinosa Gayosso1
alexis.espinosa@pawsey.org.au

Lachlan Campbell1
lachlan.campbell@pawsey.org.au

Luke Edwards1
luke.edwards@pawsey.org.au

Yathu Sivarajah1
yathunanthan.sivarajah@pawsey.org.au

ABSTRACT

The Pawsey Supercomputing Centre training has evolved over the

past decade, but never as rapidly as during the COVID-19

pandemic. The imperative to quickly move all training online — to

reach learners facing travel restrictions and physical distancing

requirements — has expedited our shift online. We had planned to

increase our online offerings, but not at this pace or to this extent.

In this paper, we discuss the challenges we faced in making this

transition, including how to creatively motivate and engage

learners, build our virtual training delivery skills, and build

communities across Australia. We share our experience in using

different learning methods, tools, and techniques to address specific

educational and training purposes. We share trials and successes we

have had along the way.

Our guiding premise is that there is no universal learning solution.

Instead, we purposefully select various solutions and platforms for

different groups of learners.

Keywords

Online training, Virtual training, Remote training, HPC training,

Engagement, Interactivity, Containers, Visualization, Australia

1. INTRODUCTION
Pawsey offers Australian researchers a diverse range of training.

We provide basic computer science concepts, through to

introductory and intermediate supercomputing, cloud and

visualization, to parallel programming courses, GPU hackathons,

and customized training for specific scientific domains and/or

groups. Basic UNIX/Linux skills were also taught to prepare

attendees for the hands-on training activities.

Pawsey has offered in-person training for over 12 years, at

universities and research institutions across Australia. We have

also offered virtual training ad-hoc as well as hybrid training (a

combination of face-to-face and virtual). While we have dabbled in

different delivery modalities, our go-to approach has been in-

person.

The advent of the COVID-19 pandemic dramatically changed

Pawsey training. In January and February 2020, before COVID-19

restrictions in Australia, we had a fully (over)booked schedule of

in-person user training, teacher professional development, student

hands-on activities and on-site events, Internship Program events,

and community outreach. However, in March and April 2020,

physical distancing and Australian border restrictions and closures

meant that all Pawsey in-person activities ceased. Pawsey staff

were asked to work remotely.

Working off-site increased the complexity of creating new, online

training, as we use a hands-on “whiteboarding” approach to

training design and development.

Pawsey faced two main challenges when moving training online:

• Re-purposing training content. The existing two-day

“roadshow,” which included hundreds of PowerPoint

slides and dozens of Carpentry-esque episodes, required

re-purposing.

• Re-focusing Pawsey’s trainers. In parallel with content

re-creation, Pawsey trainers needed to develop or refine

their virtual training skills, such as online engagement

and community building. This was a non-trivial task,

considering training is an add-on to the staff’s main role

of working with researchers on code optimization and

Pawsey resource uptake.

Pawsey set out on its training change journey.

2. RE-PURPOSING TRAINING
Pawsey staff saw the requirement to re-purpose training content

into a virtual format as an opportunity to improve the content,

ensuring alignment with learning objectives and learning outcomes,

and incorporating best practices in (virtual) learner interaction and

engagement. In this section, we briefly describe how this process

was implemented for an example “core” course, Introduction to

Nimbus, later renamed Using the Nimbus Research Cloud.

1 Pawsey Supercomputing Centre, Kensington WA, Australia

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/6

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 25

2.1 Introduction to Nimbus: In-Person
To start, we listed the episodes of the existing, in-person

Introduction to Nimbus training (Table 1) to assess the flow of

content at a high level. We also noted additional supporting

materials, such as online documentation.

Table 1. Introduction to Nimbus in-person training episodes.

Introduction to Nimbus training (3 hours)

Let’s talk about cloud computing

Nimbus: Cloud computing at Pawsey

How does Nimbus work for users?

First steps: making keypairs

Simplified security and networking

Launching an instance

Attaching volume storage

Maintaining your instance

Using snapshots to save time

Next, a new staff member attended the in-person training, reviewed

the open code resources, and scanned the documentation to see if

they could successfully launch an instance. They could not. They

noted confusion and contradiction about the overall flow (what to

do first, second, third), asked questions about security and jargon,

etc. This feedback aligned with another new team member’s

feedback, received informally, earlier.

2.2 Using the Nimbus Research Cloud:

Virtual
The reviewer’s input on the existing, in-person content opened

productive discussion and debate about what should and should not

be in an introductory Nimbus Cloud training.

After several iterations, the team arrived at a newly designed series

of high-level steps based on the flow of a new user’s tasks

(Apply > Set Up > Use > Manage > Develop > Optimize > Retire)

and accompanying, detailed flowcharts for each step. Figure 1

shows a working draft of the sample flowchart for the Set Up step.

From the flowcharts, the team outlined those topics that were core

versus those that were advanced or non-essential to getting an

instance up and running. Only the essential topics would be

included in the foundational training.

Table 2 shows the revised, online episodes for the new, two-part

Using the Nimbus Research Cloud training as well as the

modularized video recordings derived from the “live” virtual

conducts.

Table 2. Nimbus virtual training & modularized recordings.

Virtual conduct (3 hours) Short modularized recordings

Management
Introduction to Nimbus

What is a Nimbus instance?

Authentication

Log into the Nimbus dashboard

Review the Nimbus dashboard

Create keypairs to access the

Nimbus instance

Instance Creation Create a Nimbus instance

Instance Access Access your Nimbus instance

Storage Set up your instance storage

Data
Transfer data to/from your

instance

Software Manage instance software

Short, modularized (edited) recordings are available for viewing

after a virtual training conduct. The entirety of the workshop is

usually not viewable, as the large file size and lengthy duration

make them difficult to readily access and use by learners.

2.3 Design Considerations & Approach to

Moving Online
During the reconstruction, consideration was given to feedback

areas, including too few learner activities (beside hands-on coding),

too quickly progressing from basic to intermediate concepts, and

unexplained use of jargon. These latter comments are common

manifestations of “expert blind spots” or “expert awareness gaps”

[1]. Having forgotten what it is like to be a novice learner —

unfamiliar with the language or concepts of the topic — experts

may inadvertently overlook explanations and teach at what seems

to be “breakneck speed” to a new learner.

Figure 1. Early flowchart for the Set Up step for Pawsey’s Using the Nimbus Research Cloud training.

Volume 12, Issue 2 Journal of Computational Science Education

26 ISSN 2153-4136 February 2021

A brief, but important, mention must be made here about Learning

Outcomes (LOs) and backward design. LOs sit at the core of

Pawsey training. Everything — training activities, discussions,

coding, etc. — must contribute to and support the trainee in

reaching LOs.

When designing a training course, we start with LOs, then work

backwards to the activities, discussions, etc. In this way, we follow

the backward design approach: LOs are formulated first and then

course design follows, to determine how to assess (or validate /

confirm learning) and how to teach (activities to use, etc.) [2].

During reconstruction, we rewrote LOs for each episode. Anything

extraneous to those LOs were removed from content. New content

was added as needed, with significant consideration and thought

given to making the online content interactive and engaging [3], [4]

and [5].

3. SUPPORTING SELF-GUIDED

LEARNING
In July and August, Pawsey launched its suite of core online

training to replace its national roadshow. For 90 minutes, each

Monday morning, learners were offered free, significantly revised

trainings on basic concepts in supercomputing, data, cloud, and

visualization.

Pawsey offers these new virtual trainings in several ways: open

enrolment, institutional requests, and domain requests. After a

virtual conduct, we release videos of the events in short (5–15

minute), topical “chunks”. This modularization enables learners to

readily find a specific topic or watch an entire series of recordings

(See Table 2).

Learners can access all training content (PowerPoint slides, code

samples (GitHub), video recordings, etc.) from the Pawsey

Training Portal [6].

4. CREATING NEW INTERMEDIATE AND

ADVANCED CONTENT: CONTAINERS
With an online repository of core training accessible 24/7, Pawsey

staff can turn their attention to the creation of intermediate and

advanced training. Topics include such areas as effective use of

compute infrastructure (parallel and accelerated computing)

architecture, reproducible science (containers), and advanced

visualization. Focusing on intermediate and advanced training was

very difficult pre-COVID, when much of the trainers’ time was

spent traveling for in-person conducts of core trainings.

One advanced topic that Pawsey has focused on since moving

entirely online is Containers. The Using Containers in X is a multi-

day, webinar-workshop series focused on addressing specific needs

for the targeted scientific domain.

This series has provided staff with rich opportunities to partner with

domains, experiment with various online teaching techniques, and

trial different peer-to-peer and community building approaches. At

the time of writing, Pawsey has partnered with three domains to

create tailored Containers training: computational fluid dynamics,

bioinformatics, and radio astronomy. For each of these we offer

core (“generic”) webinars followed by domain-specific

(“bespoke”) workshops.

4.1 Creating a Baseline of Knowledge:

Generic Container Webinars
To ensure that all learners have the requisite baseline to participate

meaningfully in the hands-on workshops, we offer a three-part

webinar series. In these 90–120-minute sessions, Pawsey trainers

introduce concepts using illustration, discussion, and coding

demonstrations. Individuals can practice simultaneously or while

watching recordings or by using step-by-step instructions.

Table 3 shows the generic topics covered in the Using Containers

webinar series.

Table 3. Core topics for container training (webinars).

Using Containers (Generic Webinars)

Introduction, Running applications in containers

Building containers, Setting up graphical applications

High performance containers (MPI, GPUs, I/O intensive)

During core training, learners can ask questions using the

designated communications channel. We find that each domain has

a “standard” or usual means of communicating, which we leverage.

Through this reuse, we try to eliminate “noise” or learning

distraction. When the group is large, we may use multiple

communication channels, again to eliminate learner distraction. For

example, we may use Zoom for learner-instructor communication

and Slack for instructor-facilitator communication.

The webinar series is a prerequisite to the workshop series [7].

4.2 Building Expertise: Bespoke, Hands-on

Container Workshops
The multi-day workshop series that follows the webinars makes up

the tailored part of the training. In 2–3 three-hour sessions, learners

are guided along a path from learning demonstrations to guided

coding/application to extrapolated coding/application to mini-hack

or BYO (Bring Your Own) code or pipelines. A forum discussion

wraps up the series, providing an opportunity to summarize

learning outcomes and share reflections and feedback.

While the overall workshop program has similarities across

domains, in detail it is bespoke. The learners’ journey — its goals,

its starting and ending points, and its focus along the way — comes

out of a close collaboration between Pawsey trainers, domain

experts and facilitators, and learners themselves.

For example, in the Containers pre-workshop Expression of

Interest, we collected key inputs. Potential attendees specified their

profiles/roles/locations/institutions, levels of (self-reported)

expertise in Containers, frequency of Container use, and “hot

topics” of interest. They could enter “blue sky” topics; however, we

also guided topic selection through a list pre-vetted by domain

experts and facilitators. This latter approach ensured that we had

on-hand facilitators skilled in the topics being offered.

Table 4 shows the listing of topics that came out of the

Bioinformatics Expression of Interest.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 27

Table 4. Hot topics for container training (workshops).

Using Containers (Bespoke Workshops)

Containerizing a full workflow

Designing and building container images

Collaborative and reproducible research with containers and

workflow tools

Transitioning from Docker to Singularity

Using a virtual file system to encapsulate large numbers of I/O

files

Setting up and configuring your own Singularity installation

Simplifying your user experience by “hiding” container syntax

Using RStudio, JupyterHub or other web platforms via

containers

To construct an appropriate set of topics and groupings for the

workshop, we asked the 16 facilitators to self-assess their expertise

per hot topic. We then grouped attendees with the appropriate

facilitators.

Table 5 shows the complexity of the groupings per session. These

sessions reflect not only the matchings but also our training

partner’s goals for learning outcomes and community building.

Table 5. Virtual workshop details by grouping, focus, goals.

 Session 1 Session 2 Session 3

Grouping

content

Learners and

facilitators

by institution

(sub-

grouping of

skill level)

Learners by

topic of interest

mapped to

facilitators with

expertise
(sub-grouping

of skill level)

Learners by

hot topics;

facilitators

pick topic per

expertise and

bring case

study(s)

Focus

Detailed

scripts and

code /

samples

Training

content more

guided, less

prescriptive

Own

pipelines,

projects;

problem

solving

Goals

Significant

guidance and

scaffolding;

early “wins”

(for

confidence);

reinforce

local

community

Engage,

motivate;

community of

shared interest;

learners apply

previous

learning in a

guided setting

Facilitator

freedom to

choose

interaction;

expand

learner

knowledge;

wider

community

We expected our biggest challenge to this live virtual training

would be the complex, facilitator-attendee matching, but we were

wrong. Laptop setup posed the largest challenge. Preparing

attendees’ institutional laptops to enable access to our cloud or

super computing resources caused significant distraction at course

startup and in one instance became a barrier to participation. When

in-person, trainers can troubleshoot setup by quickly glancing at

attendee screens. Virtually, and especially when class sizes are 50

or more, troubleshooting becomes significantly more difficult and

time consuming. Our initial attempts at real-time problem solving

were chaotic. We trialed several techniques and decided on the use

of numerous operating system-specific breakout rooms, which we

opened 30 minutes before the training started.

Finally, we debated the value of recording the workshop sessions

for public viewing because of the individualized nature of hands-

on workshop experiences. We decided to make workshop

recordings available and let learners view if desired. The three-part,

full workshop recordings are available on the Australian

BioCommons YouTube channel [8]. Recorded, modularized

workshop topics are available on the Pawsey YouTube channel [9].

5. DELIVERING INTERACTIVE HANDS-

ON VISUALISATION TRAINING
Like other Pawsey training, visualization training presents

challenges when moving online because of the preference to use

hands-on exercises to best learn and practice new skills. The

Pawsey Visualization Team found that the key to delivery of

interactive, virtual hands-on Vis training was to redesign and re-

plan the training from scratch. The result? Web-based remote

visualization training.

By transforming the training to a web-based visualization focus,

technological challenges were lessened, and training prerequisites

minimized. The only requirement was for attendees to have a

laptop/desktop with a web browser installed to perform web-based

remote visualization.

We modularized the three-hour, in-person training into smaller

topics across three days (one 90-minute session per day). We

simplified the training slides with detailed screenshots explaining

each step. Also, we published the training slides online for the

students to access. This approach to slideware not only gave the

students a copy of the original slides with high resolution images,

but also enabled them to go through the hands-on parts at their own

pace.

During the interactive hands-on parts, students were divided into

smaller groups and moved to breakout rooms with facilitators. This

gave the opportunity to enable two-way communication when

needed, such as for questions and troubleshooting.

Planned breaks and scheduled large group Q&A sessions helped us

to keep on track — despite the full learning agenda — and finish

on time.

6. COMMUNICATING WITH AND

SUPPORTING TRAINERS AND TRAINEES
Clear communication and support are some of the most important

aspects of training and education activities for trainees and trainers.

In contrast to the non-verbal cues so readily available in face-to-

face training, communication and interaction in virtual training

must be explicit and purposeful.

Good communication between instructor and student is key.

Devoid of in-person cues (e.g., body language), trainers online rely

on videos, which many trainees turn off. For this reason, we include

frequent and varied checkpoints, such as virtual polls, voice Q&A,

and hands-on activities for large and small groups.

We also rigorously practice “talk out loud” training and thinking.

No on-screen activity, such as coding, is done without speaking

about it, even when — especially when — we have a coding

“glitch”. Glitches provide “learning moments” rich in impact; they

are opportunities for students to watch and listen as an expert

“unpacks” an issue. Such moments can build immediacy with the

instructor and engagement with the content.

Volume 12, Issue 2 Journal of Computational Science Education

28 ISSN 2153-4136 February 2021

Pawsey trainers rarely train alone. Co-training or including

facilitators, or helpers, allows the presenting instructor to focus on

delivery and engagement, not on the technology or the “chat.”

Facilitators also make breakout rooms possible. These small,

intimate working groups are key to foster attendee participation in

the conversation. Attendees are encouraged to ask questions. The

platform’s chat function is mostly used, but Slack and Google Docs

are also used. For example, in the Using Containers in

Bioinformatics training, trainees filled 18 pages of an online

document with robust discussion.

7. TALKING THE TALK, WALKING THE

WALK
Pawsey is not only developing a new suite of virtual training

targeted externally — at Australian teachers, students and Pawsey

users — but also sourcing and co-designing virtual training for

Pawsey staff.

The Pawsey Supercomputing Centre is in the process of refreshing

supercomputing, data, storage, and networking equipment. New

supercomputing systems bring new opportunities as well as

challenges for both users and Pawsey staff. To prepare staff for the

new infrastructure, Pawsey staff are working to a rigorous learning

schedule to address identified skill gaps and to build requisite skills

for the new systems.

As with the Pawsey user training, all internal staff training sessions

are being conducted virtually, and we are learning numerous

techniques and online learning practices, by being students

ourselves.

8. RESULTS: TRAINING DELIVERY AND

SCALABILITY
At time of publication, we have conducted one full round of our

virtual core trainings (plus one-off requests), and we are designing

new intermediate and advanced online trainings.

In Table 6 and 7, we compare attendance numbers (attendee reach)

for in-person and online training for two sets of conducts: a single

conduct of a two-day, in-person roadshow versus a single conduct

of the replacement suite of online training, and the reach, to date,

of the Container trainings.

Table 6. Sample single conduct attendance: in-person vs

virtual.

Single Conduct – 2 days

In-person roadshow

Single Conduct (10.5 hours)

New Virtual Training Suite*

Live Views Live Views

20 NA** 66 448

*Note that at the time of writing, Using Nimbus Research Cloud –

Part 2 was not published on the Pawsey YouTube.

**Not Applicable

Table 7. Consolidated conduct attendance: Sample virtual

training.

3 Conducts New Virtual Container Training

Live Views

473 1,890

Tables 6 and 7 present training reach only. They do not consider

associated costs, such as travel costs / lost “opportunity costs” /

trainer travel fatigue for in-person training or development costs for

virtual training.

The virtual numbers report a level of scalability unattainable

through in-person roadshows or through our previous method of in-

person advanced training.

Previously Pawsey had run an advanced webinar on GPU

programming. Attendance numbers were strong (85), when

compared to in-person attendance figures. However, when Pawsey

collaborates with one or more partners, we reach far wider and

deeper than a “solo” event.

That our numbers show an increase in attendee reach is not

revolutionary, when comparing in-person to online training.

However, our increased bandwidth to focus on scaling and

sustainability is new. We now have time to work with partners

similarly incented to upskill learners in essential and advanced

skills in super compute, cloud compute, data, and/or visualization,

and we can continue to move our training program forward because

we have “reserves,” that is, trainers are not experiencing travel-

induced trainer fatigue.

The “what’s next” conversations in the online training space — too

long postponed — are happening in earnest, and we are able to

design training programs with best practice online experiences in

mind — continually adding onto and refining our virtual toolset.

The opportunities being offered up through teaching and learning

online are enormous.

9. CONCLUSIONS
We found that moving online wholesale is both challenging and

rewarding. What it is not — is merely shifting materials to a new

medium. Going online requires from content developers and

trainers to employ a fresh perspective and a willingness to try

techniques — and try yet more techniques when the earlier ones do

not work as expected.

The positive outcomes to our move online are many — some

intended and others unintentional. Attendance is more inclusive.

Before, geographical barriers prevented individuals from attending

Pawsey’s two-day, in-person training, held only in capital cities

nationally. Now, location-specific barriers are removed.

Pawsey is reaching out more broadly and actively to find partners

with which to collaborate. Finding domain, institutional, and other

partners enables us to tailor our technical training to include

partner-relevant examples and to focus on “hot topics” of interest

to the group. These approaches increase the relevance and impact

of Pawsey training, and build cloud, super compute, data and

visualisation skills in our user base, and beyond.

We have found that there is no universal, one-size-fits-all learning

solution. Rather, there are various solutions and platforms that need

to be carefully selected for different groups of learners.

10. ACKNOWLEDGMENTS
We would like to acknowledge the Whadjuk people of

the Noongar nation as the traditional custodians of this country,

where the Pawsey Supercomputing Centre is located and where we

live and work. We pay our respects to Noongar elders past, present,

and emerging.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 29

We would like to acknowledge all past and present Pawsey

Supercomputing Centre staff who actively contributed to the

development and running of our training and outreach activities

over the years and to our new colleagues who are already actively

contributing to designing and delivering Pawsey virtual training.

We would also like to thank all collaborating institutions especially

Software Carpentry, Australian BioCommons, Pawsey Partner

institutions as well as all participants of Pawsey’s training and

education programs.

11. REFERENCES
[1] Koch, C. and Wilson, G. (Ed.). 2016. Expertise and

Instruction: Expert Awareness Gap. In Software Carpentry:

Instructor Training. Version 2016.06, May 2016.

https://carpentries.github.io/instructor-training/,

10.5281/zenodo.57571.

[2] Capps, M., Dunaway, S., et al. 2020. Backward Design: A

Handy Tool for Remote Teaching. In William & Mary Law

School’s Conference for Excellence in Online Teaching

Legal Research & Writing.18 June 2020.

https://scholarship.law.wm.edu/excellence_online_teaching/z

oomsessions/june18/1/

[3] Tobolowsky, B. F. (Ed.). 2014. Paths to learning: Teaching

for engagement in college. National Resource Center for The

First-Year Experience. University of South Carolina. 2014.

[4] Leslie, H.J. 2020. Facilitation fundamentals: redesigning an

online course using adult learning principles and trifecta of

student engagement framework. Journal of Research in

Innovative Teaching & Learning. 18 May 2020. Emerald

Publishing Limited. DOI=https://doi.org/10.1108/JRIT-09-

2019-0068

[5] Dixson, M.D. 2010. Creating effective student engagement

in online courses: What do students find engaging? Journal

of the Scholarship of Teaching and Learning. 10, 2 (June

2010), 1–13.

https://scholarworks.iu.edu/journals/index.php/josotl/issue/vi

ew/159

[6] Pawsey Supercomputing Centre. 2020. Training Portal.

https://pawseysc.github.io/training.html

[7] Pawsey Supercomputing Centre. 2020. Containers Training

Series. https://pawseysc.github.io/containers.html

[8] Australian BioCommons 2020 Training YouTube Channel.

Australian BioCommons YouTube channel

[9] Pawsey Supercomputing Centre. 2020. YouTube Channel.

https://www.youtube.com/c/PawseySupercomputingCentre/

Volume 12, Issue 2 Journal of Computational Science Education

30 ISSN 2153-4136 February 2021

High-Performance Computing Course Development for
Cultivating the Generalized System-level Comprehensive

Capability
Juan Chen

College of Computer
National University of Defense Technology

Changsha, Hunan Province, China
juanchen@nudt.edu.cn

ABSTRACT
Supercomputers are moving towards exascale computing [1], high-
performance computer systems are becoming larger and larger, and
the scale and complexity of high-performance computing (HPC) [2]
applications are also increasing rapidly, which puts forward high
requirements for cultivation of HPC majors and HPC course devel-
opment [3]. HPC majors are required to be able to solve practical
problems in a specific field of high-performance computing, which
may be a problem for system design or a problem for a specific HPC
application field. Regardless of the type of problem, the complexity
and difficulty of the problem are often very high because HPC is
interdisciplinary. The development of HPC courses to meet these
kinds of talent cultivation needs must emphasize the cultivation
of students’ Generalized System-level Comprehensive Capabilities,
so that students can master the key elements in the limited course
knowledge learning process.

System-level Comprehensive Capability refers to the ability to use
the knowledge and ability of the computer system to solve prac-
tical problems. The ACM/IEEE Joint Computer Science Curricula
2013 (CS2013) [4] also involves System-level Perspective. System-
level Comprehensive Capability is considered to be a crucial factor
to improve students’ system development ability and professional
ability. This is especially important for students majoring in high-
performance computing. Furthermore, due to the HPC field’s in-
terdisciplinary and high complexity characteristics, System-level
Comprehensive Capability is not enough for HPC majors, and stu-
dents need to have Generalized System-level Comprehensive Capabil-
ities. A knowledge system at the computer system level "vertically"
(from bottom to top: parallel computer architecture, operating sys-
tem/resource management system, compilation, library optimiza-
tion, etc.) is no longer enough; multiple high-performance comput-
ing application areas should also be "horizontally" involved. Gener-
alized System-level Comprehensive Capabilities vertically and hori-
zontally can meet the needs of different types of high-performance
computing talents.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/12/2/7

How to cultivate the Generalized System-level Comprehensive
Capabilities of HPC majors? National University of Defense Tech-
nology (NUDT) of China has faced some challenges [5] in building a
series of high-performance computing courses, adopted some mea-
sures, and gained some experience [5–7]. NUDT has developed the
Tianhe-2 supercomputer, which ranked No. 1 in the TOP500 list1
six times from June 2013 to November 2015. These achievements
are inseparable from the training of high-performance computing
talents and HPC curriculum development. NUDT has offered a
series of high-performance computing courses from freshman to
postgraduate for a long time. The courses cover a wide range, are
difficult and practical, and pay great attention to the cultivation
of students’ Generalized System-level Comprehensive Capabilities.
The following main means are adopted: i) Hierarchical capability
model construction is used to guide the establishment of curricu-
lum system and curriculum setting; ii) Real practice platforms and
real cases from frontier scientific challenges are used to construct
step-by-step practice cases; iii) A teaching mechanism that inte-
grates scientific research and teaching content is adopted. In the
curriculum setting, the emphasis is placed on basic mathematics,
general science courses, high-performance computing professional
courses, and basic courses for specific HPC application fields. Re-
garding the content of the curriculum, it is based on the principle of
breaking the boundaries of disciplines and specialties, establishing
the relevance of the knowledge system and frontier scientific issues,
and designing the whole process of teaching content with the direct
facing of basic scientific issues and frontier scientific research is-
sues. In terms of course implementation methods, there are various
forms, including small-class teaching, seminar-based teaching, case-
based teaching, and flipped classrooms, etc. In the past ten years,
the curriculum construction at NUDT has achieved remarkable
results. We have cultivated Generalized System-level Comprehensive
Capabilities of high-performance computing majors very well and
greatly helped the development of our high-performance comput-
ing research.

KEYWORDS
High-performance computing, High-performance computing cur-
ricula, Generalized system-level comprehensive capability

1www.top500.org.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 31

https://doi.org/10.22369/issn.2153-4136/12/2/7
www.top500.org

ACKNOWLEDGMENTS
This work is supported by the 2019 Hunan Province Higher Ed-
ucation Teaching Reform Research Foundation of China (titled
with "Teaching Practice of Training High-Performance Computing
Talents Relying on High-level Scientific Research"), and the 2019
Hunan Province Postgraduate Outstanding Professional Case Foun-
dation of China (titled with "High-Performance Computing Series
Case Library").

REFERENCES
[1] Daniel A Reed and Jack Dongarra. Exascale computing and big data. Communica-

tions of the ACM, 58(7):56–68, 2015.
[2] NetApp, Inc. What Is High-Performance Computing?, 2019. https://www.netapp.

com/us/info/what-is-high-performance-computing.aspx.
[3] Rajendra K. Raj, Carol J. Romanowski, John Impagliazzo, Sherif G. Aly, Brett A.

Becker, Juan Chen, Sheikh Ghafoor, Nasser Giacaman, Steven I. Gordon, Cruz

Izu, Shahram Rahimi, Michael P. Robson, and Neena Thota. High performance
computing education: Current challenges and future directions. In ITiCSE-WGR‘20:
Proceedings of theWorking Group Reports on Innovation and Technology in Computer
Science Education, pages 51–74, New York, NY, USA, 2020. ACM.

[4] Joint task force on computing curricula, association for computing machinery
(acm) and ieee computer society. computer science curricula 2013: Curriculum
guidelines for undergraduate degree programs in computer science. Technical
report, New York, NY, USA, 2013. 999133.

[5] Juan Chen, John Impagliazzo, and Li Shen. High-performance computing and
engineering educational development and practice. In Proceedings of the 50th
Frontiers in Education 2020 (FIE2020), pages 1–8, Uppsala, Sweden, 2020. IEEE.

[6] Juan Chen, Li Shen, Jianping Yin, and Chunyuan Zhang. Design of practical
experiences to improve student understanding of efficiency and scalability issues
in high performance computing (poster). In Proceedings of the 49th ACM Technical
Symposium on Computer Science Education (SIGCSE2018), pages 1090–1090, New
York, NY, USA, 2018. ACM.

[7] Juan Chen, Yingjun Cao, linlin Du, Youwen Ouyang, and Li Shen. Improve student
performance using moderated two-stage projects. In Proceedings of ACM Global
Computing Education Conference (CompEd2019), pages 201–207, New York, NY,
USA, 2019. ACM.

Volume 12, Issue 2 Journal of Computational Science Education

32 ISSN 2153-4136 February 2021

https://www.netapp.com/us/info/what-is-high-performance-computing.aspx
https://www.netapp.com/us/info/what-is-high-performance-computing.aspx

Employing Directed Internship and Apprenticeship for
Fostering HPC Training and Education

Elizabeth Bautista
NERSC

Lawrence Berkeley National Laboratory
Berkeley, CA

ejbautista@lbl.gov

Nitin Sukhija
Department of Computer Science

Slippery Rock University of Pennsylvania
Slippery Rock, PA

nitin.sukhija@sru.edu

ABSTRACT
Positions within High Performance Computing are difficult to fill,
especially that of Site Reliability Engineer within an operational
area. At the National Energy Research Scientific Computing Center
(NERSC) at Lawrence Berkeley National Laboratory (LBNL), the
Operations team manage the HPC computational facility with a
complex cooling ecosystem and also serve as the wide area network
operations center. Therefore, this position requires skill sets in
four specific areas: system administration, storage administration,
facility management, and wide area networking. These skills are not
taught in their entirety in any educational program; therefore, a new
graduate will require extensive training before they can become
proficient in all areas. The proximity to Silicon Valley adds another
challenge in finding qualified candidates. NERSC has implemented
a new approach patterned after the apprenticeship program in
the trades. This program requires an intern or apprentice to fulfill
milestones during their internship or apprenticeship timeframe,
with constant evaluation, feedback, mentorship, and hands-on work
that allow candidates to demonstrate their growing skill that will
eventually lead to winning a career position.

KEYWORDS
Site reliability engineer, HPC education, Training, Apprenticeship,
Internship

1 INTRODUCTION
According to a 2008 analysis from the Public Policy Institute of Cal-
ifornia, it is projected that by 2025, the number of college graduates
will not meet the projected demand of the workforce [2] [1]. The
analysis states that in recent decades the economic growth took
place in a time-frame where there was significant growth in the
number of workers with a college education. However, the anal-
ysis projects limitations due to a slower growth in the supply of
college-educated workers in coming decades [3].

As part of succession planning, the National Energy Research Sci-
entific Computing Center (NERSC) Operations team decided they
needed to find a different way of recruiting talent and implemented
a directed approach to both their internship and apprenticeship

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/12/2/8

programs [8]. Not only do these programs allow them to identify
and recruit more qualified and committed candidates, but they also
help in retaining them for a career position.

This paper documents the process of the directed internship
and apprenticeship programs in this format. Section 2 provides the
background of how unsuccessful recruiting and retention processes
lead to this decision. Section 3 explains the difference between the
internship and apprenticeship programs. Section 4 explains the
logistics such as how the program works, what are the essential
parts, andwhatmakes it work. Section 5 provides positive outcomes,
and Section 6 provides final thoughts.

2 BACKGROUND
When NERSC moved from Livermore to Berkeley in 1995, the 24x7
Operations Team was a group of 9 technicians who used written
manuals from the systems and storage groups. They followed a
specific set of directions then engaged the person on call, who
would eventually solve the problem. Because these positions had a
standard operations procedure (SOP), it was not difficult to recruit
for talent, as long as they can follow directions. The team were
onsite 24x7 across three eight-hour shifts. As technicians, they were
eligible for overtime. This was not a deterrent for recruiting and
retaining talent.

With an incoming new manager in 2011, the team decided they
wanted to grow professionally in order to have more control over
their area. Through professional development, the team’s classifi-
cation was changed to Site Reliability Engineer, and they became
salaried staff, much higher in range than the previous technician
classification. The team had upgraded their daily work such that
they were now managing systems, storage environments and the
wide area network.

With the impending move to a new and state-of-the-art building
in 2015, they were poised to manage not only a more sophisticated
water cooled system but also a building ecosystem that could sup-
port their path to exascale. Managing operations in this type of
environment requires staff whomust, in addition to system adminis-
tration, understand power, infrastructure and cooling requirements
demanded by the ecosystem. Such complexity and scale provide
unique challenges, including usage fluctuations and providing high
availability and high utilization for users who need to have their
jobs run in spite of failures or cooling requirements involving both
air and water. The additional skill set now also required knowl-
edge of mechanical and electrical engineering. Because of the new
classifications, the prior pipeline stopped providing qualified can-
didates. Rather, candidates who applied to the position would be
knowledgeable in one or two areas, and the team would need to

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 33

https://doi.org/10.22369/issn.2153-4136/12/2/8

train for the additional two areas. The current position now directly
competes with highly sought-after skillsets in Silicon Valley, which
makes it much more challenging to retain candidates. Within a
year or two, the new hire would eventually leave, noting that they
were unhappy with the off-shift and had found a position elsewhere
working a standard 9–5, Monday through Friday. Retention became
especially challenging during the holidays, where the staff contin-
ued to be onsite while all others have the paid time off. This short
retention required the team to constantly have to restart training a
new person, if they can recruit an adequate candidate.

According to the 2010’s high-tech employment report by the
Public Policy Institute of California, 12.6% of all employments in
the computer industry are with Silicon Valley companies, which
accounts for fifteen times the national average. Moreover, other
cities only employ 3% or less in the computer industry [5] [4] [6].

Realizing that the higher classification meant they were compet-
ing much more with Silicon Valley companies who tend to recruit
them out of NERSC, even if their training is not complete, the team
decided on a new approach; they would grow their workforce. In
this way, they could also determine the commitment of the individ-
ual as they were learning the skill [11].

3 DEFINITIONS
3.1 Directed Internship
An internship is the position of a student or trainee who works
in an organization, sometimes without pay, in order to gain work
experience or satisfy requirements for a qualification or to earn
credits.

In this case, interns are still in school and usually worked twenty
hours during the school term and full-time when they are out of
school, such as in between term breaks or the summer. They can
either be directly hired and paid, or if they are earning credits for
the internship, this is arranged through their school and NERSC’s
affiliate program.

Upon discussion with the intern, they are provided with a spe-
cific project to work on that allows them hands-on practice of a
skill that they already studied in school. The directed internship
provides them the opportunity to work on a real-world project that
is implemented at the workplace.

Interns can work for additional school terms and in the summer
to learn additional skills until, if they choose, they graduate. At
this point, they can be prepared to compete for a career position or
choose to enter the apprenticeship program [9] to finetune their
skill.

3.2 Directed Apprenticeship
An apprenticeship is an effective work-based learning strategy
that creates pathways to career advancement and higher wages
through hands-on experience. The program can provide access to
successful career on-ramps for targeted worker populations, such
as disadvantaged youth, veterans, and women in non-traditional
fields.

Apprentices are usually close to or at the end of their educational
program and are ready to commit to a full-time training program.
They are hired for a one-year paid term with the understanding
that they have milestones to fulfill. Successful completion of these

milestones gives them a very high degree of leverage in competing
for a career position in twelve months [7].

4 LOGISTICS
4.1 Assumptions of the Program Participants
The expectation of the intern or apprentice is that they are working
in a realm of adult education and preparation. They should be
capable adults who have the ability to express their needs, their
problems, and their interests, and they should be able to make the
type of decisions that adults normally make. They should have the
ability to choose, when appropriately informed, the situation or
environment for experiential learning. For example, an apprentice
is given a task to complete within a timeframe. After two weeks and
much research, they find that they need a book. They should be able
to make the decision to either purchase the book and ask if there is
a reimbursement process or ask their supervisor to purchase the
book for them. Further, if there is a class they need to take that is
a one-week seminar, they should also be able to ask this of their
supervisor.

Since we are in the business of educating adults, this includes
assumptions and attitude of trust. Interns and apprentices are capa-
ble of discerning effective and/or appropriate behavior in others,
especially when given the encouragement to reflect upon their
observations. For example, an intern should be able to tell their
supervisor that the person assigned to work with them on their
technical project does not explain things in a way they can under-
stand. They also need to trust the supervisor that they can come to
a mutually beneficial agreement or solution.

It has been our experience that participants who are more suc-
cessful in the program are those who are mature, sometimes second-
career individuals with more work experience, even if it is not in the
computer science field. They are more thoughtful, are serious about
their education and training, and have an idea of their career path.
The advantage of this program is that they are constantly being
mentored and managed to work with actual staff who perform the
job for which they will eventually compete, most of the time, in a
one-on-one approach.

4.2 The Directed Approach
The goal of the program is to successfully train and expose partici-
pants daily to the job toward which they will eventually compete.
As such, training is hands-on based on what they learned in school.
For example, if they took a class in Python, they will be assigned
to write a Python program. If they took a class in system adminis-
tration, they will assist in managing the HPC systems. They work
side-by-side with the individual, and this provides daily insight
into their working environment. After some training, the partic-
ipant will eventually, under direct supervision, perform the role
to diagnose and triage problems. Then they are debriefed on their
performance and provided feedback on constant improvement.

This type of learning promotes the participant’s sense of respon-
sibility and ownership toward the experience. As they strengthen
their skill, they continue to perform with less supervision on one
skill as they practice a new skill until they complete a milestone.
They continue to complete milestones until they are ready to com-
pete for a career position.

Volume 12, Issue 2 Journal of Computational Science Education

34 ISSN 2153-4136 February 2021

During this time, they perform the daily operational tasks to
manage a data center, they are given one to two projects that they
complete, and they are given a larger project that they must present
to the management before implementation. Each skill is tightly
practiced and developed, even the public speaking and presentation
techniques.

4.3 What Makes It Work?
Certain processes need to occur in order tomake this programwork.

4.3.1 Administrative
Work with Human Resources to create a position description for
both the apprentice and intern. The intern position should high-
light that the participant will learn a skill through working on and
completing the project.

The apprentice position should list required skills that will allow
the participant to practice what they learned in school. Further,
the position description should be the entry-level position for the
career they will compete for at the end of the program.

It should be the goal of the organization to minimize the idea that
apprentices and interns are free help, i.e. irrelevant. Do not provide
work that is easy with little training or supervision, repetitive work,
or work that the participant already knows how to perform. The
help they provide should be almost at the level of your current staff.

4.3.2 Mentors, Trainers and Attitudes
It is essential to identify staff who like to train and work with a
person one-on-one as part of their day. They should consistently
have a positive attitude toward the participants and their job.

The mentor or trainer should understand that participants will
solve problems any way they can, so encourage them to use their
strongest skills. Treat them like they are fresh eyes, and allow them
to provide you feedback of how to make a process more efficient.

"Everyone learns how to survive with minimal training, un-
less a teacher, "systems manager" can design a strategy for ensur-
ing that staff cope with their deficiencies as well as utilize their
strengths."[10].

It is also important to identify a supervisor who can technically
evaluate progress and set milestones, and they need to work closely
with the mentor or trainer. This person needs to have a clear un-
derstanding of the role of the trainer and the role of the participant.
They monitor progress and, if needed, troubleshoot an interaction
or a teaching issue and implement corrective actions. For exam-
ple, provide more challenging training if the participant seems to
learn quicker than usual. They need to be highly accessible to both
parties to be a soundboard, role play, provide advice on paths or
solutions, or even to assist in navigating a course of action. Finally,
this person can serve as a model for the aspiring professional.

Lastly, there needs to be an individual that understands the hiring
process of the organization. They can help the manager navigate
the hiring process, help evaluate readiness from a "paper" stand-
point. For example, they can assist in evaluating the participant’s
resume and determine if the candidate is ready, at least on paper.

4.3.3 Why does it work?
The participant gains a variety of experiences and sees what is
being done in the job they want to acquire.

Having different roles separated provides a higher quality of
supervision and exposes the participant to many more staff in the
organization.

The psychological benefits are numerous, including the follow-
ing:
• The idea that it is a workplace, not campus, and provides a
"real world" feel.
• Exposure to different roles, providing a feeling that they can
find a niche in the organization.
• Many more networking opportunities and role models.
• Coming from a school environment, it provides a clean slate,
especially for a second-career individual.
• They develop self-confidence and an improved self-image.
(You have no idea how many of my apprentices call them-
selves Site Reliability Engineers).
• They perform operational work that needs time manage-
ment and work management, and they find their place in
the overall workplace.

As part of recruitment, we need to explain an apprenticeship
or even a directed internship; therefore, we engage more with the
community and community schools. A participant who comes from
a particular community feels like they represent the community
and will continue the engagement when they are hired.

As an economic benefit to the organization, apprenticeships are
less expensive than directly hiring and not retaining, and because
we are engaging the community, there is potential for developing a
workforce pipeline.

5 POSITIVE OUTCOMES
Below are statistics of the directed apprenticeship program from
January 2015 through December 2019.
• NERSC Operations has had 25 apprentices.
• Of these, SIX have been fully retained in a career position.
• THREE have completed the program and accepted a position
elsewhere. This is considered a win.
• FOUR opted to continue toward a higher education, which
we also consider a win.
• THREE are currently in the program. (As of January 2021, 1
was hired, 2 went on to a graduate program.)
• NINE did not complete the program.

6 CONCLUSION AND FURTHERWORK
The positive outcomes of the program show that NERSCOperations
is able to recruit quality talent, retainmore individuals, or encourage
individuals to further their education. Even those who decided to
find a position elsewhere were able to find a job at a higher pay
level than they would have without the apprenticeship. Overall, it
has had a positive impact, not only for NERSC Operations, but also
for the individuals themselves.

In terms of fostering HPC education and training, the program
itself exposes participants to a subject rarely taught in school. The
more they work in this niche, the more they become familiar with
the "topics" they need to learn, practice, and eventually grow into.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 35

Participants take this knowledge and apply it once they become ca-
reer individuals and seek out education and training opportunities
toward their professional development accordingly. The program
works due to the constant evaluation to meet milestones.

Our assessment of success is determined by the retention of the
apprentice as a hired individual. Because of this program, NERSC
Operations is now fully staffed.

This program is generic enough that it can be used in any situa-
tion: for example, to diversify your workforce. The pandemic that
started in 2019 has provided us the challenge of staff not being able
to work side-by-side with their mentors. However, we leveraged
technology to be able to continue the program.

ACKNOWLEDGMENTS
This research used resources of the National Energy Research Sci-
entific Computing Center (NERSC), a U.S. Department of Energy Of-
fice of Science User Facility operated under Contract No. DEAC02-
05CH11231.

REFERENCES
[1] [n. d.]. California 2025: Taking on the Future. https://www.ppic.org/content/

pubs/report/R_605MB2R.pdf. Accessed: 2021-01-14.
[2] [n. d.]. California’s Need for Skilled Workers. https://www.ppic.org/publication/

californias-need-for-skilled-workers/. Accessed: 2021-01-14.
[3] [n. d.]. Can Apprenticeships Train the Workforce of the Fu-

ture? States Hope So. https://www.governing.com/topics/mgmt/
gov-work-study-student-debt-apprenticeships.html. Accessed: 2021-01-
14.

[4] [n. d.]. Can California Import Enough College Graduates to Meet Workforce
Needs? https://www.ppic.org/content/pubs/cacounts/CC_507HJCC.pdf. Ac-
cessed: 2021-01-14.

[5] [n. d.]. High-Tech Employment In California. https://www.ppic.org/content/
pubs/jtf/JTF_HighTechEmpJTF.pdf. Accessed: 2021-01-14.

[6] [n. d.]. High-Tech Employment in California. https://www.ppic.org/content/
pubs/jtf/JTF_HighTechEmpJTF.pdf. Accessed: 2021-01-14.

[7] [n. d.]. Why Apprenticeship Works. https://www.ajactraining.org/
why-apprenticeship-works/. Accessed: 2021-01-14.

[8] Liliane Bonnal, Sylvie Mendes, and Catherine Sofer. 2002. School-to-work transi-
tion: apprenticeship versus vocational school in France. International Journal of
Manpower (2002).

[9] Barbara LeGrand Brandt, James A Farmer Jr, and Annette Buckmaster. 1993.
Cognitive apprenticeship approach to helping adults learn. New directions for
adult and continuing education 1993, 59 (1993), 69–78.

[10] Edgar S Cahn. 1980. Clinical Legal Education from a Systems Perspective. Clev.
St. L. Rev. 29 (1980), 451.

[11] Lisa M Lynch. 2007. Training and the private sector: international comparisons.
University of Chicago Press.

Volume 12, Issue 2 Journal of Computational Science Education

36 ISSN 2153-4136 February 2021

https://www.ppic.org/content/pubs/report/R_605MB2R.pdf
https://www.ppic.org/content/pubs/report/R_605MB2R.pdf
https://www.ppic.org/publication/californias-need-for-skilled-workers/
https://www.ppic.org/publication/californias-need-for-skilled-workers/
https://www.governing.com/topics/mgmt/gov-work-study-student-debt-apprenticeships.html
https://www.governing.com/topics/mgmt/gov-work-study-student-debt-apprenticeships.html
https://www.ppic.org/content/pubs/cacounts/CC_507HJCC.pdf
https://www.ppic.org/content/pubs/jtf/JTF_HighTechEmpJTF.pdf
https://www.ppic.org/content/pubs/jtf/JTF_HighTechEmpJTF.pdf
https://www.ppic.org/content/pubs/jtf/JTF_HighTechEmpJTF.pdf
https://www.ppic.org/content/pubs/jtf/JTF_HighTechEmpJTF.pdf
https://www.ajactraining.org/why-apprenticeship-works/
https://www.ajactraining.org/why-apprenticeship-works/

Ask.Cyberinfrastructure.org: Creating a Platform for
Self-Service Learning and Collaboration in the Rapidly

Changing Environment of Research Computing
Julie Ma
MGHPCC

Holyoke, MA

jma@mghpcc.org

Aaron Culich
UC Berkeley
Berkeley, CA

aculich@berkeley.edu

Vanessa Sochat
Stanford University

Stanford, CA

vsochat@stanford.edu

Sia Najafi
Worcester Polytechnic Institute

Worcester, MA

snajafi@wpi.edu

Bruce Segee
University of Maine

Orono, ME

segee@umaine.edu

Zoe Braiterman
OWASP

New York, NY

Zoe.braiterman@owasp.org

Torey Battelle
Colorado School of Mines

Boulder, CO

battelle@mines.edu

John Goodhue
MGHPCC

Holyoke, MA

jtgoodhue@mghpcc.org

Dana Brunson
Internet2

Ann Arbor, MI

dbrunson@internet2.edu

Chris Hill
Massachusetts Institute of Technology

Cambridge, MA

cnh@mit.edu

Ralph Zottola
University of Alabama

Birmingham, AL

rzottola@uab.edu

Raminder Singh
Harvard University

Boston, MA

R_singh@g.harvard.edu

Katia Bulekova
Boston University

Boston, MA

ktrn@bu.edu

Jacob Pessin
Boston University

Boston, MA

jpessin@bu.edu

Tom Cheatham
University of Utah
Salt Lake City, UT

tec3@utah.edu

Adrian Del Maestro
University of Vermont

Burlington, VT

adrian.delmaestro@uvm.edu

Scott Valcourt
University of New Hampshire

Durham, NH

sav@cs.unh.edu

Robert Thoelen
Pratt & Whitney

Rthoelen@ieee.org

Jack Smith
West Virginia Research

Jack.smith@wvr.org

ABSTRACT
Ask.CI [3], the Q&A site for Research Computing, was launched

at PEARC18 with the goal of aggregating answers to a broad

spectrum of questions that are commonly asked by the research

computing community. As researchers, facilitators, staff, students,

and others ask and answer questions on Ask.CI, they create a

shared knowledge base for the larger community.

For smaller institutions, the knowledge base provided by Ask.CI

provides a wealth of knowledge that was previously not readily

available to scientists and educators in an easily searchable Q&A

format. For larger institutions, this self-service model frees up

time for facilitators and cyberinfrastructure engineers to focus on

more advanced subject matter. Recognizing that answers evolve

rapidly with new technology and discovery, Ask.CI has built in

voting mechanisms that utilize crowdsourcing to ensure that

information stays up to date.

Establishing a Q&A site of this nature requires some tenacity. In

partnership with the Campus Champions, Ask.CI has gained

traction and continues to engage the broader community to

establish the platform as a powerful tool for research computing.

Since launch, Ask.CI has attracted over 250,000 page views

(currently averaging nearly 5,000 per week), more than 400

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee. Copyright ©JOCSE, a supported

publication of the Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/9

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 37

contributors, hundreds of topics, and a broad audience that spans

the US and parts of Europe and Asia.

Ask.CI has shown steady growth in both contributions and

audience since it was launched in 2018 and is still evolving. In the

past year, we introduced Locales, which allow institutions to

create subcategories on Ask.CI where they can experiment with

posting institution-specific content and use of the site as a

component of their user support strategy.

CCS CONCEPTS
• General and reference → Document types → General literature •

Human-centered computing → Human computer interaction

(HCI) → Interaction paradigms → Web-based interaction

Keywords
Q&A, Research computing, Self-service learning

1. BACKGROUND
Ask.cyberinfrastructure.org is a collaborative, crowd-sourced

Q&A site specifically curated for the research computing

community. The project began in September 2017 with the vision

of constructing a resource that allows the research computing

community to more quickly find answers to commonly asked

questions by way of a shared, public knowledge base, resulting in

better/faster science results.

The goal of the project is to aggregate answers to a broad

spectrum of questions that are commonly asked by researchers

and educators as they utilize advanced computing and data

resources. The result is a self-service knowledge base for domain

researchers, facilitators, cyberinfrastructure (CI) engineers, and

others who comprise the research computing community. The

hope is that this site will become the go-to platform for sharing

frequently asked questions, comparing solutions, and building on

previous work pertaining to research computing. Making this

knowledge readily available in the public domain will free up time

for facilitators and CI engineers to focus on more advanced

subject matter, thereby elevating the research computing practice.

Simultaneously, the platform allows users to apply an andragogic

approach to explore the information on the site at their own pace.

As the project launched, it rapidly drew the enthusiastic support of

the XSEDE Campus Champions leadership team. We have

collaborated since December 2017 to build the site and launched it

together in July 2018 at PEARC18. A naming contest at the

conference yielded “ask.cyberinfrastructure.org”, which we then

nicknamed “Ask.CI” (available at https://ask.ci/). The site has

been well-received, with nearly 5,000 page views per week, over

400 registered contributors, and hundreds of topics.

Establishing a Q&A site of this nature requires some tenacity. We

have gained some traction and hope to continue to engage the

broader community to firmly establish this platform as a tool for

the global research computing community. Ask.CI has further

inspired thinking and awareness about the importance of the

subject matter. Throughout the development process, we have

been thinking frequently about what defines "research computing"

in relation to other computing disciplines. The hope is that not

only will Ask.CI become a great resource for the community, but

that it will also provide public testimony of the importance of

research computing and how it exists in relation to enterprise IT,

computer science, and domain research.

1.1 StackExchange and Discourse
As we investigated possible technologies upon which to build the

site, there was consensus about using a platform that supports a

voting mechanism that enables crowd-sourced monitoring and

pushes the best answers to the top, with moderation tools to

manage spam/trolling. This led us to StackExchange [2], the gold

standard for Q&A platforms. StackExchange is the platform

behind Stack Overflow and many other widely used Q&A sites.

While it is not easy to establish a StackExchange site, it offers

several advantages, including search engine visibility, built-in

backup and maintenance, security and resistance to spam and

trolling, voting, and a clear question-and-answer syntax that yields

definitive answers. Launching a StackExchange site involves a

rigorous, four-phase process, including a restart if any phase

exceeds a specified time limit. In our first iteration, which closed

in May of 2018, we reached the second phase and attracted a

working group of volunteers who developed questions and

answers to post on the site in preparation for when it became

functional. Since our StackExchange site was not yet functional,

we curated these on another platform called Discourse [1], an

open source Internet forum, and we developed a methodology for

culling nuggets of information from ad hoc user questions and

adapting them for use by a general audience. While Discourse is

not as ubiquitous as StackExchange, it is a very flexible platform

with a low startup threshold.

When our StackExchange effort was closed, we decided to

formalize the Discourse content, add a voting mechanism to

mimic Stack Exchange functionality, and launch our Q&A site on

the Discourse platform. Subsequently, we discovered several

benefits of using the Discourse platform over StackExchange.

These include: 1) having flexibility in the question format to

include discussion topics as well as Q&A and 2) having the ability

to set up categories, which we are using to create institution-

specific “locales,” described below.

1.2 Broadening Participation
The idea for Ask.CI originated with the NSF-sponsored Northeast

Cyberteam Program, which aims to make research computing

more accessible to small/medium sized institutions in northern

New England. Ask.CI became an integral part of the strategy. By

creating a shared, public knowledge base composed of content

which is often found behind the firewall at large institutions,

Ask.CI enables researchers at smaller institutions to become more

self-sufficient, reducing the need for Research Computing

Facilitation support.

2. Ask.CI 2020
Since launching at the 2018 Conference on the Practice &

Experience in Advanced Research Computing (PEARC18), we

have nurtured Ask.CI into an active, growing site managed by a

dedicated group of volunteer site moderators who meet weekly

via Zoom. The primary purpose of the meeting is to actively

curate the site and discuss outreach activities. Active curation

includes reviewing new posts, checking for unanswered topics,

considering new subject matter areas to cover, and planning

weekly marketing activity. While Ask.CI has shown steady

growth in both contributions and audience, finding methods to

continue to grow audience participation is an ongoing focus of our

attention, as the expert research computing knowledge that we

seek to gather is widely distributed among the community. We

have employed several methods to do this, described below.

Volume 12, Issue 2 Journal of Computational Science Education

38 ISSN 2153-4136 February 2021

2.1 Events, Meetings and Conference Calls
We actively seek opportunities to talk about Ask.CI with

audiences at venues where the research computing community has

congregated. Since launch at PEARC18, we have conducted Birds

of a Feather (BoF) sessions at all subsequent PEARC and Super

Computing (SC) conferences. We have also presented on the CI

Brown Bag, XSEDE Campus Champions, Campus Research

Computing Consortium (CaRCC), and EDUCAUSE Research

Computing (RCD) calls, and at regional gatherings whenever

possible.

2.2 Question of the Week
Each week at our site moderators’ Meeting, we review new

content that has been posted on the site and content that has not

been answered. If we find a topic that has been unanswered for

over a week, we will likely mark it a question of the week (QoW).

QoWs are emailed to the Campus Champions mailing list and

tweeted to the Ask.CI twitterverse. A goal for this year is to

expand the recipient list beyond the Campus Champions, to other

groups in the Research Computing ecosystem that might be able

to answer the questions.

2.3 Friday Factoid and Sunday Science
In addition to the QoW, we occasionally tweet Friday Factoids,

interesting tidbits of relevant material about the research

computing world, particularly if they are timely with calendar or

current events. We also post Sunday Science stories, which are

more domain-specific deeper dives. All three of these methods

function as reminders that attract the community back to the site,

in part to see if new topics have been posted, or simply as a

reminder that Ask.CI exists and that new content is always

welcome.

3. INFRASTRUCTURE

3.1 Q&A and Discussion Zone
One of the most stringent requirements of building a site using

StackExchange is that questions must be written in a manner that

there can be a well-defined, best answer. This is necessary so that

the voting mechanism, which is required to ensure that content

stays up to date, can work correctly.

In research computing, where work is frequently in unexplored

territory, sometimes it is not clear if there is a best answer, or how

this can be evaluated. Often, a dynamic and relevant discussion

among subject matter experts can help to formulate an answer or a

response to a particular situation. For this reason, we created the

Discussion Zone, where discourse in response to a question can

take place. We distinguish topics that go in the discussion zone

from those that have a clear-cut best answer, which are

categorized as Q&A. At present, for the most part, we have not

found a need to further categorize questions by subject matter or

domain, and in fact believe it to be useful to have topics on wide-

ranging subject matter in a single category, as this will encourage

cross-pollination of solutions among different domains.

3.2 Tags
To facilitate searching for answers that pertain to particular

subject matter on the site, questions are tagged with labels that

identify subject matter and other characteristics of the content.

Users can also search by tag to obtain a listing of all topics tagged

with this particular label. This mechanism is used both to

delineate content, and also to aggregate it when appropriate. There

are currently 216 active tags on the site, many of which are only

used a few times. There are also tags to indicate the audience for a

particular topic. Following the CaRCC model of audience

delineation, these are researcher, system, and data, representing

topics of interest to researcher-facing, systems-facing, and data-

facing facilitators.

3.3 Voting
Faced with ever-changing technology advances, one of the key

strategies for keeping content up to date on the site is a voting

mechanism modeled after the voting function on StackExchange

sites. Users can vote for the “best” answer to a given question, and

they can also vote on “best” questions. The software then re-

arranges topics so that topics and questions with the highest

number of votes appear first. Unlike the StackExchange model,

our system only allows “up” votes, which creates a more

convivial environment for participants. The intended result is that

over time when new content is posted on a topic that renders other

answers obsolete, voting will ensure that the most relevant answer

appears first.

4. EXPANSION VIA LOCALES
In spring 2019, one of the Ask.CI moderators observed that there

could be significant benefits to having institution-specific content

on the site. We introduced a program that allows institutions to

create subcategories on Ask.CI, dubbed "locales," where they can

experiment with posting institution-specific FAQs and using the

site as a component of their user support strategy. The intent is

that by sending users to Ask.CI via the institution-specific

sandbox, it will encourage them to start down a path of self-

service learning, simultaneously encouraging user-to-user

collaboration both within the institution’s own user community

and across the research computing community as a whole. One of

the key benefits of having this exploration occur under the

umbrella of Ask.CI is the simplicity of migrating content from the

main site to a locale and vice versa.

We piloted the locale concept from April to November 2019 with

six institutions and formally announced the Locales program at

SC19. As of April 2020, there are 13 locales in service: Brown

University, Colorado School of Mines, the Computing against

Covid-19 Project, Harvard University, MGHPCC, the Northeast

Cyberteam, Northeastern University, Ohio Supercomputer Center,

the ResearchSOC Cybersecurity community of practice, Stanford

University, Tufts University, University of Maine, and Yale

University. Other institutions are in the process of starting theirs

up: MIT, University of Alabama, University of Missouri,

University of New Hampshire, University of Vermont and several

other institutions. The CaRCC consortium and US-RSE have

expressed interest in building locales later in 2020. Locale

moderators join our Ask.CI site moderators' call once a month to

check in and exchange ideas. We are also developing a toolkit to

facilitate integration with existing support platforms (websites and

ticketing systems) that are often behind institutional firewalls.

5. EVALUATION AND METRICS
A standing item on the site moderators’ weekly meeting agenda is

to review certain statistics to monitor the health of the site,

including page views (daily, monthly, and aggregate), users, and

return visits. We also periodically count the number of unique

institutions represented, the topics by audience type (researcher-

facing, systems-facing, data-facing, end-user), and the total

number of locales.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 39

6. LESSONS LEARNED AND FUTURE

PLANS
Ask.CI is entering its third year of existence and is growing at a

steady rate. We have learned a great deal about the effort required

to establish and maintain a site of this nature. A few key

observations are noted below.

6.1 Creating a Workflow Shift Takes Time
The process of creating a public record of content that is typically

disclosed on a private mailing list or behind a firewall requires a

shift in mindset and habits. Although most people understand the

value of creating this knowledge base, it is an extra step, and not

all individuals with the knowledge are readily able to take the

time to post topics or answers on a regular basis. In the upcoming

year, we hope to introduce a program which creates incentives to

contribute, by recognizing the effort and the value of the

information already posted.

6.2 Discourse Flexibility Allows Creativity in

Outreach Not Possible with StackExchange
As described in Section 1, we began this effort thinking that we

would build this site on the StackExchange platform. While we

were initially disappointed that our first effort was terminated, we

have found the flexibility of being able to support a discussion

zone and locales has been a happy outcome of shifting to the

Discourse platform. This year, we hope to put mechanisms in

place to address one of the key benefits that StackExchange

platforms enjoy, which is the high Google ranking that they

inherit from StackExchange. The inherited ranking can put

content from other sites earlier in search results than Ask.CI

content, even if the Ask.CI content is more relevant to the topic

being searched.

The methods that we have in mind for this year would put Ask.CI

on a more equal footing with sites that currently have this

advantage.

6.3 Convivial Weekly Meetings Have Yielded a

Dedicated Group of Moderators and Allow for

Ebb and Flow of Individual Workloads
The weekly site moderators’ meetings comprise a group of seven

volunteers who have been the backbone of Ask.CI. The site would

not have matured to the level that it has reached without their

tireless efforts. In a given week, the number of people at the

meeting will vary, so it has been very beneficial to have a large

enough group to be able to make forward progress each week.

6.4 Outreach is Key
The Question of the Week, Friday Factoid, and Sunday Science

communications have had a noticeable impact on our page view

statistics each week. We hope to reach out to other communities

and mailing lists this year to expand our presence and welcome

any suggestions/recommendations from the community.

6.5 Cross-Posting to Specialized Communities

of Experts for Specific Topics
We have identified certain specialized boards, both in the

community and at vendors, that have been great sources of one-

off content when the need has arisen. Finding a systematic way to

keep those groups engaged with our site will have long term

positive results.

6.6 Locales Have Great Potential When

Institution/Community of Interest is Ready
Although we are in early stages with many of our locale partners,

we have had very promising initial results. We hope to capitalize

on this concept with further outreach to the community to find

other institutions that are ready to create a locale. In addition,

building the integration tools mentioned above will facilitate the

onboarding of other institutions and create a more seamless

experience for the end users.

6.7 Lessons Learned and Future Plans
We welcome and encourage feedback and participation on the

Ask.CI platform. Participation can take many forms, from simply

reading content on the site and posting a reply occasionally, to full

participation on the site through a locale.

7. ACKNOWLEDGEMENTS
This work has been partially supported by the National Science

Foundation under grant award ACI-1659377. The authors also

thank the many the Ask.CI site moderators and Locale moderators

and volunteers whose efforts to build and maintain the site are

beginning to yield significant results, and the hundreds of

contributors who have generously shared knowledge and

experience on Ask.CI.

8. REFERENCES
[1] "Discourse — Civilized Discussion." 2020. Discourse —

Civilized Discussion. Discourse. Accessed June 16, 2020.

https://www.discourse.org/.

[2] "Stack Exchange." 2020. Accessed June 16, 2020.

https://stackexchange.com/.

[3] "Ask.Cyberinfrastructure." 2020. Ask.Cyberinfrastructure.

Accessed June 16, 2020. https://ask.cyberinfrastructure.org/.

[4] Goodhue, J., Ma, J., Del Maestro, A., Najafi, S., Segee, B.,

Valcourt, S., Zottola, R. Northeast Cyberteam:Workforce

Development for Research Computing at Small and Mid-

sized Institutions. Proceedings of the Conference on Practice

and Experience in Advanced Research Computing

(PEARC20), Portland, OR, July 26–30, 2020,

doi:10.1145/3311790.3396662.

[5] Goodhue, John, et al. “Northeast Cyberteam Program – A

Workforce Development Strategy for Research Computing.”

The Journal of Computational Science Education, vol. 11,

no. 1, 2020, pp. 8–11., doi:10.22369/issn.2153-4136/11/1/2.

Volume 12, Issue 2 Journal of Computational Science Education

40 ISSN 2153-4136 February 2021

The Design of a Practical Flipped Classroom Model for
Teaching Parallel Programming to Undergraduates

Dirk Colbry
Michigan State University

East Lansing, MI

colbrydi@msu.edu

ABSTRACT
This paper presents a newly developed course for teaching parallel

programming to undergraduates. This course uses a flipped

classroom model and a “hands-on” approach to learning with

multiple real-world examples from a wide range of science and

engineering problems. The intention of this course is to prepare

students from a variety of STEM backgrounds to be able to take on

supportive roles in research labs while they are still undergraduates.

To this end, students are taught common programming paradigms

such as benchmarking, shared memory parallelization (OpenMP),

accelerators (CUDA), and shared network parallelization (MPI).

Students are also trained in practical skills including the Linux

command line, workflow/file management, installing software,

discovering and using shared module systems (LDMOD), and

effectively submitting and monitoring jobs using a scheduler

(SLURM).

Keywords

Computational science, Flipped classroom, Parallel programming.

1. INTRODUCTION
Established in 2015, the Department of Computational

Mathematics Science and Engineering (CMSE) at Michigan State

University (MSU) represents a new discipline at the intersection

between methods (math and computer science), domain

applications (science and engineering) and computation

(programming and large-scale computing). CMSE’s mission is to

advance the use of computational methods in all areas of scientific

research and engineering within the university [1]. This includes

the training of undergraduate and graduate students from a wide

variety of STEM (science, technology, engineering, math) and non-

STEM majors in how to best utilize computation as they become

experts in their own fields. Our first two introductory courses

(CMSE 201 and 202) teach students programming, computational

modeling techniques [2], and tools for computational modeling

(similar to and motivated by software carpentry [3]). Our latest

course, which is the focus of this paper, is “Methods in Parallel

Programming” (CMSE 401). This course is intended for advanced

students who would like to speed-up their research and utilize

advanced computational hardware.

By the end of CMSE 401, students will be able to:

• Give examples of major science and engineering domains that

use parallel programming and of the common types of

algorithms that need large scale computing (e.g. the seven

dwarfs of HPC).

• Demonstrate the ability to access, navigate, and use a variety of

advanced computing systems with remote Linux connections

(ssh, module systems, BASH, text editing, file systems,

software install and building, environment variables,

schedulers, etc.).

• Analyze software by conducting profile and benchmark studies

with different parameters and options. Explain the bottlenecks

and scaling of the code and present results to peers with

predictions of times and scaling.

• Summarize the fundamentals of parallel programming

concepts, including strong and weak scaling, Amdahl’s Law,

communication overhead, locks, and racing conditions.

• Explain differences between major parallel hardware and

software paradigms. Compare and contrast the different

approaches and be able to choose appropriate tools for a given

problem.

• Develop and evaluate parallel codes using a variety of

paradigms, including pleasantly parallel, shared memory

parallelization (e.g. OpenMP), accelerator (e.g. GPUs and

FPGAs), shared network parallelization (e.g. MPI, Hadoop, and

Charm++), and parallel libraries (e.g. cupy, numba, mkl, fftw

and blas).

The remainder of this paper discusses the major components of the

design of CMSE 401, gives selected examples, and provides some

limited analysis of the material though student feedback.

2. COURSE DESIGN
This course uses a “flipped classroom” model, where students

spend class time doing hands-on practice activities with instructors

and classmates, while traditional lectures are replaced with time

outside of class reading and watching videos. When done correctly,

this model of teaching is believed to provide a richer learning

environment for students [4].

2.1 Jupyter Notebooks
All of the course materials are provided to the students using a Git

repository and Jupyter notebooks [5]. The use of Jupyter notebooks

may be confusing, since Jupyter notebooks are traditionally linked

to Python, which is not a traditional language when considering

computational performance and parallelization. However, Jupyter

notebooks are rich and efficient communication tools that combine

the benefits of a multimedia webpage, LaTeX, and executable

example code. We develop Jupyter notebooks as a kind of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/10

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 41

interactive textbook that, when used properly, is an effective way

to organize course content and communicate with students.

Although we do spend some time doing Python examples (all the

students are familiar with Python from prerequisite courses), most

of CMSE 401 is taught using the C family of languages (C, C++,

and CUDA), which are also familiar to students from another C++

prerequisite.

One particularly useful Jupyter feature is the %%writeout

“magic” command that allows the contents of a Jupyter cell to be

written out to a file. This feature, in combination with the ability to

execute bash commands using the “!” prefix, allows a Jupyter

notebook to provide example code in any language, compile the

code and run it all from within the notebook. In this way, students

can have fully “literate” programming [6] with explanations right

next to example code.

2.2 Course Hardware Resources
Students in CMSE 401 have access to a Jupyterhub server [7], the

university’s High Performance Computing Center (HPCC) [8], and

multiple XSEDE resources though a teaching allocation [9]. This

variety of hardware was chosen to expose students to different

interfaces and help them generalize their understanding of

computing hardware, in the hopes that they will develop a strong

foundation of understanding and be able to figure out how to utilize

new resources as they are developed in the future.

In addition to traditional hardware, during the first two weeks of

the course, students were introduced to two different “portable''

clusters. The first was a 7-node Raspberry Pi-based system, based

on the Tiny Titan (https://tinytitan.github.io/), and the second was

six (6) MacBook Pros connected using a small, off-the-shelf

routing hub. Each of the laptops was installed with BCCD [10]

inside of a virtual desktop. Students explored both systems during

class as a hands-on learning activity focused on how to connect

computers in a commodity cluster format. After building this

commodity cluster in class and running examples, students also

toured the campus HPC facilities. These hands-on lessons and in-

person tours were motivating and helped students get excited about

the topics they would be studying in CMSE 401.

We also experimented with a Jupyterhub server equipped with

GPGPUs and CUDA support. Since CUDA would not work on

many of the students’ computers, this CUDA-enabled Jupyterhub

server turned out to be a useful asset when introducing students to

the language.

2.3 Assignments and Assessments
In the spring of 2019, CMSE 401 met three times a week for 70

minutes. Before each class, students completed a pre-class

assignment, consisting of reading, videos, and practice problems.

During class, the instructor reviewed questions that came up during

the pre-class activities, and then students worked individually, in

pairs, and in groups on example problems. Students also worked

individually on more open-ended and in-depth problems in the

form of homework assignments, which were due approximately

every two weeks. Three times during the semester, students were

given timed exams (two midterms and one final) to help assess their

learning. Finally, at the end of the semester, students presented

work on individual projects relating to topics taught in class. The

remainder of this section describes these activities and assignments

in more detail.

2.3.1 Pre-Class Assignments
These assignments are given to students in the week prior to class

and include reading, multiple short videos (5–15 minutes each),

example code, and practice questions. Students are expected to go

through the materials before class, so that they are ready to

participate in the in-class activities. These pre-class assignments

are not graded; instead, students fill out a survey at the end of each

pre-class assignment with questions similar to the following:

● Approximately how long (in minutes) did this assignment

take for you to complete?

● What questions do you have, if any, about any of the topics

discussed in this assignment after working through the

Jupyter notebook?

● Do you have any further questions or comments about this

material, or anything else that's going on in class?

● Based on what you’ve learned in the pre-class activities,

what are you hoping to learn more about in class?

These questions are designed to get an idea of where students are

struggling, so the instructor can address issues during class.

2.3.2 In-Class Assignments
Before class, instructors review all questions from the pre-class

assignment survey, group them by topic, and develop a mini-lecture

to help structure the class time most effectively. These mini-

lectures vary in length depending on the issues students highlighted

from the pre-class assignment. While the instructor has in-class

activities planned, it is more important to address student questions

and make sure they understand the pre-class assignments than to

“get through” the day’s materials.

After the mini-lecture, students work through the in-class

notebooks. Students are expected to help each other out and work

ahead on different questions if they get stuck on one particular

problem. The goal here is to train students so that they are able to

find solutions themselves, with instructors available to give

suggestions and encouragement in order to avoid frustration.

Instructors focus on helping students understand concepts and

jargon; instead of solving problems for the students, instructors

walk them through a variety of problem-solving techniques and

suggest terms and phrases that they could use to search for helpful

solutions on the Internet.

2.3.3 Homework Assignments
Homework assignments are designed to let students explore.

Although many of them start out very similarly to in-class

assignments, the idea for homework is to push students and get

them solving multiple problems end-to-end. Students need to figure

out how to download data, write code (including submission

scripts), submit jobs to schedulers, interpret results, and

visualize/share their results with their peers. A key component of

the CMSE 401 homework assignments is a “creative component”

that allows students to do something different and creative.

Examples include a contest to see who can get the fastest code,

trying out a new dataset, or exploring a software package. Again,

the learning goals focus on exploration and problem solving in the

context of large-scale computing in order to help students develop

both familiarity with specific tools and creative problem-solving

skills. We hope this approach also makes CMSE 401 more fun for

students.

Volume 12, Issue 2 Journal of Computational Science Education

42 ISSN 2153-4136 February 2021

2.3.4 Exams
There are two midterms and a final exam in this course. Given the

highly interactive and collaborative nature of the course, these

exams provide an opportunity to individually assess student

knowledge and skills. In all other assignments, students are

expected to work together and support each other’s learning, but

that approach can make it difficult for instructors to identify areas

where individual students are struggling. Timed exams, where

students work alone, provide an assessment of individual

knowledge and progress.

Of course, excellent students who have a deep understanding of the

material may not perform well on timed exams — just as some

students are excellent at taking tests but may not be able to perform

as well in less structured scenarios. Exams in CMSE 401 are

primarily seen as learning tools and try to reflect real-world

scenarios. Thus, all exams are open-network: no one programs in a

vacuum, and we are assessing students’ ability to find answers and

develop solutions using all of the resources that would be available

to them in a real-life setting. Exams include four (4) problems, each

with five (5) component questions. Although the questions relate to

each other, we try to write them in such a way that they can be

answered correctly even if previous answers are wrong. Students’

informal feedback suggests that the exams are famously

challenging — yet also rewarding. Even students struggling in the

course have proven able to demonstrate their knowledge through

these exams, and, although these exams are primarily used as a

summative assessment tool, instructors are able to formatively

assess progress and adjust course content and individual student

learning goals. The exam grades are just one factor in students’

overall learning, and thus are a relatively small percentage of

students’ final grades.

2.3.5 Student Projects
At the end of the semester, students present unique projects that

demonstrate some aspect of what they learned over the semester.

At a minimum, projects are expected to contain some sort of

benchmark timing comparison. However, instructors are very

flexible and encourage projects that relate directly to “real-world”

problems that students are encountering in their work or other

classes. For example, working with an existing faculty to

download, install, and run a code on the HPC is considered an

excellent project for CMSE 401. Another good project is to

download a parallel library or language, get it working on the HPC,

and do a benchmark comparison between some of its features (e.g.,

Tensorflow was quite popular). Students may not necessarily do

much parallel programming in their projects; instead, we focus on

the more common issue of workflow management and performance

measurements, as these are the tools that researchers need to utilize

advanced computing systems. Some example titles of student

projects include:

• Ising Model Optimization

• Numerical Relativity with Numba

• MPI Poission Equation with MPI4Py

• OSCAR (Operational Research in Scala)

• Utilizing TensorFlow for Machine Learning in

Biomedical Imaging

• Parallel Optimization of Sabermetric Quantifier

• Optimizing Garfield++ For Use in Simulating a Nuclear

Detector

• Parallel Optimization in FLASH

• A Charm++ Parallel Stock Market Simulator

• Breast MRI Classification using TensorFlow

• Classifying Dog and Cat Images Using TensorFlow

• Penalization of TDCI

Student projects have multiple milestones through the semester,

and students present progress to their peers. Although each student

works on their project individually, time is given both in-class and

out of class for students to share their work, and collaborative

feedback and peer review are highly encouraged.

3. COURSE SCHEDULE AND TOPICS

COVERED
The semester is divided into approximately 15 weeks, and the

overall course covers the following major topic areas:

Major Topic 1 — Benchmarking and compilers

Major Topic 2 — Tools of the trade (remote systems, software

installs and schedulers)

Major Topic 3 — Shared memory parallelization

Major Topic 4 — Accelerators

Major Topic 5 — Shared network parallelization

In practice, rather than being a linear progression of content, these

topics are woven together throughout the semester. For example, in

the first few weeks of class, students are exposed to a mini cluster

(Raspberry Pi and laptop BCCD cluster) and are running a variety

of parallel examples (shared memory, shared network, and GPUs).

When they see these topics again later in the semester, the previous

exposure has prepared them to jump in and program them on their

own. A more detailed list of individual modules follows:

1. How a cluster is born — basic introduction to clusters, big-

iron, little-iron and accelerators

2. Languages and Compilers — Benchmarking of both

interpreted (Python) and compiled languages (C/C++), code

optimization (compiler flags), introduce/review Big-O

notation, and practice benchmarking.

3. Command line scripting (BASH), and accessing remote

systems (SSH and SCP)

4. Schedulers — unique components of a shared system

(schedulers and module system) and writing single core and

pleasantly parallel examples to the scheduler (SLURM)

5. Shared Memory Parallelization — students are introduced

to shared memory parallelization (OpenMP) and

shown/encouraged to work on personal laptops

6. Shared Memory Parallelization — more about loops and

programming options; goal is to become familiar with the

variety of OpenMP capabilities and not necessarily become

masters

7. Accelerators — introduction to accelerator coding (CUDA)

and comparisons with shared memory programming,

submitting jobs to a scheduler

8. More Accelerators — learning the basics of CUDA and

writing their first program

9. More Accelerators — discuss the good and bad about

CUDA, understanding thread blocks and tiling — where

does it work and where does it fall apart?

10. Shared Network Parallelization — understanding network

throughput and latency, benchmarking MPI code on

different numbers of cores and nodes

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 43

11. Shared Network Parallelization — writing their first MPI

program, debugging MPI code and improving performance

12. Hybrid Systems

While this is a rough outline of the topics, plenty of room was

included in the 15-week schedule to allow instructors to adapt the

pacing for more or less difficult topics, respond to student feedback,

and give plenty of time for students to work on homework

assignments and projects.

4. EXAMPLE
Whenever possible, instructors try to ground classroom examples

using real-world scientific and engineering problems as motivation.

Throughout the semester, students are shown how what they are

doing connects directly to on-going research. This means we try to

avoid spending too much time on “toy” examples such as sorting,

calculating pi, or making games (although these examples can be

useful). For the interested reader, samples of classroom materials

have already been drafted and can be downloaded from the

following git repository:

https://github.com/colbrydi/CMSE401_Examples.git

These examples include Jupyter notebooks that contain the

following:

• A pre-class assignment that includes videos on using the

command line and ssh keys

• An in-class assignment on CUDA programming on a GPU

enabled node running Jupyter

• Shared Memory Parallelization example homework

• An example project template

• An example exam

These examples demonstrate the style and pedagogical approach of

CMSE 401. The course is being offered a second time during the

spring of 2021, and all of the course materials will be available as

an Open Education Resource (OER) by the summer of 2021 at the

course website (http://cmse.msu.edu/cmse401). Instructors

interested in the instructor materials are encouraged to reach out to

the author, as we are happy to provide additional instructor notes

and answers.

5. STUDENT FEEDBACK
Although no formal evaluation of the materials was conducted for

this paper, all university courses are evaluated using a 21-question

survey, which 12 of the students completed. The students are able

to choose a rating (from the following) for each question.

1 = (S) — Superior: exceptionally good

2 = (AA) — Above Average: better than the typical

3 = (AV) — Average: typical of courses or instructor

4 = (BA) — Below Average: not as good as the typical

5 = (I) — Inferior: exceptionally poor course or instructor

Please note that this course evaluation tool is known to be fairly

biased and is being reworked by the university. The author also

acknowledges that the results presented do not include a controlled

reference point. However, the data do provide some context. A

selected summary of the results can be reviewed in Error!

Reference source not found..

Table 1. Summary of student feedback grouped by type.

Composite Factors Mean Std

Instructor Involvement

(Questions 1–4) 1.10 0.23

Student Interest

(Questions 5–8) 1.73 0.38

Student-instructor Interaction

(Questions 9–12) 1.31 0.51

Course Demands

(Questions 13–16) 1.79 0.71

Course Organization

(Questions 17–20) 1.55 0.56

Table 2 shows a sample of feedback questions given to the students.

Based on this feedback and some informal polling, students

reported that the course was challenging which is reflected in their

end of semester survey evaluations. Specifically students found the

course to be highly enjoyable (Question 21) while also being

intellectually challenging (Question 6). Probably the biggest

informal complaint was the difficulty and length of the homework

(Question 14).

Table 2. Selected questions that reflect student feedback to the

content and format of the course.

Question Mean Std

3 The Instructor's concern with whether the

students learned the material

1.17 0.39

4 Your Interest in learning the course

material

1.17 0.39

5 Your general attentiveness in class 1.83 0.39

6 The course as an intellectual challenge 2.25 0.75

7 Improvements in your competence in this

area due to this course

1.42 0.67

10 The Student's Opportunity to ask questions 1.42 0.67

12 The appropriateness of the amount of

material the instructor attempted to cover

1.33 0.65

13 The appropriateness of the pace at which

the instructor attempted to cover the

material

1.75 0.97

14 The contribution of homework assignments

to your understanding of the course

material relative to the amount of time

required

2.08 1.00

15 The appropriateness of the difficulty of

assigned reading topics

1.67 0.78

17 The course Organization 1.42 0.67

20 The adequacy of the outlined direction of

the course

1.33 0.49

21 Your general enjoyment of the course 1.17 0.39

Overall, the instructors are also very satisfied with the course and

plan to make significant improvements when it is taught again in

the Spring of 2021.

Volume 12, Issue 2 Journal of Computational Science Education

44 ISSN 2153-4136 February 2021

http://cmse.msu.edu/cmse401

6. ACKNOWLEDGEMENTS
Many of the details for this course were conceived during Shodor’s

2018 Community Building for Parallel Computing Curriculum

Development workshop. Shodor has taken an amazing lead in

developing real world motivated examples in education

(http://www.shodor.org/). I also want to specifically thank David

Joiner for providing the example 1D wave equation code for the

first benchmarking homework; this was a great first project and

really helped start the discussion for compilers options and

vectorization.

7. REFERENCES
[1] D. Colbry, M. Murillo, A. Alessio, and A. Christlieb,

“Computational Mathematics, Science and Engineering

(CMSE): Establishing an Academic Department Dedicated to

Scientific Computation as a Discipline,” JOCSE, vol. 11, no.

1, pp. 68–72, Jan. 2020, doi: 10.22369/issn.2153-

4136/11/1/11.

[2] D. Silvia, B. O’Shea, and B. Danielak, “A Learner-Centered

Approach to Teaching Computational Modeling, Data

Analysis, and Programming,” in Computational Science –

ICCS 2019, Cham, 2019, pp. 374–388.

[3] G. Wilson, “Software carpentry: getting scientists to write

better code by making them more productive,” Computing in

Science & Engineering, vol. 8, no. 6, pp. 66–69, 2006.

[4] L. Abeysekera and P. Dawson, “Motivation and cognitive

load in the flipped classroom: definition, rationale and a call

for research,” Higher Education Research & Development,

vol. 34, no. 1, pp. 1–14, Jan. 2015, doi:

10.1080/07294360.2014.934336.

[5] T. Kluyver et al., “Jupyter Notebooks – a publishing format

for reproducible computational workflows,” in Positioning

and Power in Academic Publishing: Players, Agents and

Agendas, 2016, pp. 87–90.

[6] D. E. Knuth, “Literate Programming,” Comput J, vol. 27, no.

2, pp. 97–111, Jan. 1984, doi: 10.1093/comjnl/27.2.97.

[7] “JupyterHub,” GitHub. https://github.com/jupyterhub

(accessed Jun. 09, 2020).

[8] D. Colbry, W. Punch, and W. Bauer, “The Institute for

Cyber-Enabled Research: Regional Organization to Promote

Computation in Science,” San Diego, California, USA, Jul.

2013.

[9] J. Towns et al., “XSEDE: Accelerating Scientific

Discovery,” Computing in Science Engineering, vol. 16, no.

5, pp. 62–74, Sep. 2014, doi: 10.1109/MCSE.2014.80.

[10] B. Lu, “Use bootable Linux CD (BCCD) to teach cluster and

parallel computing concepts: conference workshop,” J.

Comput. Sci. Coll., vol. 24, no. 5, p. 142, May 2009.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 45

Creative Assessment Design on a Master of Science
Degree in Professional Software Development

Cathryn Peoples
Ulster University
United Kingdom

c.peoples@ulster.ac.uk

ABSTRACT

A Master of Science (MSc) conversion degree is one which retrains

students in a new subject area within a fast-tracked period of time.

This type of programme opens new opportunities to students

beyond those gained through their originally-chosen degree.

Students entering a conversion degree do so, in a number of cases,

to improve career options, which might mean moving from an

initially-chosen path to gain skills in a field that they now consider

to be more attractive. With a core goal of improving future

employability prospects, specific requirements are therefore placed

on the learning outcomes achieved from the course content and

delivery. In this paper, the learning outcomes are focused on the

transferable skills intended to be gained as a result of the

assessment design, disseminated to a cohort of students on a Master

of Science (MSc) degree in Professional Software Development at

Ulster University, United Kingdom. The coursework submissions

are explored to demonstrate how module learning has been applied,

in a creative way, to facilitate the assessment requirements.

Keywords

Conversion degree, Java, Master of Science (MSc).

1. INTRODUCTION
A Master of Science (MSc) conversion degree is one which retrains

students in a new subject area within a fast-tracked period of time.

A subject which would be taught within a three-year period in an

undergraduate degree is instead taught during one intensive year.

This type of programme opens new opportunities to students

beyond those gained through their originally chosen degree. For a

number, it is critical that what is learnt during the programme

improves their employability potential in a field which is new to

them. Students entering a conversion degree do so, in a number of

cases, to improve career options, which might mean moving from

an initially-chosen path to gain skills in a field that they now

consider to be more attractive. The conversion degree can help

them to gain the required knowledge and skillsets to do so.

With a core goal of improving future employability prospects,

specific requirements are therefore placed on the learning outcomes

achieved from the course content and delivery. In this paper, the

learning outcomes are focused on the transferable skills intended to

be gained as a result of the assessment design. Assessments

presented in this paper were disseminated to a cohort of students on

a Master of Science degree in Professional Software Development

at Ulster University, United Kingdom. This is a conversion degree

into Information Technology for students from non-IT

backgrounds.

To understand the specific reasons that students had become part of

the degree programme, and to avoid assuming that it was to

improve their employability options, a survey was disseminated at

the beginning of the academic year. This was done with the core

objective of tailoring the teaching approach to meet their needs.

When asked about their reasons for completing the degree, the

majority of responses were focused around the fact that students

were studying software development with the goal of employment

in this field (Table 1). Going deeper into the reasons that students

wanted to work in this field, they acknowledged it was due to their

passion for technology, and because they identified the IT industry

as one with a more certain chance of employment than others.

When designing the teaching approach, it was therefore considered

to be important to support students moving into this industry and to

improve their prospect of doing so.

Transferable skill development was encouraged through the design

of the module assessment, with students being assessed on their

ability to apply knowledge gained during the teaching period while

inherently developing transferable skills in doing so. To achieve

this, assessments were shaped around the state-of-the-art in

technology. The objective was to select news stories which are

reported internationally and which would hopefully appeal to

student interest, an approach in line with the belief that, “… the

concept of ‘student engagement’ is predicated on the belief that

learning improves when students are inquisitive, interested or

inspired, …” [1]. Furthermore, “When a topic connects to what

students like to do, engagement deepens as they willingly spend

time thinking” [2]. In line with the objective of inherently gaining

transferable skills, it was hoped that selecting popular news stories

would give students an opportunity to develop their ability to

discuss technical concepts comfortably, to become critical in the

selection and application of their knowledge to solve real-life

problems, and to appreciate the context of their learning in relation

to the wider field.

It is acknowledged in [4] that soft skills such as those described

above are particularly important, in recognition of the fact that, “In

an increasingly global, technological economy, they say, it isn’t

enough to be academically strong. Young people must also be able

to work comfortably with people from other cultures, solve

problems creatively, write and speak well, think in a

multidisciplinary way, and evaluate information critically” [4].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/11

Volume 12, Issue 2 Journal of Computational Science Education

46 ISSN 2153-4136 February 2021

Table 1. Student reasons for completing the degree.

Why are you studying for this degree?

 “Interested in computers, hope will lead to employment”

“Always wanted to learn coding, love technology, lack of

programming knowledge held me back”

“To get a job in software development”

“Want career as a programmer or developer, as software

development has good prospects and I enjoy logic and

following patterns”

“Interested in programming language, could use skills from

masters and linguistic knowledge to develop voice-

activated software”

“To broaden skills for strong professional career in future”

“Interested in computers, but did PE teaching, employment

limited”

It is therefore in an attempt to bridge the gap between gaining the

necessary knowledge and making the students employable that the

assessments presented in this paper have been designed. The

objective of this paper is to present a selection of the assessments

which were designed to support student employability after

completing the MSc conversion degree.

The remainder of this paper continues as follows. In Section 2, a

literature review is presented, which considers how assessments

can be designed to maximize student engagement with them, how

to apply creativity in assessment design, and how to mark creative

assessments consistently. This is followed in Section 3 with

presentation of the creative coursework specifications which are the

focus of this paper, together with a selection of the solutions in

Section 4 to demonstrate how students harnessed their

programming skills to fulfil the assessment requirements. Finally,

the paper concludes in Section 5.

2. LITERATURE REVIEW
The assessments which are presented in this paper are used to

examine a student’s grasp of the entire module content and to apply

their knowledge to a software development problem in a creative

way; they are therefore summative assessments. As defined by the

Council for the Curriculum, Examinations and Assessment [5]:

- “Summative assessment usually takes place after pupils have

completed units of work or modules at the end of each term and/or

year.

- The information it gives indicates progress and achievement

usually in grade-related or numerical terms.

- It’s the more formal summing-up of a pupil’s progress.

- The information can then be … used for certification as part of a

formal examination course.”

Summative assessment is important due to the role it plays in

determining a student’s understanding of the module content at the

end of the teaching period. It is therefore using this teaching

material that it can be determined if module learning objectives

have been achieved on a per student basis. There are high stakes

associated with summative assessments, as it is not possible to

revise submissions or receive feedback for improving future work,

as is the case with the alternative assessment type, formative. It is

therefore important that summative assessments are designed in a

way which will maximize the opportunity that students can perform

to the best of their ability.

King and English (2015) report that students respond most

effectively to assessments which use real world scenarios, with

problems contextualized in a way which students can understand

[7]. This concurs with an opinion of Kearney and Perkins (2014),

in that, real-world problems “better engage them in their

coursework and better prepare them for the world outside the

classroom” as opposed to “research projects that do not have

significance outside of the classroom” [26]. This, essentially,

describes the concept of authentic assessment. “Authentic

assessment is based on students’ abilities to perform meaningful

tasks they may have to do in the ‘real world.’ In other words, this

form of assessment determines students’ learning in a manner that

goes beyond multiple choice tests and quizzes” [27]. These findings

therefore validate the effectiveness of the design approach applied

to the assessments presented in this paper.

The conclusions reached by King and English (2015) are based on

a study for which students were “recruited” as Optical Engineers

and asked to build an optical instrument which could be used to spy

on people. They concluded from this study that the assessment was

appropriate for engineering students, given that it enabled ability to

structure the stages of design, construction, and redesign in the

development. This was in support of the fact that, “meaningful

STEM-integration is possible when students have the prior

knowledge to apply to a well-structured engineering design task”

[7]. It is agreed in this paper that problem-solving ability is more

likely when students are providing solutions to problems which

they can contextualize, through either viewing them and/or having

first-hand experience of the problems involved. It is with this

understanding that the assessments presented in this paper have

been designed. While it may be unlikely that students can have

first-hand experience of the assessment problems presented in this

paper, each domain in the assessment was chosen for the reason

that the software might be one which they use in their day-to-day

lives, e.g. Facebook, or because it is one highly likely to be of

interest to anyone involved in technology, e.g. the emotion engine,

Pepper the robot. Students were asked to use their technical

knowledge to create similar systems, a form of situated cognition

which helps them to recognize the placement of their abilities

within the wider field and to understand the ways in which popular

technologies are created in reality. This was done in recognition of,

“the need to draw explicit connections among topics for retention

of learning” [8]. Furthermore, for students who are new to the IT

field, given the requirement for entry onto the degree programme

that students have no prior IT education, it was hoped that using

state-of-the–art technologies would help them to, “keep pace with

the rapid change and recent development in this era of

globalization, …” [9].

The approach of selecting technologies which students use in their

day-to-day lives as the focus of each assessment was an action

taken to “facilitate creativity in which learners are motivated to

discover things by themselves” [9]. This was based on the fact that,

“Intrinsic motivators include fascination with the subject, a sense

of its relevance to life and the world, a sense of accomplishment in

mastering it, and a sense of calling to it” [24].

The assessment specifications were presented in detail, and there

was limited flexibility in what should be achieved. This is in spite

of the fact that, “There have been calls in the literature for changes

to assessment practices in higher education, to increase flexibility

and give learners more control over the assessment process” [10].

Students were not restricted, however, in how they could achieve

it, with marks awarded for the creative ways in which their

technical knowledge was harnessed. As, “Research has shown that

creativity leads to intellectual development and brain growth, when

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 47

creativity is nurtured …” [9], it was an objective to ensure that

students focused their research efforts on how they achieved the

solution, as opposed to what they were providing a solution to.

“Creativity is the application of knowledge and skills in new ways

to achieve a goal” [11]. In having a creatively-designed

assessment, it was hoped that this would encourage innovation in

the solution presented by the student. This is in line with Kampylis

and Berki (2014), who state that, “Creative thinking is defined as

the thinking that enables students to apply their imagination to

generating ideas, questions and hypotheses, experimenting with

alternatives …” [12]. Asking students to build a replica system of

one they are familiar with using programming techniques gained

during the module teaching is one way to allow their creativity to

be demonstrated. It is recognized, however, that, “certain

approaches to education may possibly foster greater creativity than

others” [11]. This statement is made specifically in relation to

children of school age, with Montessori education using self-

directed creativity and collaborative play [14], and Reggio Emilia

education focusing on collaboration between children learning

from their environment [15]. It is believed that the assessment

presented in this paper has similarities to the Reggio Emilia

approach, given that the assessment is based on a technology from

the wider environment in which students operate. Furthermore, two

of the principles of Montessori are to understand the systems of

which the world exists and to support the imagination. Again, by

basing the developments on software systems which are available

from the wider environment, and by asking students to apply their

knowledge from the modules which they have been taught, it is

believed that both principles are met, helping to verify the

suitability of the assessment design.

However, “There is a lot of risk aversion in relation to assessment

design. Staff fear being too creative in case their assessment is too

challenging …” [13]. Furthermore, it is recognized that marking

creative work is challenging, given the desire to mark it quickly and

the need to mark it consistently. Jackson (2005) of the Higher

Education Academy notes that, “Of all the aspects of creativity the

one that poses the greatest challenge to teachers is how to

assess/evaluate it,” identifying that some teachers just do not know

how to assess such work [16]. This is significant, with the author

going on to explain that, “evaluation is critical to the very idea of

creativity” [16].

“Students as well as academic staff … often ask the question as to

how one marks creative writing. Indeed, they often wonder if it is

even possible? Surely, they say, this is a subjective response, a

matter of taste?” [17]. Brookhart (2013), however, proclaims that,

“We can assess creativity …”, and demonstrates how with a

“Rubric for Creativity” [18]. This is essentially based on evaluating

work according to 1) how the ideas are combined together, with the

highest levels of creativity being demonstrated when the, “Ideas

are combined in original and surprising ways …”, and 2) what is

communicated, with creativity indicated with “an original

contribution that includes identifying a previously unknown

problem, issue, or purpose” [18]. Undoubtedly, there will likely

always be some element of subjectivity when assessing creative

work; however, a rubric provides the basis for a standardized

approach to achieving this.

Computer software is one approach to assessment which can be

electronically and automatically marked [19]. Automated marking

of software programmes, however, is at odds with the concept of a

creativity focus presented in this paper: Acknowledged by

Brookhart, “… with a broad concept as creativity, there’s no single

formula that will always work” [18]. While Hill and Turner (2014)

write about “Code Originality” [19], this is concerned about

similarity between student work as opposed to an original design

through its creativity. In [20], an automated system is proposed to

assess software programs. This essentially tests its ability to

compile, given the entry of input values chosen by the instructor.

Therefore, to assess the creativity of a software program, it is

unlikely to be possible to exploit automated marking, where, using

Brookhart’s rubric [18], the creativity is assessed based on the way

in which the knowledge is put together.

It is believed that the assessments presented in this paper follow a

transformative approach to learning. According to [21],

transformative learning is described as occurring in situations

where, “… opportunities [are created] for critical thinking through

providing content that introduces new ideas.” It was the objective

that this opportunity was presented to students using state-of-the-

art technologies which students were required to mimic in their

software solutions. “Transformation then happens in a community

as students bounce ideas off one another” [21]. It was the intention

that this would be possible given that all students were set the same

task. As part of transformative learning, it is also necessary for the

instructor to, “provide the opportunity for students to act on their

new found beliefs” [21]; it was hoped that this would be achieved

through the overall assessment selection.

Practical programming solutions, such as the output required for

the assessments presented in this paper, need to be designed in such

a way that the software meets a specific target and achieves a

certain goal. In addition to this practical level of functionality,

submissions are also assessed according to how the module

knowledge has been used. This can be contrasted with a research-

based task, on the other hand, for which there can be an open and

variable outcome, the case for which simply needs to be argued.

Problem solving skills help students to work out how to reach the

end goal, with critical thinking helping them to select the relevant

elements from their learning and creative ability to apply them in a

meaningful way. These are important qualities in support of

employability: “Merely having knowledge or information is not

enough. To be effective in the workplace …, students must be able

to solve problems to make effective decisions; they must be able to

think critically” [25].

The assessments which are presented in this paper have been

designed in a manner which would support the International

Baccalaureate (IB) Learner profile [6]. IB education is an

international education programme delivered to students in school

who are aged between three and nineteen years old, which is

considered by some to be, “very well-respected by universities”

[23]. One objective of the IB programme is to develop student

skillsets such that they are internationally minded. It was hoped that

this would be achieved in these assessments through the focus on

international news stories in the field of technology, with

recognition that technical capabilities vary widely across the world.

Another IB programme objective is to develop thinkers, able to

make decisions in relation to complex problems. It was hoped that

this would be achieved in these assessments through empowering

students with the necessary knowledge to solve a problem and

giving them an interesting domain in which to apply them.

3. CREATIVE SOFTWARE

ENGINEERING ASSESSMENT

SPECIFICATIONS
At the beginning of the MSc degree programme, students are

initially exposed to two six-week modules running one after the

other on general Java software development skills, alongside firstly

Volume 12, Issue 2 Journal of Computational Science Education

48 ISSN 2153-4136 February 2021

a six-week module on Computer Hardware and then a six-week

module on Operating Systems. In Semester 2, students progress to

six-week modules on Data Structures and Databases run in parallel

with one another, followed by two six-week modules also run in

parallel on Concurrent Systems and Mobile Devices and

Applications. The assessment specifications for Data Structures

and Concurrent Systems are presented in the remainder of this

section.

3.1 Concurrent Systems
Objectives of a module on Concurrent Systems include identifying

the need for concurrent systems, providing an understanding of the

issues and requirements to be addressed when designing and

developing such systems, and providing opportunities to develop

practical systems illustrating aspects of concurrent systems.

Two assignments for the Concurrent Systems module were based

on Pepper, a humanoid robot [3]. Pepper is an emotion engine

designed to make people happy. He does this through delivering

jokes based on the emotions sensed from humans. Another

assignment on Concurrent Systems was based on the creation of a

system using Java to represent operation of the Android operating

system. Both assignments were based around the development of

systems where concurrent operation is ultimately the focus.

3.1.1 Concurrent Systems: Simulate Pepper

Operation
The first assignment was to implement a program using Java that

would simulate operation of Pepper. It was required to be a multi-

threaded solution, with each thread representing sensed data being

fed into the operating system for processing from Pepper’s ears,

eyes, and hands.

More specific system requirements were also defined in the

specification in relation to each thread: Threads should be created

to represent sensed data from Pepper’s ears, each of which requires

20 bytes of RAM per second. Similarly, Pepper’s eyes require 30

bytes of RAM per second, and Pepper’s hands require 40 bytes of

RAM per second. The total system capacity is 1,000 bytes of RAM.

The OS needs 300 bytes of RAM to run, and the supporting

activities, including drivers, required by the operating system take

up 200 bytes of RAM. After loading the OS so that it is ready to

accept workload, there are subsequently 500 bytes remaining for

application and other system activity. The CPU processes workload

at a rate of 200 bytes per second.

This scenario is essentially the Producer-Consumer problem, with

a requirement for multi-process synchronization. The queue into

which sensed data arrives is a fixed-size buffer, with a restricted

amount of space to support application and system workload. The

producers generate the sensed data, passing it to the ports into the

operating system via the buffer, which is shared with a consumer.

At the same time that the producer is producing workload, the

consumer is consuming the data, removing it from the buffer one

piece at a time. The robot’s engines can be considered to be the

consumer, processing jobs and enforcing decisions from the

system. The challenge is to ensure that the producer will not try to

add data into the buffer if it’s full, and that the consumer will not

try to remove data from an empty buffer. To avoid these

occurrences, the producer either goes to sleep or discards data if the

buffer is full. The next time the consumer removes an item from the

buffer, it notifies the producer, who starts to fill the buffer again. In

the same way, the consumer can go to sleep if it finds the buffer to

be empty. The next time the producer puts data into the buffer, it

wakes the sleeping consumer.

Each thread runs for a period of time dependent on the sensed

motion duration, or the number of bits being stored to disk and the

CPU’s processing capability. RAM availability influences the

operating system’s ability to support threads simultaneously.

Marks were awarded in this assessment for achievement of the

required functionality (35%), technical quality of the program code

(35%), dealing correctly with multiple threads (10%), adherence to

good programming practices (10%), and clarity of the instruction

sheet/booklet (10%).

3.1.2 Concurrent Systems: Pepper as a Client-server

System
For the second Pepper-based assignment, students were organized

into pairs and were required to implement a program using Java to

simulate a connection between Pepper as the client and a remote

database as the server. A server was required to hold tailored

responses to be delivered by Pepper based on the “sensed”

emotions of humans interacting with the robot. One student in the

pair was required to be responsible for the client program and one

student for the server program. As Pepper is an emotion engine, the

database was required to return jokes to a user when a sad emotion

is sensed. As a restriction, a joke was allowed to be returned once

only within a session. The user should also have the capability to

select a genre of a joke. The “database” on the server side of the

system could be held within arrays. The system was required to use

TCP sockets at the client and server sides of the network to support

communication.

Marks were awarded for achievement of the required functionality

(35%), technical quality of code (35%), dealing correctly with TCP

socket programming (15%), communication issues (robustness of

software, error handling) (5%), and adherence to good

programming practices (5%).

3.1.3 Concurrent Systems: Android OS
In another Concurrent Systems assignment, students were required

to implement a program using Java to simulate a multi-threaded

Android operating system. The system was required to support

simultaneous application threads, including a thread to start a

BubbleWitch2 session lasting 10 seconds and requiring 100 bytes

of RAM per second, and a thread to start a 20-second Spotify

stream requiring 250 bytes of RAM per second. A system and

management thread was also incorporated, requiring 50 bytes of

RAM per second and to execute for a random duration of time once

invoked. Controlling execution of the system for the purpose of

demonstrating its operation, students were required to implement a

thread to install a new security update of 2KB, which requires 150

bytes of RAM per second while installing. Overall capacity within

the system is 1,000 bytes of RAM; the OS needs 300 bytes of RAM

to run, and the drivers consume 200 bytes of RAM. After loading

the OS so that it is ready to accept workload, there are 500 bytes

remaining for application and other system activity. The CPU

processes workload at a rate of 200 bytes per second.

Marks were awarded for technical quality of the implementation

(35%), achievement of the functional requirements (35%), dealing

correctly with multiple threads and robustness of the software

(10%), and structure and presentation of the program (20%).

3.2 Data Structures
An objective of a module on Data Structures includes to provide

students with skills in using and implementing abstract data types.

The development of a social networking website, similar to

Facebook, was a coursework assignment which lent itself easily to

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 49

a module on Data Structures. Students were asked to develop a

social networking website using as many different data structures

as possible. These would typically be used to retain data associated

with each user account. Students were also asked to implement

algorithms at the back-end of the system to search this stored data,

so, for example, identifying people who might be their friends, or

providing a reminder of a friend’s upcoming birthday. Their design

would be assessed in terms of the efficiency of the operation of the

site, a feature which would be influenced by the most efficient data

structures, sorting and searching techniques taught during the

module. Certain data structures are more appropriate for certain

types of information than for others, and it was the student’s

responsibility to select the most appropriate structure and to justify

their choices.

It was therefore an assumption of the system implementation that a

repository of information would be retained to support

demonstration of the full system functionality, including options on

pages which a user may “like” and a number of users who hold

accounts with the system which a user may add as a friend.

Appropriate structure selection was important in relation to the

efficiency and reliability of its operation, where efficiency is

measured by the latency to execute a request and volume of

memory processed when executing an operation, and reliability is

measured in terms of the effectiveness of recommendations made

by the system for individual users.

Conditions were also required to be applied in the scenarios

implemented, such as, for example, the requirement that adding a

new account would require checking that the user does not already

have an account in the system — this would make demands on a

searching technique implemented — or that deleting a user account

would require deleting the user as a friend of other system users —

a feature also requiring efficient searching techniques.

Marks were awarded for achievement of the functional aspects

(30%), technical quality of the implementation (40%),

effectiveness of the design choices (15%), and originality of the

design (15%).

4. SOFTWARE ENGINEERED

SOLUTIONS
In Section 4, a selection of the programme code solutions are

presented. These are used to demonstrate the ways in which

students harnessed the technical concepts learnt during each

modules’ teaching to create the software solution. The solutions

presented are specific to one specific student for each module.

4.1 Concurrent Systems: Pepper Operation

Simulation
In a software solution for the first Concurrent System assignment,

a student created a Producer and Consumer class, which would

communicate with each other via a shared buffer to achieve

simultaneous movement of Pepper’s limbs.

4.1.1 Initializing the Pepper Programme
To begin program execution, a buffer is initialized with 500 bytes

of capacity (queue) (which fulfils the requirement set out in the

assessment specification that the original 1,000 bytes available is

also consumed by the operating system and the drivers which it

needs). A random period of time (length) defines the length of time

which the program should execute; a requirement of the

coursework is that the program runs through all operations to

demonstrate concurrent execution of the robot, and not to require

external input to trigger events. After the processor and system and

management threads are started, the moveable elements of the robot

are invoked, including Pepper’s eyes, ears, and hands.

public class Pepper {
 public static void main(String[] args) {
 PepperBuffer queue = new PepperBuffer (500);
 Random length = new Random();
 new PepperCPU(queue).start();
 new PepperSenses(“System & Management”, 50,
 queue, length.nextInt(20), 10).start();
 new PepperSenses(“eye 1”, 20, queue,
 length.nextInt(20), 10).start();
 new PepperSenses(“eye 2”, 20, queue,
 length.nextInt(20), 10).start();
 new PepperSenses(“ear 1”, 30, queue,
 length.nextInt(20), 10).start();
 new PepperSenses(“ear 2”, 30, queue,
 length.nextInt(20), 10).start();
 new PepperSenses(“hand 1”, 40, queue,
 length.nextInt(20), 10).start();
 new PepperSenses(“hand 2”, 40, queue,
 length.nextInt(20), 10).start();
 }// main
}//class

At this stage, the system producer and consumer classes are

required to both push and pull workload to and from the shared

buffer.

4.1.2 Pepper Producer Class
The Pepper Producer class achieves the functionality of generating

workload, in the sense of movements from each of Pepper’s ‘body’

parts. These are added into the shared buffer for the processing. In

a live Pepper deployment, each sense consumed from the shared

queue would result in an aspect of Pepper moving.

The concurrent threads of Pepper’s system are represented in this

solution using the PepperSenses class.

public class PepperSenses extends Thread {
 private int amountOfRam, lengthOfTime;
 private PepperBuffer queue;
 public PepperSenses(String sense,
 int amountOfRam, PepperBuffer queue,
 int lengthOfTime, int Priority) {
 this.setName(sense);
 this.amountOfRAM = amountOfRAM;
 this.queue = queue;
 this.lengthOfTime = lengthOfTime;
 this.setPriority(priority);
 }
 public void run() {
 for (int seconds = lengthOfTime; seconds >
 0; seconds--) {
 if (((int) (Math.random() * 2) +1) == 1) {
 this.pause();
 }
 else {
 this.actionOccurred();
 }
 try {
 sleep(1000);
 } catch (InterruptedException e) {}
 }
 }
}

Volume 12, Issue 2 Journal of Computational Science Education

50 ISSN 2153-4136 February 2021

Once the program is initiated (using run()), a pause() is invoked at

random to force the program to wait for a period of time to simulate

delay between activity associated with each of Pepper’s senses.

actionOccurred() is invoked during intervals outside the pause

periods, which forces workload to be added into the shared buffer

queue:

public void actionOccurred() {
 queue.put(this);
}

This workload is queued for the CPU, as the consumer, to extract

and process. This is possible due to creation of the PepperBuffer

object within PepperSenses, and initialization of the availableRAM

value:

public PepperBuffer(int totalRAM) {
 if (totalRAM <= 0)
 throw new IlegalArgumentException(“Size
 is illegal”);
 this.totalRAM = totalRAM;
 this.availableRAM = totalRAM;
}

The put() method within PepperSenses simulates producer

functionality. The wait() method is invoked until there is space in

the buffer to allow the job to be placed there; notifyAll() is then

invoked to communicate to the consumer that there is workload

available to be consumed:

public synchronized void put(PepperSenses sense) {
 int ram = sense.getAmountOfRAM();
 while(noSpace(ram)) {
 try {
 wait();
 } catch(InterruptedException ex) {
 }
 }
 buffer.add(sense);
 availableRAM -= ram;
 notifyAll();
}

The noSpace() method checks if the buffer is full, preventing new

jobs from being added, in which case the producer will wait:

public synchronized Boolean noSpace(int ram) {
 return (availableRAM < ram);
}

4.1.3 Pepper Consumer Class
The consumer removes workload from the buffer as each sensed

event becomes available and the consumer is notified of its arrival.

public class PepperCPU extends Thread {
 public void run() {
 while(true) {
 while(cpuAvailable >= 0) {
 PepperSense sense = queue.get();
 setCpuAvailableRemove(sense.getAmountOfRAM());
 sense.sleep();
 }
 try {
 this.sleep(1000);
 }catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 setCpuAvailable();
 }
}

The consumer first checks if the buffer is empty, which will be the

case when there are no jobs to remove. In this event, the consumer

will wait until workload has been added to the queue. When

workload is present in the queue, on the other hand, jobs are

removed by invoking the get() method:

public synchronized PepperSenses get() {
 PepperSenses sense;
 while(isEmpty()) {
 try {
 wait();
 } catch(InterruptedException ex) {
 }
 }
 sense = buffer.remove(0);
 availableRAM += sense.getAmountOfRAM();
 notifyAll();
 return sense;
}

The consumer then removes the workload and invokes notifyAll()

to inform the producer that there is increased space in the buffer to

accept new workload. The availableRAM value is also updated to

reflect the amount of RAM now available in the queue in response

to the robot movement having been dequeued.

The concept of Pepper provided a suitable context to support the

development of a concurrent system, fulfilling two of the module

objectives to “identify the need for concurrent systems” and to

“provide opportunities to develop simple practical systems

illustrating specific aspects of concurrent systems.” Furthermore,

creation of the solution required that students had an appreciation

of the main components of a concurrent system, such as the need to

have a shared buffer, and one producer and one consumer to use it.

This helped to fulfil the learning objective of the module, to

“provide an understanding of the issues and requirements to be

addressed when designing and developing such systems.”

Additionally, having this awareness required that the fourth

learning objective had been fulfilled to “introduce the underlying

principles of concurrent systems.” Organizing the development

around the concept of Pepper helped students to appreciate the

wider context within which their learning exists.

4.2 Concurrent Systems: Pepper as a Client-

Server System
In the solution, the client and server were required to connect to the

same port in order to communicate, continuously listening on the

same socket for communications between each other.

In the solution presented, the client is created and initialized using

the PepperClient class:

public class PepperClient {
 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 String serverName = “193.61.167.145”,
 username=””, response;
 Socket serverSocket;
 int serverPort = 3829;
 InputStream isFromServer;
 OutputStream osToServer;
 DataInputStream disFromServer;
 DataOutputStream dosToServer;
 try {
 serverSocket = new Socket(serverName,
 serverPort);
 isFromServer =
 serverSocket.getInputStream();
 osToServer = serverSocket.getOutputStream();

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 51

 disFromServer = new
 DataOutputStream(osToServer);
 } catch(Exception e) {}
 }
}

PepperClient is associated with port 3829. Data streams are

established to facilitate the communications, in directions both to

the server (OutputSteam osToServer) and from the server

(DataInputStream disFromServer). Sockets are additionally created

to support each data stream.

Data streams and sockets are also established on the server side in

parallel:

public class PepperServer {
 public static void main(String[] args) throws
 IOException {
 InputStream is;
 OutputStream os;
 DataInputStream disFromClient;
 DataOutputStream dosToClient;
 Socket clientSocket;
 ServerSocket listenSocket;
 int clientInt;
 int serverPort = 3829;
 listenSocket = new ServerSocket(serverPort);
 clientSocket = listenSocket.accept();
 is = clientSocket.getInputStream();
 os = clientSocket.getOutputStream();
 disFromClient = new DataInputStream(is);
 dosToClient = new DataOutputStream(os);
 boolean live = true;
 }
}

To facilitate the end-to-end communication, the server also listens

on port 3829. After the definition of these classes, the client and the

server are in a position to interact with one another. This requires

capability to communicate the mood of the user who is interacting

with Pepper. It also requires that the database of jokes is created for

return to the user in the event that their mood is one of sadness.

Due to the fact that this system is a simulation of a robot, it was

necessary to explicitly articulate the simulated user’s mood. In a

live system, this information might be autonomously collected

using the sensors for Pepper’s eyes to identify their facial

characteristics, or Pepper’s ear sensors to detect what the user is

saying. In the simulated system, this functionality is achieved by

the user entering their emotion using a keyboard, in response to a

prompt delivered by PepperClient:

public static int askForEmotion(String name) {
 Scanner keyboard = new Scanner(System.in);
 String feeling;
 System.out.print(“Tell me “ + name + “ do you feel
 sad (Y/N: “);
 feeling = keyboard.nextLine();
 if (feeling.equalsIgnoreCase(“N”)) {
 System.out.println(“\nHow do you feel “ + name
 + “?” +
 “\n1. Happy” +
 “\n2. Angry” +
 “\n3. Hungry” +
 “\n4. Scared” +
 “\n5. I want you to leave me alone”);
 return (keyboard.nextLine().charAt(0)-48);
 }
 else {
 return 6;
 }
}

PepperClient asks the user to enter an integer which indicates their

mood, in the instance that they are not feeling sad. In the instance

that the user reports that, in fact, they are feeling sad, this will be

communicated to PepperServer. Jokes are then returned to the user

from PepperServer.

while(live) {
 emotion = askForEmotion(userName);
 switch(emotion) {
 …
 case 6:
 jokeCategory = jokeGenre(username);
 String reply;
 int noOfReplys;
 dosToServer.writeInt(jokeCategory);
 noOfReplys = disFromServer.readInt();
 for(int index=0; index < noOfReplys;
 index++) {
 reply = disFromServer.readUTF();
 System.out.println(reply);
 }
 break;
 default:
 System.out.println(“I didn’t understand”);
 }
 }
}

In the case of selections 1, 2, 3, 4, or 5, Pepper will take the action

of exiting the user from the session by closing the socket, or will

return a statement to the user depending on them being happy or

hungry, essentially any case where they are not sad. In the case that

the user is sad, Pepper will return a joke to the user from the joke

database. Pepper attempts to return a joke which is personalized for

the user, by considering their preferred genre of joke. The user

therefore has a choice of selecting a knock-knock joke, a one-liner

joke, a chicken-crossing-the-road joke, a computer joke, or a pun.

Pepper similarly provided an appropriate opportunity for students

to exploit their learning of Java socket programming in a remote

client-server setup. This provided an opportunity for students to

demonstrate their “understanding of the issues and requirements to

be addressed when designing and developing such systems,” by

appreciating how a robot in fact interacts with a remote server when

responses are selected for return. Again, the “need for the

concurrent system” is highlighted in this situation, where it is

essential that interactions are delivered in the correct order in the

support of a meaningful “conversation.”

4.3 Concurrent Systems: Android OS
An OperatingSystem class is created in one implementation, which

creates and initializes the shared buffer that retains workload added

by the producer and removed by the consumer.

class OperatingSystem {
 private int contents;
 private int buffer = 1000, driver = 200,
 operSRun = 300, consumptionRate = 200,
 workload = buffer- (driver+operSRun);
 private long startTime;
 private long endTime, waitTime;
 private int waitCount = 1;

 public synchronized int get() {
 while(workload <= (driver + operSRun)) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }

Volume 12, Issue 2 Journal of Computational Science Education

52 ISSN 2153-4136 February 2021

 workload = workload – consumptionRate;
 notifyAll();
 return consumptionRate;
 }
 public synchronized void put (int amount) {
 while (workload >= buffer) {
 startTime = System.currentTimeMillis();
 try {
 wait();
 } catch (InterruptedException e) {}
 endTime = System.currentTimeMillis();
 waitTime = (endTime – startTime);
 averageRequestTime(waitCount, waitTime);
 }
 contents = amount;
 workload = workload + amount;
 notifyAll();
 }
}

The OperatingSystem class initializes attributes used to support the

scenario, including the buffer size. It also contains the necessary

put() and get() methods, which are responsible for allowing

workload to be added and removed to and from the queue. When

workload is inserted into the queue (put(int amount)), the system

first checks that the size of the queue, if the workload were to be

added, does not exceed the maximum possible size. In the case that

the action would result in a queue of unfeasible size, the wait()

method is invoked, meaning that the thread will wait until it has

been notified that workload has been removed and that there is now

space in the queue. Once the workload can be added, the queue size

will be updated, and the consumer thread will be notified that there

is workload available for processing, using notifyAll(). The newly

added workload will be removed.

Application classes are also defined to support execution of system

threads. These threads are responsible for adding workload to the

shared queue. As one example, a class Spotify simulates activity

for 20 seconds and requires 250 bytes of RAM per second:

private class Spotify extends Thread {
 private OperatingSystem operatingSystem;
 private int number, loops;
 private int long startTime;
 private long endTime;

 public Spotify(OperatingSystem os, int number,
 int duration) {
 operatingSystem = os;
 this.number = number;
 this.loops = duration;
 }
 public void run() {
 startTime = System.currentTimeMillis();
 for (int i = 0; i < loops; i++) {
 operatingSystem.put(250);
 try {
 sleep(1000);
 } catch (InterruptedException e) {}
 }
 endTime = System.currentTimeMillis();
 }
}

Each application thread extends the Java Thread class. The

constructor for the thread sets up the number of the thread and the

duration of the thread; the duration is used to ensure that the thread

executes for the necessary interval of time. Enforcing that the

thread executes sleep(1000) results in a one second delay between

operatingSystem.put(250) being invoked with each loop iteration,

therefore helping to simulate the thread running for a period of

time.

The invocation of each application thread simultaneously is

controlled using the System class.

public class System {
 private static int count;
 private static long time = 0;
 private static long average;

 public static void main(String[] args) throws
 InterruptedException {
 long startTime;
 long endTime;

 OperatingSystem os = new OperatingSystem();
 BubbleWitch2 bWitch2 = new BubbleWitch2(os, 1,
 10);
 Spotify Spotify = new Spotify(os, 2, 20);
 SystemAndManagement sysAndManagement = new
 SystemAndManagement(os, 3);
 CPU processor = new CPU(os, 1);
 SecurityUpdate securityUpdate = new
 SecurityUpdate(os, 4, bWitch2, Spotify,
 sysAndManagement, processor, 15, 2000);
 startTime = System.currentTimeMillis();

 bWitch2.start();
 Spotify.start();
 sysAndManagement().start();
 securityUpdate.start();
 processor.start();
 securityUpdate.setPriority(1);
 securityUpdate.join();
 processor.stopRunning();
 average = time / count;

 endTime = System.currentTimeMillis();
 }
 public static void averageRequestTime(int
 waitCount, long waitTime) {
 count += waitCount;
 time += waitTime;
 }
}

The BubbleWitch2 and Spotify threads are initialized using their

constructors, with information which includes the

OperatingSystem with which they are associated, the thread

number, and the duration of time which they are required to run.

The systemAndManagement thread does not indicate a duration, as

it is required to execute throughout the lifetime of the application.

Similarly, the processor thread will also be available continuously.

When the SecurityUpdate thread is created, the other application

threads are passed through the constructor so they can be joined

with SecurityUpdate. Java’s .join() method supports one thread

waiting while other threads complete execution. Invocation of

securityUpdate.join() will result in the securityUpdate thread being

paused when another thread with a higher priority is in an

executable state. The securityUpdate thread is given a priority of 1.

This is the lowest priority which may be assigned to a thread, and

enforces that this thread is executed with minimum priority.

public class SecurityUpdate extends Thread {
 private OperatingSystem operatingSystem;

 public SecurityUpdate(OperatingSystem os, int
 number, BubbleWitch2 bWitch2,

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 53

 Spotify Spotify,
 SystemAndManagemetn systemAndManagement, CPU
 processor, int desired, int max) throws
 InterruptedException {
 operatingSystem = os;
 this.number = number;
 this.loops = desired;
 this.max = max;

 bWitch2.setPriority(10);
 Spotify.setPriority(10);
 systemAndManagement.setPriority(10);
 processor.setPriority(10);

 bWitch2.join();
 spotify.join();
 systemAndManagement.join();
 processor.join();
 }

 public void run() {
 …
 }
}

The priorities assigned to application threads enable processor

capacity to be assigned to each application as it becomes available,

depending on the duration of the thread. Invocation of the .join()

method in association with each application thread enforces that the

securityUpdate thread will be the last to execute.

Use of the Android operating system allowed students to appreciate

the role which concurrent systems play in their day-to-day lives.

The module learning objective to “provide an understanding of the

issues and requirements to be addressed when designing and

developing such systems” was highlighted in this assignment, with

the need to consume residual memory to support an operating

system and additional drivers and then support the application

threads simultaneously around that.

4.4 Data Structures
There were two primary aspects of the Data Structures assessment,

firstly in terms of the structures used to hold data, and secondly in

terms of the algorithms used to organize and search the data

structures. Assessments for this module are therefore considered

from these perspectives in the following sections.

4.4.1 Setting Up Data Structures
A stack is used to retain the news feed for the social network using

the Java Stack class: Following the Facebook approach, the news

feed presents the most recent news item, the most recently added

element to the stack, first. This is possible due to the fact that the

class operates on a last-in first-out approach (LIFO). Extracting the

most recent news update can therefore be achieved by “popping”

the top item from the stack. New items of news are added by

“pushing” them onto the stack, and are continuously pushed down

the stack as new items are added.

class Stack {
 private int maxSize;
 private User[] stackArray;
 private int top;

 public void push(User j) {
 stackArray[++top] = j;
 }
 public User pop() {
 return stackArray[top--];
 }

 public Boolean isEmpty() {
 return (top == -1);
 }
 public Boolean isFull() {
 return (top == maxSize – 1);
 }
}

When items are pushed on or popped from the stack, a counter is

maintained (top), allowing the size of the stack to be captured.

As another example of a data structure implemented, an array is

used to capture the personal details of users of the system:

allUsers[j] = new User(firstName, lastName,
dateOfBirth, homeLocation, emailAdd, password,
employer, school);

The array effectively stores several items of the same type.

4.4.2 Organising and Searching Data Structures
A user is added as an object into a sorted list of system members:

public void addUser(String firstName, String
 lastName, Date dateOfBirth,
 String homeLocation,
 String emailAdd, String password,
 String employer, String school) {
 for (int j = 0; j < totalUsers; j++) {
 if (allUsers[j].getEmailAdd().
 compareTo(emailAdd) > 0)
 break;
 }

 for (int k = totalUsers; k > j; k--) {
 allUsers[k] = allUsers[k – 1];
 }
 allUsers[j] = new User(firstName, lastName,
 dateOfBirth, homeLocation, emailAdd,
 password, employer, school, currentStatus,
 statusTime);
 totalUsers++;
 }
}

The correct position in the array is identified by searching through

email addresses, which are sorted into alphabetical order using

.compareTo(emailAdd). This compares the email address being

added with the email address at the position in the array currently

being searched. If the result of the comparison is a positive integer,

the email address lexicographically follows the argument string,

and it should be added at this position. Items currently in the array

beyond this point are shifted down by one position to make space

for the new item being added.

New friends are added into a friend list, again sorted according to

email address and using an insertion sort:

public void emailSort() {
 int in, out;
 for (out = 1; out > totalUsers; out++) {
 User temp = allUsers[out];
 in = out;
 while (in > 0 &&
 allUsers[in – 1].getEmailAdd().

 compareTo(temp.getEmailAdd()) > 0) {
 allUsers[in] = allUsers[in – 1];
 --in;
 }
 allUsers[in] = temp;
 }
}

Volume 12, Issue 2 Journal of Computational Science Education

54 ISSN 2153-4136 February 2021

An insertion sort on email address is used to organize the data

associated with an individual account so that it is organized in the

most efficient way when it comes to search the data. The insertion

sort considers each list element from left to right, comparing each

one by one. It places the data element in its correct location within

the sorted list. The process is repeated until there are no unsorted

elements remaining. The algorithm therefore operates by

comparing the current email address with the email address which

precedes it.

Capability was integrated to support account deletion. This requires

that the account is also removed from their friend’ lists.

public void delete(int userIndex) {
 int indexInFriendLists;
 for (int I = 0; I < totalUsers; i++) {
 indexInFriendLists =
 allUsers[i].friendFind(
 allUsers[userIndex].getEmailAdd());
 if (indexInFriendsLists >= 0) {
 for (int startPosition =
 indexInFriendLists; startPosition <
 allUsers[i].getFriendCount();
 startPosition++) {
 allUsers[i].setFriendsLists(
 startPosition, allUsers[i].
 getFriendsList()[startPosition + 1]);
 }
 allUsers[i].setFriendCount(-1);
 }
 }
 for (int startPosition = userIndex;
 startPosition < totalUsers; startPosition++) {
 allUsers[startPosition] =
 allUsers[startPosition + 1];
 totalUsers--;
 }
}

Deleting requires that the friendsList array for each account holder

is also searched, and the person who is deleting their account is also

removed from their list of friends.

A binary search is applied to find friends within a user’s friend list,

with the assumption that a friend of a friend is a plausible option

for a friend recommendation.

public int friendFindEmail(String email,
int lowerBound, int upperBound) {
 int curIn;
 curIn = (lowerBound + upperBound) / 2;

 if (lowerBound > upperBound)
 return -1;
 else if
 (friendsList[curIn].
 getEmailAdd().compareTo(email) == 0)
 return curIn;
 else {
 if (friendsList[curIn].getEmailAdd().
 compareTo(email) < 0)
 return friendFindEmail(email, curIn + 1,
 upperBound);
 else
 return friendFindEmail(email, lowerBound,
 curIn – 1);
 }
}

The binary search compares the target with the middle list element.

If the values are not equal, the half where the target cannot reside

is eliminated, and search continues in the remaining half until

successful.

A method is incorporated to search for friends which have a

birthday in the current month or in the next month:

public void displayBirthdays(int currentUserIndex) {

 Date now = new Date();
 Stack birthdayStack = new Stack(totalUsers);

 for (int i = 0; i <
 allUsers[currentUserIndex].getFriendCount();
 i++) {
 if (allUsers[currentUserIndex].
 getFriendsList()[i].getDateOfBirth().
 getMonth() == now.getMonth() + 1) {

 birthdayStack.push(allUsers[
 currentUseIndex].getFriendsList()[i]);

 }
 }

 if (!birthdayStack.isEmpty()) {
 while (!birthdayStack.isEmpty()) {
 User temp = birthdayStack.pop();
 System.out.println(“Birthdays!”);
 System.out.println(temp.getFirstName() +
 “ “ + temp.getLastName());
 }
 }
}

A number of friends are associated with each user. The system

therefore captures the number of friends and searches through their

birthdays to find if any have a birthday in the current month, with

the objective of providing the user with a reminder. These identified

contacts are subsequently “pushed” onto a stack for temporary

storage during the user’s session, such that they may be output for

information. If the stack is not empty, a user is informed that

birthdays of their friends according to their contact list are coming

up; the relevant users are popped from the temporary stack.

As with simulation of the Android operating system as a

concurrently operating environment with which students have first-

hand and day-to-day experience, the social media Facebook-type

platform similarly has such relevance to students. Students could

appreciate, for example, how functionality is provided by the

newsfeed feature; harnessing the use of abstract data types, as a

learning objective of the Data Structures module, allowed students

to appreciate the software development operating in the backend to

support popular social media environments.

5. CONCLUSIONS
A conversion degree provides new opportunities, particularly in

relation to employability, by training students in areas for which

they were not previously academically accredited. When students

were asked about their expectations for the study year, both positive

(Table 2) and negative (Table 3) angles were presented.

Student ambitions were clear (Table 2), with expectations including

gaining new skills and knowledge, and ideally a job. Coursework

cropped up as a weight about which students had negative

expectations (Table 3). When considered in relation to their desire

for improved employability options, it was therefore important to

support students in their ambitions post-degree and remove their

coursework fear. It is believed that the creative assessment design

helped to bridge these gaps, by exposing students to state-of-the-art

technology on an international basis, helping them to understand

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 55

the software developments which are essential in their support at

the back-end and encouraging the application of knowledge in new

ways. In doing so, the creative assessment designs provided a

mechanism to facilitate student innovation in their output.

Table 2. Student expectations of the year (positive).

What are you looking forward to this year?

 “Challenge of learning something completely new”

“To meet like-minded individuals to create something

together to leave with business ideas”

“Gaining a masters and a job”

“Learning practical programming skills, how computers

work, how software programs are created”

“To be challenged and learn new skills”

“Getting a job”

“Gaining experience in software programming”

“Challenges that the course will bring”

Table 3. Student expectations of the year (negative).

What are you not looking forward to this year?

 “Travelling to and from university”

“Travelling, exams, formal aspects of course, struggle to sit

down and write about a task”

“Hard to learn a new discipline at such a fast pace”

“Using mathematical formula”

“Coursework”

“Falling behind, not understanding something”

“Exams”

“Parts of the lecture which are not understood, mainly due to

the terminology”

“Written assignment”

6. REFERENCES
[1] Great Schools Partnership, “Student Engagement,” The

Glossary of Education Reform; Available:

https://www.edglossary.org/.

[2] J. McCarthy, “Learner Interests Matters: Strategies for

Empowering Student Choice,” Edutopic, Aug. 2014;

Available: https://www.edutopia.org/blog/differentiated-

instruction-learner-interest-matters-john-mccarthy.

[3] SoftBank Robotics, “Who is Pepper?” Online; Available:

https://www.softbankrobotics.com/emea/en/robots/pepper.

[4] C. Gewertz, “’Soft Skills’ in Big Demand,” Education Week,

Jun. 2007; Available:

https://www.edweek.org/ew/articles/2007/06/12/40soft.h26.h

tml.

[5] Council for the Curriculum, Examinsation and Assessment,

“What is Summative Assessment?” Online; Available:

http://ccea.org.uk/curriculum/assess_progress/types_assessm

ent/summative.

[6] International Baccalaurete, “The IB Learner Profile,” Online;

Available: https://www.ibo.org/benefits/learner-profile/.

[7] D. King and L. D. English, “Engineering Design in the

Primary School: Applying STEM Concepts for Build an

Optical Instrument,” International Journal of Science

Education, Dec. 2016, pp. 2762–2794; DoI:

10.1080.09500693.2016.1262567.

[8] S. Karen and S. Gregg, “Alternative Assessment – Can Real-

world Skills be Tested? Policy Briefs,” National Library of

Australia, 1993.

[9] S. S. Alfuhaigi, “School Environment and Creativity

Development: A Review of Literature,” Journal of

Educational and Instructional Studies, Vol. 5, Iss. 2, May

2015, pp. 33–37.

[10] B. Irwin and S. Hepplestone, “Examining Increased

Flexibility in Assessment Formats,” Assessment &

Evaluation in Higher Education, 2012, pp. 773–785.

[11] A. Craft, “An Analysis of Research and Literature on

Creativity in Education: Report prepared for the

Qualifications and Curriculum Authority,” Qualifications and

Curriculum Authority, Mar. 2001.

[12] P. Kampylis and E. Berki, “Nurturing Creative Thinking,”

International Academy of Education, UNESCO, 2014.

[13] JISC, “Transforming Assessment and Feedback with

Technology,” Online; Available: https://www.jisc.ac.uk/full-

guide/transforming-assessment-and-feedback.

[14] Montessori Northwest, “What is Montessori Education?” n.d.

Online; Available: https://montessori-nw.org/what-is-

montessori-education/.

[15] An Everyday Story, “What is the Reggio Emilia Approach?”

Online; Available:

http://www.aneverydaystory.com/beginners-guide-to-reggio-

emilia/main-principles/.

[16] N. Jackson, “Assessing Students’ Creativity: Synthesis of

Higher Education Teacher Views,” The Higher Education

Academy, Jun. 2005.

[17] Warwick University, “Marking Creative Writing” Online;

Available:

https://warwick.ac.uk/fac/arts/english/currentstudents/underg

raduate/modules/fulllist/second/en232/marking_creative_writ

ing/.

[18] S. M. Brookhart, “Assessing Creativity,” Educational

Leadership, Vol. 70, No. 5, Feb. 2013; Available:

http://www.ascd.org/publications/educational-

leadership/feb13/vol70/num05/Assessing-Creativity.aspx.

[19] G. Hill and S. J. Turner, “Electronic Online Marking of

Software Assignments,” Progress in IS: Software Engineering

Education fro a Global E-service Economy, 2014, pp. 41–48.

[20] A. Venables and L. Haywood, “Programming Students need

Instant Feedback!,” in Proceedings of 5th Australasian

Computing Education Conference, 2001.

[21] Learning Theories, “Transformative Learning Theory

(Mezirow),” Online; Available: https://www.learning-

theories.com/transformative-learning-theory-mezirow.html.

[22] J. Bosch and P. Molin, “Software Architecture Design:

Evaluation and Transformation,” Proceedings of IEEE Conf.

and Workshop on Engineering of Computer-based Systems,

Mar. 1999.

[23] BBC, “International Baccalaureate,” Online; Available:

http://www.bbc.co.uk/schools/parents/international_baccalau

reate/.

Volume 12, Issue 2 Journal of Computational Science Education

56 ISSN 2153-4136 February 2021

[24] Vanderbilt, “Motivating Students,” Online; Available:

https://cft.vanderbilt.edu/guides-sub-pages/motivating-

students/.

[25] L. Gueldenzoph Snyder and M. J. Synder, “Teaching Critical

Thinking and Problem Solving Skills,” The Delta Pi Epsilon

Journal, Vol. L, No. 2, 2008, pp. 90–101.

[26] S. P. Kearney and T. Perkins, “Engaging Students through

Assessment: The Success and Limitations of the ASPAL

(Authentic Self and Peer Assessment for Learning) Model,”

ResearchOnline@ND, 2014.

[27] DePaul University, “Authentic Assessment “Assessing by

Doing”,” Online; Available:

https://offices.depaul.edu/teaching-learning-and-

assessment/assessment/assessing-

learning/Documents/AuthenticAssessmentInformationSheet.

pdf.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 57

What Influences Students’ Understanding of Scalability Issues in
Parallel Computing?

Juan Chen
College of Computer

National University of Defense Technology
Changsha, Hunan Province, China

juanchen@nudt.edu.cn

Brett A. Becker
School of Computer Science
University College Dublin

Dublin, Ireland
brett.becker@ucd.ie

Youwen Ouyang
Department of Computer Science and Information Systems

California State University, San Marcos
San Marcos, CA, US
ouyang@csusm.edu

Li Shen
College of Computer

National University of Defense Technology
Changsha, Hunan Province, China

lishen@nudt.edu.cn

ABSTRACT
Graduates with high performance computing (HPC) skills are more
in demand than ever before, most recently fueled by the rise of
artificial intelligence and big data technologies. However, students
often find it challenging to grasp key HPC issues such as parallel
scalability. The increased demand for processing large-scale sci-
entific computing data makes more essential the importance of
mastering parallelism, with scalability often being a crucial fac-
tor. This is even more challenging when non-computing majors
require HPC skills. This paper presents the design of a parallel com-
puting course offered to atmospheric science majors. It discusses
how the design addressed challenges presented by non-computer
science majors who lack a background in fundamental computer
architecture, systems, and algorithms. The content of the course
focuses on the concepts and methods of parallelization, testing,
and the analysis of scalability. Considering all students have to
confront many (non-HPC) scalability issues in the real world, and
there may be similarities between real-world scalability and parallel
computing scalability, the course design explores this similarity in
an effort to improve students’ understanding of scalability issues in
parallel computing. The authors present a set of assignments and
projects that leverage the Tianhe-2A supercomputer, ranked #6 in
the TOP500 list of supercomputers, for testing. We present pre- and
post-questionnaires to explore the effectiveness of the class design
and find an 11.7% improvement in correct answers and a decrease
of 36.8% in obvious, but wrong, answers. The authors also find that
students are in favor of this approach.

KEYWORDS
Atmospheric science majors, Computing non-majors, Scalability,
Undergraduate education

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/12/2/12

1 INTRODUCTION
Many modern scientific developments depend on large scale data
processing and the exploitation of parallelism on supercomputer
systems. Examples include computational simulations for scientific
and engineering applications in atmosphere, earth, and environ-
mental realms [1], in addition to commercial applications such as
data mining and transaction processing.

Integrating parallel computing earlier into the undergraduate
curriculum has been under exploration since the 1990s. In 1994,
Donald Johnson et al. [2] proposed teaching parallel computing to
freshmen by integrating parallel computation into a data structures
course. The Curriculum Development and Education Resources
(CDER) center for parallel computing education proposed a detailed
curriculum and promoted progress in parallel computing under-
graduate courses [3]. Nonetheless, introducing parallel computing
into the early years of a bachelors curriculum remains challenging.

Reflecting the growing importance of parallel computing in un-
dergraduate curricula, CS2013 (the ACM/IEEE Joint Computer Sci-
ence Curricula) stated, “Previous curricular volumes had paral-
lelism topics distributed across disparate KAs [knowledge areas]
as electives. Given the vastly increased importance of parallel and
distributed computing, it seemed crucial to identify essential con-
cepts in this area and to promote those topics to the core” [4, p 29].
CS2013 introduced a new KA in parallel and distributed computing
which explicitly names scalability [5] as a core-tier2 topic.

Understanding scalability issues is key for learning parallel com-
puting. This paper introduces the design of a compulsory parallel
computing course at the College of Meteorologic Oceanography
at National University of Defense Technology in China. Atmo-
spheric scientists need parallel computing to solve design issues
for the parallelization of optimal interpolation algorithms and at-
mospheric data analysis [6]. This course is intended to provide a
broad overview of the topics in parallel computing, as a lead-in for
more advanced classes that follow it. These non-computing majors
need to leverage HPC to make optimal use of their applications and
to solve problems on different scales. Proper solutions resulting in
satisfactory speedup are necessary but difficult to design. To start,
these applications need to consider the physical architecture to
and fully exploit hardware parallelism. The increase in large-scale

Volume 12, Issue 2 Journal of Computational Science Education

58 ISSN 2153-4136 February 2021

https://doi.org/10.22369/issn.2153-4136/12/2/12

scientific computing data aggravates the difficulty of exploiting
parallelism.

1.1 Challenges of Understanding Scalability
Scalability is the mechanism by which a parallel system’s speedup
changes with the number of available processors. Amdahl’s law
dictates the achievable speedup and efficiency — specifically what
happens to efficiency when both the number of processors and
the problem size increase. The scalability of a parallel algorithm
on a parallel architecture is a measure of the algorithm’s ability
to effectively utilize an increasing number of processors. Scalabil-
ity analysis is helpful in selecting the best algorithm/architecture
combination for a given problem under different constraints on the
growth of the problem size and the number of processors [7, 8].

Scalability is divided into hardware scalability and software scal-
ability, which refers to the ability of system to deliver greater com-
putational power when the amount of resources is increased. Hard-
ware scalability refers to the capacity of the whole system, which
theoretically can be proportionally increased by adding more hard-
ware. Software scalability refers to parallelization efficiency - the
ratio between the actual speedup and the ideal speedup over a given
number of processors [9].

The scalability of a system can take many forms, including speed,
efficiency, size, applications, generation, and heterogeneity [10, p
63]. In terms of speed, a scalable system is capable of increasing its
speed in proportion to the increase in the number of processors. In
terms of efficiency, a scalable parallel system means its efficiency
can be kept fixed as the number of processors is increased, pro-
vided that the problem size is also increased. Scalability testing
can be performed at the hardware or software levels. Parameters
used for scalability testing differ from one application to another.
Different forms of scalability were also mentioned in [10, p 66], “In
his vision on the scalability of parallel systems, Gordon Bell indi-
cated that in order for a parallel system to survive, it has to satisfy
five requirements. There are size scalability, generation scalability,
space scalability, compatibility, and competitiveness." Three of these
survivability requirements are the forms of scalability. Here size
scalability measures the maximum number of processors a system
can accommodate. Generation scalability refers to the ability of a
system to scale up by using next-generation components.

HPC application scalability is inherently complicated as the per-
formance of modern HPC systems approach exascale. Exascale
computing refers to computing systems capable of at least a billion
billion calculations per second. It is becomming even more complex
for HPC applications to fully exploit hardware parallelism, due to
many factors. In addition, many applications have poor scalability
regardless of the underlying hardware. See [11] for more details.

Scalability modeling and evaluation for real problems are often
abstract. Programs are often designed and tested for smaller data
sets on fewer processors, but the real problems are much larger
and need more hardware, in recent times scaling up to millions of
cores. Performance and correctness of programs based on scaled-
down systems is difficult to establish [12, p 208], but it remains a
cost efficient and practical means of testing. Based on such tests,
performance extrapolation is not intuitive.

1.2 Research Goals
This work has three research goals:

RG1 Explore the effects of understanding or misunderstanding
parallel computing scalability on students’ performance.

RG2 Explore the relationship between real-world scalability and
parallel computing scalability from the perspective of under-
standing and learning.

RG3 Explore students’ questions valuable to the understanding
of parallel computing scalability.

2 BACKGROUND
2.1 Parallel Computing Course and Scalability
Many modern instructors agree that parallel computing topics
should be covered in first- or second-year undergraduate classes [2,
13–15]. Additionally, in Section 1, the authors discussed the fact that
parallelism is also a growing trend to which CS2013 has responded.
The primary reasoning is that a solid understanding of parallel
computing concepts will tremendously improve students’ ability
to write software that is able to effectively utilize the underlying
parallel hardware architecture. For example, Yousun Ko et al. [14]
found if parallel computing concepts were introduced as a senior-
level undergraduate or graduate elective, students had difficulty
transitioning from sequential to parallel thinking. Lori Pollock et
al. [16] also thought parallel programming required a very differ-
ent thought process from traditional sequential programming, as
the programmer must think differently, such as performing tasks
in parallel, organizing information communication, and balancing
workload between parallel processes. Making such a switch from
sequential thinking to parallel thinking was a big step for many
students. CS2013 recommends parallel computing could be their
freshmen or sophomores courses.

Some challenges in parallel computing courses are closely re-
lated to scalability. For example, Yousun Ko et al. [14] presented a
challenge problem for understanding parallelism. They chose an
analogy from cooking to introduce task, data, and pipeline par-
allelism. They also used the concrete example to illustrate task
parallelism and data parallelism. Another challenge they presented
is about parallel program performance evaluation. They observed
the inevitable question was, "Why is my parallel program slower
than the sequential version?" They answered this question by intro-
ducing the definition of speedup, scalability, and efficiency, followed
by Amdahl’s law and performance bottleneck analysis. Besides the
above two challenges, Yousun Ko et al. [14] presented three other
course modules and challenge problems. They used the decomposi-
tion approach of knowledge to structure the course as five course
modules, among which each module teaches one fundamental con-
cept of parallel programming. All parallel programming concepts
were introduced with the help of worked-out programming exam-
ples.

Besides the challenges of switching from sequential thinking to
parallel thinking mentioned above, Pollock et al. [16] presented
the practical challenges for inexperienced programmers: i) lack of
stable and useful debugging tools; ii) the need to analyze why their
program is not performing well in parallel and how to improve its
performance. They used cooperative learning to meet the practical

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 59

challenges, as well as to provide a more real-world context to the
course. In the experience of teaching HPC [17], H. Neeman et al.
used analogies to explain some concepts to capture the fundamental
underlying principles without going deep into technical details.

2.2 Real-World Scalability and Cognitive
Ability

There aremany scalability issues in real life. For instance, compound
interest concerns how investments scale with time, and population
growth concerns how the population of reproducing organisms
scales with time. Fittingly, most HPC and parallel computing con-
cepts also come down to time — after all, that is why these domains
exist — to do more in less time. However, it is well known that
many people have trouble truly comprehending the growth of a
fund due to compound interest, or the growth of populations with
time. It seems scalability is linked to cognition.

In 2005, Frederick introduced the cognitive reflection test (CRT),
which researchers have cited nearly 3,500 times. The CRT is a sim-
ple three-item measure of one type of cognitive ability. Specifically,
Frederick found that CRT scores were predictive of the kinds of
choices that prominently feature in tests of decision-making theo-
ries. The CRT questions are [18, p 27]:

Q1 A bat and a ball cost $1.10 in total. The bat costs $1.00 more
than the ball. How much does the ball cost?

Q2 If it takes 5 machines 5 minutes to make 5 widgets, how long
would it take 100 machines to make 100 widgets?

Q3 In a lake, there is a patch of lily pads. Every day, the patch
doubles in size. If it takes 48 days for the patch to cover the
entire lake, how long would it take for the patch to cover
half of the lake?

Interestingly, questions Q2 and Q3 deal with scalability, and Q2
also concerns explicit parallelism.

The CRT questions are crafted very carefully, and for a reason.
Each question has an incorrect “intuitive” answer. Frederick pro-
vides substantial evidence that these incorrect yet intuitive answers
are indeed intuitive. Two pieces of evidence are 1) the incorrect in-
tuitive answers, such as 24 days (half of 48 days) for Q31, dominate
in trials with large populations; and 2) respondents answer with the
correct response much more often with analogous problems that
invite more computation (i.e. don’t have obvious intuitive answers).
For example, respondents miss Q1 much more often than they miss
this analogous problem that essentially forces calculation due to
the lack of an intuitive answer:
• A banana and a bagel cost 37 cents. The banana costs 13
cents more than the bagel. How much does the bagel cost?

We will come back to the idea of questions on real-life scalability
concepts and “intuitive answers” in Section 4.2.

3 STUDY DESIGN
The study was carried out in College of Meteorologic Oceanogra-
phy in Spring 2019. Fourteen sophomores enrolled in the "Parallel
Computing" course, and all students participated in the study. All

1The correct answer is 47 days. If the patch doubles in size every day, one day before
the final day, 1/2 of the pond must be covered.

of them had no prior experience with systematic computer archi-
tectures, operating systems, and algorithms. The prerequisite of
the course is C programming.

3.1 Course Design
Figure 1 shows the structure of the course, including 12 lecture
classes, 6 laboratory classes, assignments, projects, and pre-/post-
questionnaires. The length of each class period is 90 minutes with a
10-minute middle break. Formative assignments were released once
or twice each week and required to be finished before Sunday night
23:00 pm. Projects were released on Thursday night laboratory class
between Weeks 4 and 7. Each project lasted one week until the next
Wednesday night.

Figure 1: Weekly and daily structure of the course.

The course learning objectives for the lecture part are shown
in Table 1. One of the authors is the lead instructor of this course.
In order to teach scalability, the authors split the effort from the
following eight aspects, which are abbreviated D1–D8 in Table 4.

Table 1: Parallel computing course content topics.
Topic Content Lecture

1
Overview of parallel computing: Flynn’s taxonomy, paral-
lel hardware and software, interconnection network, etc.

1–2

2
Basic principles of parallel computing: task parti-
tion, parallel task scheduling, principles of parallel
algorithm design, performance metrics, concepts of
speedup/efficiency/scalable applications, etc.

3–4

3
Distributed-memory programming with MPI, collective
communication, performance evaluation of MPI programs,
scalability, etc.

5–7

4
Shared-memory programming with OpenMP, data depen-
dences, loop scheduling, cache coherence, etc.

8–9

5
Applications: Jacobi methods and computation-
communication overlap, numerical weather forecast
model WRF, numerical climate forecast model CAM, etc.

10–12

1) Decompose the scalability topic into some detailed notions. Ac-
cording to core topics of parallel computing provided by NSF/IEEE-
TCPP Curriculum Initiative [3], the authors decompose the scala-
bility topic into three-type 19 notions as Table 2 shows. The three

Volume 12, Issue 2 Journal of Computational Science Education

60 ISSN 2153-4136 February 2021

types are architecture, programming, and algorithms. Each notion
has its learning outcome. The scalability topic is too abstract to
teach. However, this decomposition can help make clear what scal-
ability stands for in the parallel computing world, such as what
detailed contents of scalability people should teach students and
what learning outcome students should have.

2) Design the assignments. Design the fundamental assignments
as well as literature reading tasks. The course includes eight for-
mative assignments and a literature reading task throughout an
8-week period. Each of these was graded based on functionality
and documentation. All eight formative assignments are about the
answer to some basic questions, followed by fundamental parallel
programming exercises, which are suitable to all different majors
(See Assignments 1–8 in Table 3 for more details). The literature
reading task is special for atmospheric science majors in order to
deepen their understanding of weather research, the forecasting
model, and its parallel solution method. The students need to read
at least one paper from the following three papers, which are titled
"Development of a Next-generation Regional Weather Research
and Forecast Model", "Precipitation Simulations Using Weather Re-
search and Forecasting (WRF) as a Nested Regional Climate Model,"
and "Sensitivity of WRF Forecasts for South Florida to Initial Con-
ditions."

3) Design the projects. Two application projects are special for
Atmospheric Science majors in our class. These two projects are
both about numerical weather forecast simulation on a WRF model.
WRF model simulation is fundamental to most atmospheric science
majors in their professional study and research.WRF is short for the
Weather Research and Forecasting model, which is a mesoscale nu-
merical weather prediction system designed for both atmospheric
research and operational forecasting applications [19]. The WRF
model features two dynamical cores, a data assimilation system,
and software architecture supporting parallel computation and sys-
tem extensibility. The model serves a wide range of meteorological
applications across scales from tens of meters to thousands of kilo-
meters. Before the 2019 spring semester, students did not use WRF
until the senior year. It was a challenge for sophomores to finish
the two projects. In order to reduce the difficulty of studies, the au-
thors divided Project 1 into two phases: Project 1-I and Project 1-II.
Project 1-II is a moderately incremental release based on Project 1-I.
The same is true for Project 2. See Table 3 for more details of the two
projects. Before releasing the two projects, the authors have two
laboratory classes to introduce the Tianhe-2A system environment
and basic usage, followed by the WRF model background (Lab 1
and Lab 2 in Figure 1). The Tianhe-2A supercomputer is ranked #6
in the TOP500 list of supercomputers2.

4) Correlate scalability topic & notions to assignments and projects.
The authors connect all the scalability notions to eight assign-
ments and four projects in terms of the contents of assignments
and projects as well as each learning outcome shown in Table 2.
This correlation is helpful to grade the understanding of scalabil-
ity. The scalability grade for each assignment and project can be
given based on students’ learning outcomes. The scalability grade
of each student is counted by the average scalability scores of all
assignments and projects.

2www.top500.org. TOP500 List, November 2020

Table 2: Decomposition of scalability topics and correlation
of scalability notions, learning outcomes, and assignments
& projects. The rightmost column ’Learning Outcome’ is
taken from Tables 1-3 in Reference [3]

Topics/Notions Assign. Project Learning Outcome

Architecture
SMP→ Buses A1 - Limited bandwidth and latency, scalability

issues
NUMA →

Directory-
based CC-
NUMA

- - Be aware that bus-based sharing does not
scale, and directories offer an alternative

Message pass-
ing (no shared
memory)

- - Shared memory architecture breaks down
when scaled due to physical limitations (la-
tency, bandwidth) and results in message
passing architectures

Latency - P1,
P2

Know the concept, implications for scal-
ing, impact on work/communication ratio
to achieve speedup

Bandwidth - P1,
P2

Know the concept, how it limits sharing, and
considerations of data movement cost

Cache organi-
zation

- - Know the cache hierarchies, shared caches
(as opposed to private caches) result in co-
herency and performance issues for software

Programming
Shared mem-
ory

A8 - Be able to write correct thread-based pro-
grams (protecting shared data) and under-
stand how to obtain speed up

Synchronization - - Be able to write shared memory programs
with critical regions, producer-consumer
communication, and get speedup; know the
notions of mechanisms for concurrency

Performance
metrics

A2,
A6,
A7,
A8

P1,
P2

Know the basic definitions of performance
metrics (speedup, efficiency, work, cost), Am-
dahl’s law; know the notions of scalability

Speedup A2,
A6,
A7,
A8

P1,
P2

Understand how to compute speedup, and
what it means

Efficiency A2,
A6,
A7

P1,
P2

Understand how to compute efficiency, and
why it matters

Amdahl’s law A2,
A6,
A7

P1,
P2

Know that speedup is limited by the sequen-
tial portion of a parallel program, if problem
size is kept fixed

Gustafson’s
law

A2 - Understand the idea of weak scaling, where
problem size increases as the number of pro-
cesses/threads increases

Isoefficiency - P1,
P2

Understand the idea of how quickly to in-
crease problem size with number of pro-
cesses/threads to keep efficiency the same

Algorithm
Speedup A3,

A6,
A7

- Recognize the use of parallelism either to
solve a given problem instance faster or to
solve larger instance in the same time (strong
and weak scaling)

Scalability in
algorithms and
architectures

A6,
A7

P1,
P2

Comprehend via several examples that hav-
ing access more processors does not guaran-
tee faster execution — the notion of inherent
sequentiality

Model-based
notions

A8 P1,
P2

Recognize that architectural features can in-
fluence amenability to parallel cost reduction
and the amount of reduction achievable

Matrix compu-
tations

A5,
A6,
A7

- Understand the mapping and load balanc-
ing problems on various platforms for sig-
nificant concrete instances of computational
challenges that are discussed at a higher level
elsewhere

Matrix product A6,
A7

- Observe a sample “real" parallel algorithm

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 61

www.top500.org

Table 3: Descriptions of eight assignments and two projects.

Assignments
& Projects

Tasks

Assignments
1–3

Search for information: TOP500, parallelism of pipeline, parallelism
of vector operations, speedup formulas, Foster’s methodology.

Assignments
4–7

MPI programs: trapezoidal rule MPI parallelization; matrix-vector
multiplication MPI parallelization with row partitioning; matrix-
vector multiplication MPI parallelization with column partitioning.

Assignment
8

OpenMP programs: Odd-even transposition sort OpenMP paral-
lelization.

Project 1-I InstallWRF software and library, and run an ideal casewith different
amount of computing nodes.

Project 1-II Install WRF software and library, and run two more ideal cases with
different amount of computing nodes.

Project 2-I Compile real model em_real and run a real model data. WRF pre-
processing system WPS need to be installed before running. Down-
load actual observational data from the official website and do the
test with different parallel scales.

Project 2-II Reset the model domain by modifying the model grid param-
eters (resolution, range, and grid location) in model input file
’namelist.input’, recompile the real model em_real and run real
model data. Repeat the steps of Project 2-I.

5) Design incentive mechanism to encourage questioning in class.
Students were encouraged to question in class by adding the number
of questions into final grades. On average, more than ten questions
per class were proposed, which greatly increased participation in
class activities and inspired students’ learning enthusiasm. After
class, TAs collected all the questions and counted the grades, which
were published to students every other week.

6) Do experimental instruction. Four teaching assistants (TAs)
participated in the class activities, especially being involved in ex-
perimental instruction in laboratory classes. Before projects began,
one TA presented a talk to introduce the background, demands,
and expected outcomes. TAs finished all the experimental steps and
prepared a detailed experiment instruction manual before students
started projects. In laboratory classes, students were divided into
four groups and each TA gave individual tutoring to one group of
students having difficulties. Students were required to write sci-
entific reports describing their experiments, including objective,
platform & environment, steps, results & analyses, questions, and
experiences. Students struggled with writing these experimental
reports and the analysis of parallel program performance and scal-
ability. This appeared to be busy work to the non-CS majors. For
some common questions, the teacher asked one student to present
their initial results firstly and then organize a discussion to analyze
reasons. Finally, students reached an agreement and designed one
more experiment to validate their assumptions. A discussion usually
lasted about 15 minutes. The authors twice had such discussions.

7) Design of the evaluation and grading mechanism. This course
had no final examination. Student performance was scored by as-
signment scores, in-class questioning, attendance, project scores,
and literature reading scores. Section 4.1 gives the detailed evalua-
tion method.

8) Design pre-/post-questionnaires and feedback questionnaire.
Before the parallel computing course began, a pre-questionnaire
was administered to test the understanding of students’ real-world
scalability. These six questions all draw from real life examples of
scalability — See Q1–Q3 in Section 2.2 for examples. Each question
has three categories of answers: an incorrect yet intuitive answer,

an "obviously" wrong answer, and a correct answer. The authors
did not expect (or want) the students to simply calculate the right
answer — any of these questions can be easily calculated given
enough time. Instead, we were trying to test their "intuition" of
what answer "seems" correct. In other words, we wanted to mea-
sure students’ real-world intuitions that they have gained through
experience. Students were told to try to capture their "gut feeling"
— their intuition — when answering the questionnaire. Accordingly,
students were given three minutes (30 seconds per question). At
the end of the course, a post-questionnaire, the same as the pre-
questionnaire, was administered to students. We then analyzed
these scores using a paired statistical significance test called the
Scalability Understanding Paired Test and correlated the question-
naire results with final course grades. Students were not formally
assessed on their questionnaire responses/scores — in other words,
the questionnaire scores did not factor into final grades.

At the end of the course, students were encouraged to complete a
feedback questionnaire inquiring about their understanding of scal-
ability issues, including a self-evaluation of the learning outcomes
of the 19 scalability notions, misunderstandings and correctness
experiences with scalability issues, their biggest impression of the
course, their confidence toward parallel computing, and other ex-
periences with course activities.

3.2 Correlation of Course Design and Research
Goals

What the authors did for teaching scalability in Section 3.1 is based
on our three research goals. There are some correlation between
them, as Table 4 shows, by ticking

√
. In Table 4, D1–D8 stand

for eight aspects of our course design for teaching scalability in
Section 3.1.

Table 4: Correlation of course design and research goals.

RG D1 D2 D3 D4 D5 D6 D7 D8
RG1

√ √ √ √ √ √

RG2
√ √ √

RG3
√ √ √ √ √

4 RESULTS
4.1 RG1: Scalability Understanding and

Performance
We measure student performance using their assignment scores, in-
class questioning, attendance, project scores, and literature reading
scores. The scores for eight assignments, in-class questioning scores,
and attendance comprise 30% of the final course mark. The scores
for Project 1-I, Project 1-II, Project 2-I, and Project 2-II comprise
50% of the final mark, and literature reading scores comprise 20% of
the final mark. The final course grades for all students are shown
by the blue solid line in Figure 2.

According to Table 2, the authors measured student scalability
grades for each assignment and each project. This scalability grade
for each assignment and project is divided into three levels of
achievement: sophisticated (90 points), competent (70 points) and

Volume 12, Issue 2 Journal of Computational Science Education

62 ISSN 2153-4136 February 2021

not yet competent (50 points). Then, we calculated the average
scalability grade for all assignments and projects, which constitutes
the scalability grade of each student for learning parallel computing
(See the red dashed line in Figure 2). A chi-squared test of goodness-
of-fit was performed to determine whether the scalability grade of a
student for learning parallel computing is linearly correlated to the
final course grade. The scalability grade of a student and the final
course grade were positively correlated, r (14) = 0.66,p = 0.010.
This is evidence that one can reasonably expect a better course
performance from students with a better understanding of parallel
computing scalability.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Student Number

25

50

75

100

G
ra
de

s

Parallel computing scalability grades
Final course grades

Figure 2: The impact of understanding ormisunderstanding
parallel computing scalability on students’ performance.

At the end of the course, a multiple-choice feedback question-
naire was sent to all 14 students, and all of 14 students responded.
The feedback questionnaire was designed to examine students’ ex-
perience with learning parallel computing scalability. Questions in
the feedback questionnaire were three multiple-choice, two single-
choice, and three subjective questions. As can be seen, 78% students
thought parallel computing scalability studies were very benefi-
cial for understanding key concepts in parallel computing and
improving their parallel programming ability. The remaining stu-
dents thought such help was okay. Students self-evaluate their
understanding of parallel computing scalability with five stars. The
proportions of five, four, three, and two stars in students’ self-
evaluation are 21%, 28%, 35%, and 14%, respectively.

In the three multiple-choice quesitons involving architecture,
programming, and algorithms, students picked out some items
(rows) from Table 2 for which they thought they have achieved the
learning outcomes. According to students’ self-evaluation, the top
five items the students achieved are Programming-Speedup (14/14),
Efficiency (13/14), Amdahl’s law (12/14), Gustafson’s law (11/14)
and Algorithm-Speedup (11/14). The worst five items are Program-
ming-Isoefficiency (1/14), Architecture-NUMA→Directory-based
CC-NUMA (3/14), Cache organization (4/14), Programming-Shared
memory (4/14), and Synchronization (4/14). This is evidence that
our decomposition of scalability topics is really beneficial to teach
students to understand scalability issues. It also shows that more
assignments and projects can help students better understand scal-
ability notions. In both of the two projects as well as several funda-
mental programming assignments, students need to use speedup,

efficiency, and Amdahl’s law concepts to calculate and evaluate
the results. Repetitive calculations correct some misunderstandings
and deepen their understanding to scalability. On the contrary, for
those knowledge notions lacking exercises, it is hard to expect stu-
dents to have a good learning performance. For example, the NUMA
concept, cache organization, shared memory, and synchronization
are not directly relevant to assignments or projects. The learning
performance of understanding these notions is worse than that of
understanding speedup, efficiency, Amdahl’s law, and Gustafson’s
law.

Students needed to give at least one experience of misunder-
standing parallel computing scalability. We list all the feedback as
follows, merging some same or similar feedback.

• Students A1, A2 thought that the running time was inversely
proportional to the number of processes. But in the actual
cases, they observed that running time sometimes was con-
strained by bandwidth.
• Students B1, B2 could not understand why the increasing
computing power or number of processes sometimes could
not bring about speedup improvement.
• Students C1, C2, C3, C4 thought using the more processor
cores must result in the faster speedup, the higher efficiency,
and the stronger scalability, but by experimental results they
found more processor cores were not sure to bring about
higher performance, and sometimes parallel time would be
reduced only when the number of processor cores reaches a
certain value.
• Student D thought scalability was only related to the appli-
cation problem itself, but they later found scalability was
also closely related to the parallel algorithm.
• Student E thought matrix-vector parallelism in row parti-
tion had the same effect with that in column partition, but
by communication analysis and experimental results, they
found different matrix partitions would bring about different
amounts of collective communication and also big perfor-
mance differences.
• Student F thought the scalability only represented the run-
ning time of a program and the shorter running time meant
better scalability.
• Students G1, G2, G3 thought there was no relationship be-
tween speed, the amount of input data, and the number of
processes/threads, which prevented them from understand-
ing speed and scalability.

They were asked to explain if learning more knowledge of scala-
bility and overcoming the misunderstandings of scalability were
useful to their performance improvement of learning parallel com-
puting or not. All the answers are YES.

4.2 RG2: Real-World vs. Parallel Computing
Scalability

We released a pre-questionnaire and a post-questionnaire to test
students’ real-world scalability cognitive ability. The correctness
ratio increased by 11.7% from the pre-questionnaire to the post-
questionnaire. The number of obvious but wrong answers was

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 63

reduced by 36.8%. This proves that students’ understanding of scal-
ability improved. The Pearson correlation coefficient between pre-
questionnaire grades and post-questionnaire grades was 0.73.

We compare two questionnaire results and parallel computing
scalability grades in Figure 3. The Pearson correlation coefficient
between pre-questionnaire grades and parallel computing scalabil-
ity grades is 0.0079. This proves that real-world scalability grades
and parallel computing scalability grades are correlated with very
low strength. The Pearson correlation coefficient between post-
questionnaire grades and parallel computing scalability grades is
increased to -0.34. It shows that the authors could expect the correla-
tion strength between real-world scalability and parallel computing
scalability can be increased by learning parallel computing.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Student Number

25

50

75

100

125

150

G
ra
de
s

Parallel computing scalability grades
Pre-questionnaire grades
Post-questionnaire grades

Figure 3: The relationship between real-world scalability
and parallel computing scalability.

4.3 RG3: Students’ Questions Valuable to the
Understanding to Scalability

Students’ questionsmainly came from in-class questions, laboratory
class questions, and project questions. Each class lecture averaged
ten questions. These questions were commonly about topics such as
architecture concepts and programming problems. Major questions
related to scalability issues were as follows: How to calculate the
efficiency? What is weak scaling? What is strong scaling? How
to identify the scalability of one program? What is the difference
between Amdahl’s law and Gustafson’s law? How to understand
the four steps of Foster’s parallelization method and how to apply
the Foster method to solve a real application? How to calculate
the number of collective communications for different partitioning
approaches?

Lab class questions are mainly about programming problems,
algorithm implementation, and actual operations on the Tianhe-2A
supercomputer, such as how to assign jobs to the expected amount
of computer nodes? How to map processes to computer nodes and
processor cores? Below are some choice questions that show the
value of understanding parallel computing scalability.
Q1 The impact of different matrix partitioning methods on parallel

performance in a matrix-vector multiplication program.
Question: For a matrix-vector multiplication program, which
is better, partitioning the matrix by column or by row? Why?

Teaching Solution: Analyze two matrix partitioning methods
(by row and by column) and compare their numbers of collec-
tive communications. Run programs and compare execution
time under two partitioning methods. Students will find parti-
tioning the matrix by column would produce more collective
communications compared to partitioning the matrix by row
and then result in parallel performance reduction.

Q2 The impact of memory bandwidth on speedup and efficiency.
Question: There was a case in Project 1-II: a program with 8
processes achieved higher speedup than with 4 processes. But
the program runningwith 16 processes did not achieve expected
speedup like with 8 processes. Why? Then the speedup with 32
processes were again higher than that with 16 processes. Why?
Teaching Solution: For a shared-memory architecture on one
compute node of the Tianhe-2A supercomputer we count the
number of physical cores used for each row and consider the im-
pact of limited memory bandwidth on speedup and efficiency.
We doubt this speedup jump is related to the number of as-
signed cores on one compute node. It is possible to do more
experiments to verify our assumption, where different numbers
of compute nodes and processor cores are assigned.

Q3 The impact of architecture and node allocation strategy on
parallel execution time.
Question: Students found an 8-process program running on
one compute node was slower than running on two compute
nodes. Why does the fixed amount of processes have a different
execution time? How do different node allocations influence
parallel execution time?
Teaching Solution: Illustrate the concept of memory band-
width and list the facts that influence memory bandwidth. The
limited memory bandwidth on a shared-memory architecture
sometimes has an influence on parallel execution time. Analyze
why different assignments of processes to compute nodes will
bring about different actual memory bandwidth on one node.
Suggest an experiment to verify the assumption: parallel ex-
ecution time of a memory-intensive program will be greatly
influenced by actual memory bandwidth.

5 CONCLUSIONS
This study focused on what influenced students’ understanding
of parallel computing scalability issues. The authors found under-
standing or misunderstanding parallel computing scalability has
a correlation with students’ performance. We explored the rela-
tionship between real-world scalability and parallel computing
scalability, and we found real-world scalability and parallel com-
puting scalability were correlated with low strength. There is no
evidence to prove real-world concepts and experiences will greatly
influence the learning of parallel computing concepts. However, the
authors could expect the correlation strength between real-world
scalability and parallel computing scalability can be increased by
learning parallel computing. We need more research and analyses
about the two types of scalability in the future. Finally, the authors
showed some examples of student questions that are valuable to the
understanding of parallel computing scalability. According to pre-
and post-questionnaires, the effectiveness of our parallel computing
course resulted in an 11.7% improvement in correct answers and a

Volume 12, Issue 2 Journal of Computational Science Education

64 ISSN 2153-4136 February 2021

decrease of 36.8% in obvious but wrong answers. Most students are
in favor of the approach used.

ACKNOWLEDGMENTS
The authors would like to thank Dr. John Impagliazzo (Hofstra Uni-
versity) for providing insight to improve the paper and the anony-
mous referees for their valuable comments and helpful sugges-
tions. This work is supported by the 2017 Hunan Province Degree
and Graduate Education Teaching Reform Research Foundation
of China under Grant No. JG2017B004, the 2019 Hunan Province
Higher Education Teaching Reform Research Foundation of China
(titled with Teaching Practice of Training High-Performance Com-
puting Talents Relying on High-level Scientific Research), and the
2019 Hunan Province Postgraduate Outstanding Professional Case
Foundation of China (titled with High-Performance Computing
Series Case Library).

REFERENCES
[1] Blaise Barney. Introduction to parallel computing. https://computing.llnl.gov/

tutorials/parallel_comp/, 2019.
[2] Donald Johnson, David Kotz, and Fillia Makedon. Teaching parallel computing

to freshmen. 1994. Conference on Parallel Computing for Undergraduates, 1994.
[3] Nsf/ieee-tcpp curriculum working group. nsf/ieee-tcpp curriculum initiative

on parallel and distributed computing - core topics for undergraduates. tech-
nical report, ieee-tcpp. http://tcpp.cs.gsu.edu/curriculum/?q=system/files/
NSF-TCPP-curriculum-version1.pdf, 2012.

[4] Joint task force on computing curricula, association for computing machinery
(acm) and ieee computer society. computer science curricula 2013: Curriculum
guidelines for undergraduate degree programs in computer science. Technical
report, New York, NY, USA, 2013. 999133.

[5] André B. Bondi. Characteristics of scalability and their impact on performance.
In Proceedings of the 2nd International Workshop on Software and Performance,
WOSP ’00, pages 195–203, New York, NY, USA, 2000. ACM.

[6] G. von Laszewski. An interactive parallel programming environment applied
in atmospheric science. In Proceedings of the 6th Workshop on the Use of Parallel

Processors in Meteorology, G.-R. Hoffman and N. Kreitz, Eds., European Centre for
Medium Weather Forecast. Reading, UK: World Scientific, pages 311–325, 1996.

[7] V.P. Kumar and A. Gupta. Analyzing scalability of parallel algorithms and
architectures. Journal of Parallel and Distributed Computing, 22(3):379–391, Sep
1994.

[8] J. Y. Shi, M. Taifi, A. Pradeep, A. Khreishah, and V. Antony. Program scalability
analysis for hpc cloud: Applying amdahl’s law to nas benchmarks. In 2012 SC
Companion: High Performance Computing, Networking Storage and Analysis, pages
1215–1225, Nov 2012.

[9] Xin Li. Scalability: strong and weak scaling. https://www.kth.se/blogs/pdc/2018/
11/scalability-strong-and-weak-scaling/, 2018.

[10] Hesham El-Rewini and Mostafa Abd-El-Barr. Advanced computer architecture
and parallel processing. John Wiley & Sons. ISBN 978-0-471-47839-3., 2005.

[11] JJ Dongarra. On the Future of High Performance Computing: How to Think for
Peta and Exascale Computing. Hong Kong University of Science and Technology
Hong Kong, 2012.

[12] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction
to Parallel Computing (2nd Edition). Pearson Education Limited, 2003.

[13] E. Saule. Experiences on teaching parallel and distributed computing for under-
graduates. In 2018 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pages 361–368, May 2018.

[14] Yousun Ko, Bernd Burgstaller, and Bernhard Scholz. Parallel from the beginning:
The case for multicore programming in the computer science undergraduate
curriculum. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education, SIGCSE ’13, pages 415–420, New York, NY, USA, 2013. ACM.

[15] D. J. John. Integration of parallel computation into introductory computer science.
In Proceedings of the Twenty-third SIGCSE Technical Symposium on Computer
Science Education, SIGCSE ’92, pages 281–285, New York, NY, USA, 1992. ACM.

[16] Lori Pollock and Mike Jochen. Making parallel programming accessible to
inexperienced programmers through cooperative learning. In Proceedings of
the Thirty-second SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’01, pages 224–228, New York, NY, USA, 2001. ACM.

[17] H. Neeman, J. Mullen, L. Lee, and G. K. Newman. Supercomputing in plain
english: Teaching high performance computing to inexperienced programmers.
In Proceedings of the 3rd LCI International Conference on Linux Clusters: The HPC
Revolution, 2002.

[18] Shane Frederick. Cognitive reflection and decision making. Journal of Economic
perspectives, 19(4):25–42, 2005.

[19] Weather research and forecasting model. national center
for atmospheric. https://ncar.ucar.edu/what-we-offer/models/
weather-research-and-forecasting-model-wrf, 2020.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 65

https://computing.llnl.gov/tutorials/parallel_comp/
https://computing.llnl.gov/tutorials/parallel_comp/
http://tcpp.cs.gsu.edu/curriculum/?q=system/files/NSF-TCPP-curriculum-version1.pdf
http://tcpp.cs.gsu.edu/curriculum/?q=system/files/NSF-TCPP-curriculum-version1.pdf
https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/
https://www.kth.se/blogs/pdc/2018/11/scalability-strong-and-weak-scaling/
https://ncar.ucar.edu/what-we-offer/models/weather-research-and-forecasting-model-wrf
https://ncar.ucar.edu/what-we-offer/models/weather-research-and-forecasting-model-wrf

Promoting HPC Best Practices with the POP Methodology
Fouzhan Hosseini

The Numerical Algorithms Group
Manchester, UK

fouzhan.hosseini@nag.co.uk

Craig Lucas
The Numerical Algorithms Group

Manchester, UK
craig.lucas@nag.co.uk

ABSTRACT
The performance of HPC applications depends on a wide range of
factors, including algorithms, programming models, library and
language implementations, and hardware. To make the problem
even more complicated, many applications inherit different lay-
ers of legacy code, written and optimized for a different era of
computing technologies. Due to this complexity, the task of under-
standing performance bottlenecks of HPC applications and making
improvements often ends up being a daunting trial-and-error pro-
cess. Problematically, this process often starts without having a
quantitative understanding of the actual behavior of the HPC code.

The Performance Optimisation and Productivity (POP) Centre
of Excellence, funded by the EU under the Horizon 2020 Research
and Innovation Programme, attempts to establish a quantitative
methodology for the assessment of parallel codes. This method-
ology is based on a set of hierarchical metrics, where the metrics
at the bottom of the hierarchy represent common causes of poor
performance. These metrics provide a standard, objective way to
characterize different aspects of the performance of parallel codes
and therefore provide the necessary foundation for establishing a
more systematic approach for performance optimization of HPC
applications. In consequence, the POPmethodology facilitates train-
ing new HPC performance analysts. In this paper, we will illustrate
these advantages by describing two real-world examples where we
used the POP methodology to help HPC users understand perfor-
mance bottlenecks of their code.

KEYWORDS
Parallel performance analysis, HPC performance optimization, POP
metrics

1 INTRODUCTION
High-Performance Computing (HPC) is an essential tool for science
and industry. It is used to solve diverse problems such as weather
forecasting, material design, drug discovery, climate modeling and
predictions, etc. Most HPC facilities represent a major capital invest-
ment and run at a high level of utilization. Improving the efficiency
of application software running on these facilities means less time
to solution and more capacity to solve larger, more challenging
problems.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/12/2/13

Today’s HPC facilities allow using hundreds to hundreds of
thousands of cores to perform extensive calculations and process
large amounts of data. Efficient use of these facilities has been
proven to be extremely challenging. While HPC applications are
often designed with performance in mind, many suffer from poor
performance; here, unexpected behavior is more likely to happen,
and an excellent design choice for a given problem size and a par-
ticular hardware might lead to poor performance for a different
configuration.

There has been significant research and engineering effort to
build tools that support performance optimization of HPC appli-
cations by collecting and analyzing their runtime behavior; for
examples, see [5]. However, profiling or tracing HPC applications
often results in large amounts of performance data that are difficult
to interpret beyond simple observations. There is often a lack of a
quantitative understanding of the actual behavior of parallel appli-
cations, and the performance optimization task, in turn, becomes a
trial-and-error and ad-hoc process.

Performance Optimisation and Productivity (POP) is a Centre
of Excellence (CoE) in HPC funded by the EU under the Horizon
2020 Research and Innovation Programme. The mission of POP [6]
is to provide performance optimization and productivity services
for HPC applications in all domains. POP attempts to achieve this
while establishing general principles and systematic methods for
parallel performance optimization.

POP has defined a scalable performance analysis methodology
based on a set of hierarchical metrics [7], where each metric rep-
resents a common cause of inefficiency in parallel applications.
These metrics are calculated using basic runtime statistics and pro-
vide a standard, objective way to characterize different aspects of
performance of parallel codes, such as communication overhead
and load imbalance. These metrics allow comprehensive compar-
ison of the performance of a parallel application across different
platforms or with different configurations (e.g. different numbers
of threads/processes). This allows for a better understanding of
program efficiency, quick diagnosis of performance problems, and
identification of target kernels for code refactoring.

In Section 2 of this paper, we provide an overview of POPmetrics
for Message Passing Interface (MPI) applications and their calcu-
lation. Section 3 and 4 review performance assessments of two
parallel applications using POP methodology. These examples are
chosen from different domains: molecular dynamics simulation,
Section 3, and computational fluid dynamics, Section 4. Section 5
concludes the paper.

Volume 12, Issue 2 Journal of Computational Science Education

66 ISSN 2153-4136 February 2021

https://doi.org/10.22369/issn.2153-4136/12/2/13

2 POP METRICS FOR PARALLEL
PERFORMANCE ANALYSIS

In this section, we review the MPI performance metrics used and
promoted by the POP CoE [7]. These metrics measure relative im-
pact of parallel inefficiency factors on overall performance and
provide a quantitative understanding of parallel application behav-
ior.

The hierarchy of POP metrics for pure MPI applications, in fact
applications written using any message-passing model, is shown
in Fig. 1. The Global Efficiency at the top of the hierarchy indicates
how well a parallel application scales. At this level, inefficiencies
are typically due to two factors:

(1) overhead imposed by parallelism, represented with Parallel
Efficiency, and

(2) poor scaling of computation with increasing number of pro-
cessors, represented with Computational scaling.

The Global Efficiency is defined as product of the Parallel Ef-
ficiency and the Computational scaling. Going further down the
hierarchy, both of these metrics are defined as the product of their
own sub-metrics.

For MPI applications, the Parallel Efficiency reports inefficien-
cies due to either uneven distribution of computational work or
overhead of data communication and synchronization between
processes. These are measured with the Load Balance and the Com-
munication Efficiency, respectively.

These two metrics are calculated using basic statistics from a
program execution, including the total runtime and the computa-
tion time per process. Here, the computation time refers to the time
that useful instructions are being executed, e.g. it excludes the CPU
time in the MPI library. The Load Balance is defined as the ratio
of the average computation time of all processes to the maximum
computation time across all processes. The Communication Effi-
ciency is defined as the ratio of maximum computation time to the
total runtime.

The Communication Efficiency includes two metrics: Transfer
Efficiency and Serialization Efficiency. The former indicates per-
formance loss due to actual data transfer time. The latter reveals
communication inefficiencies due to idle time within communica-
tion, i.e. when no data is transferred. This happens when processes
wait at communication or synchronization points for other pro-
cesses to arrive. To calculate these two metrics, we need to calculate
the total runtime of the application on a system with an ideal com-
munication network, i.e. what the runtime would be if data transfer
were instantaneous. The Transfer efficiency is the ratio of the run-
time on an ideal network to the runtime on the real system, and the
Serialization Efficiency is the ratio of the maximum computation
time to the total runtime on an ideal network.

Going up in the metrics hierarchy, the Computational Scaling
shows how well the computation load scales with increased par-
allelism. It is calculated with respect to a reference execution case
using total computation time, i.e. the time spent executing useful
instructions summed over all processes. For example, when analyz-
ing strong scaling behavior, it is calculated as the ratio of the total
computation time for a reference case such as one processor (or
one node) to the total computation time as number of processors
(or nodes) is increased.

Multiple issues can lead to a poor Computational Scaling value,
and they can be investigated using hardware performance counter
data via interfaces such as PAPI counters [4]. In the POP hierarchy
of metrics, the Computational Scaling is composed of three metrics:

• Instruction Scaling: compares the total number of instruc-
tions executed for different numbers of threads/processes.
Decreasing values of this metric indicate that total computa-
tion load increases with employing more processes.
• Instruction Per Cycle (IPC) Scaling: compares how many in-
structions per cycle are executed for different numbers of
threads/processes. Decreasing values indicate that rate of
computation has slowed down. Decreasing cache hit rate
and exhaustion of memory bandwidth are typical causes.
• Frequency Scaling: compares the processor frequency for
different numbers of threads/processes. Decreasing values
indicate that with increasing load, some cores operate with
lower frequency.

Basic runtime statistics which are needed to calculate the POP
metrics can be collected using almost any performance analysis tool.
However, automatic calculation of the POP metrics is supported
in the tools developed by Barcelona Supercomputer Center (BSC)
[2] and the Jülich Supercomputing Centre (JSC) [9]. The former
family includes Extrae for collecting performance data, Dimemas
for simulating behavior of MPI applications under different net-
work conditions, and Paraver and Basic Analysis for post-mortem
trace analysis, including calculation of the POP metrics. The lat-
ter includes Scalasca and Cube for parallel performance analysis;
Scalasca uses Score-p [10] for instrumenting parallel applications
and collecting performance data.

By definition, the POP efficiency metrics can take values between
0 and 1, with higher numbers representing better performance. As a
rule of thumb, values above 0.8 are considered acceptable, whereas
lower values indicate performance issues that need to be explored
in detail.

3 EXAMPLE 1 - MOLECULAR DYNAMICS
SIMULATION

In this section, we describe the use of the POP metrics in assessing
parallel performance of a molecular dynamics simulation (MDS)
code. We call this code E1-MDS. E1-MDS uses MPI and consists
of a legacy core written in Fortran with a layer of modern C++
on top. We did not have access to the source code. Performance
data was collected by code developers using Extrae [2], running
the application on their in-house server machine with a dual Intel
Xeon Gold 6248 CPU (40 cores per socket).

Extrae uses instrumentationmechanisms1 to collect performance
data at known application points (e.g at MPI function calls) and
collects trace data of the application runtime behavior. All perfor-
mance data can be gathered in one file for post-mortem analysis.
We were given trace data for the application running on 2, 10, 20,
30, and 40 cores, solving the same problem. Given these trace files,
we used Basic Analysis [2] to calculate the POP metrics.

1Sampling mechanisms are supported as well.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 67

Figure 1: POP MPI Parallel Efficiency Metrics.

E1-MDS has three stages: initialization, main body of the sim-
ulation, and finalization. The time spend in initialization and fi-
nalization phases is negligible in comparison with the main body.
Therefore, the performance assessment was focused on the second
stage, i.e. the main body was the Region of Interest (ROI) for this
assessment.

Figure 2 and 3, respectively, show the scalability plot for E1-MDS
and the POP metrics calculated for ROI using 2, 10, 20, 30, and 40
cores. As shown in Fig. 2, the speedup drops below 80% of the ideal,
i.e. linear speedup, on 10 cores, and it does not scale well beyond
that. This is also evident in the Global Efficiency metric; it drops to
73% on 10 cores and gets as low as 36% on 40 cores.

Figure 2: E1-MDS Scalability plot.

Figure 3 shows that the POP metrics decrease as the number of
cores is increased. The values of these metrics reveal which factors
contribute more in the loss of performance. The Computational
Scaling drops below 80% on 20 cores, with the Instruction Scaling
being the fastest dropping factor. The Parallel efficiency also drops
below 80% on 30 and 40 cores, with the load imbalance being the
major contributing factor. Therefore, according to the POP metrics,
poor instruction scaling and load imbalance are the twomain factors
that limit scalability of the application.

Figure 3: E1-MDS, the POPmetrics for ROI: poor instruction
scaling and load imbalance limit scalability of the applica-
tion.

The findings of the POP metrics were confirmed with further
analysis of the trace data using Paraver [2]. The next step was to
report our findings to the developers of E1-MDS. They could rather

Volume 12, Issue 2 Journal of Computational Science Education

68 ISSN 2153-4136 February 2021

quickly put their fingers on regions of the code that caused load
imbalance. This, however, was not the case for the Instruction Scal-
ing. It took some digging in the algorithms and the code to confirm
that poor Instruction Scaling was due to duplicated computation.
This is one of the strengths of the POP metrics. They can provide
an insight into a code of which developers are ignorant.

This example showed how the POPmetrics can help us to quickly
diagnose the causes of poor parallel performance. This allows for a
better understanding of program efficiency and the identification of
target kernels for code refactoring. In case of E1-MDS, algorithmic
changes are needed to make the code scalable on higher numbers
of cores; however, using hybrid parallelism, i.e. OpenMP + MPI, can
be a quick way to get better performance on the existing hardware
with minimum code refactoring. Running the code with fewer MPI
processes and using OpenMP to exploit extra free cores will improve
instruction scaling and load imbalance.

4 EXAMPLE 2 - COMPUTATIONAL FLUID
DYNAMICS

Our second example is a computational fluid dynamics code. It is an
incompressible flow solver, and we refer to it as E2-CFD. E2-CFD
uses MPI for parallelism, it is written in modern C++, and it depends
on a couple of libraries for numerical computation. We had access
to the source code. Performance data was collected using Scalasca
[9], running E2-CFD on MareNostrum-IV [3] using 1, 2, 4, 8 and 16
nodes, where each node has 48 cores. Scalasca supports calculation
of the POP metrics.

E2-CFD scales well on a couple hundred cores, and the speedup
drops below 80% of ideal on 768 cores (16 nodes). The POP metrics
for ROI are shown in Fig. 4. As can be seen, theGlobal Efficiency only
drops below 80% on 768 cores with the Communication Efficiency
and especially the serialization being the major contributing factors.
The IPC Scaling improves on higher number of cores, likely due to
better cache access. The Instruction Scaling also drops by about 8%
on 768 cores but it is still above 90% and in the acceptable range. In
short, the POP metrics suggest that for code optimization we need
to find the regions of the code that cause low Serialization Efficiency.
Serialization typically happens due to at least one process arriving
early/late at a synchronization point.

Figure 4: E2-CFD, the POP metrics for ROI: serialization is
the main factor that limits scalability

To identify causes of poor Serialization Efficiency, we used delay
cost analysis [1], which is available in Scalasca. The delay cost
metric highlights the root causes of serialization by attributing
processes’ waiting time to the routines causing it [8].

This further analysis identified that low Serialization Efficiency
was mainly related to a library function call, and it was caused by
regions of computational load imbalance between MPI synchroniza-
tion points and growing waiting time, especially in MPI collective
calls.

In this example, POP metrics provide a quick insight on the
causes of parallel performance loss. While we used other tools
for further analysis and to locate problematic regions of code, the
choice of this tool was guided by the POP metrics.

5 CONCLUSION
Attempts to optimize performance of HPC applications start with
collecting performance data. This could result in large amounts
of performance data that are difficult to interpret beyond simple
observations. The problem is often a lack of a quantitative under-
standing of the actual behavior of HPC applications. To address this,
POP CoE [6] has defined a set of hierarchical metrics [7], where
each metric represents a common cause of inefficiency in parallel
applications.

In this paper, we described the use of the POP methodology with
two real-word examples. In both cases, POP metrics quickly and
correctly highlighted causes of parallel inefficiency and provided
the knowledge necessary to decide the best course of action to
improve efficiency of the parallel applications. Both examples are
production codes used in their respective communities. They belong
to different domains of science and technology and run on different
scales. This is the other advantage of the POP metrics; they work
across domains and scales. The POP metrics establish a systematic
and efficient approach for parallel performance evaluation, help
HPC users to better understand performance bottlenecks of their
codes, and facilitate training new HPC performance analysts.

REFERENCES
[1] D. BOHME, M. GEIMER, L. ARNOLD, F. Voigtlaender, and F. Wolf. 2016. Iden-

tifying the root causes of wait states in large-scale parallel applications. ACM
Trans. On Parallel Computing 3, 2 (2016).

[2] BSC-tools [n. d.]. Perforamnce Parallel Tools Developed at BSC.
https://tools.bsc.es.

[3] MareNostrum [n. d.]. https://www.bsc.es/marenostrum/marenostrum.
[4] PAPI [n. d.]. Performance Application Programming Interface.

http://icl.cs.utk.edu/papi/.
[5] POP [n. d.]. Parallel Performance Tools. https://pop-coe.eu/partners/tools.
[6] POP [n. d.]. The POP CoE. https://pop-coe.eu/.
[7] POP-Metrics [n. d.]. POP Standard Metrics for Parallel Performance Analysis.

https://pop-coe.eu/node/69.
[8] Scalasca [n. d.]. Performance properties. https://apps.fz-juelich.de/scalasca/

releases/scalasca/2.5/help/scalasca_patterns-2.5.html#delay
[9] Scalasca [n. d.]. A Software Tool for Performance Optimization of Parallel

Programs. https://www.scalasca.org.
[10] Score-p [n. d.]. Scalable Performance Measurement Infrastructure for Parallel

Codes. https://www.vi-hps.org/projects/score-p/.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 69

https://apps.fz-juelich.de/scalasca/releases/scalasca/2.5/help/scalasca_patterns-2.5.html#delay
https://apps.fz-juelich.de/scalasca/releases/scalasca/2.5/help/scalasca_patterns-2.5.html#delay

	

	

	06-body.pdf
	01-purwanto.pdf
	Abstract
	1 Introduction
	2 First-Year Recap
	3 Second-Year Improvements
	3.1 Revised Workshop Schedule
	3.2 Rewriting the ``Data-Intensive'' Modules
	3.3 "Hackshops"
	3.4 Participant Recruitment and Selection
	3.5 Lesson Developers' Training

	4 Assessments and Lessons Learned
	4.1 Attendance Retention
	4.2 Knowledge Assessment
	4.3 Hackshops

	5 Pilot Online Workshop
	6 Summary and Future Direction
	Acknowledgments
	References

	02-chakravorty.pdf
	1. INTRODUCTION
	2. ONLINE TRAINING AND EDUCATION
	2.1 Short Courses
	2.2 Primers

	3. EXPERIMENTAL DESIGN
	4. RESULTS AND FUTURE WORK
	4.1 Short Courses Offered
	4.2 Primer Courses Offered
	4.3 Participation Trends
	4.4 Learner Persistence
	4.5 Staged Curricular Materials
	4.6 Efficacy of Online Videos

	5. CONCLUSIONS
	6. CHALLENGES AND FUTURE WORK
	7. SUPPORTING INFORMATION
	8. ACKNOWLEDGEMENTS
	9. REFERENCES
	A. REPRODUCIBILTY INDEX

	03-dey.pdf
	1. RATIONALE
	2. DISCUSSION
	2.1 Casual Classroom
	2.2 Gamifying the Classroom
	2.3 Open Curriculum In The Classroom
	2.4 Relating Material to Current Events
	2.5 Flipping the Classroom
	2.6 Peer Groups and Paired Programming
	2.7 Technology Options

	3. LESSONS LEARNED, CONCLUSIONS
	4. REFERENCES

	05-weeden.pdf
	1. INTRODUCTION
	2. METHODS
	2.1 Recruiting Mentors and Students
	2.2 Receiving and Reviewing Applications
	2.3 Training Students
	2.4 Reviewing Student Work

	3. RESULTS
	4. DISCUSSION
	5. ACKNOWLEDGMENTS
	6. REFERENCES

	06-backhaus.pdf
	1. INTRODUCTION
	2. RE-PURPOSING TRAINING
	2.1 Introduction to Nimbus: In-Person
	2.2 Using the Nimbus Research Cloud: Virtual
	2.3 Design Considerations & Approach to Moving Online

	3. SUPPORTING SELF-GUIDED LEARNING
	4. CREATING NEW INTERMEDIATE AND ADVANCED CONTENT: CONTAINERS
	4.1 Creating a Baseline of Knowledge: Generic Container Webinars
	4.2 Building Expertise: Bespoke, Hands-on Container Workshops

	5. DELIVERING INTERACTIVE HANDS-ON VISUALISATION TRAINING
	6. COMMUNICATING WITH AND SUPPORTING TRAINERS AND TRAINEES
	7. TALKING THE TALK, WALKING THE WALK
	8. RESULTS: TRAINING DELIVERY AND SCALABILITY
	9. CONCLUSIONS
	10. ACKNOWLEDGMENTS
	11. REFERENCES

	07-chen.pdf
	Abstract
	Acknowledgments
	References

	08-bautista.pdf
	Abstract
	1 Introduction
	2 BACKGROUND
	3 DEFINITIONS
	3.1 Directed Internship
	3.2 Directed Apprenticeship

	4 LOGISTICS
	4.1 Assumptions of the Program Participants
	4.2 The Directed Approach
	4.3 What Makes It Work?

	5 POSITIVE OUTCOMES
	6 CONCLUSION AND FURTHER WORK
	Acknowledgments
	References

	09-ma.pdf
	1. BACKGROUND
	1.1 StackExchange and Discourse
	1.2 Broadening Participation

	2. Ask.CI 2020
	2.1 Events, Meetings and Conference Calls
	2.2 Question of the Week
	2.3 Friday Factoid and Sunday Science

	3. INFRASTRUCTURE
	3.1 Q&A and Discussion Zone
	3.2 Tags
	3.3 Voting

	4. EXPANSION VIA LOCALES
	5. EVALUATION AND METRICS
	6. LESSONS LEARNED AND FUTURE PLANS
	6.1 Creating a Workflow Shift Takes Time
	6.2 Discourse Flexibility Allows Creativity in Outreach Not Possible with StackExchange
	6.3 Convivial Weekly Meetings Have Yielded a Dedicated Group of Moderators and Allow for Ebb and Flow of Individual Workloads
	6.4 Outreach is Key
	6.5 Cross-Posting to Specialized Communities of Experts for Specific Topics
	6.6 Locales Have Great Potential When Institution/Community of Interest is Ready
	6.7 Lessons Learned and Future Plans

	7. ACKNOWLEDGEMENTS
	8. REFERENCES

	10-colbry.pdf
	1. INTRODUCTION
	2. COURSE DESIGN
	2.1 Jupyter Notebooks
	2.2 Course Hardware Resources
	2.3 Assignments and Assessments
	2.3.1 Pre-Class Assignments
	2.3.2 In-Class Assignments
	2.3.3 Homework Assignments
	2.3.4 Exams
	2.3.5 Student Projects

	3. COURSE SCHEDULE AND TOPICS COVERED
	4. EXAMPLE
	5. STUDENT FEEDBACK
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

	11-peoples.pdf
	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. CREATIVE SOFTWARE ENGINEERING ASSESSMENT SPECIFICATIONS
	3.1 Concurrent Systems
	3.1.1 Concurrent Systems: Simulate Pepper Operation
	3.1.2 Concurrent Systems: Pepper as a Client-server System
	3.1.3 Concurrent Systems: Android OS

	3.2 Data Structures

	4. SOFTWARE ENGINEERED SOLUTIONS
	4.1 Concurrent Systems: Pepper Operation Simulation
	4.1.1 Initializing the Pepper Programme
	4.1.2 Pepper Producer Class
	4.1.3 Pepper Consumer Class

	4.2 Concurrent Systems: Pepper as a Client-Server System
	4.3 Concurrent Systems: Android OS
	4.4 Data Structures
	4.4.1 Setting Up Data Structures
	4.4.2 Organising and Searching Data Structures

	5. CONCLUSIONS
	6. REFERENCES

	12-chen.pdf
	Abstract
	1 Introduction
	1.1 Challenges of Understanding Scalability
	1.2 Research Goals

	2 Background
	2.1 Parallel Computing Course and Scalability
	2.2 Real-World Scalability and Cognitive Ability

	3 Study Design
	3.1 Course Design
	3.2 Correlation of Course Design and Research Goals

	4 Results
	4.1 RG1: Scalability Understanding and Performance
	4.2 RG2: Real-World vs. Parallel Computing Scalability
	4.3 RG3: Students' Questions Valuable to the Understanding to Scalability

	5 Conclusions
	Acknowledgments
	References

	13-hosseini.pdf
	Abstract
	1 Introduction
	2 POP Metrics for Parallel Performance Analysis
	3 Example 1 - Molecular Dynamics Simulation
	4 Example 2 - Computational Fluid Dynamics
	5 Conclusion
	References

