
Creative Assessment Design on a Master of Science
Degree in Professional Software Development

Cathryn Peoples
Ulster University
United Kingdom

c.peoples@ulster.ac.uk

ABSTRACT

A Master of Science (MSc) conversion degree is one which retrains

students in a new subject area within a fast-tracked period of time.

This type of programme opens new opportunities to students

beyond those gained through their originally-chosen degree.

Students entering a conversion degree do so, in a number of cases,

to improve career options, which might mean moving from an

initially-chosen path to gain skills in a field that they now consider

to be more attractive. With a core goal of improving future

employability prospects, specific requirements are therefore placed

on the learning outcomes achieved from the course content and

delivery. In this paper, the learning outcomes are focused on the

transferable skills intended to be gained as a result of the

assessment design, disseminated to a cohort of students on a Master

of Science (MSc) degree in Professional Software Development at

Ulster University, United Kingdom. The coursework submissions

are explored to demonstrate how module learning has been applied,

in a creative way, to facilitate the assessment requirements.

Keywords

Conversion degree, Java, Master of Science (MSc).

1. INTRODUCTION
A Master of Science (MSc) conversion degree is one which retrains

students in a new subject area within a fast-tracked period of time.

A subject which would be taught within a three-year period in an

undergraduate degree is instead taught during one intensive year.

This type of programme opens new opportunities to students

beyond those gained through their originally chosen degree. For a

number, it is critical that what is learnt during the programme

improves their employability potential in a field which is new to

them. Students entering a conversion degree do so, in a number of

cases, to improve career options, which might mean moving from

an initially-chosen path to gain skills in a field that they now

consider to be more attractive. The conversion degree can help

them to gain the required knowledge and skillsets to do so.

With a core goal of improving future employability prospects,

specific requirements are therefore placed on the learning outcomes

achieved from the course content and delivery. In this paper, the

learning outcomes are focused on the transferable skills intended to

be gained as a result of the assessment design. Assessments

presented in this paper were disseminated to a cohort of students on

a Master of Science degree in Professional Software Development

at Ulster University, United Kingdom. This is a conversion degree

into Information Technology for students from non-IT

backgrounds.

To understand the specific reasons that students had become part of

the degree programme, and to avoid assuming that it was to

improve their employability options, a survey was disseminated at

the beginning of the academic year. This was done with the core

objective of tailoring the teaching approach to meet their needs.

When asked about their reasons for completing the degree, the

majority of responses were focused around the fact that students

were studying software development with the goal of employment

in this field (Table 1). Going deeper into the reasons that students

wanted to work in this field, they acknowledged it was due to their

passion for technology, and because they identified the IT industry

as one with a more certain chance of employment than others.

When designing the teaching approach, it was therefore considered

to be important to support students moving into this industry and to

improve their prospect of doing so.

Transferable skill development was encouraged through the design

of the module assessment, with students being assessed on their

ability to apply knowledge gained during the teaching period while

inherently developing transferable skills in doing so. To achieve

this, assessments were shaped around the state-of-the-art in

technology. The objective was to select news stories which are

reported internationally and which would hopefully appeal to

student interest, an approach in line with the belief that, “… the

concept of ‘student engagement’ is predicated on the belief that

learning improves when students are inquisitive, interested or

inspired, …” [1]. Furthermore, “When a topic connects to what

students like to do, engagement deepens as they willingly spend

time thinking” [2]. In line with the objective of inherently gaining

transferable skills, it was hoped that selecting popular news stories

would give students an opportunity to develop their ability to

discuss technical concepts comfortably, to become critical in the

selection and application of their knowledge to solve real-life

problems, and to appreciate the context of their learning in relation

to the wider field.

It is acknowledged in [4] that soft skills such as those described

above are particularly important, in recognition of the fact that, “In

an increasingly global, technological economy, they say, it isn’t

enough to be academically strong. Young people must also be able

to work comfortably with people from other cultures, solve

problems creatively, write and speak well, think in a

multidisciplinary way, and evaluate information critically” [4].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/11

Volume 12, Issue 2 Journal of Computational Science Education

46 ISSN 2153-4136 February 2021

Table 1. Student reasons for completing the degree.

Why are you studying for this degree?

 “Interested in computers, hope will lead to employment”

“Always wanted to learn coding, love technology, lack of

programming knowledge held me back”

“To get a job in software development”

“Want career as a programmer or developer, as software

development has good prospects and I enjoy logic and

following patterns”

“Interested in programming language, could use skills from

masters and linguistic knowledge to develop voice-

activated software”

“To broaden skills for strong professional career in future”

“Interested in computers, but did PE teaching, employment

limited”

It is therefore in an attempt to bridge the gap between gaining the

necessary knowledge and making the students employable that the

assessments presented in this paper have been designed. The

objective of this paper is to present a selection of the assessments

which were designed to support student employability after

completing the MSc conversion degree.

The remainder of this paper continues as follows. In Section 2, a

literature review is presented, which considers how assessments

can be designed to maximize student engagement with them, how

to apply creativity in assessment design, and how to mark creative

assessments consistently. This is followed in Section 3 with

presentation of the creative coursework specifications which are the

focus of this paper, together with a selection of the solutions in

Section 4 to demonstrate how students harnessed their

programming skills to fulfil the assessment requirements. Finally,

the paper concludes in Section 5.

2. LITERATURE REVIEW
The assessments which are presented in this paper are used to

examine a student’s grasp of the entire module content and to apply

their knowledge to a software development problem in a creative

way; they are therefore summative assessments. As defined by the

Council for the Curriculum, Examinations and Assessment [5]:

- “Summative assessment usually takes place after pupils have

completed units of work or modules at the end of each term and/or

year.

- The information it gives indicates progress and achievement

usually in grade-related or numerical terms.

- It’s the more formal summing-up of a pupil’s progress.

- The information can then be … used for certification as part of a

formal examination course.”

Summative assessment is important due to the role it plays in

determining a student’s understanding of the module content at the

end of the teaching period. It is therefore using this teaching

material that it can be determined if module learning objectives

have been achieved on a per student basis. There are high stakes

associated with summative assessments, as it is not possible to

revise submissions or receive feedback for improving future work,

as is the case with the alternative assessment type, formative. It is

therefore important that summative assessments are designed in a

way which will maximize the opportunity that students can perform

to the best of their ability.

King and English (2015) report that students respond most

effectively to assessments which use real world scenarios, with

problems contextualized in a way which students can understand

[7]. This concurs with an opinion of Kearney and Perkins (2014),

in that, real-world problems “better engage them in their

coursework and better prepare them for the world outside the

classroom” as opposed to “research projects that do not have

significance outside of the classroom” [26]. This, essentially,

describes the concept of authentic assessment. “Authentic

assessment is based on students’ abilities to perform meaningful

tasks they may have to do in the ‘real world.’ In other words, this

form of assessment determines students’ learning in a manner that

goes beyond multiple choice tests and quizzes” [27]. These findings

therefore validate the effectiveness of the design approach applied

to the assessments presented in this paper.

The conclusions reached by King and English (2015) are based on

a study for which students were “recruited” as Optical Engineers

and asked to build an optical instrument which could be used to spy

on people. They concluded from this study that the assessment was

appropriate for engineering students, given that it enabled ability to

structure the stages of design, construction, and redesign in the

development. This was in support of the fact that, “meaningful

STEM-integration is possible when students have the prior

knowledge to apply to a well-structured engineering design task”

[7]. It is agreed in this paper that problem-solving ability is more

likely when students are providing solutions to problems which

they can contextualize, through either viewing them and/or having

first-hand experience of the problems involved. It is with this

understanding that the assessments presented in this paper have

been designed. While it may be unlikely that students can have

first-hand experience of the assessment problems presented in this

paper, each domain in the assessment was chosen for the reason

that the software might be one which they use in their day-to-day

lives, e.g. Facebook, or because it is one highly likely to be of

interest to anyone involved in technology, e.g. the emotion engine,

Pepper the robot. Students were asked to use their technical

knowledge to create similar systems, a form of situated cognition

which helps them to recognize the placement of their abilities

within the wider field and to understand the ways in which popular

technologies are created in reality. This was done in recognition of,

“the need to draw explicit connections among topics for retention

of learning” [8]. Furthermore, for students who are new to the IT

field, given the requirement for entry onto the degree programme

that students have no prior IT education, it was hoped that using

state-of-the–art technologies would help them to, “keep pace with

the rapid change and recent development in this era of

globalization, …” [9].

The approach of selecting technologies which students use in their

day-to-day lives as the focus of each assessment was an action

taken to “facilitate creativity in which learners are motivated to

discover things by themselves” [9]. This was based on the fact that,

“Intrinsic motivators include fascination with the subject, a sense

of its relevance to life and the world, a sense of accomplishment in

mastering it, and a sense of calling to it” [24].

The assessment specifications were presented in detail, and there

was limited flexibility in what should be achieved. This is in spite

of the fact that, “There have been calls in the literature for changes

to assessment practices in higher education, to increase flexibility

and give learners more control over the assessment process” [10].

Students were not restricted, however, in how they could achieve

it, with marks awarded for the creative ways in which their

technical knowledge was harnessed. As, “Research has shown that

creativity leads to intellectual development and brain growth, when

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 47

creativity is nurtured …” [9], it was an objective to ensure that

students focused their research efforts on how they achieved the

solution, as opposed to what they were providing a solution to.

“Creativity is the application of knowledge and skills in new ways

to achieve a goal” [11]. In having a creatively-designed

assessment, it was hoped that this would encourage innovation in

the solution presented by the student. This is in line with Kampylis

and Berki (2014), who state that, “Creative thinking is defined as

the thinking that enables students to apply their imagination to

generating ideas, questions and hypotheses, experimenting with

alternatives …” [12]. Asking students to build a replica system of

one they are familiar with using programming techniques gained

during the module teaching is one way to allow their creativity to

be demonstrated. It is recognized, however, that, “certain

approaches to education may possibly foster greater creativity than

others” [11]. This statement is made specifically in relation to

children of school age, with Montessori education using self-

directed creativity and collaborative play [14], and Reggio Emilia

education focusing on collaboration between children learning

from their environment [15]. It is believed that the assessment

presented in this paper has similarities to the Reggio Emilia

approach, given that the assessment is based on a technology from

the wider environment in which students operate. Furthermore, two

of the principles of Montessori are to understand the systems of

which the world exists and to support the imagination. Again, by

basing the developments on software systems which are available

from the wider environment, and by asking students to apply their

knowledge from the modules which they have been taught, it is

believed that both principles are met, helping to verify the

suitability of the assessment design.

However, “There is a lot of risk aversion in relation to assessment

design. Staff fear being too creative in case their assessment is too

challenging …” [13]. Furthermore, it is recognized that marking

creative work is challenging, given the desire to mark it quickly and

the need to mark it consistently. Jackson (2005) of the Higher

Education Academy notes that, “Of all the aspects of creativity the

one that poses the greatest challenge to teachers is how to

assess/evaluate it,” identifying that some teachers just do not know

how to assess such work [16]. This is significant, with the author

going on to explain that, “evaluation is critical to the very idea of

creativity” [16].

“Students as well as academic staff … often ask the question as to

how one marks creative writing. Indeed, they often wonder if it is

even possible? Surely, they say, this is a subjective response, a

matter of taste?” [17]. Brookhart (2013), however, proclaims that,

“We can assess creativity …”, and demonstrates how with a

“Rubric for Creativity” [18]. This is essentially based on evaluating

work according to 1) how the ideas are combined together, with the

highest levels of creativity being demonstrated when the, “Ideas

are combined in original and surprising ways …”, and 2) what is

communicated, with creativity indicated with “an original

contribution that includes identifying a previously unknown

problem, issue, or purpose” [18]. Undoubtedly, there will likely

always be some element of subjectivity when assessing creative

work; however, a rubric provides the basis for a standardized

approach to achieving this.

Computer software is one approach to assessment which can be

electronically and automatically marked [19]. Automated marking

of software programmes, however, is at odds with the concept of a

creativity focus presented in this paper: Acknowledged by

Brookhart, “… with a broad concept as creativity, there’s no single

formula that will always work” [18]. While Hill and Turner (2014)

write about “Code Originality” [19], this is concerned about

similarity between student work as opposed to an original design

through its creativity. In [20], an automated system is proposed to

assess software programs. This essentially tests its ability to

compile, given the entry of input values chosen by the instructor.

Therefore, to assess the creativity of a software program, it is

unlikely to be possible to exploit automated marking, where, using

Brookhart’s rubric [18], the creativity is assessed based on the way

in which the knowledge is put together.

It is believed that the assessments presented in this paper follow a

transformative approach to learning. According to [21],

transformative learning is described as occurring in situations

where, “… opportunities [are created] for critical thinking through

providing content that introduces new ideas.” It was the objective

that this opportunity was presented to students using state-of-the-

art technologies which students were required to mimic in their

software solutions. “Transformation then happens in a community

as students bounce ideas off one another” [21]. It was the intention

that this would be possible given that all students were set the same

task. As part of transformative learning, it is also necessary for the

instructor to, “provide the opportunity for students to act on their

new found beliefs” [21]; it was hoped that this would be achieved

through the overall assessment selection.

Practical programming solutions, such as the output required for

the assessments presented in this paper, need to be designed in such

a way that the software meets a specific target and achieves a

certain goal. In addition to this practical level of functionality,

submissions are also assessed according to how the module

knowledge has been used. This can be contrasted with a research-

based task, on the other hand, for which there can be an open and

variable outcome, the case for which simply needs to be argued.

Problem solving skills help students to work out how to reach the

end goal, with critical thinking helping them to select the relevant

elements from their learning and creative ability to apply them in a

meaningful way. These are important qualities in support of

employability: “Merely having knowledge or information is not

enough. To be effective in the workplace …, students must be able

to solve problems to make effective decisions; they must be able to

think critically” [25].

The assessments which are presented in this paper have been

designed in a manner which would support the International

Baccalaureate (IB) Learner profile [6]. IB education is an

international education programme delivered to students in school

who are aged between three and nineteen years old, which is

considered by some to be, “very well-respected by universities”

[23]. One objective of the IB programme is to develop student

skillsets such that they are internationally minded. It was hoped that

this would be achieved in these assessments through the focus on

international news stories in the field of technology, with

recognition that technical capabilities vary widely across the world.

Another IB programme objective is to develop thinkers, able to

make decisions in relation to complex problems. It was hoped that

this would be achieved in these assessments through empowering

students with the necessary knowledge to solve a problem and

giving them an interesting domain in which to apply them.

3. CREATIVE SOFTWARE

ENGINEERING ASSESSMENT

SPECIFICATIONS
At the beginning of the MSc degree programme, students are

initially exposed to two six-week modules running one after the

other on general Java software development skills, alongside firstly

Volume 12, Issue 2 Journal of Computational Science Education

48 ISSN 2153-4136 February 2021

a six-week module on Computer Hardware and then a six-week

module on Operating Systems. In Semester 2, students progress to

six-week modules on Data Structures and Databases run in parallel

with one another, followed by two six-week modules also run in

parallel on Concurrent Systems and Mobile Devices and

Applications. The assessment specifications for Data Structures

and Concurrent Systems are presented in the remainder of this

section.

3.1 Concurrent Systems
Objectives of a module on Concurrent Systems include identifying

the need for concurrent systems, providing an understanding of the

issues and requirements to be addressed when designing and

developing such systems, and providing opportunities to develop

practical systems illustrating aspects of concurrent systems.

Two assignments for the Concurrent Systems module were based

on Pepper, a humanoid robot [3]. Pepper is an emotion engine

designed to make people happy. He does this through delivering

jokes based on the emotions sensed from humans. Another

assignment on Concurrent Systems was based on the creation of a

system using Java to represent operation of the Android operating

system. Both assignments were based around the development of

systems where concurrent operation is ultimately the focus.

3.1.1 Concurrent Systems: Simulate Pepper

Operation
The first assignment was to implement a program using Java that

would simulate operation of Pepper. It was required to be a multi-

threaded solution, with each thread representing sensed data being

fed into the operating system for processing from Pepper’s ears,

eyes, and hands.

More specific system requirements were also defined in the

specification in relation to each thread: Threads should be created

to represent sensed data from Pepper’s ears, each of which requires

20 bytes of RAM per second. Similarly, Pepper’s eyes require 30

bytes of RAM per second, and Pepper’s hands require 40 bytes of

RAM per second. The total system capacity is 1,000 bytes of RAM.

The OS needs 300 bytes of RAM to run, and the supporting

activities, including drivers, required by the operating system take

up 200 bytes of RAM. After loading the OS so that it is ready to

accept workload, there are subsequently 500 bytes remaining for

application and other system activity. The CPU processes workload

at a rate of 200 bytes per second.

This scenario is essentially the Producer-Consumer problem, with

a requirement for multi-process synchronization. The queue into

which sensed data arrives is a fixed-size buffer, with a restricted

amount of space to support application and system workload. The

producers generate the sensed data, passing it to the ports into the

operating system via the buffer, which is shared with a consumer.

At the same time that the producer is producing workload, the

consumer is consuming the data, removing it from the buffer one

piece at a time. The robot’s engines can be considered to be the

consumer, processing jobs and enforcing decisions from the

system. The challenge is to ensure that the producer will not try to

add data into the buffer if it’s full, and that the consumer will not

try to remove data from an empty buffer. To avoid these

occurrences, the producer either goes to sleep or discards data if the

buffer is full. The next time the consumer removes an item from the

buffer, it notifies the producer, who starts to fill the buffer again. In

the same way, the consumer can go to sleep if it finds the buffer to

be empty. The next time the producer puts data into the buffer, it

wakes the sleeping consumer.

Each thread runs for a period of time dependent on the sensed

motion duration, or the number of bits being stored to disk and the

CPU’s processing capability. RAM availability influences the

operating system’s ability to support threads simultaneously.

Marks were awarded in this assessment for achievement of the

required functionality (35%), technical quality of the program code

(35%), dealing correctly with multiple threads (10%), adherence to

good programming practices (10%), and clarity of the instruction

sheet/booklet (10%).

3.1.2 Concurrent Systems: Pepper as a Client-server

System
For the second Pepper-based assignment, students were organized

into pairs and were required to implement a program using Java to

simulate a connection between Pepper as the client and a remote

database as the server. A server was required to hold tailored

responses to be delivered by Pepper based on the “sensed”

emotions of humans interacting with the robot. One student in the

pair was required to be responsible for the client program and one

student for the server program. As Pepper is an emotion engine, the

database was required to return jokes to a user when a sad emotion

is sensed. As a restriction, a joke was allowed to be returned once

only within a session. The user should also have the capability to

select a genre of a joke. The “database” on the server side of the

system could be held within arrays. The system was required to use

TCP sockets at the client and server sides of the network to support

communication.

Marks were awarded for achievement of the required functionality

(35%), technical quality of code (35%), dealing correctly with TCP

socket programming (15%), communication issues (robustness of

software, error handling) (5%), and adherence to good

programming practices (5%).

3.1.3 Concurrent Systems: Android OS
In another Concurrent Systems assignment, students were required

to implement a program using Java to simulate a multi-threaded

Android operating system. The system was required to support

simultaneous application threads, including a thread to start a

BubbleWitch2 session lasting 10 seconds and requiring 100 bytes

of RAM per second, and a thread to start a 20-second Spotify

stream requiring 250 bytes of RAM per second. A system and

management thread was also incorporated, requiring 50 bytes of

RAM per second and to execute for a random duration of time once

invoked. Controlling execution of the system for the purpose of

demonstrating its operation, students were required to implement a

thread to install a new security update of 2KB, which requires 150

bytes of RAM per second while installing. Overall capacity within

the system is 1,000 bytes of RAM; the OS needs 300 bytes of RAM

to run, and the drivers consume 200 bytes of RAM. After loading

the OS so that it is ready to accept workload, there are 500 bytes

remaining for application and other system activity. The CPU

processes workload at a rate of 200 bytes per second.

Marks were awarded for technical quality of the implementation

(35%), achievement of the functional requirements (35%), dealing

correctly with multiple threads and robustness of the software

(10%), and structure and presentation of the program (20%).

3.2 Data Structures
An objective of a module on Data Structures includes to provide

students with skills in using and implementing abstract data types.

The development of a social networking website, similar to

Facebook, was a coursework assignment which lent itself easily to

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 49

a module on Data Structures. Students were asked to develop a

social networking website using as many different data structures

as possible. These would typically be used to retain data associated

with each user account. Students were also asked to implement

algorithms at the back-end of the system to search this stored data,

so, for example, identifying people who might be their friends, or

providing a reminder of a friend’s upcoming birthday. Their design

would be assessed in terms of the efficiency of the operation of the

site, a feature which would be influenced by the most efficient data

structures, sorting and searching techniques taught during the

module. Certain data structures are more appropriate for certain

types of information than for others, and it was the student’s

responsibility to select the most appropriate structure and to justify

their choices.

It was therefore an assumption of the system implementation that a

repository of information would be retained to support

demonstration of the full system functionality, including options on

pages which a user may “like” and a number of users who hold

accounts with the system which a user may add as a friend.

Appropriate structure selection was important in relation to the

efficiency and reliability of its operation, where efficiency is

measured by the latency to execute a request and volume of

memory processed when executing an operation, and reliability is

measured in terms of the effectiveness of recommendations made

by the system for individual users.

Conditions were also required to be applied in the scenarios

implemented, such as, for example, the requirement that adding a

new account would require checking that the user does not already

have an account in the system — this would make demands on a

searching technique implemented — or that deleting a user account

would require deleting the user as a friend of other system users —

a feature also requiring efficient searching techniques.

Marks were awarded for achievement of the functional aspects

(30%), technical quality of the implementation (40%),

effectiveness of the design choices (15%), and originality of the

design (15%).

4. SOFTWARE ENGINEERED

SOLUTIONS
In Section 4, a selection of the programme code solutions are

presented. These are used to demonstrate the ways in which

students harnessed the technical concepts learnt during each

modules’ teaching to create the software solution. The solutions

presented are specific to one specific student for each module.

4.1 Concurrent Systems: Pepper Operation

Simulation
In a software solution for the first Concurrent System assignment,

a student created a Producer and Consumer class, which would

communicate with each other via a shared buffer to achieve

simultaneous movement of Pepper’s limbs.

4.1.1 Initializing the Pepper Programme
To begin program execution, a buffer is initialized with 500 bytes

of capacity (queue) (which fulfils the requirement set out in the

assessment specification that the original 1,000 bytes available is

also consumed by the operating system and the drivers which it

needs). A random period of time (length) defines the length of time

which the program should execute; a requirement of the

coursework is that the program runs through all operations to

demonstrate concurrent execution of the robot, and not to require

external input to trigger events. After the processor and system and

management threads are started, the moveable elements of the robot

are invoked, including Pepper’s eyes, ears, and hands.

public class Pepper {
 public static void main(String[] args) {
 PepperBuffer queue = new PepperBuffer (500);
 Random length = new Random();
 new PepperCPU(queue).start();
 new PepperSenses(“System & Management”, 50,
 queue, length.nextInt(20), 10).start();
 new PepperSenses(“eye 1”, 20, queue,
 length.nextInt(20), 10).start();
 new PepperSenses(“eye 2”, 20, queue,
 length.nextInt(20), 10).start();
 new PepperSenses(“ear 1”, 30, queue,
 length.nextInt(20), 10).start();
 new PepperSenses(“ear 2”, 30, queue,
 length.nextInt(20), 10).start();
 new PepperSenses(“hand 1”, 40, queue,
 length.nextInt(20), 10).start();
 new PepperSenses(“hand 2”, 40, queue,
 length.nextInt(20), 10).start();
 }// main
}//class

At this stage, the system producer and consumer classes are

required to both push and pull workload to and from the shared

buffer.

4.1.2 Pepper Producer Class
The Pepper Producer class achieves the functionality of generating

workload, in the sense of movements from each of Pepper’s ‘body’

parts. These are added into the shared buffer for the processing. In

a live Pepper deployment, each sense consumed from the shared

queue would result in an aspect of Pepper moving.

The concurrent threads of Pepper’s system are represented in this

solution using the PepperSenses class.

public class PepperSenses extends Thread {
 private int amountOfRam, lengthOfTime;
 private PepperBuffer queue;
 public PepperSenses(String sense,
 int amountOfRam, PepperBuffer queue,
 int lengthOfTime, int Priority) {
 this.setName(sense);
 this.amountOfRAM = amountOfRAM;
 this.queue = queue;
 this.lengthOfTime = lengthOfTime;
 this.setPriority(priority);
 }
 public void run() {
 for (int seconds = lengthOfTime; seconds >
 0; seconds--) {
 if (((int) (Math.random() * 2) +1) == 1) {
 this.pause();
 }
 else {
 this.actionOccurred();
 }
 try {
 sleep(1000);
 } catch (InterruptedException e) {}
 }
 }
}

Volume 12, Issue 2 Journal of Computational Science Education

50 ISSN 2153-4136 February 2021

Once the program is initiated (using run()), a pause() is invoked at

random to force the program to wait for a period of time to simulate

delay between activity associated with each of Pepper’s senses.

actionOccurred() is invoked during intervals outside the pause

periods, which forces workload to be added into the shared buffer

queue:

public void actionOccurred() {
 queue.put(this);
}

This workload is queued for the CPU, as the consumer, to extract

and process. This is possible due to creation of the PepperBuffer

object within PepperSenses, and initialization of the availableRAM

value:

public PepperBuffer(int totalRAM) {
 if (totalRAM <= 0)
 throw new IlegalArgumentException(“Size
 is illegal”);
 this.totalRAM = totalRAM;
 this.availableRAM = totalRAM;
}

The put() method within PepperSenses simulates producer

functionality. The wait() method is invoked until there is space in

the buffer to allow the job to be placed there; notifyAll() is then

invoked to communicate to the consumer that there is workload

available to be consumed:

public synchronized void put(PepperSenses sense) {
 int ram = sense.getAmountOfRAM();
 while(noSpace(ram)) {
 try {
 wait();
 } catch(InterruptedException ex) {
 }
 }
 buffer.add(sense);
 availableRAM -= ram;
 notifyAll();
}

The noSpace() method checks if the buffer is full, preventing new

jobs from being added, in which case the producer will wait:

public synchronized Boolean noSpace(int ram) {
 return (availableRAM < ram);
}

4.1.3 Pepper Consumer Class
The consumer removes workload from the buffer as each sensed

event becomes available and the consumer is notified of its arrival.

public class PepperCPU extends Thread {
 public void run() {
 while(true) {
 while(cpuAvailable >= 0) {
 PepperSense sense = queue.get();
 setCpuAvailableRemove(sense.getAmountOfRAM());
 sense.sleep();
 }
 try {
 this.sleep(1000);
 }catch (InterruptedException e) {
 Thread.currentThread().interrupt();
 }
 setCpuAvailable();
 }
}

The consumer first checks if the buffer is empty, which will be the

case when there are no jobs to remove. In this event, the consumer

will wait until workload has been added to the queue. When

workload is present in the queue, on the other hand, jobs are

removed by invoking the get() method:

public synchronized PepperSenses get() {
 PepperSenses sense;
 while(isEmpty()) {
 try {
 wait();
 } catch(InterruptedException ex) {
 }
 }
 sense = buffer.remove(0);
 availableRAM += sense.getAmountOfRAM();
 notifyAll();
 return sense;
}

The consumer then removes the workload and invokes notifyAll()

to inform the producer that there is increased space in the buffer to

accept new workload. The availableRAM value is also updated to

reflect the amount of RAM now available in the queue in response

to the robot movement having been dequeued.

The concept of Pepper provided a suitable context to support the

development of a concurrent system, fulfilling two of the module

objectives to “identify the need for concurrent systems” and to

“provide opportunities to develop simple practical systems

illustrating specific aspects of concurrent systems.” Furthermore,

creation of the solution required that students had an appreciation

of the main components of a concurrent system, such as the need to

have a shared buffer, and one producer and one consumer to use it.

This helped to fulfil the learning objective of the module, to

“provide an understanding of the issues and requirements to be

addressed when designing and developing such systems.”

Additionally, having this awareness required that the fourth

learning objective had been fulfilled to “introduce the underlying

principles of concurrent systems.” Organizing the development

around the concept of Pepper helped students to appreciate the

wider context within which their learning exists.

4.2 Concurrent Systems: Pepper as a Client-

Server System
In the solution, the client and server were required to connect to the

same port in order to communicate, continuously listening on the

same socket for communications between each other.

In the solution presented, the client is created and initialized using

the PepperClient class:

public class PepperClient {
 public static void main(String args[]) {
 Scanner keyboard = new Scanner(System.in);
 String serverName = “193.61.167.145”,
 username=””, response;
 Socket serverSocket;
 int serverPort = 3829;
 InputStream isFromServer;
 OutputStream osToServer;
 DataInputStream disFromServer;
 DataOutputStream dosToServer;
 try {
 serverSocket = new Socket(serverName,
 serverPort);
 isFromServer =
 serverSocket.getInputStream();
 osToServer = serverSocket.getOutputStream();

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 51

 disFromServer = new
 DataOutputStream(osToServer);
 } catch(Exception e) {}
 }
}

PepperClient is associated with port 3829. Data streams are

established to facilitate the communications, in directions both to

the server (OutputSteam osToServer) and from the server

(DataInputStream disFromServer). Sockets are additionally created

to support each data stream.

Data streams and sockets are also established on the server side in

parallel:

public class PepperServer {
 public static void main(String[] args) throws
 IOException {
 InputStream is;
 OutputStream os;
 DataInputStream disFromClient;
 DataOutputStream dosToClient;
 Socket clientSocket;
 ServerSocket listenSocket;
 int clientInt;
 int serverPort = 3829;
 listenSocket = new ServerSocket(serverPort);
 clientSocket = listenSocket.accept();
 is = clientSocket.getInputStream();
 os = clientSocket.getOutputStream();
 disFromClient = new DataInputStream(is);
 dosToClient = new DataOutputStream(os);
 boolean live = true;
 }
}

To facilitate the end-to-end communication, the server also listens

on port 3829. After the definition of these classes, the client and the

server are in a position to interact with one another. This requires

capability to communicate the mood of the user who is interacting

with Pepper. It also requires that the database of jokes is created for

return to the user in the event that their mood is one of sadness.

Due to the fact that this system is a simulation of a robot, it was

necessary to explicitly articulate the simulated user’s mood. In a

live system, this information might be autonomously collected

using the sensors for Pepper’s eyes to identify their facial

characteristics, or Pepper’s ear sensors to detect what the user is

saying. In the simulated system, this functionality is achieved by

the user entering their emotion using a keyboard, in response to a

prompt delivered by PepperClient:

public static int askForEmotion(String name) {
 Scanner keyboard = new Scanner(System.in);
 String feeling;
 System.out.print(“Tell me “ + name + “ do you feel
 sad (Y/N: “);
 feeling = keyboard.nextLine();
 if (feeling.equalsIgnoreCase(“N”)) {
 System.out.println(“\nHow do you feel “ + name
 + “?” +
 “\n1. Happy” +
 “\n2. Angry” +
 “\n3. Hungry” +
 “\n4. Scared” +
 “\n5. I want you to leave me alone”);
 return (keyboard.nextLine().charAt(0)-48);
 }
 else {
 return 6;
 }
}

PepperClient asks the user to enter an integer which indicates their

mood, in the instance that they are not feeling sad. In the instance

that the user reports that, in fact, they are feeling sad, this will be

communicated to PepperServer. Jokes are then returned to the user

from PepperServer.

while(live) {
 emotion = askForEmotion(userName);
 switch(emotion) {
 …
 case 6:
 jokeCategory = jokeGenre(username);
 String reply;
 int noOfReplys;
 dosToServer.writeInt(jokeCategory);
 noOfReplys = disFromServer.readInt();
 for(int index=0; index < noOfReplys;
 index++) {
 reply = disFromServer.readUTF();
 System.out.println(reply);
 }
 break;
 default:
 System.out.println(“I didn’t understand”);
 }
 }
}

In the case of selections 1, 2, 3, 4, or 5, Pepper will take the action

of exiting the user from the session by closing the socket, or will

return a statement to the user depending on them being happy or

hungry, essentially any case where they are not sad. In the case that

the user is sad, Pepper will return a joke to the user from the joke

database. Pepper attempts to return a joke which is personalized for

the user, by considering their preferred genre of joke. The user

therefore has a choice of selecting a knock-knock joke, a one-liner

joke, a chicken-crossing-the-road joke, a computer joke, or a pun.

Pepper similarly provided an appropriate opportunity for students

to exploit their learning of Java socket programming in a remote

client-server setup. This provided an opportunity for students to

demonstrate their “understanding of the issues and requirements to

be addressed when designing and developing such systems,” by

appreciating how a robot in fact interacts with a remote server when

responses are selected for return. Again, the “need for the

concurrent system” is highlighted in this situation, where it is

essential that interactions are delivered in the correct order in the

support of a meaningful “conversation.”

4.3 Concurrent Systems: Android OS
An OperatingSystem class is created in one implementation, which

creates and initializes the shared buffer that retains workload added

by the producer and removed by the consumer.

class OperatingSystem {
 private int contents;
 private int buffer = 1000, driver = 200,
 operSRun = 300, consumptionRate = 200,
 workload = buffer- (driver+operSRun);
 private long startTime;
 private long endTime, waitTime;
 private int waitCount = 1;

 public synchronized int get() {
 while(workload <= (driver + operSRun)) {
 try {
 wait();
 } catch (InterruptedException e) {}
 }

Volume 12, Issue 2 Journal of Computational Science Education

52 ISSN 2153-4136 February 2021

 workload = workload – consumptionRate;
 notifyAll();
 return consumptionRate;
 }
 public synchronized void put (int amount) {
 while (workload >= buffer) {
 startTime = System.currentTimeMillis();
 try {
 wait();
 } catch (InterruptedException e) {}
 endTime = System.currentTimeMillis();
 waitTime = (endTime – startTime);
 averageRequestTime(waitCount, waitTime);
 }
 contents = amount;
 workload = workload + amount;
 notifyAll();
 }
}

The OperatingSystem class initializes attributes used to support the

scenario, including the buffer size. It also contains the necessary

put() and get() methods, which are responsible for allowing

workload to be added and removed to and from the queue. When

workload is inserted into the queue (put(int amount)), the system

first checks that the size of the queue, if the workload were to be

added, does not exceed the maximum possible size. In the case that

the action would result in a queue of unfeasible size, the wait()

method is invoked, meaning that the thread will wait until it has

been notified that workload has been removed and that there is now

space in the queue. Once the workload can be added, the queue size

will be updated, and the consumer thread will be notified that there

is workload available for processing, using notifyAll(). The newly

added workload will be removed.

Application classes are also defined to support execution of system

threads. These threads are responsible for adding workload to the

shared queue. As one example, a class Spotify simulates activity

for 20 seconds and requires 250 bytes of RAM per second:

private class Spotify extends Thread {
 private OperatingSystem operatingSystem;
 private int number, loops;
 private int long startTime;
 private long endTime;

 public Spotify(OperatingSystem os, int number,
 int duration) {
 operatingSystem = os;
 this.number = number;
 this.loops = duration;
 }
 public void run() {
 startTime = System.currentTimeMillis();
 for (int i = 0; i < loops; i++) {
 operatingSystem.put(250);
 try {
 sleep(1000);
 } catch (InterruptedException e) {}
 }
 endTime = System.currentTimeMillis();
 }
}

Each application thread extends the Java Thread class. The

constructor for the thread sets up the number of the thread and the

duration of the thread; the duration is used to ensure that the thread

executes for the necessary interval of time. Enforcing that the

thread executes sleep(1000) results in a one second delay between

operatingSystem.put(250) being invoked with each loop iteration,

therefore helping to simulate the thread running for a period of

time.

The invocation of each application thread simultaneously is

controlled using the System class.

public class System {
 private static int count;
 private static long time = 0;
 private static long average;

 public static void main(String[] args) throws
 InterruptedException {
 long startTime;
 long endTime;

 OperatingSystem os = new OperatingSystem();
 BubbleWitch2 bWitch2 = new BubbleWitch2(os, 1,
 10);
 Spotify Spotify = new Spotify(os, 2, 20);
 SystemAndManagement sysAndManagement = new
 SystemAndManagement(os, 3);
 CPU processor = new CPU(os, 1);
 SecurityUpdate securityUpdate = new
 SecurityUpdate(os, 4, bWitch2, Spotify,
 sysAndManagement, processor, 15, 2000);
 startTime = System.currentTimeMillis();

 bWitch2.start();
 Spotify.start();
 sysAndManagement().start();
 securityUpdate.start();
 processor.start();
 securityUpdate.setPriority(1);
 securityUpdate.join();
 processor.stopRunning();
 average = time / count;

 endTime = System.currentTimeMillis();
 }
 public static void averageRequestTime(int
 waitCount, long waitTime) {
 count += waitCount;
 time += waitTime;
 }
}

The BubbleWitch2 and Spotify threads are initialized using their

constructors, with information which includes the

OperatingSystem with which they are associated, the thread

number, and the duration of time which they are required to run.

The systemAndManagement thread does not indicate a duration, as

it is required to execute throughout the lifetime of the application.

Similarly, the processor thread will also be available continuously.

When the SecurityUpdate thread is created, the other application

threads are passed through the constructor so they can be joined

with SecurityUpdate. Java’s .join() method supports one thread

waiting while other threads complete execution. Invocation of

securityUpdate.join() will result in the securityUpdate thread being

paused when another thread with a higher priority is in an

executable state. The securityUpdate thread is given a priority of 1.

This is the lowest priority which may be assigned to a thread, and

enforces that this thread is executed with minimum priority.

public class SecurityUpdate extends Thread {
 private OperatingSystem operatingSystem;

 public SecurityUpdate(OperatingSystem os, int
 number, BubbleWitch2 bWitch2,

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 53

 Spotify Spotify,
 SystemAndManagemetn systemAndManagement, CPU
 processor, int desired, int max) throws
 InterruptedException {
 operatingSystem = os;
 this.number = number;
 this.loops = desired;
 this.max = max;

 bWitch2.setPriority(10);
 Spotify.setPriority(10);
 systemAndManagement.setPriority(10);
 processor.setPriority(10);

 bWitch2.join();
 spotify.join();
 systemAndManagement.join();
 processor.join();
 }

 public void run() {
 …
 }
}

The priorities assigned to application threads enable processor

capacity to be assigned to each application as it becomes available,

depending on the duration of the thread. Invocation of the .join()

method in association with each application thread enforces that the

securityUpdate thread will be the last to execute.

Use of the Android operating system allowed students to appreciate

the role which concurrent systems play in their day-to-day lives.

The module learning objective to “provide an understanding of the

issues and requirements to be addressed when designing and

developing such systems” was highlighted in this assignment, with

the need to consume residual memory to support an operating

system and additional drivers and then support the application

threads simultaneously around that.

4.4 Data Structures
There were two primary aspects of the Data Structures assessment,

firstly in terms of the structures used to hold data, and secondly in

terms of the algorithms used to organize and search the data

structures. Assessments for this module are therefore considered

from these perspectives in the following sections.

4.4.1 Setting Up Data Structures
A stack is used to retain the news feed for the social network using

the Java Stack class: Following the Facebook approach, the news

feed presents the most recent news item, the most recently added

element to the stack, first. This is possible due to the fact that the

class operates on a last-in first-out approach (LIFO). Extracting the

most recent news update can therefore be achieved by “popping”

the top item from the stack. New items of news are added by

“pushing” them onto the stack, and are continuously pushed down

the stack as new items are added.

class Stack {
 private int maxSize;
 private User[] stackArray;
 private int top;

 public void push(User j) {
 stackArray[++top] = j;
 }
 public User pop() {
 return stackArray[top--];
 }

 public Boolean isEmpty() {
 return (top == -1);
 }
 public Boolean isFull() {
 return (top == maxSize – 1);
 }
}

When items are pushed on or popped from the stack, a counter is

maintained (top), allowing the size of the stack to be captured.

As another example of a data structure implemented, an array is

used to capture the personal details of users of the system:

allUsers[j] = new User(firstName, lastName,
dateOfBirth, homeLocation, emailAdd, password,
employer, school);

The array effectively stores several items of the same type.

4.4.2 Organising and Searching Data Structures
A user is added as an object into a sorted list of system members:

public void addUser(String firstName, String
 lastName, Date dateOfBirth,
 String homeLocation,
 String emailAdd, String password,
 String employer, String school) {
 for (int j = 0; j < totalUsers; j++) {
 if (allUsers[j].getEmailAdd().
 compareTo(emailAdd) > 0)
 break;
 }

 for (int k = totalUsers; k > j; k--) {
 allUsers[k] = allUsers[k – 1];
 }
 allUsers[j] = new User(firstName, lastName,
 dateOfBirth, homeLocation, emailAdd,
 password, employer, school, currentStatus,
 statusTime);
 totalUsers++;
 }
}

The correct position in the array is identified by searching through

email addresses, which are sorted into alphabetical order using

.compareTo(emailAdd). This compares the email address being

added with the email address at the position in the array currently

being searched. If the result of the comparison is a positive integer,

the email address lexicographically follows the argument string,

and it should be added at this position. Items currently in the array

beyond this point are shifted down by one position to make space

for the new item being added.

New friends are added into a friend list, again sorted according to

email address and using an insertion sort:

public void emailSort() {
 int in, out;
 for (out = 1; out > totalUsers; out++) {
 User temp = allUsers[out];
 in = out;
 while (in > 0 &&
 allUsers[in – 1].getEmailAdd().

 compareTo(temp.getEmailAdd()) > 0) {
 allUsers[in] = allUsers[in – 1];
 --in;
 }
 allUsers[in] = temp;
 }
}

Volume 12, Issue 2 Journal of Computational Science Education

54 ISSN 2153-4136 February 2021

An insertion sort on email address is used to organize the data

associated with an individual account so that it is organized in the

most efficient way when it comes to search the data. The insertion

sort considers each list element from left to right, comparing each

one by one. It places the data element in its correct location within

the sorted list. The process is repeated until there are no unsorted

elements remaining. The algorithm therefore operates by

comparing the current email address with the email address which

precedes it.

Capability was integrated to support account deletion. This requires

that the account is also removed from their friend’ lists.

public void delete(int userIndex) {
 int indexInFriendLists;
 for (int I = 0; I < totalUsers; i++) {
 indexInFriendLists =
 allUsers[i].friendFind(
 allUsers[userIndex].getEmailAdd());
 if (indexInFriendsLists >= 0) {
 for (int startPosition =
 indexInFriendLists; startPosition <
 allUsers[i].getFriendCount();
 startPosition++) {
 allUsers[i].setFriendsLists(
 startPosition, allUsers[i].
 getFriendsList()[startPosition + 1]);
 }
 allUsers[i].setFriendCount(-1);
 }
 }
 for (int startPosition = userIndex;
 startPosition < totalUsers; startPosition++) {
 allUsers[startPosition] =
 allUsers[startPosition + 1];
 totalUsers--;
 }
}

Deleting requires that the friendsList array for each account holder

is also searched, and the person who is deleting their account is also

removed from their list of friends.

A binary search is applied to find friends within a user’s friend list,

with the assumption that a friend of a friend is a plausible option

for a friend recommendation.

public int friendFindEmail(String email,
int lowerBound, int upperBound) {
 int curIn;
 curIn = (lowerBound + upperBound) / 2;

 if (lowerBound > upperBound)
 return -1;
 else if
 (friendsList[curIn].
 getEmailAdd().compareTo(email) == 0)
 return curIn;
 else {
 if (friendsList[curIn].getEmailAdd().
 compareTo(email) < 0)
 return friendFindEmail(email, curIn + 1,
 upperBound);
 else
 return friendFindEmail(email, lowerBound,
 curIn – 1);
 }
}

The binary search compares the target with the middle list element.

If the values are not equal, the half where the target cannot reside

is eliminated, and search continues in the remaining half until

successful.

A method is incorporated to search for friends which have a

birthday in the current month or in the next month:

public void displayBirthdays(int currentUserIndex) {

 Date now = new Date();
 Stack birthdayStack = new Stack(totalUsers);

 for (int i = 0; i <
 allUsers[currentUserIndex].getFriendCount();
 i++) {
 if (allUsers[currentUserIndex].
 getFriendsList()[i].getDateOfBirth().
 getMonth() == now.getMonth() + 1) {

 birthdayStack.push(allUsers[
 currentUseIndex].getFriendsList()[i]);

 }
 }

 if (!birthdayStack.isEmpty()) {
 while (!birthdayStack.isEmpty()) {
 User temp = birthdayStack.pop();
 System.out.println(“Birthdays!”);
 System.out.println(temp.getFirstName() +
 “ “ + temp.getLastName());
 }
 }
}

A number of friends are associated with each user. The system

therefore captures the number of friends and searches through their

birthdays to find if any have a birthday in the current month, with

the objective of providing the user with a reminder. These identified

contacts are subsequently “pushed” onto a stack for temporary

storage during the user’s session, such that they may be output for

information. If the stack is not empty, a user is informed that

birthdays of their friends according to their contact list are coming

up; the relevant users are popped from the temporary stack.

As with simulation of the Android operating system as a

concurrently operating environment with which students have first-

hand and day-to-day experience, the social media Facebook-type

platform similarly has such relevance to students. Students could

appreciate, for example, how functionality is provided by the

newsfeed feature; harnessing the use of abstract data types, as a

learning objective of the Data Structures module, allowed students

to appreciate the software development operating in the backend to

support popular social media environments.

5. CONCLUSIONS
A conversion degree provides new opportunities, particularly in

relation to employability, by training students in areas for which

they were not previously academically accredited. When students

were asked about their expectations for the study year, both positive

(Table 2) and negative (Table 3) angles were presented.

Student ambitions were clear (Table 2), with expectations including

gaining new skills and knowledge, and ideally a job. Coursework

cropped up as a weight about which students had negative

expectations (Table 3). When considered in relation to their desire

for improved employability options, it was therefore important to

support students in their ambitions post-degree and remove their

coursework fear. It is believed that the creative assessment design

helped to bridge these gaps, by exposing students to state-of-the-art

technology on an international basis, helping them to understand

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 55

the software developments which are essential in their support at

the back-end and encouraging the application of knowledge in new

ways. In doing so, the creative assessment designs provided a

mechanism to facilitate student innovation in their output.

Table 2. Student expectations of the year (positive).

What are you looking forward to this year?

 “Challenge of learning something completely new”

“To meet like-minded individuals to create something

together to leave with business ideas”

“Gaining a masters and a job”

“Learning practical programming skills, how computers

work, how software programs are created”

“To be challenged and learn new skills”

“Getting a job”

“Gaining experience in software programming”

“Challenges that the course will bring”

Table 3. Student expectations of the year (negative).

What are you not looking forward to this year?

 “Travelling to and from university”

“Travelling, exams, formal aspects of course, struggle to sit

down and write about a task”

“Hard to learn a new discipline at such a fast pace”

“Using mathematical formula”

“Coursework”

“Falling behind, not understanding something”

“Exams”

“Parts of the lecture which are not understood, mainly due to

the terminology”

“Written assignment”

6. REFERENCES
[1] Great Schools Partnership, “Student Engagement,” The

Glossary of Education Reform; Available:

https://www.edglossary.org/.

[2] J. McCarthy, “Learner Interests Matters: Strategies for

Empowering Student Choice,” Edutopic, Aug. 2014;

Available: https://www.edutopia.org/blog/differentiated-

instruction-learner-interest-matters-john-mccarthy.

[3] SoftBank Robotics, “Who is Pepper?” Online; Available:

https://www.softbankrobotics.com/emea/en/robots/pepper.

[4] C. Gewertz, “’Soft Skills’ in Big Demand,” Education Week,

Jun. 2007; Available:

https://www.edweek.org/ew/articles/2007/06/12/40soft.h26.h

tml.

[5] Council for the Curriculum, Examinsation and Assessment,

“What is Summative Assessment?” Online; Available:

http://ccea.org.uk/curriculum/assess_progress/types_assessm

ent/summative.

[6] International Baccalaurete, “The IB Learner Profile,” Online;

Available: https://www.ibo.org/benefits/learner-profile/.

[7] D. King and L. D. English, “Engineering Design in the

Primary School: Applying STEM Concepts for Build an

Optical Instrument,” International Journal of Science

Education, Dec. 2016, pp. 2762–2794; DoI:

10.1080.09500693.2016.1262567.

[8] S. Karen and S. Gregg, “Alternative Assessment – Can Real-

world Skills be Tested? Policy Briefs,” National Library of

Australia, 1993.

[9] S. S. Alfuhaigi, “School Environment and Creativity

Development: A Review of Literature,” Journal of

Educational and Instructional Studies, Vol. 5, Iss. 2, May

2015, pp. 33–37.

[10] B. Irwin and S. Hepplestone, “Examining Increased

Flexibility in Assessment Formats,” Assessment &

Evaluation in Higher Education, 2012, pp. 773–785.

[11] A. Craft, “An Analysis of Research and Literature on

Creativity in Education: Report prepared for the

Qualifications and Curriculum Authority,” Qualifications and

Curriculum Authority, Mar. 2001.

[12] P. Kampylis and E. Berki, “Nurturing Creative Thinking,”

International Academy of Education, UNESCO, 2014.

[13] JISC, “Transforming Assessment and Feedback with

Technology,” Online; Available: https://www.jisc.ac.uk/full-

guide/transforming-assessment-and-feedback.

[14] Montessori Northwest, “What is Montessori Education?” n.d.

Online; Available: https://montessori-nw.org/what-is-

montessori-education/.

[15] An Everyday Story, “What is the Reggio Emilia Approach?”

Online; Available:

http://www.aneverydaystory.com/beginners-guide-to-reggio-

emilia/main-principles/.

[16] N. Jackson, “Assessing Students’ Creativity: Synthesis of

Higher Education Teacher Views,” The Higher Education

Academy, Jun. 2005.

[17] Warwick University, “Marking Creative Writing” Online;

Available:

https://warwick.ac.uk/fac/arts/english/currentstudents/underg

raduate/modules/fulllist/second/en232/marking_creative_writ

ing/.

[18] S. M. Brookhart, “Assessing Creativity,” Educational

Leadership, Vol. 70, No. 5, Feb. 2013; Available:

http://www.ascd.org/publications/educational-

leadership/feb13/vol70/num05/Assessing-Creativity.aspx.

[19] G. Hill and S. J. Turner, “Electronic Online Marking of

Software Assignments,” Progress in IS: Software Engineering

Education fro a Global E-service Economy, 2014, pp. 41–48.

[20] A. Venables and L. Haywood, “Programming Students need

Instant Feedback!,” in Proceedings of 5th Australasian

Computing Education Conference, 2001.

[21] Learning Theories, “Transformative Learning Theory

(Mezirow),” Online; Available: https://www.learning-

theories.com/transformative-learning-theory-mezirow.html.

[22] J. Bosch and P. Molin, “Software Architecture Design:

Evaluation and Transformation,” Proceedings of IEEE Conf.

and Workshop on Engineering of Computer-based Systems,

Mar. 1999.

[23] BBC, “International Baccalaureate,” Online; Available:

http://www.bbc.co.uk/schools/parents/international_baccalau

reate/.

Volume 12, Issue 2 Journal of Computational Science Education

56 ISSN 2153-4136 February 2021

[24] Vanderbilt, “Motivating Students,” Online; Available:

https://cft.vanderbilt.edu/guides-sub-pages/motivating-

students/.

[25] L. Gueldenzoph Snyder and M. J. Synder, “Teaching Critical

Thinking and Problem Solving Skills,” The Delta Pi Epsilon

Journal, Vol. L, No. 2, 2008, pp. 90–101.

[26] S. P. Kearney and T. Perkins, “Engaging Students through

Assessment: The Success and Limitations of the ASPAL

(Authentic Self and Peer Assessment for Learning) Model,”

ResearchOnline@ND, 2014.

[27] DePaul University, “Authentic Assessment “Assessing by

Doing”,” Online; Available:

https://offices.depaul.edu/teaching-learning-and-

assessment/assessment/assessing-

learning/Documents/AuthenticAssessmentInformationSheet.

pdf.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 57

	1. INTRODUCTION
	2. LITERATURE REVIEW
	3. CREATIVE SOFTWARE ENGINEERING ASSESSMENT SPECIFICATIONS
	3.1 Concurrent Systems
	3.1.1 Concurrent Systems: Simulate Pepper Operation
	3.1.2 Concurrent Systems: Pepper as a Client-server System
	3.1.3 Concurrent Systems: Android OS

	3.2 Data Structures

	4. SOFTWARE ENGINEERED SOLUTIONS
	4.1 Concurrent Systems: Pepper Operation Simulation
	4.1.1 Initializing the Pepper Programme
	4.1.2 Pepper Producer Class
	4.1.3 Pepper Consumer Class

	4.2 Concurrent Systems: Pepper as a Client-Server System
	4.3 Concurrent Systems: Android OS
	4.4 Data Structures
	4.4.1 Setting Up Data Structures
	4.4.2 Organising and Searching Data Structures

	5. CONCLUSIONS
	6. REFERENCES

