
The Design of a Practical Flipped Classroom Model for
Teaching Parallel Programming to Undergraduates

Dirk Colbry
Michigan State University

East Lansing, MI

colbrydi@msu.edu

ABSTRACT
This paper presents a newly developed course for teaching parallel

programming to undergraduates. This course uses a flipped

classroom model and a “hands-on” approach to learning with

multiple real-world examples from a wide range of science and

engineering problems. The intention of this course is to prepare

students from a variety of STEM backgrounds to be able to take on

supportive roles in research labs while they are still undergraduates.

To this end, students are taught common programming paradigms

such as benchmarking, shared memory parallelization (OpenMP),

accelerators (CUDA), and shared network parallelization (MPI).

Students are also trained in practical skills including the Linux

command line, workflow/file management, installing software,

discovering and using shared module systems (LDMOD), and

effectively submitting and monitoring jobs using a scheduler

(SLURM).

Keywords

Computational science, Flipped classroom, Parallel programming.

1. INTRODUCTION
Established in 2015, the Department of Computational

Mathematics Science and Engineering (CMSE) at Michigan State

University (MSU) represents a new discipline at the intersection

between methods (math and computer science), domain

applications (science and engineering) and computation

(programming and large-scale computing). CMSE’s mission is to

advance the use of computational methods in all areas of scientific

research and engineering within the university [1]. This includes

the training of undergraduate and graduate students from a wide

variety of STEM (science, technology, engineering, math) and non-

STEM majors in how to best utilize computation as they become

experts in their own fields. Our first two introductory courses

(CMSE 201 and 202) teach students programming, computational

modeling techniques [2], and tools for computational modeling

(similar to and motivated by software carpentry [3]). Our latest

course, which is the focus of this paper, is “Methods in Parallel

Programming” (CMSE 401). This course is intended for advanced

students who would like to speed-up their research and utilize

advanced computational hardware.

By the end of CMSE 401, students will be able to:

• Give examples of major science and engineering domains that

use parallel programming and of the common types of

algorithms that need large scale computing (e.g. the seven

dwarfs of HPC).

• Demonstrate the ability to access, navigate, and use a variety of

advanced computing systems with remote Linux connections

(ssh, module systems, BASH, text editing, file systems,

software install and building, environment variables,

schedulers, etc.).

• Analyze software by conducting profile and benchmark studies

with different parameters and options. Explain the bottlenecks

and scaling of the code and present results to peers with

predictions of times and scaling.

• Summarize the fundamentals of parallel programming

concepts, including strong and weak scaling, Amdahl’s Law,

communication overhead, locks, and racing conditions.

• Explain differences between major parallel hardware and

software paradigms. Compare and contrast the different

approaches and be able to choose appropriate tools for a given

problem.

• Develop and evaluate parallel codes using a variety of

paradigms, including pleasantly parallel, shared memory

parallelization (e.g. OpenMP), accelerator (e.g. GPUs and

FPGAs), shared network parallelization (e.g. MPI, Hadoop, and

Charm++), and parallel libraries (e.g. cupy, numba, mkl, fftw

and blas).

The remainder of this paper discusses the major components of the

design of CMSE 401, gives selected examples, and provides some

limited analysis of the material though student feedback.

2. COURSE DESIGN
This course uses a “flipped classroom” model, where students

spend class time doing hands-on practice activities with instructors

and classmates, while traditional lectures are replaced with time

outside of class reading and watching videos. When done correctly,

this model of teaching is believed to provide a richer learning

environment for students [4].

2.1 Jupyter Notebooks
All of the course materials are provided to the students using a Git

repository and Jupyter notebooks [5]. The use of Jupyter notebooks

may be confusing, since Jupyter notebooks are traditionally linked

to Python, which is not a traditional language when considering

computational performance and parallelization. However, Jupyter

notebooks are rich and efficient communication tools that combine

the benefits of a multimedia webpage, LaTeX, and executable

example code. We develop Jupyter notebooks as a kind of

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/2/10

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 41

interactive textbook that, when used properly, is an effective way

to organize course content and communicate with students.

Although we do spend some time doing Python examples (all the

students are familiar with Python from prerequisite courses), most

of CMSE 401 is taught using the C family of languages (C, C++,

and CUDA), which are also familiar to students from another C++

prerequisite.

One particularly useful Jupyter feature is the %%writeout

“magic” command that allows the contents of a Jupyter cell to be

written out to a file. This feature, in combination with the ability to

execute bash commands using the “!” prefix, allows a Jupyter

notebook to provide example code in any language, compile the

code and run it all from within the notebook. In this way, students

can have fully “literate” programming [6] with explanations right

next to example code.

2.2 Course Hardware Resources
Students in CMSE 401 have access to a Jupyterhub server [7], the

university’s High Performance Computing Center (HPCC) [8], and

multiple XSEDE resources though a teaching allocation [9]. This

variety of hardware was chosen to expose students to different

interfaces and help them generalize their understanding of

computing hardware, in the hopes that they will develop a strong

foundation of understanding and be able to figure out how to utilize

new resources as they are developed in the future.

In addition to traditional hardware, during the first two weeks of

the course, students were introduced to two different “portable''

clusters. The first was a 7-node Raspberry Pi-based system, based

on the Tiny Titan (https://tinytitan.github.io/), and the second was

six (6) MacBook Pros connected using a small, off-the-shelf

routing hub. Each of the laptops was installed with BCCD [10]

inside of a virtual desktop. Students explored both systems during

class as a hands-on learning activity focused on how to connect

computers in a commodity cluster format. After building this

commodity cluster in class and running examples, students also

toured the campus HPC facilities. These hands-on lessons and in-

person tours were motivating and helped students get excited about

the topics they would be studying in CMSE 401.

We also experimented with a Jupyterhub server equipped with

GPGPUs and CUDA support. Since CUDA would not work on

many of the students’ computers, this CUDA-enabled Jupyterhub

server turned out to be a useful asset when introducing students to

the language.

2.3 Assignments and Assessments
In the spring of 2019, CMSE 401 met three times a week for 70

minutes. Before each class, students completed a pre-class

assignment, consisting of reading, videos, and practice problems.

During class, the instructor reviewed questions that came up during

the pre-class activities, and then students worked individually, in

pairs, and in groups on example problems. Students also worked

individually on more open-ended and in-depth problems in the

form of homework assignments, which were due approximately

every two weeks. Three times during the semester, students were

given timed exams (two midterms and one final) to help assess their

learning. Finally, at the end of the semester, students presented

work on individual projects relating to topics taught in class. The

remainder of this section describes these activities and assignments

in more detail.

2.3.1 Pre-Class Assignments
These assignments are given to students in the week prior to class

and include reading, multiple short videos (5–15 minutes each),

example code, and practice questions. Students are expected to go

through the materials before class, so that they are ready to

participate in the in-class activities. These pre-class assignments

are not graded; instead, students fill out a survey at the end of each

pre-class assignment with questions similar to the following:

● Approximately how long (in minutes) did this assignment

take for you to complete?

● What questions do you have, if any, about any of the topics

discussed in this assignment after working through the

Jupyter notebook?

● Do you have any further questions or comments about this

material, or anything else that's going on in class?

● Based on what you’ve learned in the pre-class activities,

what are you hoping to learn more about in class?

These questions are designed to get an idea of where students are

struggling, so the instructor can address issues during class.

2.3.2 In-Class Assignments
Before class, instructors review all questions from the pre-class

assignment survey, group them by topic, and develop a mini-lecture

to help structure the class time most effectively. These mini-

lectures vary in length depending on the issues students highlighted

from the pre-class assignment. While the instructor has in-class

activities planned, it is more important to address student questions

and make sure they understand the pre-class assignments than to

“get through” the day’s materials.

After the mini-lecture, students work through the in-class

notebooks. Students are expected to help each other out and work

ahead on different questions if they get stuck on one particular

problem. The goal here is to train students so that they are able to

find solutions themselves, with instructors available to give

suggestions and encouragement in order to avoid frustration.

Instructors focus on helping students understand concepts and

jargon; instead of solving problems for the students, instructors

walk them through a variety of problem-solving techniques and

suggest terms and phrases that they could use to search for helpful

solutions on the Internet.

2.3.3 Homework Assignments
Homework assignments are designed to let students explore.

Although many of them start out very similarly to in-class

assignments, the idea for homework is to push students and get

them solving multiple problems end-to-end. Students need to figure

out how to download data, write code (including submission

scripts), submit jobs to schedulers, interpret results, and

visualize/share their results with their peers. A key component of

the CMSE 401 homework assignments is a “creative component”

that allows students to do something different and creative.

Examples include a contest to see who can get the fastest code,

trying out a new dataset, or exploring a software package. Again,

the learning goals focus on exploration and problem solving in the

context of large-scale computing in order to help students develop

both familiarity with specific tools and creative problem-solving

skills. We hope this approach also makes CMSE 401 more fun for

students.

Volume 12, Issue 2 Journal of Computational Science Education

42 ISSN 2153-4136 February 2021

2.3.4 Exams
There are two midterms and a final exam in this course. Given the

highly interactive and collaborative nature of the course, these

exams provide an opportunity to individually assess student

knowledge and skills. In all other assignments, students are

expected to work together and support each other’s learning, but

that approach can make it difficult for instructors to identify areas

where individual students are struggling. Timed exams, where

students work alone, provide an assessment of individual

knowledge and progress.

Of course, excellent students who have a deep understanding of the

material may not perform well on timed exams — just as some

students are excellent at taking tests but may not be able to perform

as well in less structured scenarios. Exams in CMSE 401 are

primarily seen as learning tools and try to reflect real-world

scenarios. Thus, all exams are open-network: no one programs in a

vacuum, and we are assessing students’ ability to find answers and

develop solutions using all of the resources that would be available

to them in a real-life setting. Exams include four (4) problems, each

with five (5) component questions. Although the questions relate to

each other, we try to write them in such a way that they can be

answered correctly even if previous answers are wrong. Students’

informal feedback suggests that the exams are famously

challenging — yet also rewarding. Even students struggling in the

course have proven able to demonstrate their knowledge through

these exams, and, although these exams are primarily used as a

summative assessment tool, instructors are able to formatively

assess progress and adjust course content and individual student

learning goals. The exam grades are just one factor in students’

overall learning, and thus are a relatively small percentage of

students’ final grades.

2.3.5 Student Projects
At the end of the semester, students present unique projects that

demonstrate some aspect of what they learned over the semester.

At a minimum, projects are expected to contain some sort of

benchmark timing comparison. However, instructors are very

flexible and encourage projects that relate directly to “real-world”

problems that students are encountering in their work or other

classes. For example, working with an existing faculty to

download, install, and run a code on the HPC is considered an

excellent project for CMSE 401. Another good project is to

download a parallel library or language, get it working on the HPC,

and do a benchmark comparison between some of its features (e.g.,

Tensorflow was quite popular). Students may not necessarily do

much parallel programming in their projects; instead, we focus on

the more common issue of workflow management and performance

measurements, as these are the tools that researchers need to utilize

advanced computing systems. Some example titles of student

projects include:

• Ising Model Optimization

• Numerical Relativity with Numba

• MPI Poission Equation with MPI4Py

• OSCAR (Operational Research in Scala)

• Utilizing TensorFlow for Machine Learning in

Biomedical Imaging

• Parallel Optimization of Sabermetric Quantifier

• Optimizing Garfield++ For Use in Simulating a Nuclear

Detector

• Parallel Optimization in FLASH

• A Charm++ Parallel Stock Market Simulator

• Breast MRI Classification using TensorFlow

• Classifying Dog and Cat Images Using TensorFlow

• Penalization of TDCI

Student projects have multiple milestones through the semester,

and students present progress to their peers. Although each student

works on their project individually, time is given both in-class and

out of class for students to share their work, and collaborative

feedback and peer review are highly encouraged.

3. COURSE SCHEDULE AND TOPICS

COVERED
The semester is divided into approximately 15 weeks, and the

overall course covers the following major topic areas:

Major Topic 1 — Benchmarking and compilers

Major Topic 2 — Tools of the trade (remote systems, software

installs and schedulers)

Major Topic 3 — Shared memory parallelization

Major Topic 4 — Accelerators

Major Topic 5 — Shared network parallelization

In practice, rather than being a linear progression of content, these

topics are woven together throughout the semester. For example, in

the first few weeks of class, students are exposed to a mini cluster

(Raspberry Pi and laptop BCCD cluster) and are running a variety

of parallel examples (shared memory, shared network, and GPUs).

When they see these topics again later in the semester, the previous

exposure has prepared them to jump in and program them on their

own. A more detailed list of individual modules follows:

1. How a cluster is born — basic introduction to clusters, big-

iron, little-iron and accelerators

2. Languages and Compilers — Benchmarking of both

interpreted (Python) and compiled languages (C/C++), code

optimization (compiler flags), introduce/review Big-O

notation, and practice benchmarking.

3. Command line scripting (BASH), and accessing remote

systems (SSH and SCP)

4. Schedulers — unique components of a shared system

(schedulers and module system) and writing single core and

pleasantly parallel examples to the scheduler (SLURM)

5. Shared Memory Parallelization — students are introduced

to shared memory parallelization (OpenMP) and

shown/encouraged to work on personal laptops

6. Shared Memory Parallelization — more about loops and

programming options; goal is to become familiar with the

variety of OpenMP capabilities and not necessarily become

masters

7. Accelerators — introduction to accelerator coding (CUDA)

and comparisons with shared memory programming,

submitting jobs to a scheduler

8. More Accelerators — learning the basics of CUDA and

writing their first program

9. More Accelerators — discuss the good and bad about

CUDA, understanding thread blocks and tiling — where

does it work and where does it fall apart?

10. Shared Network Parallelization — understanding network

throughput and latency, benchmarking MPI code on

different numbers of cores and nodes

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 43

11. Shared Network Parallelization — writing their first MPI

program, debugging MPI code and improving performance

12. Hybrid Systems

While this is a rough outline of the topics, plenty of room was

included in the 15-week schedule to allow instructors to adapt the

pacing for more or less difficult topics, respond to student feedback,

and give plenty of time for students to work on homework

assignments and projects.

4. EXAMPLE
Whenever possible, instructors try to ground classroom examples

using real-world scientific and engineering problems as motivation.

Throughout the semester, students are shown how what they are

doing connects directly to on-going research. This means we try to

avoid spending too much time on “toy” examples such as sorting,

calculating pi, or making games (although these examples can be

useful). For the interested reader, samples of classroom materials

have already been drafted and can be downloaded from the

following git repository:

https://github.com/colbrydi/CMSE401_Examples.git

These examples include Jupyter notebooks that contain the

following:

• A pre-class assignment that includes videos on using the

command line and ssh keys

• An in-class assignment on CUDA programming on a GPU

enabled node running Jupyter

• Shared Memory Parallelization example homework

• An example project template

• An example exam

These examples demonstrate the style and pedagogical approach of

CMSE 401. The course is being offered a second time during the

spring of 2021, and all of the course materials will be available as

an Open Education Resource (OER) by the summer of 2021 at the

course website (http://cmse.msu.edu/cmse401). Instructors

interested in the instructor materials are encouraged to reach out to

the author, as we are happy to provide additional instructor notes

and answers.

5. STUDENT FEEDBACK
Although no formal evaluation of the materials was conducted for

this paper, all university courses are evaluated using a 21-question

survey, which 12 of the students completed. The students are able

to choose a rating (from the following) for each question.

1 = (S) — Superior: exceptionally good

2 = (AA) — Above Average: better than the typical

3 = (AV) — Average: typical of courses or instructor

4 = (BA) — Below Average: not as good as the typical

5 = (I) — Inferior: exceptionally poor course or instructor

Please note that this course evaluation tool is known to be fairly

biased and is being reworked by the university. The author also

acknowledges that the results presented do not include a controlled

reference point. However, the data do provide some context. A

selected summary of the results can be reviewed in Error!

Reference source not found..

Table 1. Summary of student feedback grouped by type.

Composite Factors Mean Std

Instructor Involvement

(Questions 1–4) 1.10 0.23

Student Interest

(Questions 5–8) 1.73 0.38

Student-instructor Interaction

(Questions 9–12) 1.31 0.51

Course Demands

(Questions 13–16) 1.79 0.71

Course Organization

(Questions 17–20) 1.55 0.56

Table 2 shows a sample of feedback questions given to the students.

Based on this feedback and some informal polling, students

reported that the course was challenging which is reflected in their

end of semester survey evaluations. Specifically students found the

course to be highly enjoyable (Question 21) while also being

intellectually challenging (Question 6). Probably the biggest

informal complaint was the difficulty and length of the homework

(Question 14).

Table 2. Selected questions that reflect student feedback to the

content and format of the course.

Question Mean Std

3 The Instructor's concern with whether the

students learned the material

1.17 0.39

4 Your Interest in learning the course

material

1.17 0.39

5 Your general attentiveness in class 1.83 0.39

6 The course as an intellectual challenge 2.25 0.75

7 Improvements in your competence in this

area due to this course

1.42 0.67

10 The Student's Opportunity to ask questions 1.42 0.67

12 The appropriateness of the amount of

material the instructor attempted to cover

1.33 0.65

13 The appropriateness of the pace at which

the instructor attempted to cover the

material

1.75 0.97

14 The contribution of homework assignments

to your understanding of the course

material relative to the amount of time

required

2.08 1.00

15 The appropriateness of the difficulty of

assigned reading topics

1.67 0.78

17 The course Organization 1.42 0.67

20 The adequacy of the outlined direction of

the course

1.33 0.49

21 Your general enjoyment of the course 1.17 0.39

Overall, the instructors are also very satisfied with the course and

plan to make significant improvements when it is taught again in

the Spring of 2021.

Volume 12, Issue 2 Journal of Computational Science Education

44 ISSN 2153-4136 February 2021

http://cmse.msu.edu/cmse401

6. ACKNOWLEDGEMENTS
Many of the details for this course were conceived during Shodor’s

2018 Community Building for Parallel Computing Curriculum

Development workshop. Shodor has taken an amazing lead in

developing real world motivated examples in education

(http://www.shodor.org/). I also want to specifically thank David

Joiner for providing the example 1D wave equation code for the

first benchmarking homework; this was a great first project and

really helped start the discussion for compilers options and

vectorization.

7. REFERENCES
[1] D. Colbry, M. Murillo, A. Alessio, and A. Christlieb,

“Computational Mathematics, Science and Engineering

(CMSE): Establishing an Academic Department Dedicated to

Scientific Computation as a Discipline,” JOCSE, vol. 11, no.

1, pp. 68–72, Jan. 2020, doi: 10.22369/issn.2153-

4136/11/1/11.

[2] D. Silvia, B. O’Shea, and B. Danielak, “A Learner-Centered

Approach to Teaching Computational Modeling, Data

Analysis, and Programming,” in Computational Science –

ICCS 2019, Cham, 2019, pp. 374–388.

[3] G. Wilson, “Software carpentry: getting scientists to write

better code by making them more productive,” Computing in

Science & Engineering, vol. 8, no. 6, pp. 66–69, 2006.

[4] L. Abeysekera and P. Dawson, “Motivation and cognitive

load in the flipped classroom: definition, rationale and a call

for research,” Higher Education Research & Development,

vol. 34, no. 1, pp. 1–14, Jan. 2015, doi:

10.1080/07294360.2014.934336.

[5] T. Kluyver et al., “Jupyter Notebooks – a publishing format

for reproducible computational workflows,” in Positioning

and Power in Academic Publishing: Players, Agents and

Agendas, 2016, pp. 87–90.

[6] D. E. Knuth, “Literate Programming,” Comput J, vol. 27, no.

2, pp. 97–111, Jan. 1984, doi: 10.1093/comjnl/27.2.97.

[7] “JupyterHub,” GitHub. https://github.com/jupyterhub

(accessed Jun. 09, 2020).

[8] D. Colbry, W. Punch, and W. Bauer, “The Institute for

Cyber-Enabled Research: Regional Organization to Promote

Computation in Science,” San Diego, California, USA, Jul.

2013.

[9] J. Towns et al., “XSEDE: Accelerating Scientific

Discovery,” Computing in Science Engineering, vol. 16, no.

5, pp. 62–74, Sep. 2014, doi: 10.1109/MCSE.2014.80.

[10] B. Lu, “Use bootable Linux CD (BCCD) to teach cluster and

parallel computing concepts: conference workshop,” J.

Comput. Sci. Coll., vol. 24, no. 5, p. 142, May 2009.

Journal of Computational Science Education Volume 12, Issue 2

February 2021 ISSN 2153-4136 45

	1. INTRODUCTION
	2. COURSE DESIGN
	2.1 Jupyter Notebooks
	2.2 Course Hardware Resources
	2.3 Assignments and Assessments
	2.3.1 Pre-Class Assignments
	2.3.2 In-Class Assignments
	2.3.3 Homework Assignments
	2.3.4 Exams
	2.3.5 Student Projects

	3. COURSE SCHEDULE AND TOPICS COVERED
	4. EXAMPLE
	5. STUDENT FEEDBACK
	6. ACKNOWLEDGEMENTS
	7. REFERENCES

