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FOREWORD 
This issue of the journal contains two major articles and five 

articles summarizing the research experiences of students. Toolin, 

Dion, and Erickson describe a newly created computer science 

licensure program for preservice teachers. They review the need 

for computer science courses in the curriculum and various efforts 

to license teachers. They then summarize the work of their 

collaborative at the University of Vermont to create and 

implement a CS licensure program for preservice teachers. 

The paper by Sharma presents an end to end data science 

application where students in an introduction to scientific 

computing class apply machine learning to identify and classify 

images of chemistry laboratory glassware. Students collected 

pictures of a variety of glassware and then used several neural 

network applications in the Wolfram language to classify the 

pictures. This machine learning example helped students to 

understand the potential use of such techniques across their STEM 

disciplines. 

Rivera and Araya summarize an analysis of the turbulent 

boundary layers related to supersonic flight. They used 

computational fluid dynamics software to model several of the 

related boundary flow conditions for this system. 

Adewale compares the performance of serial and parallel ray 

tracing techniques. He used OpenMP with C++ to implement a 

parallel version of the ray tracing routines that was 10 times faster 

than the serial version. 

In their article, Barragan and Groves describe the use of machine 

learning with a neural network to evaluate the energies in 

chemical structures. They compare several approaches to using 

the neural network that help to improve its predictive accuracy. 

Noneman et al. use molecular dynamics and Monte Carlo 

simulations to explore the behavior of buckminsterfullerene in 

water. They compare seven models for the self-assembly of this 

molecule. 

The final student article by Kaman, Edwards, and McGarigal 

compares several models of turbulent mixing of two fluids. They 

explore the runtime behavior of the codes using MPI and a hybrid 

MPI, OpenMP parallel programming model. 
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ABSTRACT 

This article reports on the efforts of the Computer Science 

Education Collaborative during the period between 2018–2020 to 

develop and implement a new computer science licensure program 

for preservice teachers seeking a license to teach computer science 

in grades 7–12 in Vermont. We present a brief review of the 

literature related to computer science teacher education and 

describe the process of developing the computer science education 

minor and major concentration at the University of Vermont. As a 

form of reflection, we discuss the program development process 

and lessons learned by the collaborative that might be informative 

to other institutes of higher education involved in CS teacher 

education program design and implementation. Finally, we 

describe next steps for developing in-service licensure programs for 

teachers seeking computer science professional development or 

licensure in grades 7–12. 

Keywords 
Computer Science Education, Computer Science Standards, Rural 

Education, Micro-credentials, In-service and Preservice Teachers 

1. INTRODUCTION 
Despite national efforts to highlight Computer Science (CS) 

education and careers in the U.S., a comparatively small percentage 

of students pursue CS postsecondary degrees and careers [1]. 

Computing represents two-thirds of projected new STEM jobs in 

the U.S., but only 4% of college students overall earn a CS degree 

[13]. Computing and information technologies (IT) have driven 

many aspects of Vermont’s economic growth, as evidenced by the 

presence of Dealer.Com, NRG Systems, Competitive Computing, 

IBM, Global Foundries, the Vermont Technology Alliance, and 

over 200 other related companies statewide. Vermont’s IT future is 

bright; however, there is a gap between CS employment 

opportunities and CS learning opportunities available for K–12 

students and teachers in the state. 

Opportunities to learn CS in Vermont demonstrate some signs of 

improvement over the past few years. In 2020, 60% of VT high 

schools reported offering CS courses as part of the curriculum [7]. 

However, when data are disaggregated for socioeconomic status, 

ethnicity, and gender, only 50% of rural high schools in VT offer 

CS courses. 

Opportunities for underrepresented and underserved students to 

engage in CS learning have also been limited in that 28% are 

female, 7% Latinx, 9% Asian, and no African American or Native 

American students took AP CS exams during this period [7]. 

Over 62% of K–12 principals in VT believe CS should be a 

required core class; however, limited funds for hiring and training 

teachers is cited as the primary barrier for offering CS courses at 

their schools (Code.org, 2019). In 2019, a state-wide survey of 

teachers (n=270) conducted by the VT Agency of Education (AOE) 

found that 51% of respondents engaged students in some form of 

CS activities including Code.org Hour of Code, Lego robotics, 

makerspace, or other coding activities. Approximately 20% 

reported having after-school computer clubs at their school, and 

27% engaged in CS professional development. In 2017, 

approximately 200 new secondary teachers were prepared to teach 

CS in the US [12]; however, no teachers graduated from a Vermont 

institute of higher education (IHE) prepared to teach CS during this 

period [12, 6]. To date, only 27 out of approximately 8,000 teachers 

are licensed to teach CS in VT. 

In 2018, the Computer Science Education Collaborative (CSEC) 

was established by the University of Vermont’s (UVM) College of 

Education and Social Services (CESS) and College of Engineering 

and Mathematical Sciences (CEMS) and the Vermont Agency of 

Education (VT AOE) with the primary mission to address the gaps 

and inequities in CS learning opportunities for students and 

teachers in Vermont. The CSEC prioritized the development of a 

new CS licensure program for preservice teachers seeking an initial 

CS licensure endorsement in grades 7–12. Following a 

comprehensive review process, the CS licensure program was 

approved by the UVM Faculty Senate and Board of Trustees in 

May 2019 followed by approval from the VT Agency of Education 

in May 2020. 

This article reports on the efforts of the CSEC to develop and 

implement a new computer science licensure program for 

preservice teachers seeking a license to teach CS in grades 7–12. 

What follows is a brief review of pertinent literature related to 

computer science teacher education in the US, a description of the 

computer science education minor and major concentration at 

UVM, a reflection on the program development process, and 

lessons learned by the collaborative that might be informative to 

other IHEs involved in CS teacher education program design and 

implementation. Finally, we offer some insights into next steps for 

the development of in-service licensure programs for teachers 

seeking CS professional licensure in grades 7–12. 
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2. RESEARCH ON COMPUTER SCIENCE 

TEACHER EDUCATION 
A number of CS professional education programs and pathways are 

now available for teachers to acquire the knowledge, skills and 

practices leading to certification to teach CS in K–12 environments 

across the US [4]. Currently, three distinct types of CS teacher 

certification pathways exist including subject, course-specific, and 

local education agency (LEA) determined pathways. States with 

subject certifications require the same teacher certification for any 

CS course taught. Course-specific states have different 

requirements depending on the specific CS course teachers plan to 

teach. LEA states have no state-wide certification requirements for 

teaching CS courses; an LEA sets these requirements for their 

district. 

With limited pathways to CS certification in the US, Code.org 

recommends that LEAs allow teachers who currently teach CS or 

who have some CS professional learning experiences to teach CS 

under a temporary license. In this pathway, teachers may pursue an 

“add-on endorsement” that includes CS methods and content 

requirements to be earned, possibly through a certification 

assessment or 12 credit hours of coursework. Code.org also 

suggests the development of a full certification pathway that 

includes CS content courses, general education coursework, and 

computer science methods and practice teaching [4]. 

In Utah, a course-specific state, different levels of endorsement 

pathways provide less intimidating entry points for teachers 

without a CS background [4]. To earn a credential to teach 

Exploring Computer Science, teachers must complete Code.org CS 

Fundamentals, Teaching Methods (ECS PD), and an Industry test 

(Certiport IC3). A CS Level 1 endorsement allows teachers to teach 

AP Computer Science Principles and Computer Programming 1 

and 2 upon completion of Teaching Methods (ECS, CSP), 3 CS 

courses (CS50, Oracle, Bottega), and/or an Industry test (MTA, 

Oracle). A CS Level 2 endorsement requires Teaching Methods 

(ECS, CSP), 5 CS courses (includes the 3 for the CS Level 1 

endorsement), and an Industry test (MTA, Oracle). 

Micro-credentials provide a competency-based pathway to 

certification that recognizes a teacher’s existing expertise and 

increases accessibility by making certification job-based and less 

costly [5]. Micro-credentials are performance-based, allowing for 

teachers to demonstrate competency in content and pedagogy and 

can be “stacked” together in order to meet endorsement 

requirements. For example, Arizona allows teachers to be licensed 

through 12 credit hours of course work (for grade 6–12 CS 

endorsement) and requires fifteen hours of professional learning or 

an analogous micro-credential to be equivalent to one credit hour 

[5]. Micro-credentialing opportunities are provided through 

programs like BloomBoard CS Micro-credentials that facilitate the 

earning of micro-credentials: for example, “understanding cultural 

differences” and “using formative assessment to modify future 

instruction” [2]. 

Currently, Vermont is a subject certification state where preservice 

teachers must meet state computer science endorsement standards 

and the equivalent of a CS minor to teach CS in grades 7–12. In 

addition, preservice teachers must successfully complete a 

practicum and student teaching experience, required education 

coursework (e.g. foundations, diversity, curriculum, special 

education, educational technology, and CS methods courses) and 

the VT Licensure Portfolio (VLP) to earn licensure in grades 7–12 

computer science education. 

3. COMPUTER SCIENCE EDUCATION 

PROGRAM DESCRIPTION 
The University of Vermont (UVM) has an enrollment of 10,612 

undergraduates, 1,552 graduate students, and 466 medical students 

with 1,685 full-time and part-time faculty and offers students 

choices for programs from among more than 100 undergraduate 

majors, 52 masters, and 25 doctorate degrees. UVM is the only 

research university in the state, the state’s only Carnegie-classified 

Research-Extensive institution, and a leader in research 

expenditures among public universities with enrollments less than 

15,000. Specialized computer science facilities include a new 

STEM complex, Vermont Advanced Computing Core (VACC), 

and the Vermont Complex Systems Center. These unique 

distinctions make UVM an ideal academic setting to support 

computer science education on its campus. 

The College of Engineering and Mathematical Sciences (CEMS) 

houses the Department of Computer Science and has an enrollment 

of 400 undergraduates among BS degrees in Computer Science, 

Computer Science & Information Systems, and Data Science, as 

well as a BA degree in Computer Science offered through the 

College of Arts and Sciences (CAS). Over 60 graduate students are 

enrolled in the Computer Science and Complex Systems & Data 

Science degrees. The College of Education and Social Services 

(CESS) has the only nationally recognized Council for the 

Accreditation of Educator Preparation (CAEP) teacher preparation 

programs in Vermont. Faculty and staff work with 825 

undergraduate and 370 graduate students in more than 30 programs 

housed in the Education, Leadership, and Social Work 

departments. The Secondary Education Program has an enrollment 

of 150 students who are required to meet all VT AOE Endorsement 

Standards and Vermont Licensure Portfolio (VLP) requirements 

for certification in grades 7–12. The new CS minor and major 

concentration are fully approved licensure programs for preservice 

teachers interested in teaching computer science in grades 7–12 in 

the Secondary Education Program. 

3.1 UVM’s Computer Science Education 

Minor and Major Concentration 
In September 2018, the Computer Science Education Collaborative 

(CSEC), comprised of 2 faculty and 1 staff from the Computer 

Science Department, 3 faculty from the Department of Education, 

and the VT AOE State Director of Technology, met to begin the 

development of a new minor and major concentration in computer 

science education. This initiative was inspired by previous 

conversations between education faculty and the VT State Director 

regarding the recent revision of the Vermont Agency of Education 

Computer Science Endorsement Standards [15] as well the need for 

CS learning opportunities for students and teachers across 

Vermont. In order to advance its goals and objectives, the CSEC 

submitted and secured an internal STEM Education grant to 

support CS curriculum development work, CS professional 

development and a CS Summit for teachers hosted at UVM in 

August 2019. Early on in the collaborative’s efforts, the CSEC bi-

weekly meetings focused on the alignment of the VT AOE 

computer science endorsement standards with existing 

undergraduate CS and Education coursework. This process 

revealed that all CS endorsement standards were met by existing 

coursework with the exception of a CS content specific methods 
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Table 1. VT AOE CS Endorsement Standards Grades 7–12 

Computer Science Knowledge Standards 

Adapted from VT AOE CS Endorsement Standards (2019) 

Historical Context — The candidate recognizes the historical 

development and contributions of individuals or groups, 

particularly from underrepresented populations related to CS. 

Algorithmic Thinking — The candidate can demonstrate 

algorithmic problem-solving knowledge and skills, design 

solutions (e.g., problem statement and exploration, examination 

of sample instances, design, implementing solutions, testing, 

evaluation, revising). 

Computing Systems — The candidate understands computing 

systems including networks, operating systems, hardware, 

software and the role of compilers and interpreters in translating 

languages into machine instruction 

Networks and The Internet — The candidate can demonstrate 

a knowledge of types of networks, internet protocols, the 

relationship between clients and servers, and cybersecurity.  

Data Analysis — The candidate can analyze data by collecting, 

aggregating, cleaning, and modeling the data through 

simulations, visualizations, and statistical models. 

Algorithms and Programming — The candidate is fluent in at 

least one high-level language used in current pedagogy and can 

compare high-level languages, particularly object-oriented 

program design. This includes designing, implementing, testing, 

and debugging. Includes an understanding of problem-solving 

strategies, algorithm analysis, programming concepts. 

Impacts of Computing — The candidate understands digital, 

ethical and intellectual property issues. Candidate is considerate 

of equitable use of technology for all, knows good digital 

citizenship, can identify and avoid online threats. 

CS Sub-Disciplines — The candidate knows concepts, 

vocabulary, and issues in two or more CS sub-disciplines 

(abstract data types, advanced CS algorithms, computer 

architecture, network/data communications, physical 

computing, digital forensics, machine learning). 

Performance Standards: The candidate demonstrates 

pedagogical understanding with teaching CS content. Includes 

planning instruction with problem-solving, current technology, 

verbal and written communication skills, cooperative learning, 

and both visual and active activities. 

Additional Requirements: A minor in CS, or the equivalent, in 

undergraduate or graduate coursework. 

course that was subsequently developed in collaboration by the 

CSEC faculty and further described in Section 3.2 of this article. 

Submission of the CS education minor and major concentration 

proposals to college and university-wide Curricular Affairs 

Committees (CAC) occurred in October 2018 followed by approval 

by both the UVM Faculty Senate and Board of Trustees in May 

2019. 

This important milestone paved way for the VT Agency of 

Education Results Oriented Program Approval (ROPA) [16] 

process that grants institutes of higher education in Vermont the 

authority to recommend students for teaching licensure in specific 

disciplines. This process entailed an additional year of data 

gathering, reporting, proposal submission, and final ROPA 

approval in May 2020. 

The new CSE minor and major concentration reflect the essential 

knowledge and skills that computer literate students and teachers 

need to communicate and interact in today’s world. All CSE 

courses are aligned to the VT AOE CS Endorsement Standards (See 

Table 1) and are offered through the Departments of Computer 

Science and Education. 

Each of the required CSE content courses emphasizes a variety of 

attributes of computational and abstract thinking skills that also 

includes a required calculus class. Enrollment in the CSE 

preservice teacher program began in Fall 2020 with the initial 

expectation of modest interest from students primarily in the 

secondary education program seeking initial and/or dual licensure 

or computer science majors seeking a double major in CS and 

secondary education or a Master of Arts in Teaching as an 

accelerated master’s student. The required CSE courses for the 

minor include 5 CS courses and 1 CS methods course, and 9 CS 

courses plus the equivalent of an education major for the CS major 

concentration (See Table 2). 

 

Table 2. CSE Minor (19 Credits) and Major Concentration 

(31 Credits) Requirements 

CS 008: Introduction to Web Design — 3 credits  

CS 021: Introductory Programming — 3 credits 

CS 064: Discrete Structures — 3 credits (major only) 

CS 087: Introduction to Data Science — 3 credits 

CS 110: Intermediate Programming — 4 credits (Prerequisite: 

CS 021) 

CS 121: Computer Organization — 3 credits (Prerequisite: CS 

110) 

CS 124: Data Structures and Algorithms (Prerequisites: Math 

021, CS 064, CS 110) — 3 credits (major only) 

CS 166: Cybersecurity Principles — 3 credits (major only) 

CS 292: Senior Seminar — 1 credit (major only) 

CS 091: Instructing in Computer Science (recommended) 

Math 021: Calculus 1 — 4 Credits 

EDSC 237: Teaching Computer Science in Secondary School 

— 3 credits 
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All content courses listed as requirements for the CSE minor and 

major concentration are currently offered through the CS and 

Mathematics departments. The methods course is offered through 

the Education department. Secondary education students enrolled 

in the CS major concentration will complete all 3 phases of the 

secondary education program including content requirements, 

university general education and diversity requirements and 

professional education requirements. See Table 3 for a summary of 

these requirements. 

 

Table 3. Secondary Education Professional Education 

Requirements — 46 Credits 

EDSP 005: Issues Affecting Persons with Disabilities — 3 Cr. 

EDTE 001: Teaching to Make Difference — 3 Cr. 

EDFS 002: School and Society — 3 Cr. 

ECLD 056: Language, Policy, Race and Schools — 3 Cr. 

EDSC 011: Ed. Technology in Secondary Classes — 3 Cr. 

EDSC 207: Adolescent Development — 3Cr. 

EDSC 209: Practicum in Teaching — 4 Cr. 

EDSC 215: Teaching Reading in Secondary Schools — 3 Cr. 

EDSC 216: Curriculum, Instruction & Assessment — 3 Cr. 

EDSC 237: Teaching CS in Secondary School — 3 Cr. 

EDSC 226: Student Teaching Internship — 12 Cr. 

EDSC 230: Teaching for Results — 3 Cr. 

 

3.2 Teaching Computer Science in Secondary 

School 
Teaching Computer Science in Secondary School (EDSC 237), a 

“methods” course developed in collaboration with CS and 

Education faculty, is required for students enrolled in both the CSE 

minor and major concentration. This course explores multiple 

theories and practices of teaching, learning, and assessing computer 

science in middle school and high school and is aligned to both the 

Computer Science Teachers Association (CSTA) K–12 Standards 

[8] and the VT AOE Computer Science Education Endorsement 

Standards [15]. The course places an emphasis on modeling critical 

dialogue and reflection about such topics as the nature of computer 

science; the structure of computer science disciplines; computer 

science learning standards; best practices of teaching and assessing 

computer science; and social, legal, ethical, and cybersecurity 

issues in computer science and computer science education. 

EDSC 237 is a capstone course that students take near the 

completion of CSE program requirements. EDSC 216 — 

Curriculum, Instruction and Assessment is a prerequisite for EDSC 

237 and provides students with the opportunity to develop and 

apply fundamental knowledge and skills of lesson, assessment, and 

unit development to their emergent teaching practice. EDSC 237 

builds on these pedagogical skills and provides students with 

multiple opportunities to develop and pilot a variety of CS lessons 

in a “critical friends” environment with their peers. 

EDSC 237 is participatory in nature and practice. Each week, the 

instructors and students model and present problem-based activities 

and place-based lessons and projects aligned to the CSTA learning 

standards and other essential practices necessary to become a 

master teacher of computer science. Problem-based learning is 

driven by challenging, open-ended problems with no one right 

answer. Students work as self-directed, active investigators and 

problem-solvers in small collaborative groups [10]. Project-based 

learning is a teaching method in which students gain knowledge 

and skills by working to investigate and respond to engaging and 

complex questions, problems, or challenges through scientific and 

computational thinking over an extended period of time [3]. Place-

based education is the process of using the local community and 

environment as a starting point to teach hands-on, real-world 

learning experiences in computer science, language arts, 

mathematics, social studies, science, and other subjects across the 

curriculum. The goal of place-based learning in the context of 

teaching computer science is to help students integrate CS 

principles and practices into community-based projects while 

simultaneously enhancing students’ appreciation for the natural 

world and creating a heightened commitment to serving as active, 

contributing citizens [11]. 

One of the primary outcomes of EDSC 237 is the development of 

a computer science resource portfolio or collection of related 

lessons, activities, projects, and assessments that preservice 

teachers can implement during student teaching. Students are 

required to align their lessons and activities to the CSTA learning 

standards and integrate the principles and practices of problem-

based, project-based, and place-based principles and practices into 

their CS resource portfolio. For more information about the 

methods course, please see the EDSC 237 syllabus [14]. 

4. LESSONS LEARNED FROM THE 

COMPUTER SCIENCE EDUCATION 

COLLABORATIVE 
In order to assess the overall progress of the CSEC’s work over the 

past two years, it was beneficial to utilize the evaluation framework 

of effective research-practitioner partnerships (RPP) developed by 

Henrick et al. [9]. In particular, our program assessment focused on 

the following questions: 1.) How did the CSEC work to develop 

trust and ensure that there was equitable participation among 

partners? 2.) How did the CSEC support the goals of the 

participating practitioners? 3.) How did the CSEC learn together? 

4.) How will the CSEC ensure that the curriculum work that they 

have engaged in over the past two years will be fruitful? 

4.1 How did the CSEC develop trust and 

ensure there was equitable participation 

among partners? 
Initially, CSEC members consisted of 2 CS faculty, 1 CS outreach 

coordinator, 3 education faculty, and the state director of 

technology. After CSE program approval in year 1, a CS teacher 

from a local school district joined the partnership. In order to keep 

the momentum moving forward, this diverse group of stakeholders 

made a commitment to attend and actively participate (in-person 

and virtually) in bi-weekly meetings for the purpose of 

accomplishing our CSE program development and implementation 

goals. We shared the workload by taking on various research, 

survey development, and standards alignment tasks. We 

established meeting norms that encouraged equal voice and input 

from all partners and invited participation from those who at times 

seemed reluctant to speak. 

4.2 How did the CSEC support the goals of 

the participating practitioners? 
Two of the CSEC partners were school practitioners who had fixed 

schedules with limited availability for meeting. As a collaborative, 
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we agreed to conduct our meetings during times that were 

conducive to practitioners’ schedules. As a result, we would often 

meet during lunch or after school hours. The collaborative made a 

genuine effort to better understand the roles and responsibilities of 

K–12 classroom teachers as well as the overall Grade 7–12 school 

culture and environment. The CSEC was particularly interested in 

the experiences of one of our partners, a CS classroom teacher, who 

recently earned CS licensure endorsement through the VT AOE 

peer review process. Her testimonial informed the development of 

the CS methods course and was instrumental in conversations 

pertaining to next steps in developing CS licensure pathways for in-

service teachers. 

4.3 How did the partnership learn together? 
As members of the CSEC, we recognized that each of us brought 

distinct knowledge and expertise that could advance both the 

project and the CSEC on the whole. CS faculty contributed in-depth 

knowledge of CS principles, processes, and practices aligned to VT 

CS endorsement standards and organized this data into a 

comprehensive spreadsheet that was invaluable to our program and 

course development work going forward. Education faculty and 

practitioners were instrumental in translating the curricular and 

pedagogical elements of the VT CS endorsement standards as well 

as in making recommendations for how topics such as equity, 

ethics, and cybersecurity might make their way into the CS methods 

course. In addition, on numerous occasions throughout the past two 

years, CSEC partners attended and presented at international, 

national, and regional CS conferences. In November 2019, four of 

the CSEC partners participated in a National Science Foundation 

CS for All workshop in DC to begin work on a CS for All grant 

proposal with the intent to develop and support CS pathways for 

VT in-service teachers. 

4.4 How will the CSEC ensure that the 

curriculum work that they engaged will be 

fruitful? 
After two years of collaborative work and the approval of the CSE 

minor and major at the university and state levels, we have met our 

targeted goals. Currently, the role of the CSEC has shifted from 

program development to program implementation, marketing, and 

recruitment. With the support of university administrators 

including chairs, deans, and communications directors, the CSEC 

is now focused on broadly advertising the CSE program via college 

websites, course catalogs, and program checklists for students. In 

addition, CS and Education faculty have been instrumental in 

directly communicating the progress and outcomes as well as new 

CSE program information to their departmental colleagues.  

5. NEXT STEPS: WHERE DO WE GO 

FROM HERE? 
Through the ongoing collective efforts of the CSEC, it became 

increasingly evident that the development of a preservice computer 

science education program was truly only the “tip of the iceberg” 

regarding the work that still needs to be accomplished in computer 

science education in Vermont. Given that only 27 teachers are 

currently licensed to teach CS in Vermont, word of the CSE 

program quickly spread to in-service teachers who were interested 

in earning licensure in computer science education. State-wide 

surveys conducted by the VT AOE and evaluations from a CS 

Summit hosted by the CSEC in 2019 confirmed our hunch that 

many teachers (over 300) were interested in CS professional 

learning opportunities and licensure. Teachers inquired as to 

whether the CSE minor or major concentration programs would be 

appropriate to their needs. In some cases, the answer was “yes,” but 

in reality, the preservice CSE program was designed primarily for 

undergraduate or MAT graduate students who were interested in an 

initial CS licensure program. 

This perceived need has prompted the CSEC to move forward in 

the development of flexible pathways for in-service teachers that 

recognize the limitations and constraints of teachers’ professional 

and personal lives and offer alternative options for teachers to earn 

licensure in computer science. In addition to the traditional 

undergraduate program described in this article, the CSEC is 

currently working on 2 additional pathways: a CSE Certificate 

Pathway and a CSE Individually Designed Pathway for licensed 

teachers interested in computer science licensure. For the CSE 

Certificate pathway, in-service teachers would enroll in a blend of 

CS content and pedagogy courses aligned to the CS AOE 

endorsement standards that explore best curriculum and teaching 

practices. Courses would be offered primarily online with options 

for face-to-face workshops, seminars (synchronous and 

asynchronous), and field/practicum experiences offered during 

summer months. This pathway is designed for licensed teachers, as 

well as others seeking licensure endorsement and methods to 

integrate CS principles and practices into the 7–12 curriculum. 

The CSE Individually Designed pathway is intended for teachers 

who may already have earned a number of required CSE credits 

and/or have participated in CS professional development 

workshops over time or who are new to CS principles and teaching. 

In this pathway, teachers would work with an advisor to curate a 

sequence of coursework, workshops (e.g. Code.org), as well as 

formal and informal CS teaching experiences that demonstrate 

evidence for meeting AOE CS endorsement standards leading to 

licensure. Teachers in this pathway would need to apply for the VT 

AOE peer review process and complete a portfolio that 

demonstrates how their courses and experiences meet AOE 

licensure endorsement standards. The development of these 

flexible pathways will be the primary focus of the work of the 

CSEC going forward. 

The variety of CS professional learning opportunities described in 

this article have been designed to build preservice and in-service 

teachers’ capacity to offer more authentic, engaging, and inquiry-

based CS education to their students. As Vermont and other states 

increasingly aim to provide high-quality CS education for all 

students, the Computer Science Education Collaborative through 

its efforts will continue to advance and support these initiatives 

over time. 
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ABSTRACT
This paper provides a supervised machine learning example to
identify laboratory glassware. This project was implemented in an
Introduction to Scientific Computing course for first-year students
at our institution. The goal of the exercise was to present a typical
machine learning task in the context of a chemistry laboratory to
engage students with computing and its applications to scientific
projects. This is an end-to-end data science experience with stu-
dents creating the dataset, training a neural network, and analyzing
the performance of the trained network. The students collected
pictures of various glassware in a chemistry laboratory. Four pre-
trained neural networks, Inception-V1, Inception-V3, ResNet-50,
and ResNet-101 were trained to distinguish between the objects in
the pictures. TheWolfram Language was used to carry out the train-
ing of neural networks and testing the performance of the classifier.
The students received hands-on training in the Wolfram Language
and an elementary introduction to image classification tasks in the
machine learning domain. Students enjoyed the introduction to ma-
chine learning applications and the hands-on experience of building
and testing an image classifier to identify laboratory equipment.

KEYWORDS
Machine Learning, Object Identification, Laboratory Glassware,
First-year

1 INTRODUCTION
Machine learning applications are increasingly common in the
day-to-day interactions of students with technology. An increasing
number of products from thermostats to recommendations for the
next TV series or movie to watch use some form of machine learn-
ing to augment the user experience. Self-driving cars [1], victory
in the game of Go over humans [28], and image classification [7]
are some of the more high-profile applications of machine learning.
However, in addition to these, such tools are also used in email
spam filtering [6], credit score determination [9], as well as many
others. An interactive history of machine learning, including refer-
ences and major applications, has been developed by Google [4].
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A recently released review article provides more detailed informa-
tion on applications of machine learning to scientific domains and
specifically to the area of material science research [24].

A variety of resources in the domain of machine learning, neural
networks, and their applications is now available online that is
accessible to people with a range of technical skills. A full review of
machine learning is beyond the scope of this paper. However, the in-
terested reader is referred to multiple freely available resources for
additional information and background. Coursera hosts a very pop-
ular course on machine learning [11]. Wolfram Research provides
multiple training videos and courses to get users started on ma-
chine learning basics [15, 17], image classification [20], and many
more applications using the Wolfram Language [16]. Google also
provides a course for developers to introduce them to machine
learning, and the examples are accessible to beginners as well as
those with more advanced skills [5].

Supervised learning corresponds to the family of approaches
that train a neural network to learn from a training set of labeled
examples. The trained network, after testing, is utilized in per-
forming the specialized task on new samples of unlabeled data.
Deep learning, based on multi-layer neural networks, has recently
outperformed traditional approaches in computer vision and natu-
ral language processing. One of the major success stories of deep
learning applications is image classification [12]. The goal in image
classification is to classify a picture according to a set of possible
categories. Transfer learning in the field of computer vision enables
the construction and implementation of accurate models rapidly
and without rebuilding the entire neural network architecture. In
practice, a pre-trained model is adopted that was trained on a large
benchmark dataset to solve a problem similar to the one under
consideration. Such pre-built models are imported from published
literature and then adapted for application to the problem of in-
terest. A comprehensive review of the performance of pre-trained
models for computer vision problems using the ImageNet data [23]
challenge is provided [2].

A commonly implemented first example in image classification
is that of distinguishing images of cats from dogs. A pre-trained
neural network is provided with a labeled training set of images.
The training is performed, and the trained network’s performance
is then tested using images that were not part of the training set.
The success of training becomes quite evident with the results and
can be measured in terms of accuracy of classification. The exer-
cise is quite easy to construct and provides a good first example
for students. Another exercise that is widely used is the identifi-
cation of hand-written digits. The Modified National Institute of
Standards and Technology (MNIST) database of hand-written digits
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and its classification and identification are also widely used for
assessment of potential image classification algorithms [10]. That
database includes a training set of 60,000 examples and a test set
of 10,000 examples and is also used quite commonly as one of the
first examples in this domain.

Our main goals were to introduce students to machine learning
applications, highlight the ease of creating such applications using
the Wolfram Language, and encourage students to think about pos-
sibilities of applying such developments to scientific domains. This
project was carried out with students in the author’s “Introduc-
tion to Scientific Computing” course. The course philosophy and
design have been previously described in this journal [26]. That
course provides students with an introduction to programming in
the Wolfram Language using the Mathematica notebook interface.
The crux of the course is to provide students with hands-on expe-
rience in production, visualization, and analysis of technical data.
Modifications of that course design were also successfully imple-
mented to incorporate a course based undergraduate research style
experience with large-scale data analysis [27]. The course has been
taught at Wagner College for the last 6 years and has been highly
successful in building an awareness of computational approaches
in the sciences.

2 METHOD
Students used their smartphones to click pictures of various labo-
ratory glassware routinely used in a Chemistry laboratory. They
uploaded the pictures into a shared Google folder directly from
their phones. This procedure was adopted to simplify the data col-
lection process. Most of the pictures were taken with the goal of
having one main object in the image. A mixture of empty and filled
glassware was used to mimic a typical Chemistry laboratory setting.
For example, beakers of various volume capacities were used: 250
mL, 500 mL, etc. The chemical composition of the solutions was not
important for this exercise. Our intention was to introduce colors
into the beakers to increase the sample space of pictures. A col-
lection of sample images from each category is shown in Figure 3.
Table 1 displays the number of classes and the number of images
in each class in the dataset. A recent publication by Eppel et al.
[3] implemented crowdsourcing to collect pictures of glassware
in a chemistry laboratory. Their report is of much larger scope,
with identification of the phase of the substance present inside the
glassware. Our end-to-end exercise is designed with the express
purpose of acquainting undergraduate students with the entire pro-
cess, from collection and organization of raw images to analysis of
final results.

The overarching idea was to collect pictures of glassware in a
typical laboratory setting. Toward this end, some variability was
also introduced in each class by intentionally including some back-
ground clutter. However, we realize that this may not be a best
practice in terms of a practical goal of achieving the highest pos-
sible accuracy or success metric in object identification. Our goal
was to get students to think through some of these issues during
the collection of pictures. For example, the test tube collection class
has pictures of multiple test tubes organized in a test tube stand. In
this case, some test tubes were left empty, while others were par-
tially filled with some of the prepared solutions. The test tube stand

Table 1: Classes and number of images in each class

Class Number of images

Beaker 30
Buchner funnel 20
Buret 11
Buret stand 5
Erlenmeyer flask 24
Flat bottom flask 18
Funnel 23
Graduated cylinder 47
Pipet 16
Round bottom flask 24
Separatory funnel 22
Standard measuring flask 36
Test tube 6
Test tube collection 17
Test tube stand 14
Viscometer 14
Wash bottle 8
Total 335

Figure 1: Erlenmeyer flask images collected by the students.
Different colored solutions were used to fill up the flasks to
various capacities.

class has pictures of empty test tube stands of different types as
well as partially-filled and fully-filled stands. Clearly, this is a nebu-
lous area of labeling in our problem. However, that is a question of
semantics, and our interest in this exercise was to demonstrate iden-
tification between our assigned labels. Some glassware is routinely
seen suspended: for example, burets, separatory funnels, etc. In all
such cases, we collected pictures of the glassware by placing them
on a laboratory bench and also with their stands or supporting
structures.

Figure 1 shows the collection of pictures of Erlenmeyer flasks that
were used in the exercise. Some of the flask pictures were taken with
empty flasks orwithwater in the flask. Asmentioned earlier, colored
solutions were also used in some of the pictures. A concerted effort
was made to ensure that the pictures covered different volumes and
with some variations in the contents of the flasks. The location of
the flasks was also varied, and some pictures were taken on the
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Figure 2: Images of pipets of various volume capacities in
the dataset. Pipets seem to be difficult to differentiate from
the background, and some images used a piece of paper to
highlight the object.

laboratory bench, while others involved a common surface that
was used for many pictures. Students used their own phones to
collect pictures, and consequently there is considerable variation
in the brightness, clarity, and contrast between the pictures. Some
clutter, like faucets or electrical sockets, is visible in some of the
pictures. Figure 2 displays the collection of pipet pictures that were
part of the dataset. Pipets were particularly difficult to distinguish
from surroundings under the lighting conditions in the laboratory,
and some pictures utilized a small piece of colored paper to provide
a suitable contrast for the pipet. Some pictures included a rubber
bulb attached to a pipet. Additionally, it was quite difficult to get a
clear picture of the 5 mL pipets, and some images incorporated a
small piece of paper for easier differentiation. An additional picture
was added with a pipet suspended from a stand to get a vertical
orientation against a neutral wall background. In a similar fashion,
buret pictures were also taken with a stand in the picture frame.
Similar considerations were applied to all of the images in the
dataset.

The image classification task was carried out with four neural
networks that have demonstrated excellent results with the Ima-
geNet competition data [8]. This allowed comparative studies and
group-based investigations. Inception v1 [13] and Inception v3 [14]
released by Google and ResNet-50 [19] and ResNet-101 [18] re-
leased by Microsoft were implemented in our exercise. All of these
networks were trained on the ImageNet Large Scale Visualization
Challenge 2012 classification dataset [23] consisting of 1.2 million
images with 1,000 classes of objects. The plug-and-play nature of
the pre-trained neural networks was also emphasized by imple-
menting multiple neural networks. These networks are quite recent
and well-known in image classification tasks. A brief overview of
these networks is provided in Table 2.

Table 2: Four neural networks used for the image classifica-
tion task. The pre-trained networks were downloaded from
the Wolfram Neural Net Repository.

Network Year Source Layers Parameters

Inception v1 2014 Google 147 6,998,552
Inception v3 2015 Google 311 23,885,392
ResNet-50 2015 Microsoft 177 25,610,216
ResNet-101 2015 Microsoft 347 44,654,504

Figure 3: A sample of thumbnail-sized pictures from each of
the classes in the dataset used for the classification process.

These pre-trained neural networks were downloaded from the
Wolfram Neural Net Repository [22] and set up according to the in-
structions provided on the Wolfram website [21]. The training was
performed by removing the final classification layers and replacing
them with a classifier corresponding to the number of classes, 17,
and a SoftMax layer to compute probabilities. The function Net-
Drop was used to perform these operations, and the training was
performed using NetTrain. The training was carried out on a system
with dual consumer class Graphical Processing Units for a maxi-
mum of 10 training rounds. The training performance is shown in
Figure 5. The collected images were labeled, and the dataset was
split into training and testing sets. 80% of the images were used
for training, and the other 20% were reserved for testing. Since the
population of items in the dataset is not uniformly distributed, the
splitting of data into training and testing sets was carried out at
the level of each class. This ensured that the training and testing
sets contained each item of laboratory equipment. The training
rounds with augmented images, and thus much larger number of
samples, drops down in error during training much more rapidly as
compared to the dataset with no augmentation of image samples.
In either case, 10 training rounds seem to be sufficient in achieving
a very low error during the training phase of the neural networks.

The image classification task performs best with small images,
so the first step was to take the thumbnail version of all the images
in the dataset. The following four datasets were constructed from
the collected pictures to carry out this activity:
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(1) Full color images captured by students
(2) Enhancement of the full color image dataset by image aug-

mentation methods
(3) Grayscale images from the full color images
(4) Enhancement of the grayscale images by image augmenta-

tion methods

The step of image augmentation can be carried out through a
hidden layer in the neural network. However, we chose to explicitly
perform image augmentation to lead students to think through the
steps of modifying images to enhance the dataset. The following
module was used to carry out the image augmentation.

imageSetAugmentation[objectImages_List]:=Module[
{detailEnhanced,blurredImages,noisyImages,
lightDarkImages,reflectedImages,
rotatedImages,augmentedImages},
detailEnhanced=ImageEffect[#,"DetailEnhancing"]
&/@objectImages;
blurredImages=Blur[#,RandomInteger[{1,3}]]&
/@objectImages;
noisyImages=ImageEffect[#,"Noise"]&
/@objectImages;
lightDarkImages=Join[Lighter[#]&/@objectImages,
Darker[#]&/@objectImages];
reflectedImages=ImageReflect[#,Left]&
/@Join[objectImages,detailEnhanced,blurredImages,
noisyImages,lightDarkImages];
rotatedImages=ImageRotate[#,RandomInteger[{-10,10}]Degree]
&/@Join[objectImages,detailEnhanced,
blurredImages,noisyImages,lightDarkImages,
reflectedImages];
augmentedImages=Join[objectImages,
reflectedImages,rotatedImages];
Return[augmentedImages];
]

The Wolfram Language function ImageEffect was used to carry
out detail enhancing and adding random noise effects to each image.
Images were blurred using the Blur function with a randomly cho-
sen pixel radius over which the blur was to be applied. Images were
modified to appear lighter or darker using the appropriately named
functions. Next, all of these images were collected and reflected
from left to right. The final operation was to rotate all of these
images with a randomly chosen rotation amount between -10 to 10
degrees. The result of all of these operations on one image taken
from the set of Erlenmeyer flask images is shown in Figure 4. For
every image in the raw dataset, 19 images were produced by the
image augmentation procedure described above. The number of
raw images in the dataset was 335, and after the implementation
of the imageSetAugmentation module, the number of images in-
creased to 6,365 for the two cases where image augmentation was
applied. Thus, each network was trained and tested on 4 versions
of the images. The versions without augmentation had 335 images
in their complete dataset and the versions with augmentations had
6,365 images in their dataset.

Figure 4: Image augmentation effects shown for an Erlen-
meyer flask image. The images are subjected to blurring, ro-
tation, reflection and changes in contrast as described in the
text.

3 RESULTS AND DISCUSSIONS
The training of each network resulted in a classifier trained to
distinguish between the classes of the laboratory glassware in our
training sample. These classifiers were then tested on the testing
set generated for each set of images. The classification experiment
for image sets without augmentation was carried out five times
each, and the sets with augmentation were carried out three times
each. The results of the classification performance on the testing
set were compared using multiple metrics and are presented below.

3.1 Accuracy
Accuracy is the fraction of correctly identified and labeled images
from the testing set. The accuracy of classification is calculated as

Accuracy =
True Positives + True Negatives

Total Examples
(1)

A graphical summary of the mean accuracy with standard error for
the four networks and the four types of image datasets is shown in
Figure 6. The plots show that there is essentially no difference in the
training times for color images and grayscale images. The ResNet-50
network seems to provide a suitable trade-off between accuracy and
training time in both cases, with and without image augmentation.
There is a marked increase in accuracy with the application of
image augmentation to increase the sample size for training. The
highest classification accuracy of around 92% is lower than the least
accuracy recorded, around 97% for the dataset enhanced with image
augmentation methods. The image augmentation module increased
the dataset size by a factor of 19, and a corresponding increase in
training times can be seen from the plots. However, accuracy is not
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(b) Validation error during training for the set of images
augmented with image modifications of glassware.

Figure 5: Validation error during training of all four neural
networks. The error is negligible within ten training rounds.
The validation error decreases significantly with the larger
dataset of augmented images.

a very reliable metric for a class-imbalanced dataset as present in
this exercise.

We also analyzed the accuracy and rejection rate of samples
based on different indeterminate threshold values. The maximum
rejection rate is seen at an indeterminate threshold of around 90%.
A more reasonable value of indeterminate threshold around 30%
or 0.3 leads to accuracy around 99% . Figure 7 provides a graph-
ical summary of results from the dataset of colored images with
augmentation effects for the ResNet-50 network.

3.2 F1 Score
The F1 score is the harmonic mean of the precision and recall for
the classification task. A high score implies that the classification
produces a low number of false positives and false negatives. The
values reported in Figure 8 are averages of the microaveraged F1
score from each of the iterations. The microaverage F1 score was
calculated for each iteration to account for the differences in class
frequencies. It is clear from Figure 8 that training on the augmented
dataset enlarged with image effects gives rise to the highest values
of F1 scores for each case, full color images and grayscale images.
The difference between ResNet performance and Inception perfor-
mance is larger when the dataset is small. The calculation of the F1
score is carried out as follows.

F1 = 2 ×
Precision × Recall
Precision + Recall

(2)
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set of images of glassware.
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glassware.

Figure 6: Accuracy of all four neural networks for each
dataset. The ResNet-50 neural network provides the best
trade-off between accuracy and training time. The datasets
with image augmentation lead to much higher accuracy in
classification.
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Figure 7: Accuracy and Rejection rate as functions of the
threshold for indeterminate classification. Very high accu-
racy is observed for a wide range of classification thresholds
for the dataset with augmented images.

However, since this a multi-class problem, we computed the micro-
averaged F1 score. The micro-F1 score is calculated as:

Micro F1 score = 2 ×
Micro precision ×Micro recall
Micro precision +Micro recall

(3)

The calculation of the micro precision and micro recall are carried
out as shown below. The acronyms have their usual meaning, TP
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Figure 8: Microaveraged F1 score for all datasets and neural
networks in this exercise. The classification on augmented
datasets gives rise to high F1 scores in each case.

stands for true positives, FP is for false positives, and FN represents
false negatives. The sums end at 17, because that is the number of
classes in this classification problem.

Micro precision =
TP1 + · · · +TP17

TP1 + · · · +TP17 + FP1 + · · · + FP17
(4)

Micro recall =
TP1 + · · · +TP17

TP1 + · · · +TP17 + FN1 + · · · + FN17
(5)

3.3 Confusion Matrix
The confusion matrix is a succinct graphical representation of the
confusions in the classes encountered by the classifier. Since the per-
formance of ResNet-50 seems to be the most optimal, we highlight
the confusion matrix for the top five confusions of this network
for the case of augmented and unaugmented full color images. Fig-
ure 9 shows the confusion matrix, and it is evident that some of the
confusions can be rationalized on the basis that the items in those
classes indeed look quite similar to the human eye. For instance,
a graduated cylinder is confused with a standard measuring flask,
and a beaker is misclassified as a standard measuring flask. Such
confusions, on a much smaller scale, also persist in the case of the
dataset with augmented images. Another interesting example is
that of a viscometer misclassified as a test tube. However, it is im-
portant to note that it is one misclassification out of 53 such images
tested.

3.4 Geometric Mean Probability
Finally, the average and standard error of the geometric mean prob-
ability for the trials are shown in Figure 10. The geometric mean of
the class probabilities provides an insight into the overall classifi-
cation performance. Larger values of the geometric mean signify
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(b) Confusion matrix for top five confusions for the set
of augmented full color images.

Figure 9: Confusion matrix plots for the classifier from the
ResNet-50 network. The numbers on the bottom of each
frame represent the number of correctly identified images,
and numbers on the right edge of the frame are the total
number of images for that class.

uniformly high confidence in the probabilities reported by the clas-
sifier during the testing phase. Figure 10 highlights the importance
of augmentation and the resulting larger dataset for each case. The
geometric mean probability appears insensitive to the color spec-
trum of the images and increases to values approaching 0.9 – 1.0
with the augmented datasets.

4 TEACHING IDEAS
The images of the dataset and sample notebooks used for training
of networks and data analysis are freely available as Supporting
Information. Short student projects to investigate the performance
of classification for smaller number of classes may be constructed
using the dataset. Students could be tasked with specific classes
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(b) Geometric mean probability for the set of grayscale images.

Figure 10: Geometric mean of probabilities of actual class
predictions. Part (a) is the set of full color images with and
without augmentation, and part (b) is the set of grayscale
images with and without augmentation. The augmented
datasets in each case display a much larger value of the geo-
metric mean, indicating stronger performance across the
different classes.

of glassware images and asked to compare accuracy of classifi-
cation. Another extension that could be implemented is to carry
out image augmentation using different types of transformations
and/or subsets of transformations from those that have been used
in our implementation. The students could then investigate the ef-
fectiveness of those transformations towards the final classification
performance. The exercise can also be extended by adding more
glassware images and investigating classification performance. An
interesting and possibly more advanced application would be to
identify the text on glassware that annotates the volume, especially
on beakers or Erlenmeyer flasks. Another application would be to
identify the piece of glassware and to identify the hand-written
or printed chemical species from the label attached to the glass-
ware. This would integrate image classification and hand-writing
recognition. The training of neural networks on the dataset with
image enhancement is best carried out on systems with a GPU. The
training times shown in this manuscript are result from execution
on a dual-GPU workstation. However, the smaller datasets with-
out image augmentation can be easily processed on workstations
or laptops without a dedicated GPU. We imagine that instructors
with limited resources could choose to carry out the training of
augmented datasets on a dedicated workstation with a GPU, and
students would work with the unaugmented datasets on their per-
sonal computing devices.

5 STUDENT FEEDBACK
This exercise was carried out with a cohort of eight first-year stu-
dents in the author’s Introduction to Scientific Computing course.

The students expressed enthusiasm and interest toward more appli-
cations of machine learning following this exercise. Although there
were no formal surveys, through informal feedback and one-on-one
interviews, students pointed out that they enjoyed the project. They
specifically enjoyed bringing their computing knowledge into the
wet laboratory. Students with interest in biological sciences started
discussions on applications of machine-learning methods to images
obtained from microscopes. A majority of comments indicated that
the activity helped them feel less intimidated about approaching
machine learning or artificial intelligence related literature. They
also reported increased interested in exploring computation as a
tool toward their scientific domains of interest. A significant out-
come of the informal feedback process was the realization from
students that machine learning and advanced approaches are not
limited to computer science majors or large technology companies.

6 CONCLUSIONS
We developed and implemented an end-to-end data science exer-
cise with an application of machine learning experience for STEM
students using their laboratory surroundings and equipment as the
source of the project. Classification of images based on supervised
learning is a common example in the machine learning domain, and
the students adapted that into the chemistry laboratory. First-year
students collected pictures of various glassware in the chemistry
laboratory and implemented the training and testing of classifiers
based on four pre-trained neural networks. These neural networks
were chosen due to their wide availability and well-known perfor-
mance on image classification tasks. The glassware images were
split into two categories of full color images and grayscale images.
Each set of images was enlarged with an image augmentation rou-
tine that resulted in a 19-fold increase in the size of the dataset. The
students then compared the performance of the classification of
glassware among the four networks and for each of the four types
of datasets. The performance of the classifiers on the augmented
datasets seems to be the most reliable, irrespective of using color
images or grayscale images. Our analysis shows that ResNet-50
provides the best trade-off between accuracy and training time for
the datasets considered in this activity. We believe that this activity
provides students with an accessible and empowering introduction
to advanced techniques in the data science domain through the
lens of typical glassware in a chemistry laboratory.

7 SUPPORTING INFORMATION
We have provided the dataset of images and some of the Mathemat-
ica notebooks used to train the neural networks and to analyze the
performance of the classifiers. The components are:

(1) Chemistry-Glassware-ML-no-augmentation-run1.nb: This
notebook provides the code for setup and training of all four
neural networks mentioned in the Methods for the dataset
of full color images without image augmentation.

(2) Chemistry-Glassware-ML-with-augmentation-run1.nb: This
notebook provides code for setup and training of the afore-
mentioned neural networks for the dataset of full color im-
ages augmented with image modification effects.

(3) A folder called Glassware-Images contains images of the
various glassware organized by name.
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(4) Training and testing datasets for the first iteration of the
experiment with no image augmentation with filenames
training-Set-edison-2020-06-10T05:24:59.mx and testing-Set-
edison-2020-06-10T05:24:59.mx

(5) Binary data export of neural networks trained on the labora-
tory glassware data. These files all have the .mx extension
and the names start with trainedNet-*.mx. The name of the
network is included in the filename string.

These resources are located in a shared Google drive folder. A
copy of these resources is also hosted on Zenodo [25]. The dataset
provides our trained networks with the extension “.mx,” and the
notebook entitled, “Analysis-run1-no-augmentation.nb” is set up
with the correct filenames to load the trained networks and the
testing and training dataset used for that iteration.
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ABSTRACT
Turbulent boundary layers that evolve along the flow direction are
ubiquitous. Moreover, accounting for the effects of wall-curvature
driven pressure gradient and flow compressibility adds significant
complexity to the problem. Consequently, hypersonic spatially-
developing turbulent boundary layers (SDTBL) over curved walls
are of crucial importance in aerospace applications, such as un-
manned high-speed vehicles, scramjets, and advanced space aircraft.
More importantly, hypersonic capabilities would provide faster re-
sponsiveness and longer range coverage to U.S. Air Force systems.
Thus, the acquired understanding of the physics behind high speed
boundary layers over curved wall-bounded flows can lead to the
development of more efficient control techniques for the fluid flow
(e.g., wave drag reduction) and aerodynamic heating on hypersonic
vehicle design. In this investigation, a series of numerical experi-
ments is performed to evaluate the effects of strong concave curva-
ture and supersonic/hypersonic speeds (Mach numbers of 2.86 and
5, respectively) on the thermal transport phenomena that take place
inside the boundary layer. The flow solver to be used is based on a
RANS approach. Two different turbulence models are compared:
the SST (Shear Stress Transport) model by Menter and the standard
k-ω model by Wilcox. Furthermore, numerical results are validated
by means of experimental data from the literature (Donovan et al.,
J. Fluid Mech., 259, 1-24, 1994) for the moderate concave curvature
case and a Mach number of 2.86. The present study allows us to
initially obtain a first insight of the flow physics for a forthcoming
better design of 3D meshes and computational boxes, as part of a
more ambitious project that involves Direct Numerical Simulation
(DNS) of curved wall-bounded flows in the supersonic/hypersonic
regime. The uniqueness of this RANS analysis in concave curved
walls can be summarized as follows: (i) study of the compressibility
effects on the time-averaged velocity and temperature, (ii) analysis
of the influence of different inflow boundary conditions.

KEYWORDS
RANS, turbulent boundary layer, supersonic, hypersonic, wall cur-
vature
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1 INTRODUCTION
Significant research effort has been devoted to high speed flight in
the last decades, since it is directly connected to “rapid responsive-
ness, increased survivability in contested environments and efficient
range coverage" from a military perspective, according to Schmis-
seur [12]. What is more, a Mach 6-aircraft would be able to reach
the US West Coast in approximately 23 minutes from the US East
Coast [12]. In 2013, the Boeing X-51A Waverider Scramjet proto-
type was released at 50,000 feet as part of the the fourth and final
test flight in the U.S. Air Force program, reaching a Mach number
of 5.1, which is enough to fly from New York to London in roughly
75 minutes.

Furthermore, due to the complex geometries associated with
these high-speed aircraft (as seen in Figure 1); such as unmanned
hypersonic vehicles (e.g., Boeing X-51 WaveRider and NASA X-43),
scramjets, and space planes; surface curvature plays a crucial role
in the boundary layer physics and aerothermodynamics. This is at-
tributed to the combined effect of pressure gradients and streamline
curvature (Spina et al. [13]), which induces extra strain rates to the
main shear (∂U /∂y) associated with streamline curvature (∂V /∂x ),
pressure gradients (∂p/∂x and ∂p/∂y), and bulk compression or di-
latation (∇ · V) (Donovan et al. [5]). The principal features of curved
wall-bounded flows (so-called Görtler flows) are the presence of a
centrifugal force and a pressure gradient (i.e., ∂p/∂n) acting on the
fluid in the wall-normal direction as well as a streamline pressure
gradient (i.e., ∂p/∂s) in curvilinear coordinates (s , n).

Figure 1: Cartoon of the Boeing X-51A Waverider (source:
Wikipedia)

An exhaustive review of pressure gradient and streamline surface
curvature effects on the behavior of supersonic turbulent boundary
layers can be found in Spina et al. [13]. This revision was focused on
experimental studies and two-dimensional geometries, but not on
the distortion of compressible turbulent boundary layers by shock
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waves. Furthermore, concave curvature induces a destabilizing ef-
fect on the flow by enhancing turbulent mixing, whereas convex
curvature is stabilizing. Thomann [17] experimentally studied the
isolated effects of wall curvature surfaces (concave and convex) on
the heat transfer (Stanton number) in Mach-2.5 turbulent bound-
ary layers by eliminating the streamwise pressure gradients. He
found an increase of 20% on Stanton numbers along the concave
wall, while an analogous decrease was observed for the convex
wall. Historically, the combined effect of concave surface and Ad-
verse Pressure Gradient (APG) on supersonic/hypersonic turbulent
boundary layers has been the motivation of several experimental
studies in curved 2D ramps and flared cones, for instance [9] [6] [14]
[15] [8]. Smits and his colleagues at Princeton University have per-
formed a series of experiments in two-dimensional concave walls
with the objective of gaining insight into the effects of different
radii of curvature and turning angles on adverse pressure gradient
strength and bulk compression [16] [7] [5]. Furthermore, the typical
manifestation of destabilizing effects in concave surfaces in sub-
sonic flow is the generation of Taylor-Görtler-type (T-G) vortices,
even in turbulent flows [3] [13]. Jayaram et al. [7] observed signif-
icant increases of turbulence levels, structural parameters (such
as the stress ratio), and length/time scales of turbulent motions in
the larger-curvature case. Donovan et al. [5] found a significant
amplification of the Reynolds stresses, and the streamwise length of
the average large-scale motions approximately doubled in concave
surfaces at a Mach number of 2.86. As concluded in [7] and [5],
concave curvature provokes an increase of the wake strength and
a dip below the log law in the mean streamwise velocity as well
as an emergence of an outer secondary peak on the streamwise
component of the Reynolds normal stresses (u ′2). These features
are attributed to the presence of a streamwise APG on the flow pro-
voked by the concave surface. Similar peculiarities were reported
by Araya et al.[2] and Araya and Castillo [1] in incompressible tur-
bulent boundary layers subject to moderate and strong streamwise
APG on flat surfaces.

In summary, the performed literature review has revealed the
strong influence of wall-curvature driven pressure gradients on the
mean flow and heat transfer inside a compressible SDTBL. It is clear
that the accurate and comprehensive knowledge of the curved wall
effects on the physics of supersonic/hypersonic SDTBL will lead to
the development of flow control mechanisms on high speed vehicle
design. This article focuses on the study of supersonic/hypersonic
SDTBL under the influence of strong streamline concave curvature,
which can lead to the determination of appropriate flow control
tools and design optimization in high speed science.

2 MESH GENERATION, FLOW SOLVER, AND
BOUNDARY CONDITIONS

Figure 2 (a) shows a schematic of the computational domain for
the strong concave curvature, or Case 1 in Table 1. The proposed
geometry in Case 1 is based on the experimental study of Donovan
et al. [5] and covers full spatial dimensions of the experimental
model. The available experimental results, such as wall pressure and
wall shear stress, are used for our RANS validation. Furthermore, the
experimental boundary layer in [5] evolves along the streamwise
direction; however, it shows a homogeneous spanwise condition,

(a)

(b)

Figure 2: (a) Schematic of the computational domain, and (b)
domain dimensions in mm.

and consequently, the mean flow is two-dimensional. The wall
curvature is prescribed based on the radius of curvature, R, defined
in Table 1 in terms of the reference boundary layer thickness, δr ef .
Consistent with experiment, the value of δr ef (= 28mm) is taken at
the origin of the coordinate system (x = 0 mm or beginning of the
curved surface). Here, x is the streamwise distance along the model
surface, and y is the wall-normal coordinate. The curved wall ends
at x = 98 mm, or approximately 3.5δr ef . The wall-curvature driven
pressure gradient zone induces an Adverse Pressure Gradient (APG)
on the flow. Upstream, there is a Zero-Pressure Gradient (ZPG)
zone, which serves as a point of reference (i.e., baseline cases) to
assess the effects of wall curvature on the flow. In Figure 2 (b), the
corresponding 2D domain dimensions (in mm) for Case 1 can be
observed.

Table 1 summarizes the characteristics of the proposed two (2)
cases according to the wall curvature (δr ef /R), Mach number (M∞),
momentum thickness-Reynolds numbers (Reθ = ρ∞U∞θ/µ∞,Reδ2 =
ρ∞U∞θ/µw , based on the free-stream and wall viscosity, respec-
tively), and computational domain dimensions in terms of δr ef
(where subscript∞ stands for free-stream values,w stands for wall
values, and Lx and Ly represent the streamwise and wall-normal
domain lengths, respectively). Compressibility effects are taken
into account by means of two different Mach numbers: 2.86 and 5,
for cases 1 and 2, respectively, and by prescribing the same strong
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surface curvature, i.e. δr ef /R = 0.08 in both cases. These two values
for Mach numbers indicate that selected cases are in the supersonic
regime and in the lower limit of hypersonic flows.

Flow Solver: The STAR-CCM+ package for computational fluid
dynamics is selected to solve the governing equations of compress-
ible flow in this investigation. The following turbulence models are
prescribed for each case in Table 1: the Shear Stress Transport (SST)
model by Menter [10] and the standard k −ω model by Wilcox [18].
Two–equation turbulence models are complete, because transport
equations are solved for both turbulent scales, i.e. the velocity and
the length scale. The original k −ω model [18] exhibits a freestream
dependency of ω, which is generally not present in the k − ϵ model.
Menter [10] integrated the advantages of both models via blending
functions, which permitted switching from k − ω, close to a wall,
to k − ϵ , when approaching the edge of a boundary layer. A further
improvement by Menter [10] was a modification to the eddy viscos-
ity, based on the idea of the Johnson-King model, which established
that the transport of the main turbulent shear stresses was crucial
in the simulations of strong Adverse Pressure Gradient (APG) flows.
This new approach was called the Menter shear–stress transport
model (SST). In particular, the Menter SST turbulence model is well-
known for its good performance in boundary layer flows subjected
to APG or flow deceleration. Since the concave surface curvature
induces a strong deceleration on the flow, one of the purposes of
the present study is to evaluate the SST’s performance on concave
walls.

Boundary Conditions: At the wall, the classical no-slip condition
is imposed for velocities. Isothermal wall is assumed for the thermal
field with Tw = 280.8K as in [5]. The working fluid is calorically
perfect non-reacting air. At the inlet boundary, four different op-
tions are tested and compared, which are described in detail in
Section 3. At the top surface, freesstream values are prescribed.

Table 1: Numerical cases with concave surface curvature.

Case δr ef /R M∞ Reθ /Reδ2 Lx × Ly

1 0.08 2.86 82,000 / 38,140 35δr ef × 20δr ef
2 0.08 5 143,360 / 66,679 35δr ef × 20δr ef

3 NUMERICAL RESULTS
For Case 1, the inlet free-stream velocity U∞ is set to 581 m/s (M∞
= 2.86), whereas U∞ is set to 1014 m/s (M∞ = 5) for Case 2. In all
cases, the static free-stream temperature T∞ is 102.4K. The grid
is 723 (streamwise) by 200 (wall-normal) grid points. The mesh
is stretched in the wall-normal direction with the first off-wall
point located at 6 × 10−8 m. The first off-wall point in the Mach-5
case is placed at ∆y+ ≈ 0.09, which ensures an appropriate near
wall resolution (∆y+ < 1). Figure 4 exhibits the time variation of
flow residuals for continuity, momentum, energy, and turbulence
transport (i.e., for turbulent kinetic energy, tke , and specific dissi-
pation rate) equations. It is observed that numerical convergence is
achieved in Case 1 by employing the SST turbulence model after
30,000 iterations with a CFL parameter of 0.5.

(a)

(b)

Figure 3: Computational mesh (a) total domain (flow from
left to right) and (b) close-up of the curved surface.

Figure 4: Time history of flow residuals.

Different methodologies for the inlet boundary condition are
tested in Case 1. Figure 5 depicts iso-contours of the wall-normal
velocity based on the SST turbulence model. In Figure 5 (a), the
streamwise velocityU was assigned a 1/7 power law profile inside
the boundary layer with aU -parabolic profile for the static temper-
ature T . In Figure 5 (b) a composite velocity profile is prescribed
that consists of Reichardt’s [11] inner layer profile, Finley’s wake
function (Cebeci & Bradshaw [4]), and the Walz equation for the
temperature profile. In Figure 5 (c) the velocity and thermal profiles
were extracted from x = −0.0625m in the previous case and re-
injected at the domain inlet (this case is called “recycle"), whereas
in 5 (d) a symmetry zone is attached upstream of the flat plate edge.
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Clearly, an inclined line of disturbances is observed in Figure 5 (a) at
approximately 20◦ with respect to the x−direction, very close to the
Mach angle µ = sin−1 (1/M∞), which is generated at the edge of the
flat surface (no-slip condition) due to improper inlet flow profiles.
This Mach wave is somehow reduced by setting the Reichardt’s and
Walz’s equations at the inlet (see Figure 5 (b)), but not completely.
The recycling technique in Figure 5 (c) has properly modeled in-
flow conditions, since the inclined disturbances almost disappeared.
In a similar way, by attaching an upstream symmetry condition
(see Figure 5 (d)) and resolving turbulence transition, the sonic
disturbances are minimized. However, in this case, the presence of
the Mach wave is physical (not artificial) due to the interaction of
supersonic free-stream with the edge of the flat plate. Therefore,
the importance of setting realistic turbulent inflow conditions is
unquestionable. Consequently, in the present study, an upstream
slip boundary for modeling the inlet conditions is employed for the
rest of the manuscript.

Figure 6 exhibits a comparison of present numerical results of
Case 1 with the experimental wall static pressure. Generally speak-
ing, both turbulence models (SST and k − ω) capture quite well
the significant increase (up to three times) of the upstream sur-
face pressure due to the presence of the concave curvature (i.e.
for 0m ≤ x ≤ 0.098m). Beyond the end of the curved wall, more
precisely in the inclined straight surface, some discrepancies with
experimental values (in the order of 5%) can be observed. How-
ever, the agreement is very good between numerical results for
the SST model and inlet recycled profiles with Donovan’s exper-
imental data, particularly beyond the concave curvature (i.e. for
x > 0.098m). This might be caused by a higher incoming Reynolds
number prescribed in the inflow recycled profile case.

The skin friction coefficient (Cf ,r ef ), defined as the wall shear
stress normalized by the upstream free-stream density and veloc-
ity, is plotted in Figure 7. Experimental data from [5] is included.
It can be seen that both turbulence models and inlet free-stream
conditions exhibit similar performance. After the typical decreas-
ing trend in the zero-pressure gradient region, numerical results
of Cf ,r ef based on the SST (free-stream inlet) and k − ω models
significantly over-predict experimental values. On the other hand,
the SST model (recycled profile inlet) shows an anomalous increas-
ing trend of Cf ,r ef in the ZPG zone; nevertheless, the obtained
skin friction coefficient in the concave wall exhibits a much bet-
ter agreement with experiments, which may be attributed to the
higher Reynolds number imposed. Moreover, the observed increase
in the skin friction coefficient is contrary to what occurs in incom-
pressible boundary layers [2] subject to adverse pressure gradient,
where the wall shear stress decreases. This is explained by the fact
that the density increases more than the velocity decreases (flow
deceleration) in compressible flows. Therefore, the boundary layer
thickness based on the time-averaged streamwise velocity (not
density-averaged) enlarges, as it will be shown later on, and the
wall velocity gradient increases, as well. Figure 8 depicts the mean
streamwise velocity at x = 40 mm (halfway through the curve).
The SST and k − ω turbulence models (free-stream inlet) perform
similarly with over-predictions of the order of 12% with respect to
experiments from [5] aty/δ ≈ 0.3. On the other hand, the SSTmodel
(recycled profile inlet) exhibits a significant improvement when

(a)

(b)

(c)

(d)
Figure 5: Iso-contours ofwall-normal velocity for Case 1 and
different inflow conditions.

Journal of Computational Science Education Volume 12, Issue 1

January 2021 ISSN 2153-4136 19



Figure 6: Wall static pressure.

the incoming Reynolds number is higher. A good agreement is ob-
served with experimental data from [5], particularly for y/δ > 0.25.
The mean temperature and mean streamwise velocity at x = 40
mm (halfway through the curve) are plotted in Figure 9. In general,
analogous trends of the analyzed three cases were observed when
compared to the Walz’s equation:

T

T∞
=
Tw
T∞
+
Tr −Tw
T∞

(
U

U∞

)
− r

γ − 1
2

M2
∞

(
U

U∞

)2
(1)

where Tw is the wall temperature, Tr is the adiabatic or recovery
temperature, r is the recovery factor (= Pr1/3, where Pr is the
Prandtl number), and γ is the specific heat ratio for air (= 1.4).

Figure 10 depicts the streamwise variation of the local boundary
layer thickness for Case 1 by considering the SST model and inlet
free-stream conditions vs. recycled profiles, respectively. The recy-
cling method has generated much larger values of the inlet bound-
ary layer thickness (i.e., δ ≈ 20 mm), very close to the experimental
δr ef of 28 mm as in [5]. On the contrary, the inlet free-stream
condition has generated very small boundary layer thicknesses,
indicating that a much longer ZPG zone would be necessary. It is in-
ferred that, by means of this method, it is hard to control the desired
inflow boundary layer thickness, requiring a significantly long inlet
section to achieve the reference or target δr ef , and consequently,
penalizing computational resources. Due to the presence of APG
in the concave wall curvature from x = 0 mm, the boundary layer
significantly grows (up to 25%). Downstream of the curved wall, the
flow recovers and accelerates in the inclined ramp at a turning angle
of 16◦, where nearly constant values in the wall static pressure (see
this ZPG region around 0.15m < x < 0.35m in Figure 6) and in the
boundary layer thickness are observed (see Figure 10). Beyond x ≈
400 mm, the convex wall curvature strongly accelerates the flow
causing a relaminarization process. Additionally, a shrinking trend
is seen for the boundary layer thickness along the convex wall. In
Figure 11, a similar behavior of the Reθ streamwise variation can
be seen. By the end of the concave curvature (x ≈ 98mm), the Reθ
has increased around 6 times regarding the incoming value.

Figure 7: Skin friction coefficient.

Figure 8: Mean streamwise velocity at x = 40 mm (halfway
through the curve).

Figure 12 depicts iso-contours of streamwise velocity and Mach
number for Case 1 and the SST turbulence model with inlet free-
stream conditions. At the inlet zone, the presence of a Mach cone
inclined at approximately 20◦ with respect to the streamwise di-
rection due to flow perturbations (developing section) is nearly
imperceptible. The lesson learned here is the importance of pre-
scribing realistic turbulent inflow conditions. The strong concave
wall curvature induces a significant deceleration on the flow or
APG zone and formation of compression waves with decreasing
values of the Mach numbers around 2. These compression waves
formed a cone at approximately 35◦, which are fully convected at
the outlet plane without bouncing over the top surface. Therefore,
future planned DNS studies on concave surfaces will have to con-
sider at least 11δr ef -tall computational domains. In spite of the
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Figure 9: Mean temperature vs. mean streamwise velocity at
x = 40 mm (halfway through the curve).

presence of a strong APG region, the flow remains fully attached
in the curved-inclined wall region, confirmed by positive values of
Cf ,r ef in Figure 7.

The static temperature is shown in Figure 13 (a). The flow expe-
riences a thermal increase of roughly 70K across the compression
waves. Similar to the velocity boundary layer, it seems that the
thermal boundary layer goes through a thickening process along
the curved surface with an increase of the wall heat flux. From
Figure 13 (b), it can be inferred that a strong concave curvature
(with a curvature radius twelve times larger than the boundary
layer thickness) may induce a compression ratio in the order of 2.5
atM∞ ∼ 3. In Figure 14, the effects of compressibility on the wall
static pressure can be observed. In Case 2, the Mach number was
set to 5 (hypersonic regime), and the selected turbulence model
was SST with inlet free-stream conditions. The hypersonic regime
provokes an approximate increase of 100% in the wall static pres-
sure over the curved surface. Iso-contours of the Mach number in
Figure 15 (a) show a more tilted (with respect to the streamwise
direction (∼ 26◦)) and confined zone of compression waves at the
hypersonic level. While the compression ratio is in the order of 6
for Case 2 (see Figure 15 (b)).

4 CONCLUSIONS
RANS simulations are performed in order to study the combined
effects of wall concave curvature and compressibility. The com-
putational domain is prescribed as in wind tunnel experiments by
Donovan et al. [5]. In addition, a case is designed to shed some
light on the influence of strong concave curvature and hypersonic
speeds on the hydrodynamic/thermal field. The presence of strong
curvature on spatially-developing turbulent boundary layers at
Mach = 2.86 induces an Adverse Pressure Gradient (APG) with a
subsequent increase of the wall-shear stresses and wall-heat fluxes.
The SST and k − ω turbulence models with free-stream inlet con-
ditions have demonstrated similar performance when compared
to experiments. A clear supremacy of the SST over the standard

Figure 10: Streamwise variation of the boundary layer thick-
ness δ .

Figure 11: Streamwise variation of the Reynolds number
Reθ .

k − ω model has not been identified in the APG region, at least for
the present conditions. However, the SST model based on recycled
inflow profiles has shown a good agreement with experimental
data by [5], since the incoming Reynolds number is higher. It has
been estimated that a separate simulation of a flat plate turbulent
boundary layer would add an extra 50% in terms of computational
resources in order to extract, recycle, and inject the required inflow
conditions to the principal domain. Nevertheless, and based on the
quality of the obtained results, the extra resources pay off. The
compression waves formed a 35◦ cone; therefore, it is important to
ensure enough room for the top surface in order to avoid wave re-
flections back to the domain. By increasing the inlet Mach number
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(a) Streamwise velocity

(b) Mach number

Figure 12: Iso-contours for Case 1 and SST turbulencemodel.

at the hypersonic regime, a more restrained compression zone has
been observed with a significant increase in the compression ratio.

5 REFLECTIONS
I had little experience working with Computational Fluid Dynamics
(CFD) prior to the Blue Waters Student Internship Program. For
this reason, the experience has been a learning challenge and has
broadened my knowledge in fluid dynamics, specifically in the area
of supersonic and hypersonic flows. There were many challenges
surrounding the underlying theory of fluid dynamics, specifically
concerning the boundary layer in supersonic and hypersonic flows.
Also, learning how to identify the cause of issues present in the
simulation required persistence and in some cases creativity to
resolve such issues. These issues usually highlighted areas where
more learning was required. The internship experience helped me
to learn more about turbulence and CFD.
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(a) Mach number

(b) Static pressure

Figure 15: Iso-contours of Case 2 (hypersonic) and SST tur-
bulence model.
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ABSTRACT
The main objective of computer graphics is to effectively depict an
image in a virtual scene in its realistic form within a reasonable
amount of time. This paper discusses two different ray tracing tech-
niques and the performance evaluation of the serial and parallel
implementation of ray tracing, which in its serial form is known to
be computational intensive and costly for previous computers. The
parallel implementation was achieved using OpenMP with C++,
and the maximum speedup was ten times that of the serial imple-
mentation. The experiment in this paper can be used to teach high-
performance computing students the benefits of multi-threading in
computationally intensive algorithms and the benefits of parallel
programming.

KEYWORDS
ray tracing, Monte Carlo, Open Multi-Processing (OpenMP), high
performance computing, algorithm, cluster, parallel programming

1 INTRODUCTION
Light tracing is an important aspect of computer graphics that has
over the years been adopted to simulate the real life behavior of
illuminance on an object, environment, or scene in different areas
such as animations, games, and image rendering. The computation
of this illumination is being done by computer programs which
calculate illuminance on a particular scene relatively precisely [10].
Due to its importance, there have been different techniques adopted
for this purpose, but the two most popular are rasterization and ray
tracing [3].

In rasterization, an image in a vector format is taken and con-
verted into a pixelated image known as a raster image for output
on a video display or static environment. In ray tracing, an image is
rendered by tracing the trajectories of light rays projected through
pixels in a view plane [6]. The main differences between these two
techniques is the way an image is rendered and the time it takes to
render an image. Rasterization has been themost popular of the two,
because it is faster and balances the performance needed with the
ability to create acceptable images. Regardless of its advantage, the
application of rasterization is limited in computer graphics when a
photo-realistic image is needed. This is due to its poor handling of
light reflection when rendering 2D and 3D images.
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Rendering an image with ray tracing is slow when compared to
rasterization. However, it is able to render a more photo-realistic
image, due to its good handling of shadows, reflections, and blurs.
With the arrival of parallel programming and GPUs, significant
performance gains have been achieved when rendering with the
ray tracing technique. The ray tracing technique is divided into two
types: traditional ray tracing and distributed ray tracing. Distributed
ray tracing tries to extend the traditional ray tracing technique by
sampling more rays than the number of pixels in the image. An
example of traditional ray tracing is the Turner Whitted technique,
while the Monte Carlo technique is an example of distributed ray
tracing [11].

With recent advances in computing power, various researchers
have picked up an interest in ray tracing. The main objective is
to find different ways of reducing time to solution while retain-
ing the property of creating realistic images. The use of parallel
frameworks such as the Message Passing Interface (MPI) and Open
Multi-Processing (OpenMP) have been proposed by researchers
over the years. In this paper, a parallel implementation and a serial
implementation of a ray tracing algorithm were studied based on
rendering performance. The serial implementation was derived
from a parallel implementation that was developed using C++ and
made parallel using OpenMP [1]. The performance evaluation was
carried out on two high performance computing (HPC) clusters pro-
vided by University of Tartu High Performance Computing Center
[9].

The paper is organized as follows. Section 2 introduces the con-
cept of ray tracing and OpenMP. Section 3 discusses different state-
of-the-art methods. Section 4 discusses the parallel implementation
with OpenMP in [1]. In Section 5, the result of the empirical analysis
is presented and discussed. Finally, in Section 6, the conclusion and
reflection are discussed.

2 CONCEPTS
2.1 Ray Tracing
Ray tracing takes an image from a 3D scene by tracing the trajecto-
ries of light rays through pixels in a view plane. Light tracing in ray
tracing can be done in two ways: forward tracing and backward
tracing. In forward tracing, rays are traced from eyes to the light
source, while in backward tracing, rays are traced from the light
source to the eyes. This method is compute intensive, because each
ray emitted by the light source has to be traced to the eyes, even
those that were not able to reach the eyes.

A typical ray tracing environment is made up of eyes or a camera,
a scene, object(s), and a light source. Figure 1 describes a simple ray
tracing scenario. A ray from the eyes is projected in a straight line
for each pixel of the view plane into the scene. Ray intersection is
checked to see if the ray intersects with any object in the scene.
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Figure 1: Ray Tracing Scenario.

This first ray is referred to as the primary ray, and its purpose is
to discover the objects in the scene. There are three intersection
possibilities for this ray, and Figure 2 depicts a simple scenario.
• No Intersection.
• One Intersection.
• Two Intersections.

The third case only happens if the object in the scene is opaque.
If an intersection exists, a second ray referred to as the secondary
ray is sent from the point of intersection to the light source. If
this secondary ray that was emitted is blocked by an object in
the scene, the color of the object is projected as a shadow, and
if it successfully reaches the light source, that pixel is lit up. The
lighting of the pixel is determined by this secondary ray. If there
are two points of intersection, the distances of the two points to the
eyes are calculated, and the closest point is selected. In ray tracing,
the secondary ray is divided into three: shadow ray, reflection ray
and refractive ray. These rays make it possible for the ray tracing
technique to create a more realistic rendering.

Algorithm 1 is a simple ray tracer algorithm as described by
Turner Whitted. In the algorithm, each ray cast through the pixel in
the plane can be represented as a line that has an origin represented
with O and a direction represented with l . At any time, a point on
the line or ray can be represented with

Point = O + (l ∗ d ) (1)

Figure 2: Ray Tracing Intersection Possibilities.

for each pixel in the viewing plane do
for each object in the scene do

if ray intersects an object in the scene then
select min(d1,d2);
recursively ray trace the reflection and refraction
rays;

calculate color;
end

end
end

Algorithm 1: Ray Tracing Algorithm

where d is the distance of the point from the ray origin. Having
declared the origin and direction of the ray and also the location
of the sphere, we proceed to know if a ray projected from the eye
through a pixel in the view plane intersects with any sphere in our
scene at any points. say, P0, and P1.

To do this, we need to solve for dc:

dc = C0 . l ; where C0 = C −O . (2)

dc is the distance of the projected ray from the center of the sphere
to the ray origin, C is the center of the sphere, C0 is the distance
from the center of the sphere to the ray origin and . denotes a dot
product. If dc is less than zero, then it can be assumed that there
is no intersection, but if it is greater than zero, we proceed to the
second step, which is to calculate the distance from the center of the
sphere to the projected ray. This can be calculated using Pythagoras’
Theorem, because we have now formed a right-angled triangle.

D =

√
dc2 − (C0)2 (3)

If the value of D is greater than the radius of the sphere, then it
means the ray does not intersect any point of the sphere, and we can
move on to the next sphere. If the value of D is not greater than the
radius, then we continue by looking for the points of intersection
on the sphere. The point of intersection is calculated as:

P = O + (l ∗ dp ) (4)

where dp is the distance from P to O, and it is calculated using:

dp = dc − tc (5)
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where tc can be obtained from the second right-angled triangle in
our sphere using Equation 6,

tc =
√
r2 − D2 (6)

where r is the radius of the sphere. If the ray intersects at two points,
the distance of the second point represented as dp2 is calculated as
dp2 = dc + tc .

Algorithm 2 describes the ray intersection algorithm.

FUNCTION: boolean intersection(Ray ∗ R,
Sphere ∗ S, f loat ∗ dp1, f loat ∗ dp2)
f loat C0 = S −→ center − R −→ Ray_Oriдin
f loatdc = dot (C0,R −→ direction)
if dc ≤ 0.0 then

return f alse
else

f loat D =
√
dc2 − (C0)2

if D ≥ S −→ radius then
return f alse

end if
f loat tc =

√
(S −→ radius )2 − D2

dp = dc − tc
dp2 = dc + tc
return true;

end if
Algorithm 2: Ray Intersection Algorithm.

Merging Algorithms 1 and 2, we can derive the time complexity
of a simple ray tracing algorithm as:

O (pnd ) (7)

where p is the number of pixels, which can be represented as:

pixels = width ∗ heiдht (8)

and n is the number of objects in the scene. d is the time complexity
of computing the intersection, which can be represented as 1. The
time complexity can then be rewritten as:

O (whn) (9)

This time complexity means that given a screen resolution of x pix-
els, a scene with a large number of objects will take more rendering
time than a scene with fewer objects.

2.2 Distributed ray tracing
The major drawback of the traditional ray tracing method is that it
causes aliasing. When an intersection is not found, the background
color is returned, and this means that for every point, a color is
always returned. This behaviour can always lead to rendering of
unintended patterns. The solution to this is to introduce more rays
into the scene and also more randomness.

Distributed ray tracing extends the traditional ray tracingmethod
by introducing the concept of sampling to remove the aliasing ef-
fects that exist in traditional ray tracing. By removing the aliasing
effects, a photo-realistic image with better shadows, reflections,
and refraction is rendered. The single ray in traditional ray trac-
ing is replaced with a distribution of rays, and an average of a
random sampling of the rays is taken to reduce aliasing effects.

These random samples can be generated using Monte Carlo (MC)
or Quasi-Monte Carlo (QMC) algorithms. The rendering time of
a distributed ray tracing then becomes a function of the number
of random rays sampled. This means that the rendering time of a
distributed ray tracing application is always more than that of a
traditional ray tracing technique.

In traditional ray tracing, tracing of rays is usually terminated
after reaching a diffuse surface, but in the distributed technique,
after a ray hits a diffuse object, child rays are generated randomly
according to the bi-directional reflection and refraction distribution
function of the diffuse surface [5].

A simple MC-based distributed ray tracing algorithm is pre-
sented in Algorithm 3. The algorithm shows how random rays are
distributed in a single pixel, and for each ray a computation is done.
The MC algorithm is then used for sampling, and the actual color
of the pixel is computed based on the sampled rays.

for each pixel in the viewing plane do
for each ray in random rays do

for each object in the scene do
if ray intersects an object in the scene then

select min(d1,d2);
recursively ray trace the reflection and
refraction rays;

return calculated color;
end
if no intersection then

return background color;
end

end
end
random sample rays with montecarlo;
calculate color average;

end
Algorithm 3: Distributed Ray Tracing Algorithm.

The time complexity of the algorithm is given as:

O (whrn) (10)

where r is the number of distributed rays projected to each pixel.
This time complexity means that a distributed ray tracing algorithm
using the same configurations as a traditional ray tracing algorithm
will surely take more rendering time.

2.3 OpenMP
Open Multi-Processing (OpenMP) has often been referred to as
the de-facto standard for writing parallel programs with shared
memory architectures, and these parallel programs can simply be
achieved by adding compiler pragmas to the serial equivalent [7].
It allows for shared memory parallel programming in languages
like C, C++, and Fortran. With OpenMP being a shared memory
architecture, all threads spawned out have access to the same main
memory and the same data. OpenMP is often used when there is
a need to facilitate the execution of legacy code on a multi-core
processor in order to utilize all its cores [7].
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Figure 3: OpenMP Architecture.

In Figure 3 an architecture of OpenMP is presented. It can be
seen that all the operating system threads have access to the same
shared memory space, and the threads are being managed by the
OpenMP run-time library. The parallelism in the run-time library
is then specified using compiler directives, which are available in
the application code.

In OpenMP, threads run in parallel, execute the same code, and
share the same memory space. Each thread spawned out has a
unique identifier that can be obtained usingomp_дet_thread_num().

Table 1 gives a list of some useful OpenMP directives and an
explanation of what they do. The directives are always defined
at the beginning of a blocked region. The #pragma omp parallel
marks the entry point of a parallel region, and without that, threads
cannot be spawned out.

A simple OpenMP algorithm that prints to console hello world is
presented in Algorithm 4. The algorithm starts by specifying the
parallel region of the code with the #pragma omp parallel directive,
and the default number of threads is used. The blocked region is
executed by all the threads in parallel. Each thread gets its identifier
and prints hello world plus the identifier of the thread.

In summary, there are five major elements of parallel program-
ming with OpenMP:
• Create threads with shared memory.
• Loop parallelism.
• Nested parallelism.
• Dynamic task scheduling.
• Thread synchronization.

3 RELATEDWORK
Different state of the art methods have been developed to guaran-
tee faster ray tracing rendering in computer graphics. Some of the
most popular methods have explored the application of parallel
programming techniques and the use of fast computation hardware

Table 1: OpenMP Directives.

Directive Function

#pragma omp parallel Specifies the parallel region of a
code.

#pragma omp for Defines the start of a loop paral-
lelism.

#pragma omp for simd Defines the start of a loop paral-
lelism that uses SIMD instructions.

#pragma omp single Specifies a region that should be
executed by a single thread.

#pragma omp sections A non-iterative shared parallel sec-
tion.

#pragma omp master Specifies a region that should be
executed only by the main thread.

#pragma omp ordered Specifies a region that must be ex-
ecuted in order.

export
KMP_AFFINITY=value

Used to define thread affinity types
and is specific to Intel compilers.
value can be verbose, scatter, or
compact.

omp_get_num_threads Used to get the count of all cur-
rently running threads.

omp_get_thread_num Used to get the identifier of a cur-
rently running thread.

omp_set_num_threads Used to set the number of threads
that should be used for executing
parallel regions.

#pragma omp parallel;
if main then

int id = omp_get_thread_num();
print("hello (%d)", id);
print("world (%d) ", id);

end
Algorithm 4: Simple OpenMP Hello world.

like GPUs. The use of the Message Processing Interface (MPI) was
explored in [2]. MPI is a message passing library which allows
all available processors to communicate while executing the same
program. All processors execute the same code, but in a separate iso-
lated memory spaces, and communication between each processor
is handled with an API. In the research, a near linear relationship
between the number of processors used and the ray tracing ren-
dering rate was reported. It was also reported that the efficiency
rate achieved after adapting the serial ray tracing code to use MPI
was over 98%. Unlike in [2], the focus of this paper is in the use
of a shared memory device and not a distributed memory device
which is used by MPI. Also, unlike in OpenMP, the time it took to
communicate between processors used in MPI was also factored in
when calculating the ray tracing rendering time.

Also in [6], an empirical study on the use of both OpenMP and
MPI was explored for creating a parallel ray tracing. In the report,
a pixel-wise load balancing scheme was introduced to allow load
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distribution for some specific scenes. The report proved that both
OpenMP and MPI are capable of achieving near optimal efficiency
when used in ray tracing. In the research, a near linear speedup
was also reported for both methods. Also, compiler performance
between an Intel compiler and a GNU C++ compiler were studied,
and the research reported that the Intel compiler outperformed
the GNU C++ compiler. Unlike in [6], in our paper, the effect of
different thread affinity types and different distributed systems was
explored.

The use of GPU clusters for ray tracing rendering was explored
by Chen et al [4]. In the research, the researchers were able to use
GPU clusters to improve the rendering performance of a real-time
ray tracing. The frame per second (FPS) achieved by the GPU clus-
ter was compared to a single node GPU and a CPU. The research
showed that the GPU cluster achieved more FPS than a single node
GPU, and the single node GPU achieved more FPS than the CPU.
A massively parallel ray tracing algorithm using a GPU was also
developed by Qin et al [8]. The research showed that the GPU sig-
nificantly reduced the rendering time of the ray tracing algorithm.

4 METHODS
Distributed ray tracing is computationally intensive, because inten-
sive ray-geometry intersection computation must be done for rays
projected into the scene through each pixel of the view plane. Since
each ray is not dependent on the other, this also makes ray tracing
embarrassingly parallel. To show that a distributed ray tracing is
embarrassingly parallel, a parallel implementation in [1] was used
as a case study. The scene consists of a spherical light source, a
glass, a mirror, and one Cornell box, which was made of 6 spheres.

A loop-level parallelismwas introduced usingOpenMP to achieve
parallelism in [1]. The loop-level parallelism made it possible to
divide the intensive ray-geometry intersection among all participat-
ing threads. Each thread created by the process is allocated a task,
they execute their own part of the code, and return with the result.
Since OpenMP is a shared memory framework, the scene to be ren-
dered was placed in shared memory in the form of a data structure,
and this eliminated the possible overhead that could be introduced
during data communication between threads, as all threads could
access the same scene data.

In Algorithm 5, it can be seen that two levels of loop-level paral-
lelism were implemented: one for each pixel and another for each
ray distributed into the pixel. This was done because each pixel is
independent of the others, and the same can be said for each of the
distributed rays. Based on the algorithm, an empirical analysis is
then carried out on how compiler types and numbers of threads
affect rendering time. The focus here is measuring scability using
speedup. Speedup was calculated using the formula:

Speedup = Ts/Tp (11)

whereTs is the rendering time in serial andTp is the rendering time
in parallel for different thread numbers.

Also, the effect of using different thread affinity was explored
in this paper. With thread affinity, we are able to control OpenMP
thread placement, and this allows us to study the effect on the paral-
lel ray tracing algorithm. In this paper, two types of thread affinity
were explored, namely Scatter and Compact. When the Compact
thread affinity type is specified, all the spawned out threads are

#pragma omp parallel;
#pragma omp for;
for each pixel in the viewing plane do

#pragma omp for;
omp_set_num_threads(thread_num);
for each ray in random rays do

for each object in the scene do
if ray intersects an object in the scene then

select min(d1,d2);
recursively ray trace the reflection and
refraction rays;

return calculated color;
end
if no intersection then

return background color;
end

end
end
random sample rays with montecarlo;
calculate color average;

end
Algorithm 5: Parallel Ray Tracing with OpenMP.

placed close to each other. With Scatter, the threads are distributed
as evenly as possible, and this eventually reduces the cache and
memory bandwidth contention between threads.

5 RESULTS AND DISCUSSION
The code takes a single parameter as an input, which is the number
of samples per pixel (spp), and for the performance evaluation of the
distributed ray tracing, 25,000 samples per pixel (pixel) were used.
The experiment was done on HPC clusters provided by University
of Tartu [9], and the configuration is presented in Table 2.

Table 2: HPC Configuration.

Rocket cluster Vedur cluster

20 cores 32 cores
2x Intel Xeon 2x AMD Opteron
64GB RAM 150GB RAM

1TB hard disk drive 500GB hard disk drive
4x QDR Infiniband 4x QDR Infiniband

The serial implementation of the parallel code in [1] was com-
piled using two different compilers: g++ compiler and Intel C++
(ICC) compiler. Figure 4 shows the rendered scene when the serial
implementation was executed. The time taken to render the scene
was measured, and the result is presented in Table 3.

Figure 5 is the scene rendered when the parallel implementation
in [1] was executed, and it can be seen that the quality of the scene
was preserved.

The rendering time of the parallel implementation was measured
for both the Intel and g++ compilers for 2n threads, where n is 1, 2,
3 or 4. Due to the number of cores available on Rocket Cluster, the
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Figure 4: Serial ray tracing imagewith Cornell box, one light
source, and two spheres, making use of 25,000 samples per
pixel.

Table 3: Serial Ray Rendering.

Compiler Rendering time(minutes)

Intel ICC compiler 120
g++ compiler 182

Figure 5: 20 threads on an Intel Xeon based cluster (Rocket
cluster).

last thread number used during performance testing was 20 threads.
Since the main aim of parallelism is to speed up the performance
while maintaining the quality of the image, the quality of the image
was studied throughout the test, and it was observed that the quality
was preserved for each thread range.

Table 4 shows the rendering time in seconds and the speedup
after optimizing using OpenMP for different thread numbers while

Table 4: Intel Xeon based cluster with Intel compiler

Threads Rendering Time Speedup

2 60 minutes 2.0
4 33 minutes 4.0
8 17 minutes 7.0
16 8 minutes 14
20 7 minutes 18

executing with the Intel compiler. In Table 4, it can be seen that a
linear speedupwas achieved in the parallel implementation, and this
is because the ray tracing algorithm is an embarrassingly parallel
algorithm.

Table 5: Intel Xeon based cluster with g++ compiler

Threads Rendering Time Speedup

2 86 minutes 2.0
4 46 minutes 4.0
8 24 minutes 8.0
16 12 minutes 15
20 10 minutes 20 seconds 14

Table 5 shows the rendering time and speedup with the g++
compiler in the Rocket cluster. It is evident that the Intel compiler
rendered the image faster than the g++ compiler; however, they
both achieved a linear speedup for up to 16 threads.

The impact of using different thread affinities was also measured,
and this result can be seen in Figure 6, which shows that the two
thread affinities only increased the efficiency of the parallel execu-
tion of the code. We can also see that the speedup on 20 threads
when using the compact thread affinity reduced compared to the
scatter thread affinity.

Figure 6: Speedup for Thread Affinity (Compact and Scatter)
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After computing the performance of the parallel code on the
Intel Xeon cluster, attempts were made to see the performance of
the parallel code on an AMD based cluster, which is also one of
the University of Tartu clusters. This was done because the AMD
based cluster is not limited to 20 cores on a single node like the
Intel Xeon cluster, but rather 32 cores. The rendering time of the
parallel implementation was measured on only the Intel compiler,
and the serial code rendering time was 252 minutes (4 hours 21
minutes).

Table 6: AMD based cluster with Intel compiler.

Threads Rendering Time Speedup

2 126 minutes 2.0
4 62 minutes 4.0
8 31 minutes 8.0
16 16 minutes 16
20 10 minutes 25

Comparing the AMD based cluster performance to that of the
Intel Xeon based cluster, it can be observed that there is a difference
in the rendering time, and this is due to the difference in hardware
architecture of the two clusters. It is evident that linear speedup was
also achieved up to 20 threads, and 100% efficiency was achieved up
to 16 threads when running the parallel code on the AMD cluster.
Again, the quality of image rendered was the same across the thread
range.

In Figure 7 and Figure 8, the graphical representations for ren-
dering time and speedup of all three cases are presented. It can be
seen in Figure 7 that the rendering time decreases as the number of
threads increases. However, as the number of threads approaches
20, the difference in rendering time starts to decrease for all cases. In
Figure 8, the graphical representation of the speedup is presented. It
can be seen that the speedup for each number of threads is specific
to each case. However, the speedup achieved is the same when the
number of threads spawned is less than five.

6 CONCLUSION AND REFLECTION
6.1 Conclusion
In this paper, a serial Monte Carlo based distributed ray tracing tech-
nique derived from a parallel implementation in [1] was compared
to its parallel implementation, and the performance speedup on
two compilers was measured while changing the number of threads.
The test was carried out on University of Tartu’s HPC cluster, and
the performance test showed that a linear speedup was achieved,
and while using thread affinities of type compact and scattered, an
100% efficiency was achieved for different thread numbers.

A very interesting future work will be to compare a serial real
time distributed ray tracing implementation with a parallel imple-
mentation of both OpenMP and MPI. Since MPI is a distributed
memory framework, overhead due to data communication between
processors can be anticipated in MPI, and this might make it ineffi-
cient for pluralizing scenes with large data sets, such as data sets
used in real time ray tracing.

Figure 7: Render Time.

Figure 8: Speedup.

6.2 Reflection
The experiment carried out in this paper was done while taking the
parallel computing course at University of Tartu, and it was my first
attempt at working in a high performance computing environment.
Prior to this, I had no knowledge of parallel programming nor par-
allel computing. The greatest challenge for me while working on
this project was understanding different frameworks for writing
parallel programming codes like OpenMP and MPI. At the end, this
experiment introduced me to parallel computing, different tech-
niques for writing parallel programs, and methods for calculating
parallel efficiency. In addition, it enriched my experience in the
management and allocation of resources in leading-edge computing
infrastructure through writing Slurm scripts.

Overall, working on this project was a unique experience and
opportunity for me in the field of HPC. The experience gained
was also useful when I was writing machine learning codes for my
master’s thesis.
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ABSTRACT 

Machine learning has accounted for solving a cascade of data in an 

efficient and timely manner including as an alternative molecular 

calculator to replace more expensive ab initio techniques. Neural 

networks (NN) are the most predictive for new cases that are similar 

to examples in their training sets; however, it is sometimes 

necessary for the NN to accurately evaluate structures not in its 

training set. In this project, we quantify how clustering a training 

set into groups with similar geometric motifs can be used to train a 

NN so that it can accurately determine the energies of structures not 

in the training set. This was accomplished by generating over 800 

C8H7N structures, relaxing them using DFTB+, and grouping them 

using agglomerative clustering. Some of these groups were 

assigned to the training group and used to train a NN using the pre-

existing Atomistic Machine-learning Package (AMP) [10]. The 

remaining groups were evaluated using the trained NN and 

compared to the DFTB+ energy. These two energies were plotted 

and fitted to a straight line where higher R2 values correspond to 

the NN more accurately predicting the energies of structures not in 

its training set. This process was repeated systematically with a 

different number of nodes and hidden layers. It was found that for 

limited NN architectures, the NN did a poor job predicting 

structures outside of its training set. This was improved by adding 

hidden layers and nodes as well as increasing the size of the training 

set. 

Categories and Subject Descriptors 
Computing methodologies - Machine learning, Machine learning 

approaches, Neural networks 

General Terms 
Algorithms, Measurement, Reliability 

Keywords 
Atomistic Machine-learning Package, neural network, genetic 

algorithm, agglomerative hierarchical clustering, Density 

Functional Tight Binding. 

1. INTRODUCTION 
Machine learning programs are becoming increasingly popular and 

are a form of widely-accepted method for calculating properties. 

Such techniques are readily available in any field to help solve 

problems that would be otherwise difficult to solve or envision. An 

example of their capabilities is when a research group known as 

Laser Interferometer Gravitational-wave Observatory (LIGO) 

witnessed the phenomenon of gravitational waves in outer space. 

They imposed a technique known as Deep Learning which can 

learn from immense raw data using artificial neurons or neural 

networks [5]. Machine learning techniques can work to closely 

resemble atomistic calculators. 

The common approach that we observe when preparing data to train 

and test a neural network (NN) — such as images or atomic 

descriptions — is to randomly assign data to the train and test sets. 

This strategy is appropriate when it is not expected that the NN will 

need to make predictions on test candidates that are very different 

from what it was trained on. One example of the random strategy 

is when researchers prepared tens of thousands of randomly 

plausible molecules to understand the relationship between light-

harvesting systems and excitation energy transfer times such as 

those found in the pigments of plants [6]. The excitation transfer 

time refers to how pigments can transfer energy over long distances 

in the presence of a light-harvesting system, such as light from the 

sun, to produce energy. In this simulation, machine learning 

techniques were used to reduce computational cost and to discover 

which chromophoric molecule (or excitation system) had the most 

efficient transfer time. Another example of this strategy is using 

machine learning to discover drug designs in the field of medical 

science [14]. However, even in the light-harvesting system and 

excitation study, an improved method is preferred, because the 

random method is not evenly-sampled and could have redundant 

information. 

We discuss the widely used random approach to introduce an 

alternative: clustering the data and training the NN with some of 

the clusters and testing the NN with the remaining clusters. In this 

case, clustering the molecules organizes them into groups of similar 

motifs [17]. By training the NN with a group of clusters and then 

testing it on another group of clusters, the ability for the NN to 

predict structures outside of its training set can be quantified. This 

paper will show that when the clustering method is implemented, 

the predictive ability of the trained NN will dramatically decrease 

relative to the random approach, but as the NN architecture grows, 

the NN becomes better at accurately predicting the potential energy 

of the trial system. This demonstrates that the clustering method 

can help to define how robust a trained NN is to predict properties 

of structures not in its training set. 
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In this work, we present that NN architectures and the training set 

size are both vital components when applying a NN to structures 

that are unique from the training set. By clustering the training set, 

the robustness of the NN can be quantified. When compared to 

randomly selecting the training and testing groups, it is clear how 

clustering can help guide designing the structure of a NN so that it 

can be used for a wider array of applications. In the Methods 

section, we present how NN architectures and the training sets were 

assembled using clusters. NNs are trained systematically with 

three, four, and five hidden layers, each with 10–35 nodes. In the 

Results section, we present plots of R2 values from the linear fit 

between the relaxed DFTB+ energies and the NN calculated 

energies. Finally, we remark on how clustering training data can 

help to ensure NNs are robust and guide the architecture of an 

effective NN. 

2. Literature Review 
Atomistic calculators have become a beneficial tool for calculating 

properties at the atomic scale. Calculations start with descriptions 

of the physical interactions of the atoms, which then yields 

information about their collective behavior [16]. The Density 

Functional based Tight Binding (DFTB+) is an example of such 

atomistic calculator. Through the DFTB+ package, we collected 

potential energy values of readily-formed molecules. Atomistic 

calculators have helped perform calculations when studying 

computational techniques, including the genetic algorithm (GA). 

A GA is a computational heuristic that can be used to solve for the 

global atomic minimum of chemical structures. The GA is efficient 

at searching through many different molecular motifs in the 

potential energy surface by utilizing the principles of natural 

selection. In nature, a species must increase its fitness if it is going 

to learn to adapt to its environment [18]. The GA is designed to 

work in a similar manner, because it will iteratively improve upon 

the immediate population [8]. This is because in a real-world 

situation the GA does not know the answer. Neither the 

configuration space nor the global minimum are known prior to the 

search [8]. The evaluation step — the aspect of the GA where the 

lowest conformation energy is being searched — will be the most 

time-consuming for the optimization of offspring structures. 

Typically, structures are relaxed using an expensive ab initio 

method. 

The GA begins with two parent molecules in a starting population. 

The cut-and-splice operator cuts the parent molecules in two, 

resulting in four fragments. Typically, a fragment from each is 

selected at random to be spliced together to form a new child 

molecule [1]. The cut-and-splice apparatus is illustrated on the 

upper right-hand corner of Figure 1, where the box-like figures are 

meant to represent molecular sites. Two parent molecules are 

shown with the same number of boxes to represent their similar 

chemical stoichiometry. Upon performing the cut, the parent 

molecules are now color-coded to signify their fragments (parent 

molecule 1 is shown in blue and green while parent molecule 2 is 

shown in red and yellow). Finally, two fragments are collected from 

each parent molecule and spliced together to form a new structure. 

This new structure is the child structure (shown in blue and yellow) 

and is one plausible combination of bringing in genetic information 

from both parent molecules. Given that the program will read a 

diverse molecular population, the outcome of the cut-and-splice 

operation will be different combinations of diverse offspring 

structures. 

The next step of the GA heuristic is the evaluation process. The 

energy of the child structure is evaluated, and if the structure is fit 

enough to be in the population, it is added. The search for the lowest 

conformation energy then continues with a new parent pair. The 

structure with the local minimum is in the bottom-center of Figure 

1. In the iterative process of the GA, potential energies of new 

offspring structures are constantly being compared to the energy of 

the population [9]. Molecular configurations that are better in terms 

of minimum potential value replace configurations with a higher 

potential energy. If the energy of the offspring structure is lower 

than the energy of the population, then it is added to the population. 

Conversely, if the potential energy of the child structure is higher 

than the energy of the population, then that offspring molecule is 

deleted. The program thus continues the evolutionary-driven 

perspective of constantly searching for the lowest conformation 

energy while eliminating unfit offspring structures with higher 

energies. Given enough generations, the population will eventually 

get trapped in either a local minimum or find the global minimum. 

Figure 1. A flowchart outlining the steps of the GA from start 

to end. The program begins with a starting population, which 

proceeds in a loop where two molecules are selected and a new 

candidate structure is created using a cut-and-splice 

operation. The candidate is then evaluated and potentially 

replaces the least favorable member of the population. The 

GA terminates upon locating the lowest conformation 

structure. 

The GA can be integrated with a NN to improve its ability to search 

the configuration space for the global minimum [12]. Machine 

learning techniques have revolutionized data analysis in most 

things we use today, such as travel booking, navigation, media 

recommendation, image recognition, and competitive board games. 

These systems are driven by the computational power, significant 

amount of data, and training ability of the neural network [2]. The 

neural network is comprised of hidden layers and nodes. Figure 2 

depicts a NN containing an input layer, two hidden layers with four 

nodes each, and an output layer. Each node passes information 

forward in the form of entities known as weights and constant 

biases which are calculated via an activation function [10]. The 

process of the NN works like the human brain. The NN relies on 

the structural connection of nodes, where information can be 

obtained and sent between hidden layers, like how the brain relies 

on the connection of neurons [11]. 

Figure 2 showcases a fast feed forward NN. The connection of the 

eight nodes and two hidden layers is represented by the gray-

colored arrows. The input layer passes a weight value representing 

connection strength to the first, second, third, and fourth nodes of 

the first hidden layer. If we focus on the first node of the first hidden 

layer, we can witness how that information is then passed on to the 
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first, second, third, and fourth node of the second hidden layer. This 

process repeats in the second node of the first hidden layer to all 

nodes of the second hidden layer, and so forth, until all nodes are 

inter-connected. The NN can only advance in one direction (from 

left to right) and terminates with an output value with no loops or 

turns [15]. 

 

Figure 2. A visualization of a neural network containing an 

input layer, two hidden layers with four nodes each, and an 

output layer. 

Numerous cluster programs exist, but the clustering method 

utilized for this project is known as agglomerative hierarchical 

clustering (AHC). Clusters created by AHC have been used 

efficiently on molecular populations to improve GA efficiency [9]. 

In general, molecules of the same chemical stoichiometry exist in 

different chemical configurations, such as lines, rings, or a 

combination of both. The AHC recognizes this diversity of 

structures and attempts to group them according to their close 

molecular similarity. This is achieved through the similarity 

threshold, which is the cutoff that groups structures together. What 

makes the AHC unique from other clustering programs is its 

bottom-up approach, where each data point starts in its own cluster 

and then proceeds by successfully merging similar classes of 

clusters together, which forms a hierarchy [7]. 

Figure 3 showcases this process through the visualization of a 

simple dendrogram. At first, each structure lives in its own cluster. 

When the AHC recognizes similar structures, it groups those two 

clusters (which were separated before) to form one cluster. At the 

end, the AHC has created three clusters (presented in blue, red, and 

green). Although seven molecules are shown in Figure 3, the AHC 

program can read in a variety of readily-formed chemical structures 

to form more sophisticated groups. 

Figure 3. A segment of a dendrogram showing seven C9H7N 

molecules being grouped into three clusters (blue, red and 

green) based on a similarity index. 

3. METHODS 
To test how well the NN performs, we compared its values to those 

determined from DFTB+. DFTB+ combines the accuracy given 

from the DFT method with the efficiency of the Tight-Binding (TB) 

method [3]. This atomistic calculator was chosen because it is a 

fast, empirical method that allows us to perform many simulations 

with an appropriate level of accuracy. All structures are composed 

of C9H7N, whose global minimum is quinoline. This molecule is 

chosen because it is complex enough to have many local minima, 

but not so many that it becomes difficult to easily categorize them 

manually. 

The NN was implemented using the Atomistic Machine-learning 

Package (AMP), an open-source, Python-based (accelerated by 

Fortran) code that was built to interface seamlessly with the Atomic 

Simulation Environment (ASE) [13]. ASE is an open-source, 

Python-based common front end that is capable of supporting many 

molecular calculators. AMP is capable of using several descriptors 

and activation functions for its NN; however, for this project, the 

default Gaussian descriptor and hyperbolic tangent activation 

function were used. 

The comparison scheme comparing energies calculated by NN to 

those calculated by DFTB+ is illustrated in Figure 4. C9H7N 

molecules were evaluated with both NN and DFTB+ calculators. 

These energies were compared to determine how well a NN 

accurately calculated its energy. Once the testing set was fully 

evaluated, the NN and DFTB+ energies were plotted and fit to a 

straight line. The R2 value from this fit was used to quantify how 

close the NN can represent the DFTB+ calculated value. The R2 

value determined from a data set where the train and test sets were 

identical was 0.9999, indicating a nearly perfect match. The lower 

the R^2 value, the less predictive the NN is on average at 

determining the energy calculated by DFTB+. 

 

Figure 4. An overview of the comparison scheme in which NN 

and DFTB+ are used to evaluate the predictive nature of the 

NN. Both the NN and DFTB+ are used to evaluate the 

potential energy of a candidate, and the two values are 

compared. 

A starting population consisted of 813 molecules generated from 

an evolutionary algorithm using the C9H7N stoichiometry. These 

were clustered into 21 clusters using AHC. The similarity index 

was arbitrarily set to generate 21 clusters, so that each cluster was 

sufficiently small, to have some flexibility in grouping them into 

five equally-sized groups with roughly 20% of the total structures 

in each group. Regardless of this effort, group 1 was composed of 

one very large cluster (288 molecules), while the remaining groups 
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were composed of roughly equal numbers of structures (133, 129, 

125, and 138 molecules). Figure 5 illustrates a schematic showing 

group formation separated by arrows from left to right. The first 

step shows a sample of the population set. The second step shows 

that all similar molecules were clustered using the AHC method. 

The third and final step presents Groups 1–5 (represented by 

circles) which contain approximately 16% of the total population 

from the 813 molecules (Group 1 has 35% of the structures). 

 

Figure 5. A schematic displaying how groups were formed 

from the results of the agglomerative clustering of initially 

generated structures. Each group consists of approximately 

20% of the atomic molecules from the population. 

The train/test cycle presented in Figure 6 outlines how the five 

train/test groups were created. When training a NN, a large training 

set is ideal. Sometimes this is not possible, so we tested the effect 

of 20% and 80% training set sizes to quantify the effect of a limited 

training set on a NN versus having a much larger training set. 

Figure 6 outlines the case of a 20% training set size. To start, one 

of the five groups was designated the training group, while the other 

four groups were combined to make the test set. For example, Test 

1 included 525 molecules (the combined total of Groups 2–5) while 

Train 1 included 288 molecules. A NN was trained using the 

training set, and then all the DFTB+ energies of the structures in 

the test set were compared to those calculated using the newly-

trained NN (as in Figure 4). This process was repeated four more 

times, where each of the five groups had a turn being the training 

set. The purpose of the train/test cycle was to average out any 

structure-related issues in any of the training sets. For each of the 

five sets, a scatter plot of the NN energy versus the DFTB+ energy 

was fit to a straight line, and the five R2 values were averaged. To 

calculate the results from 80% of the structures being in the 

training, the process in Figure 6 was repeated with the training and 

testing groups reversed. 

 

Figure 6. The representation of the train/test cycle that results 

in determining an R2 value for each of the five assignments of 

the groups. 

Finally, the effect of the NN architecture was tested by varying the 

value of hidden layers and nodes for each cycle. For this study, we 

examined three, four, and five hidden layers, each containing 5, 10, 

15, 20, 25, 30, and 35 nodes. 

4. RESULTS 
Figures 7 and 8 plot the results of the random and clustered 

grouping of the training set. Each figure displays the average R2 

value — each collected from one complete round of the train/test 

cycle — for each hidden layer/node combination. The 20%/80% 

sized training sets are indicated by the blue and red lines, 

respectively. 

 
Figure 7. Three linear plots depicting averaged R2 values and 

their uncertainties, where the NN is trained with three (in a), 

four (in b), and five (in c) hidden layers. The red line shows 

the 80% training set, and the blue line shows the 20% set. 

Figures 7a, 7b, 7c, are the analysis for the randomly arranged 

groups. Figure 7a has three hidden layers, Figure 7b has four hidden 

layers, and Figure 7c has five hidden layers. Each figure displays 

averaged R2 values as the number of nodes increased. The 80% 

training sets in Figures 7a, 7b, and 7c, have much smaller slopes 

and higher y-intercepts compared to the clustered data. Conversely, 

the 20% training sets have greater slopes and lower y-intercepts. 

There is less uncertainty in each of the averaged R2 values in the 

80% sets than in the 20% sets, as demonstrated by the smaller error 

bars. In general, the 80% training sets have higher R2 values 

compared to the 20% training sets. 
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Figures 8a, 8b, 8c, show the results for the clustered groups. Figure 

8a has three hidden layers, Figure 8b has four hidden layers, and 

Figure 8c has five hidden layers. In general, the 80% training sets 

in the clustered data have greater slopes and higher y-intercepts. 

The 20% training sets have smaller slopes and lower y-intercepts. 

The uncertainties of the 80% and 20% training sets appear to be 

similar. The 80% training sets have higher R2 values, while the 20% 

training sets have lower R2 values. In both instances (regarding 

random and clustered populations), the training set with more 

molecules resulted in an increase in R2 values. These data are 

summarized in Table 1. 

 

 

 

Figure 8. Three linear plots depicting averaged R2 values and 

their uncertainties where the NN is trained with three (in a), 

four (in b), and five (in c) hidden layers. The red line shows 

the 80% training set, and the blue line shows the 20% set. 

5. DISCUSSION 
In the random data, the slopes for the 20% training sets are larger 

compared to the slopes for the 80% training sets. Even though the 

20% trained data have much lower y-intercepts (meaning that they 

are not as accurate as the 80% data for small number of nodes), the 

slopes mean they eventually make up the difference as the number 

of nodes increases. One reason for the small slopes in the 80% data 

is that the R2 values are already close to the maximum value of 1. 

This indicates that with a large amount of data, this NN is able to 

reliably calculate the DFTB+ energy for structures that are similar 

to those in its training set, regardless of the NN architecture. If a 

limited amount of data is available for the training set, reliable 

predictions can still be made with a NN, so long as the NN 

architecture is large. 

This is different for the clustered data. The slopes (in general) for 

the 20% trained data are much smaller than the slopes for the 80% 

trained data. This means that smaller training data sets will require 

a very large number of nodes if they are going to catch up to the 

80% data, if at all. Furthermore, contrary to the random data, for 

the larger training sets, there appears to be a much stronger 

correlation between NN architecture and the number of nodes in 

each hidden layer. This probably stems from the NN needing more 

extensive architectures to help predict structures that are not in the 

training set. 

Table 1: Summary of the slopes and y-intercepts 

from Figures 7 and 8.  

 

 

The larger y-intercepts for the 80% cases shows that they are much 

better at predicting structures outside of the training set for small 

NN architectures. It follows that when more examples are shown to 

the NN, it translates to better accuracy. The fact that the y-intercept 

drops significantly between the random and clustered data suggests 

that it matters to train the NN in a specific way if it needs to 

accommodate structures that it has never seen before. This is due 

to the fact that the random training set is comprised of all types of 

structures, while the clustered case attempts to segregate molecule 

types. and this is maintained in forming the training and testing 

groups. As a result, a false sense of accuracy exists for structures 

that have never been seen before when training with a random 

starting population. 

Neural network architectures and training set size are important 

when trying to apply the NN calculator to structures that were not 

in the training set. This is illustrated by comparing the random 

training sets to the clustered ones. For the random training sets, 

regardless of the NN arrangement, it appears that we get at least a 

reasonable, if not very close, match to the DFTB+ energy value. 

Conversely, in the clustered data, we get a dramatically-reduced 

ability to predict the energy of the testing set structures, especially 

for architectures with a smaller number of hidden layers. This 

indicates that clustering should be used as a strategy to train NNs 

when it is expected that the NN will predict structures that are 

unique from the training set. 

There are other examples of effective pairing of clustering data with 

other machine learning techniques. One study showed that the GA 

efficiently located the global minimum because it took advantage 

of the clustered configuration space [1]. Because of their potential 

for locating the global minimum, clusters and the GA are often 

found working simultaneously in areas of computational research. 

Another example showing the effectiveness of combining the GA 
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and clusters is found in a study where an approach known as the 

distributed hierarchical genetic algorithm (DHGA) was used for 

optimization, pattern matching, and space search exploration [4]. 

One study showed that when starting populations were clustered, 

the chances of finding the local minimum increased within a margin 

of error opposed to populations that were not subjected to the 

clustered approach [9]. The combination of the GA and clusters is 

constructive due to the ability of the GA to recognize a pattern 

when searching through the clustered configuration space. The GA 

can act upon this information and continue the search for the local 

minimum [1]. 

This project shows how clustering can work to illustrate how robust 

a trained NN is at accurately calculating properties of structures not 

in its training set. Traditional training of NN’s with randomly 

chosen structures might provide a false sense of accuracy. The 

common starting conditions for NN are typically based on a random 

set, such as those found in the neural network potential (NNP) 

simulations that aimed to learn transferable potentials for organic 

molecules [15]. We have shown that certain NN architectures do 

not appear to do well when given a previously unseen structure. 

Clustering should be considered to determine a NN architecture 

that is robust enough to recognize structures that it has not seen 

before, since it can be quantified how accurate the NN is as a part 

of the training/testing sets. When randomly selected training/testing 

sets are used, the NN will perform well, but that is expected, since 

the test set is composed of structures similar to those on which it 

was trained. 

We believe clusters should help improve the search scheme when 

deciding to create improved sophisticated programs of chemically 

relevant molecules in the potential energy surface. By learning to 

make the NN more robust in this project, we can discuss training a 

NN to generate starting populations for GAs. We envision a 

strategy where clustering is used to group together previous search 

results, and new starting populations can be quickly evaluated using 

a NN and compared to the clustered data to find new structural 

motifs and start new GA searches in unseen areas of the potential 

energy surface. This work informs how the NN should be 

constructed for this eventual application of a thorough and 

complete search for the global minimum. Ultimately, we have 

showed how training a NN requires some analysis to determine an 

architecture that will be robust enough to predict results from trial 

cases that it has not seen before using clusters. 

6. CONCLUSION 
In this paper, we demonstrate the importance of training NNs for 

calculating the energy of molecular structures using clustering to 

group together the training and testing data if it is expected that the 

NN will evaluate new structures that are outside of the training set. 

Using a random grouping in the training and testing sets resulted in 

the NN being able to almost exactly reproduce the correct energies 

of all tested structures. However, when the NN was trained with a 

group of clustered structures and tested on a separate group of 

clustered structures, the NN performed much worse. Enlarging the 

training set and increasing the number of hidden layers and nodes 

dramatically improves the ability of the NN to predict molecular 

energies of structures that are not similar to those in the training set. 

This approach provides a framework to determine the proper 

architecture to train more robust NNs with a quantifiable metric.  
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ABSTRACT
Making materials out of buckminsterfullerene is challenging, be-
cause it requires first dispersing the molecules in a solvent, and
then getting the molecules to assemble in the desired arrangements.
In this computational work, we focus on the dispersion challenge:
How canwe conveniently solubilize buckminsterfullerene?Water is
a desirable solvent because of its ubiquity and biocompatibility, but
its polarity makes the dispersion of nonpolar fullerenes challenging.
We perform molecular dynamics simulations of fullerenes in the
presence of fullerene oxides in implicit water to elucidate the role
of interactions (van der Waals and Coulombic) on the self-assembly
and structure of these aqueous mixtures. Seven coarse-grained
fullerene models are characterized over a range of temperatures
and interaction strengths using HOOMD-Blue on high performance
computing clusters. We find that dispersions of fullerenes stabi-
lized by fullerene oxides are observable in models where the net
attraction among fullerenes is about 1.5 times larger than the at-
tractions between oxide molecules. We demonstrate that simplified
models are sufficient for qualitatively modeling micellization of
these fullerenes and provide an efficient starting point for investi-
gating how structural details and phase behavior depend upon the
inclusion of more detailed physics.

KEYWORDS
Self assembly, Computer simulation, GPUs, Molecular dynamics,
Undergraduate research, Blue Waters

1 INTRODUCTION
Buckminsterfullerene (C60) can be dispersed in water, starting from
both pure solid and organic solutions, rendering this colloid the
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most environmentally relevant form of the fullerenes [1–7]. The
ability to disperse C60 colloids in water, termed “nC60”, is of inter-
est from a nanomanufacturing perspective, because such solutions
offer a starting point for using thermodynamics to self-assemble
nanostructures from these organic conducting building blocks with-
out the need for volatile solvents. Early reports of C60 cytotoxicity
were followed by substantively conflicting reports of the material’s
environmental and biological behavior [2, 8–17]. This controversy
has elevated C60 to a status as a touchstone nanoparticle, in many
ways serving as a proxy for the scientific community’s responsible
development of nanomaterials as an industry.

Since its first laboratory synthesis in 1994 [5], several aspects of
nC60’s structure, stability, and reactivity have defied explanation.
Of the reported nC60 laboratory synthesis methods, most involve
transfer of the fullerene material from an organic solvent into wa-
ter [1, 2, 6, 18–20]. One approach, however, known as AQU/nC60,
involves simple extended stirring in water for a period of days to
months [6, 7, 19, 21, 22]. This last technique is notoriously incon-
sistent and unreliable, despite it being the most environmentally-
relevant approach. Most critically, the surface chemistry of the
colloidal particles must be charged or hydrophilic, or both, in
order to render the particles water-stable. The most significant
breakthrough in understanding the nature of this surface chem-
istry came in 2012 with the observation that for AQU/nC60 this
hydrophilic chemistry results from an unusually-stable epoxide
derivative of C60, which is formed through reaction of trace levels
of atmospheric ozone with buckminsterfullerene [23]. This same
C60O derivative has been shown, at least in some samples, to stabi-
lize aqueous colloidal aggregates of C60 (nC60) in three of the main
organic solvent-based synthesis techniques: the exchange methods
of hexane/isopropyl alcohol/water (HIPA), tetrahydrofuran/water
(THF), and toluene/tetrahydrofuran/acetone/water (TTA) [20]. The
present work aims to elucidate the self-assembly of fullerenes into
colloidal particles under conditions where a mixture of C60 and
C60O are present. This initial work explores equimolar quantities
of each, aiming to understand the minimal physics required to de-
scribe colloidal stabilization of C60 and C60O inwater.What C60 and
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C60O characteristics and conditions are sufficient for C60O to stabi-
lize micelles (Figure 1) of C60? Are there other thermodynamically
stable arrangements of C60 and C60O?

We approach these questions of fullerene stability through the
lens of molecular simulations and micelle self-assembly. Molecular
dynamics (MD) and Monte Carlo (MC) simulations have been em-
ployed to investigate how the properties of amphiphilic molecules
can self-assemble into higher-ordered structures including micelles
[24–27]. These simulations provide a convenient way to study how
the thermodynamic stability of micelles and bilayers depends on
interactions and geometric constraints, as predicted by Israelachvili,
Mitchell, and Ninham [28]. For example, MD simulations of model
surfactants in a solvent show that micelles of varying structure
(disk, cylindrical, and spherical) can readily self-assemble over sim-
ulation timescales [26]. More recent work using a more complex
MARTINI model of surfactants in water demonstrates that the long
timescales of lipid bilayer transformations can be accessed in MD
simulations [25]. Representing solvent molecules implicitly using
Langevin or Brownian dynamics is another technique for accessing
longer timescales, and the work of Noguchi et al. demonstrates that
micelles can self-assemble from amphiphilic molecules and aggre-
gate into vesicles in the right conditions [24]. The thermodynamic
stability of spherical micelles, cylindrical micelles, vesicles, and
bilayers was demonstrated to be a function of amphiphile shape
(here, dumbbell size ratio) in MC simulations by Avvisati et al.
[27]. In summary, simplified models of amphiphiles have been suc-
cessfully deployed to study thermodynamic phase behavior and
self-assembly for a wide variety of amphiphilic molecules. Here,
our coarse model of amphiphilic C60O is developed in the spirit of
Refs. [27] and [24] and we investigate its self assembly with C60 in
an implicit solvent with MD simulations.

2 MODEL
We use MD simulations to investigate a sequence of seven coarse-
grained models of C60 and C60O to determine how our choice of
model determines the structures that self-assemble. In all of the
models, C60 is represented by a single coarse-grained simulation
element (Figure 2(h)), C60O is represented by two spherical sim-
ulation elements (Figure 2(a–g)), and water is modeled implicitly
using Langevin dynamics [24, 29]. The hydrodynamic drag on each
spherical simulation element is described by the Stokes formula

Fd = 3πηdv⃗ (1)

where η is the viscosity of the fluid, d is the particle diameter, and v⃗
is the particle velocity. Random forces on each spherical simulation
element from the implicit solvent are described by ζ (t ), which is
related to the drag force through the fluctuation dissipation theorem

〈
ζ (t )2

〉
= 2FdT (2)

and where 〈
ζ (t )ζ (t ′)〉 = 0. The net effect of modeling the solvent

implicitly through Langevin dynamics is that the simulation ele-
ments are thermostatted not to travel so fast as to be numerically
unstable, but with dynamics and computational cost sufficient to
reach equilibration in minutes to hours. We also note that the in-
ertial terms (masses, moments of inertia) do not factor into the
equilibrium structures sampled.

Figure 1: Representative snapshot of C60 (blue spheres) stabi-
lized in water with C60O (red spheres with small blue dots)
acting as a surfactant between the nonpolar C60 and polar
water.

The seven models we consider here are chosen to answer: What
combinations of van der Waals interaction strengths, partial charges,
and molecular geometry are sufficient to predict the formation of
C60 micelles stabilized by C60O? The models also roughly represent
a gradient of increasing complexity, from simplified models that do
not explicitly include long-range electrostatics, to models that have
partial charges and moments of inertia informed by first-principles
calculations.

(1) The geometry of C60O in Model 1 (Figure 2a) is designed
using approximate atomic sizes and positions from the op-
timized OPLS-AA force field (optimized potentials for the
simulation of liquids, all atom) [30].

(2) The geometry of C60O in Model 2 (Figure 2b) is informed by
density-functional theory (DFT) calculations described later
in this paper.

(3) Model 3 (Figure 2c) uses the same geometry as Model 2, but
adds naïve partial charges to the coarse-grained C60 and
O beads, creating a static dipole across the C60O molecule.
Model 3 also scales down the energies of the O-O and O-
C60 interactions.

(4) Model 4 (Figure 2d) improves upon Model 3 by applying
partial charges calculated from first principles and using
interaction energies scaled to the represent accurate van der
Waals forces.

(5) Model 5 (Figure 2e) is identical to Model 4, except the charge
magnitudes are scaled down so the dipolemoment onC60Ohas
the correct magnitude, in exchange for lower partial charges.
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Figure 2: Seven models of C60O are tested for their self-assembly properties with C60 (center) in implicit solvent. Clockwise
from the top, each successive model is a perturbation to the prior one: Model 2 updates the location and size of the O-group
and adds naïve charges to Model 1. Model 3 has more accurate Lennard-Jones (LJ) interaction energies. Model 4 has partial
charges informed by density-functionary theory (DFT) calculations and LJ interactions drawn from literature. Model 5 scales
the charge magnitudes of Model 4 to have an accurate dipole moment. In Model 6 we keep the Model 5 C60 details, but vary
εCC . Model 7 is identical to Model 6 (εCC varied), but omits partial charges.

(6) Model 6 (Figure 2f) takes a different view and explores how
the C60-C60 interactions influence phase behavior (by vary-
ing εCC ), using the same C60O model as Model 5.

(7) Model 7 (Figure 2g) is identical to Model 6, except it omits
the partial charges on C60O.

In concert, these models comprise a sequence of assumptions about
how C60 and C60O behave that begins simply, adds in electrostatics,

more accurate van der Waals forces, more accurate charges, and
dipoles that enable systematic evaluation of which features are
necessary for capturing hypothesized C60-C60O phase behavior.
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The potential energy between a pair of simulation elements is
described by the Lennard-Jones interaction potential

UL J (ri j ) = 4εkl *,
(
σi j

ri j

)12
−

(
σi j

ri j

)6+- , (3)

where ri j is the center-to-center distance between particles i and j,
εkl is the Lennard-Jones well depth, σkl is the Lennard-Jones length
scale, where k and l indicate particle types, with k ∈ {A,B,C} and
l ∈ {A,B,C} in this work. We use Lorentz-Berthelot mixing rules
where σkl =

σkk+σl l
2 represents the sum of the radii of particles i

and j whose types are k and l , respectively, and cross-interactions of
energy scales are (εkl =

√
εkkεl l ) [31, 32]. Equation 3 has a global

minimum at UL J (ri j = σkl 21/6) = εkl , so we may select εkl to
represent qualitative attractions between model elements A (C60 in
C60O, red elements in Figure 2), B (O, smaller blue elements in
Figure 2), and C (C60, Figure 2h).

To minimize confusion that arises when mentally converting be-
tween “particle type”, “atom types”, and “molecules”, we henceforth
adopt the following naming conventions:
• “A”, “B”, and “C” are used to refer to the spherical simula-
tion elements that are used to models of C60O and C60, and
will only be used in the context of parameters describing
interactions between simulation elements (e.g. εBB and qA
in Table 1) and structural metrics such as radial distribution
functions between particles of type B дBB .
• The symbols C60O and C60 are used to refer to molecules
of C60O and C60 generically, both within and outside the
context of the models presented here.
• In structural analysis, “A” and C60O are interchangeable,
and “C” and C60 are interchangeable. That is, a shortcut
heuristic for this work is that “A” = C60O and “C” = C60,
and we include both sets of symbols as a reminder of the
distinction between model implementation (“A”, “B”, and
“C”) and molecules (C60 and C60O).

To minimize unit conversion errors and maximize the inter-
pretability of predictions with other simulation results, we employ
base units of massM = 1.20 × 10−24 kg, length σ = 1.01 × 10−9 m,
and energy ε = 3.24× 10−20 J to convert between physical fullerene
parameters and near-unity dimensionless simulation parameters.
That is, when we report εAB = 0.5, it means that εAB = 0.5ε =
1.62 × 10−20 J. Using dimensionless simulation parameters allows
for quick inspection of relative magnitudes and aids with analysis.
The base units of massM and length σ correspond to the mass and
van derWaals diameter [30] of C60, respectively. The base unit of en-
ergy ε corresponds to the minimum potential energy of a C60 dimer
in water and is within the range of calculations from prior work
(2.7×10−20 to 3.7×10−20) [33, 34]. Derived units of time τ =

√
Mσ 2
ε

are 6.15 × 10−12 s. One quirk of dimensionless simulation units is
the convention of reporting temperatures T in terms of dimension-
less energy, which can be converted to Kelvin using TKelvin = εT

kB
,

where kB = 1.38 × 10−23 J/K. With ε = 3.24 × 10−20 J , T = 1 corre-
sponds to 2348 K, but we caution overinterpretation of this absolute
temperature: Rather, we are reminded that constructing a model in
terms of ε—a coarse-grained aqueous C60 interaction, whatever it
may be—we are able to investigate what other model parameters are

Table 1: Interaction parameters representing oxygen-
oxygen εBB , functionalized C60-oxygen εAB , and unfunc-
tionalized C60-C60 attractions, as well as partial charges on
functionalized C60 (qA) and O (qB ) groups.

Model εBB εAB εCC qA qB
1 1 0.5 1 0 0
2 1 0.5 1 1 -1
3 0.2 0.2 1 1 -1
4 0.06 0.25 1 4.658 -4.658
5 0.06 0.25 1 1.257 -1.257
6 0.06 0.25 1.0 to 2.0 1.257 -1.257
7 0.06 0.25 1.0 to 2.0 0 0

sufficient for observing micellization. Framed this way, correspon-
dence of room-temperature (298 K) micellization in experiments
with the present model’s predictions at T = 0.7 would provide
rationale for re-interpreting ε = 298 K×1.38×10−23 J/K

0.7 = 5.87 × 10−21
J within the context of this model.

The C60O are represented as rigid bodies [35]. This minimal
model allows for the shapes of these molecules to be realistically
represented without having to keep track of their computation-
ally expensive internal degrees of freedom. We choose interaction
strengths (εAA, εBB , and εCC ) in terms of ε to systematically model
systems with varying degrees of attraction. In this work, we focus
on understanding how the choice of εkl ’s determines the structures
that emerge (Table 1).

2.1 Partial Charge Calculation
To determine charge distribution on the fullerene and the position
of the oxide oxygen (Models 4, 5, 6, and 7), we employ quantum
chemical calculations using density-functional theory (DFT). The
calculations are carried out using Quantum Espresso [36] with peri-
odic boundary conditions using the Perdew-Burke-Ernzerhof (PBE)
generalized gradient approximation (GGA) exchange-correlation
functional [37]. Projector augmented wave (PAW) pseudopotentials
[38] enable explicit calculation of the 2s and 2p electrons of C and O.
Calculations are conducted at the Γ point. C60 is initialized in large
cube with edges greater than 20Å (roughly three times the diameter
of the fullerene), so as to minimize periodic image interactions.

The wave functions are composed of summations of plane waves
with energies up to 45 Rydberg (612 eV). No differences in geometry
or energies were seen between the calculation using a 45 Ry cutoff
energy and a calculation using a 40 Ry cutoff energy, suggesting
that both cutoff energies are sufficient to accurately model the
wave function. As both wave functions are calculated to ensure
convergence, we used the more accurate 45 Ry wave function for
all further analysis. Bader analysis [39] is used to determine the
charge on the atoms in the Buckyball. The code used to calculate
the Bader charges was written by the Henkelman group [40, 41].

3 METHODS
Coarse-grained molecular dynamics simulations are performed us-
ing the HOOMD-Blue simulation engine [42] on NVIDIA K20 GPUs
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on the NCSA Blue Waters and Boise State Kestrel computing clus-
ters. Each simulation is performed using a single K20 GPU, during
which the potential energy and simulation snapshots of the particles
are logged. Simulations are performed in the canonical (constant
number of particles N , volume V , and temperature T ) ensemble
using the Nosé-Hoover thermostat [43] and the MTK equations
[44, 45]. Quaternions are used to represent the orientational degrees
of freedom of the C60O molecules. Long-range electrostatics are
calculated using the particle-particle particle-mesh (PPPM) method
[46]. Positions and quaternions are updated via the velocity Verlet
integration of Newton’s equations of motion after every dimension-
less time step, dt = 0.001τ [47].

Simulation volumes are initialized on a square lattice with con-
stant number density η = 0.074 and equal amounts of C60 and
C60O in a cubic volume. Small debugging jobs are performed with
150 each of C60 and C60O, and the largest jobs are performed with
8,000 of each. Simulation snapshots presented in the figures here are
from production jobs with 3,375 each of C60 and C60O, for 10,125
total simulation elements. We consider systems to be equilibrated
once the potential energy reaches a stable average, which for the
coldest systems studied here occurs after about 2 × 107 time steps
in the largest system sizes, and in under 4 × 106 steps for produc-
tion runs (Figure 3). After equilibration is achieved, we average
statistically-independent samples (over 20 for all systems studied
here), requiring 1× 107 steps for the largest systems and 1× 106 for
the production systems. Simulation snapshots are visualized using
Visual Molecular Dynamics (VMD) [48], and plotting of simulation
data (potential energy trajectories and radial distribution functions
д(r )) are performed with matplotlib [49].

We useдi, j (r ) to measure local spatial correlations between parti-
cle types i and j and to distinguish between “dispersed”, “aggregate-
onset”, “fluid clusters”, “solid clusters”, and “micelle” structures
(Figure 4 and Figure 5). The key д(r ) metrics we focus on here
are peaks corresponding to first- (r = 1.15σ ) and second-nearest
neighbor (1.85σ < r < 2.3σ ) distances, and whether д(r ) converges
to the system density at large separations (limr→6 д(r ) = 1). The
magnitude of the first-nearest neighbor peak is used to indicate
relative contact frequencies, and a peak at r = 1.15σ is expected,
because the global minimum of Equation 3 occurs at r = 1.12σ ,
and the C60 simulation elements have the small oxide component
that contributes slightly to average separations. The second-nearest
neighbor peak is used to distinguish fluid clusters from dispersed
systems. If limr→6 д(r ) > 1, we expect to find tightly-packed clus-
ters that do not uniformly fill the simulation volume. In micelle
cases we use дAC (r ) to quantify how “tightly” the shell covers the
core of the micelle.

4 RESULTS AND DISCUSSION
We perform MD simulations of equimolar C60 and C60O in implicit
solvent for seven models. For each model, we vary temperature T
to observe transitions between phases. In Models 6 and 7, we vary
temperature T and C60-C60 interactions (εCC ). After equilibration,
simulation snapshots and radial distribution functions д(r ) are gen-
erated from representative microstates. In this section we present,
interpret, and compare the transitions and structures for the seven

Figure 3: Per-molecule potential energy trajectory for a rep-
resentative slow-to-relax simulation (Model 7,T = 0.7 εCC =
1.5) that reaches equilibration after 4 million steps and is
then sampled fluctuating about a stable average for 1.3 mil-
lion steps. Inset: Detail of equilibrium potential energy fluc-
tuations.

a b

c d

Figure 4: We observe that all seven models transition be-
tween the following four phases as temperature is decreased:
(a) Dispersed: Molecules move freely and aggregate mini-
mally, (b) Aggregate-onset: Formation of at least one region
of relatively high molecular density, (c) Fluid clusters: Few
un-aggregated molecules, but molecules still move freely
within the clusters, and (d) Solid-like clusters: Rigid clusters
wheremolecules vibrate about static positionswithin the ag-
gregate.
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a b

Figure 5: The “micelle” structures observed here are char-
acterized by thin layers of one type of molecule encapsu-
lating spherical clusters of the other molecule type. Here
we observe both (a) micelles in which C60 encapsulates
C60O (Model 4, T = 0.7), and (b) micelles in which C60O en-
capsulates C60 (Model 7, T = 0.7). Micelle stability is not
observed for all models. When micelles are observed, it is
at temperatures below aggregate-onset and only for suffi-
ciently high attraction between C60 molecules (εCC ).

models. The results presented here are for the production simu-
lations of 10,125 simulation elements representing 3,375 C60 and
3,375 C60O molecules. Overall, we observe the same sequence of
structural transitions as we decrease temperature: from dispersed,
to aggregate-onset, then fluid, and finally solid-like (Figure 4). For
a subset of models, micelles are observed to self-assemble below
the aggregate-onset temperature.

(1) In Model 1, fluid clusters emerge between T = 1.3 and T =
1.2. Aggregation increases (as measured by д(r = 1.15)) for
all simulation element types (AA followed by AC followed
by CC) as temperature is lowered from T = 1.2 to T = 0.7.
A crystallization transition is observed at T = 0.6.

(2) Model 2 adds charges relative to Model 1, and we observe the
same behaviors as in Model 1 but with fewer, larger clusters
(Figure 6b).

(3) Decreasing εBB in Model 3 causes phase transitions to occur
at lower temperatures (T = 0.9 for fluid clusters, T = 0.4 for
solid clusters), but the observed structures are the same as in
Models 1 and 2. This is expected, because the thermodynamic
driver for oxygen aggregation is smaller (εBB = 0.2 vs εBB =
1.0).

(4) Observations of Model 4 differ significantly fromModels 1–3,
and the model differs in the utilization of partial charges in-
formed by DFT calculations and LJ interactions (qA = 4.658
and εAB = 0.25). Stronger C60O fullerene cage (AA) aggre-
gation is observed at T = 1.8, and shells of C60 form around
C60O aggregates around T = 0.9 (inversions of the experi-
mentally hypothesized micelles, Figure 5(a)). Crystallization
occurs at T = 0.7.

(5) In Model 5, charge magnitudes are decreased to model a
more accurate dipole moment, but the εs from Model 4 are
retained. We observe fluid clusters at T = 0.9 and solid
clusters at T = 0.5, but overall observations follow models
1–3: mixed fluid and solid clusters.

a b

c d

Figure 6: Measurements of spatial correlations of simula-
tion elements and representative snapshots at T = 1.0 for a)
Model 1, b) Model 2, c) Model 3, and d) Model 5. At this tem-
perature, aggregation is observed in Models 1 and 2 but not
Models 3 and 5. Red дAA measures correlations between the
fullerene cages of C60O , which are rendered as red spheres.
Dashed purple дAC measures correlations between C60’s and
the fullerene cages of C60O. Dotted blue дCC measures corre-
lations between C60, which are rendered as blue spheres.

(6) Within Model 6 we vary εCC from 1.0 to 2.0 over 0.6 ≤
T ≤ 1.0. Higher values of εCC promote C60-C60 aggregation.
Within these ranges of T and εCC we observe micelles of
C60O around C60. (Fig. 5(b))

(7) Within Model 7 we also vary εCC from 1.0 to 2.0 over 0.6 ≤
T ≤ 1.0, but without any long-range electrostatics. Shells of
C60O around C60 still begin to form, but the aggregates have
slightly different structures without the charges.

In summary, Models 6 and 7 are sufficient to observe the exper-
imentally hypothesized micelle stabilization of C60O monolayers
forming around spherical clusters of C60 in solution. The only dif-
ference between these two models is the presence of electrostatic
charges in Model 6 that are absent in Model 7. The self-correlations
of C60O’s and C60’s are measured to be higher in Model 6 (Figure 9),
so the presence of charges has measurable impact on local struc-
tural details. In both Models 6 and 7, C60O is observed to play the
role of micelle surfactant around clusters of C60 when εCC ≥ 1.5.

4.1 Models 1, 2, 3, and 5
The structures observed in Models 1, 2, 3, and 5 are very similar.
At colder temperatures, C60O’s and C60’s aggregate, but they do
not demonstrate thermodynamic preference for spatial segregation
by type. Representative snapshots are presented in Figure 6. The
major difference between Models 1 and 2 versus 3 and 5 is the
temperature at which accumulation begins. Overall, these results
indicate that changing charge magnitudes between 0 and 1.3 and
varying the oxygen attraction parameter (εBB ) aren’t primary facors
for micellization (recall Table 1).
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4.2 Model 4
Structures observed in Model 4 differ significantly from Models
1-3 and 5. Model 4 has oxygen interactions informed by the OPLS
and MARTINI force fields [30]. Because of this, the oxide molecules
aggregate strongly at temperatures at and below T = 1.8. At tem-
peratures aroundT = 0.9, nearly all of the C60O’s have grouped up
into one large cluster, but the C60’s remain detached. As the tem-
perature is lowered further, the C60’s begin sticking to the surface
of the C60O cluster and form a shell around the outside.

a b

c d

Figure 7: Local structure and representative snapshots from
Model 4 at various temperatures. дAA (r ) and дCC (r ) have
been excluded, as the extremely charged C60O molecules
(qA = 4.658) are considerably attractive and crystalline. a)
T = 1.8 aggregation-onset, b) T = 0.9 C60O’s aggregate into
clump and C60’s remain loose, c) T = 0.7 C60’s form a shell
around the crystalline C60O cluster, and d) T = 0.4 tightly
packed clusters, but too cold for C60’s and C60O’s to reassem-
ble.

4.3 Models 6 and 7
Experimentally-hypothesizedmicelles of C60 surrounded byC60Oare
observed to self-assemble in Models 6 and 7. These two models are
used to explore the role εCC plays in micellization based on the
interaction set of Model 5 with (Model 6) and without (Model 7)
charges. Model 6 contains the exact long-range electrostatics of
Model 5, while in Model 7 these charges are turned off. For both
models, we perform simulations with temperatures ranging from
T = 0.6 to T = 1.0 and εCC ranging from εCC = 1.0 to εCC = 2.0.

We observe significant differences in the structures that are
thermodynamically assembled by Models 6 and 7:

(1) C60O’s aggregate at higher temperatures and with greater
frequency in Model 6 (charged).

(2) The first-nearest neighbor peak magnitudes (д(r = 1.15)) for
Model 6 are greater than Model 7 at the same temperatures
(Figure 8 and 9. The difference in peak magnitudes between
C60O-C60O, C60O-C60, and C60-C60 is also more spread out
for the charged system (Figure 8 and 9). This signifies that
charges increase the relative contact frequencies.

Figure 8: Comparisons of дAA (r ) and дAC (r ) for the charged
Model 6 and unchargedModel 7 show greater oxide aggrega-
tion in the charged cases. a) T = 0.7 and εCC = 1.5, b) T = 0.8
and εCC = 1.1. The concave-down shape of дAC in solid pur-
ple in (a) with a moving average trending up (in this case
with a moving average maximum around дAC (r = 5) = 6)
before turning downwards is an unusual д(r ) feature that
is representative of micelles with a sheath of either A or C
around the other type.

(3) Lastly, Model 6 (with charged C60O’s) consistently has a
lower quantity of clusters compared to Model 7 (with un-
charged C60O’s).

We interpret these observations to indicate that the dipole-dipole
interactions available in Model 6 facilitate the aggregation of C60O
molecules and enhance the exclusion of C60 from C60O. In sum,
Models 6 and 7 demonstrate that stabilization of C60 clusters in wa-
ter by C60O requires the effective attraction of C60 be roughly 50%
greater than the net attractions between C60O. This 50% heuristic
derives from εCC > 1.5 being required to see micellization, versus
εAA = 1 plus any contributions from BB, AB, and electrostatic
interactions (if present). Both models capture qualitative micel-
lization, and the differences between the two models demonstrate
that micellization transition temperatures and the structural details
of the micelles can be further fine-tuned through the inclusion
of detailed electrostatic interactions. To further put these results
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Figure 9: Comparison of Models 6 and 7 for varying temper-
ature and εCC . a) Model 6: T = 0.7 and εCC = 1.5, b) Model 7:
T = 0.7 and εCC = 1.5, c) Model 6: T = 0.8 and εCC = 1.1, d)
Model 7: T = 0.8 and εCC = 1.1.

into context, we reiterate that all of the observations presented are
for implicit water : The drag and thermal fluctuations of water are
modeled through Equations 1 and 2, and hydrophobic-hydrophilic
interactions are implied through the choice of ε and q. These re-
sults demonstrate both that (1) micellization of C60 by C60O can
phenomenalogically be described with a simple model, and (2) the
conditions under which micelles formmay be more readily deduced
by searching parameter space, as performed here, as opposed to
performing more expensive (perhaps intractably so) fully-atomistic
or first-principles calculations.

5 CONCLUSIONS
Through systematic iteration of minimal models of C60 and C60O,
we have identified sufficient conditions for micelles of C60O-
sheathed C60 to form: When the net attraction between C60
molecules is at least 50% larger than the attraction between C60O
molecules (εCC > 1.5), and when solvent thermal fluctuations are
low (T ≤ 0.7) relative to C60O-attractions. We also find that in-
cluding long-range electrostatics and a dipole moment informed by
DFT calculations, the fraction of free oxides observed in solution
is lower due to their assembly as the surfactant on the micelles.
In sum, the minimal models of water presented here (Models 6
and 7) demonstrate fullerene micellization. These models, which
equilibrate in minutes on a modern CPU or GPU, can now be used
to efficiently probe questions about how micellization depends on
interaction parameters beyond the present work.

Connecting the details of these models back to experimental
conditions is in theory possible, but not straightforward. Small
amounts of dissolved salts, for example, have a strong impact on
charge screening and therefore complicate translation between
models and experimental conditions. Further, the polarizability of
water and fullerene molecules will determine the actual kinetics
and thermodynamics of micelle formation. Nevertheless, the mod-
els developed here should provide a useful foundation for future
studies of fullerene micellization in water. As one example, future
studies investigating the role C60O and C60 concentrations have

on micelle formation and micelle size are a natural extension of
the present work. Microscopy or zeta potential measuremnts that
deduce cluster sizes and surfactant (C60O) thickness would also
provide natural extensions and data for validation of this work.
Further calibration of the interaction parameters in Models 6 and 7
can be performed with experimental measurements of colloidal size
distributions, and these calibrated models would provide additional
capabilities for predicting temperature ranges over which micelliza-
tion is optimized or thermodynamically unfavorable. We expect the
use of simplified models such as the ones presented here to aid in
the interpretation of experiments of aqueous fullerene dispersion
and ultimately inform more efficient methods for incorporating
fullerenes into the advanced materials of the future.

6 REFLECTIONS
Participating in the Blue Waters Student Internship Program in
2016 kick-started my (KN) computational science career and pas-
sion for data science. It all started during the two-week petascale
institute at the University of Illinois at Urbana-Champaign where
I, alongside twenty-five other aspiring computational scientists,
learned programming basics and how to submit jobs to a supercom-
puter, including those comprising the beginnings of this project. We
discussed our own projects and brainstormed ideas for improving
their effectiveness by employing complex HPC concepts. Through
this experience, I also made invaluable networking connections
with scientists from both the Shodor Education Foundation and the
National Center for Supercomputing Applications. The computing
community is close-knit and incredibly supportive, for which I am
very grateful to be a part. Working on this project and participating
in the Blue Waters program gave me a glimpse at the abundant
opportunities available in high-performance computing. Scientists
frommany different backgrounds (biology, physics, engineering, cli-
matology) attended the institute to develop their skills and advance
their respective fields.

The largest challenge in this project was completing and sub-
mitting this manuscript! While the basic science was accomplished
during the 2016 Blue Waters internship, balancing data analysis,
learning scientific writing, and doing scientific writing with classes,
varsity track and field, and engineering society involvement caused
the submission to be rather delayed. Nevertheless, I am proud of the
story we were able to tie together with this work, and the trajectory
on which the Blue Waters internship has put me.

My ever-evolving expertise and curiosity in computation have
provided me with exposure to projects in materials science, astro-
chemistry, and even neuroscience. The technical skills, confidence,
networking connections, and data-driven mindset I developed dur-
ing this experience will facilitate my future endeavours; this in-
cludes my pursuit of a Ph.D. in Neural Computation at Carnegie
Mellon University, which I will begin in the Fall of 2020.

7 SOFTWARE
Job submission scripts and analysis are available in the online sup-
plementary information.

Volume 12, Issue 1 Journal of Computational Science Education

46 ISSN 2153-4136 January 2021



8 ACKNOWLEDGMENTS
This research is part of the Blue Waters sustained-petascale com-
puting project, which is supported by the National Science Foun-
dation (awards OCI-0725070 and ACI-1238993) and the state of
Illinois. Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomputing
Applications. This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by National
Science Foundation grant number ACI-1053575[50]. KN and EJ
thank the Shodor Education Foundation and the Blue Waters Stu-
dent Internship Program for support of this work. The quantum
chemical computations were conducted on the ETH High Perfor-
mance Computing clusters (EULER). This material is based upon
work supported by the National Science Foundation under Grant
Nos. (1229709) and (1653954).

REFERENCES
[1] J. D. Fortner, D. Y. Lyon, C. M. Sayes, A. M. Boyd, J. C. Falkner, E. M. Hotze, L. B.

Alemany, Y. J. Tao, W. Guo, K. D. Ausman, V. L. Colvin, and J. B. Hughes. C 60 in
Water: Nanocrystal Formation and Microbial Response. Environmental Science &
Technology, 39(11):4307–4316, jun 2005.

[2] Grigoriy V. Andrievsky, Marina V. Kosevich, Oleh M. Vovk, Vadim S. Shelkovsky,
and Lyudmila A. Vashchenko. On the production of an aqueous colloidal solu-
tion of fullerenes. Journal of the Chemical Society, Chemical Communications,
8(12):1281, 1995.

[3] Shigeru Deguchi, Rossitza G. Alargova, and Kaoru Tsujii. Stable Dispersions of
Fullerenes, C60 and C70, in Water: Preparation and Characterization. Langmuir,
17(19):6013–6017, sep 2001.

[4] Nikolay O. Mchedlov-Petrossyan, Vladimir K. Klochkov, and Grigoriy V. An-
drievsky. Colloidal dispersions of fullerene C60 in water: some properties and
regularities of coagulation by electrolytes. Journal of the Chemical Society, Fara-
day Transactions, 93(24):4343–4346, 1997.

[5] Walter A. Scrivens, James M. Tour, Kim E. Creek, and Lucia Pirisi. Synthesis
of 14C-Labeled C60, Its Suspension in Water, and Its Uptake by Human Ker-
atinocytes. Journal of the American Chemical Society, 116(10):4517–4518, may
1994.

[6] Jonathan A. Brant, Jérôme Labille, Jean-Yves Bottero, and Mark R. Wiesner.
Characterizing the Impact of Preparation Method on Fullerene Cluster Structure
and Chemistry. Langmuir, 22(8):3878–3885, apr 2006.

[7] J. Labille, J. Brant, F. Villiéras, M. Pelletier, A. Thill, A. Masion, M. Wiesner, J. Rose,
and J.âĂŘY. Bottero. Affinity of C60 Fullerenes with Water. Fullerenes, Nanotubes
and Carbon Nanostructures, 14(2-3):307–314, dec 2006.

[8] Alok Dhawan, Julian S. Taurozzi, Alok K. Pandey, Wenqian Shan, Sarah M. Miller,
Syed A. Hashsham, and Volodymyr V. Tarabara. Stable Colloidal Dispersions of
C60 Fullerenes in Water: Evidence for Genotoxicity. Environmental Science &
Technology, 40(23):7394–7401, dec 2006.

[9] Najla Gharbi, Monique Pressac, Michelle Hadchouel, Henri Szwarc, Stephen R.
Wilson, and Fathi Moussa. [60]Fullerene is a Powerful Antioxidant in Vivo with
No Acute or Subacute Toxicity. Nano Letters, 5(12):2578–2585, dec 2005.

[10] Nicole Levi, Roy R Hantgan, Mark O Lively, David L Carroll, and Gaddamanugu L
Prasad. C60-fullerenes: detection of intracellular photoluminescence and lack of
cytotoxic effects. Journal of Nanobiotechnology, 4(1):14, 2006.

[11] Delina Y. Lyon and Pedro J.J. Alvarez. Fullerene Water Suspension (nC 60 ) Exerts
Antibacterial Effects via ROS-Independent Protein Oxidation. Environmental
Science & Technology, 42(21):8127–8132, nov 2008.

[12] Eva Oberdörster. Manufactured Nanomaterials (Fullerenes, C60) Induce Ox-
idative Stress in the Brain of Juvenile Largemouth Bass. Environmental Health
Perspectives, 112(10):1058–1062, apr 2004.

[13] Christie M. Sayes, John D. Fortner, Wenh Guo, Delina Lyon, Adina M. Boyd,
Kevin D. Ausman, Yizhi J. Tao, Balaji Sitharaman, Lon J.Wilson, Joseph B. Hughes,
Jennifer L. West, and Vicki L. Colvin. The Differential Cytotoxicity of Water-
Soluble Fullerenes. Nano Letters, 4(10):1881–1887, oct 2004.

[14] Christie M. Sayes, Andre M. Gobin, Kevin D. Ausman, Joe Mendez, Jennifer L.
West, and Vicki L. Colvin. Nano-C60 cytotoxicity is due to lipid peroxidation.
Biomaterials, 26(36):7587–7595, dec 2005.

[15] Naohide Shinohara, Takeru Matsumoto, Masashi Gamo, Arisa Miyauchi, Shige-
hisa Endo, Yoshitaka Yonezawa, and Junko Nakanishi. Is Lipid Peroxidation
Induced by the Aqueous Suspension of Fullerene C 60 Nanoparticles in the
Brains of Cyprinus carpio ? Environmental Science & Technology, 43(3):948–953,
feb 2009.

[16] Shiqian Zhu, Eva Oberdörster, and Mary L. Haasch. Toxicity of an engineered
nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fatheadminnow.
Marine Environmental Research, 62:S5–S9, jan 2006.

[17] Xiaoshan Zhu, Lin Zhu, Yupeng Lang, and Yongsheng Chen. Oxidative Stress
And Growth Inhibition In The Freshwater Fish Carassius Auratus Induced By
Chronic Exposure To Sublethal Fullerene Aggregates. Environmental Toxicology
and Chemistry, 27(9):1979, 2008.

[18] Randall D.Maples,Martha E. Hilburn, Befrika S.Murdianti, Rangika S. Hikkaduwa
Koralege, Jason S. Williams, Satish I. Kuriyavar, and Kevin D. Ausman. Optimized
solvent-exchange synthesis method for C60 colloidal dispersions. Journal of
Colloid and Interface Science, 370(1):27–31, mar 2012.

[19] Jonathan Brant, Hélène Lecoanet, Matt Hotze, and Mark Wiesner. Comparison
of Electrokinetic Properties of Colloidal Fullerenes ( n -C 60 ) Formed Using Two
Procedures âĂă. Environmental Science & Technology, 39(17):6343–6351, sep 2005.

[20] Martha E. Hilburn, Befrika S. Murdianti, Randall D. Maples, Jason S. Williams,
Joshua T. Damron, Satish I. Kuriyavar, and Kevin D. Ausman. Synthesizing aque-
ous fullerene colloidal suspensions by new solvent-exchange methods. Colloids
and Surfaces A: Physicochemical and Engineering Aspects, 401:48–53, may 2012.

[21] Befrika S. Murdianti, Joshua T. Damron, Martha E. Hilburn, Randall D. Maples,
Rangika S. Hikkaduwa Koralege, Satish I. Kuriyavar, and Kevin D. Ausman. C60
oxide as a key component of aqueous C60 colloidal suspensions. Environmental
Science and Technology, 46(14):7446–7453, 2012.

[22] Xuekun Cheng, Amy T. Kan, and Mason B. Tomson. Naphthalene Adsorption
and Desorption from Aqueous C 60 Fullerene. Journal of Chemical & Engineering
Data, 49(3):675–683, may 2004.

[23] Befrika S. Murdianti, Joshua T. Damron, Martha E. Hilburn, Randall D. Maples,
Rangika S. Hikkaduwa Koralege, Satish I. Kuriyavar, and Kevin D. Ausman. C 60
Oxide as a Key Component of Aqueous C 60 Colloidal Suspensions. Environmental
Science & Technology, 46(14):7446–7453, jul 2012.

[24] Hiroshi Noguchi and Masako Takasu. Self-assembly of amphiphiles into vesicles:
A Brownian dynamics simulation. Physical Review E - Statistical Physics, Plasmas,
Fluids, and Related Interdisciplinary Topics, 64(4):7, 2001.

[25] Siewert J. Marrink, Jelger Risselada, and Alan E. Mark. Simulation of gel phase
formation and melting in lipid bilayers using a coarse grained model. Chemistry
and Physics of Lipids, 135(2):223–244, 2005.

[26] Susumu Fujiwara, Takashi Itoh, Masato Hashimoto, and Ritoku Horiuchi. Molec-
ular dynamics simulation of amphiphilic molecules in solution: Micelle formation
and dynamic coexistence. Journal of Chemical Physics, 130(14), 2009.

[27] Guido Avvisati, Teun Vissers, and Marjolein Dijkstra. Self-Assembly of Patchy
Colloidal Dumbbells. pages 1–10, dec 2014.

[28] Jacob N Israelachvili, D John Mitchell, and Barry W Ninham. Theory of self-
assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the
Chemical Society, Faraday Transactions 2, 72:1525, 1976.

[29] R Kubo. The fluctuation-dissipation theorem. Reports on Progress in Physics,
29(1):306, jan 1966.

[30] Robert C. Rizzo and William L. Jorgensen. OPLS all-atom model for amines:
Resolution of the amine hydration problem. Journal of the American Chemical
Society, 121(11):4827–4836, 1999.

[31] H A Lorentz. Ueber die Anwendung des Satzes vom Virial in der kinetischen
Theorie der Gase. Annalen der Physik, 248(1):127–136, 1881.

[32] Daniel Berthelot. Sur le mélange des gaz. Compt. Rendus, 126:1703–1706, 1898.
[33] Ch. Girard, Ph. Lambin, A. Dereux, and A. A. Lucas. van der Waals attraction

between two C60 fullerene molecules and physical adsorption of C60 on graphite
and other substrates. Physical Review B, 49(16):11425–11432, apr 1994.

[34] Hojin Kim, Dmitry Bedrov, Grant D. Smith, and Salt Lake City. Molecular
Dynamics Simulation Study of the Influence of Cluster Geometry on Formation
of C 60 Fullerene Clusters in Aqueous Solution. Journal of Chemical Theory and
Computation, 4(2):335–340, 2008.

[35] Trung Dac Nguyen, Carolyn L Phillips, Joshua a. Anderson, and Sharon C Glotzer.
Rigid Body Constraints Realized in Massively-parallel Molecular Dynamics on
Graphics Processing Units. Computer Physics Communications, 182(11):2307–2313,
nov 2011.

[36] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G. L. Chiarotti, m. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi,
S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov,
P. Umari, and R. M. Wentzcovitch. Quantum ESPRESSO: a modular and open-
source software project for quantum simulations of materials. 2009.

[37] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized Gradient
Approximation Made Simple. Physical Review Letters, 77(18):3865–3868, 1996.

[38] G. Kresse and D. Joubert. From ultrasoft pseudopotentials to the projector
augmented-wave method. Physical Review B, 59(3):1758–1775, 1999.

[39] Richard F. W. Bader. Atoms in Molecules. In Encyclopedia of Computational
Chemistry. John Wiley & Sons, Ltd, Chichester, UK, apr 2002.

[40] Graeme Henkelman, Andri Arnaldsson, and Hannes Jónsson. A fast and robust
algorithm for Bader decomposition of charge density. Computational Materials

Journal of Computational Science Education Volume 12, Issue 1

January 2021 ISSN 2153-4136 47



Science, 36(3):354–360, 2006.
[41] Edward Sanville, Steven D. Kenny, Roger Smith, and Graeme Henkelman. Im-

proved grid-based algorithm for Bader charge allocation. Journal of Computa-
tional Chemistry, 28(5):899–908, apr 2007.

[42] Joshua A. Anderson, Jens Glaser, and Sharon C. Glotzer. HOOMD-blue: A Python
package for high-performance molecular dynamics and hard particle Monte
Carlo simulations. Computational Materials Science, 173(October 2019):109363,
2020.

[43] William G. Hoover. Canonical Dynamics: Equilibrium Phase-space Distributions.
Physical Review A, 31(3):1695–1697, 1985.

[44] A. Denner, S. Dittmaier, M. Roth, and L. H. Wieders. Complete electroweak
O(alpha) corrections to charged-current e+e- –> 4fermion processes. The Journal
of Chemical Physics, 101(5):4177–4189, feb 2005.

[45] J. Cao and G. J. Martyna. Adiabatic path integral molecular dynamics methods.
II. Algorithms. The Journal of Chemical Physics, 104(5):2028–2035, feb 1996.

[46] David N. Lebard, Benjamin G. Levine, Philipp Mertmann, Stephen A. Barr, Arben
Jusufi, Samantha Sanders, Michael L. Klein, Athanassios Z. Panagiotopoulos,

A Barr, Arben Jusufi, Samantha Sanders, and L Klein. Self-assembly of coarse-
grained ionic surfactants accelerated by graphics processing units. Soft Matter,
8(8):2385–2397, 2012.

[47] W. C. Swope, H. C. Andersen, P. H. Berens, and K. R. Wilson. A Computer Simu-
lation Method for the Calculation of Equilibrium Constants for the Formation of
Physical Clusters of Molecules: Application to Small Water Clusters. Journal of
Chemical Physics, 76(1):637–649, 1982.

[48] William Humphrey, Andrew Dalke, and Klaus Schulten. VMD: Visual molecular
dynamics. Journal of Molecular Graphics, 14(1):33–38, feb 1996.

[49] J D Hunter. Matplotlib: A 2D graphics environment. Computing In Science &
Engineering, 9(3):90–95, 2007.

[50] John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew
Grimshaw, Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson,
Ralph Roskies, J. Ray Scott, and Nancy Wilkens-Diehr. XSEDE: Accelerating
Scientific Discovery. Computing in Science & Engineering, 16(5):62–74, sep 2014.

Volume 12, Issue 1 Journal of Computational Science Education

48 ISSN 2153-4136 January 2021



Performance Analysis of the Parallel CFD Code for Turbulent
Mixing Simulations

Tulin Kaman∗
Department of Mathematical Sciences

University of Arkansas
Fayetteville, AR

tkaman@uark.edu

Alaina Edwards
Department of Mathematical Sciences

University of Arkansas
Fayetteville, AR
aje004@uark.edu

John McGarigal
Department of Mechanical Engr.

University of Arkansas
Fayetteville, AR

jamcgari@uark.edu

ABSTRACT
Understanding turbulence and mixing due to the hydrodynamic
instabilities plays an important role in a wide range of science and
engineering applications. Numerical simulations of three dimen-
sional turbulent mixing help us to predict the dynamics of two
fluids of different densities, one over the other. The focus of this
work is to optimize and improve the computational performance of
the numerical simulations for the compressible turbulent mixing on
Blue Waters, the petascale supercomputer at the National Center
for Supercomputing Applications. In this paper, we study the effect
of the programming models on time to solution. The hybrid pro-
gramming model, which is a combination of parallel programming
models, becomes a dominant approach. The most preferable hybrid
model is the one that involves the Message Passing Interface (MPI),
such as MPI + Pthreads, MPI + OpenMP, MPI + MPI-3 shared mem-
ory programming, and others with accelerator support. Among all
choices, we choose the hybrid programming model that is based
on MPI + OpenMP. We extend the purely MPI parallelized code
with OpenMP parallelism and develop the hybrid version of the
code. This new hybrid implementation of the code is set up in a
way that multiple MPI processes handle the interface propagation,
whereas multiple OpenMP threads handle the high order weighted
essentially non-oscillatory numerical scheme.

KEYWORDS
Turbulent Mixing, Numerical Simulations, Performance Analysis,
Distributed/Shared memory programming

1 INTRODUCTION
Turbulent mixing flows arise in a wide range of science and engi-
neering applications, from climate studies to all forms of fusion,
whether the confinement is inertial, gravitational or magnetic. The
numerical simulations help us to understand the dynamics of turbu-
lent mixing. Turbulent mixing due to Rayleigh-Taylor (RT) instabil-
ity arises at the interface between two fluids of different densities
whenever the pressure gradient opposes the density gradient.
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These problems are deeply multiscale. The level of scales that are
desired to be resolved identifies the characteristic properties of the
numerical approach, such as Direct Numerical Simulations (DNS),
Large Eddy Simulations (LES), and Reynolds AveragedNavier Stokes
(RANS). With the power of today’s HPC systems, resolving all tur-
bulence length scales is handled by DNS [14]. RANS resolves length
scales sufficient to specify the problem geometry. Among these
three approaches, DNS has the highest computational cost, and
RANS has the lowest. The use of LES reduces the computational
cost of the DNS and resolves some but not all length scales. LES
was first proposed by Smagorinsky [21] for the study of the dynam-
ics of the atmosphere’s general circulation. In LES, the unresolved
smaller-scale motions are modeled by subgrid scale (SGS). The
multi-species compressible Navier-Stokes equation, filtered at a
grid level, is solved, so that the LES defines SGS terms (such as the
Reynolds stress) as a source. These source terms are modeled as
gradient diffusion terms, and otherwise coefficients such as tur-
bulent viscosity, mass, and thermal diffusivity are recovered in a
dynamic manner from the solution itself. This is called a dynamic
SGS model. The missing coefficients are computed locally in the
simulation [2].

Front tracking (FT) is the technique of storing and dynami-
cally evolving a meshed front that partitions a simulation domain
into two or more regions, each representing a different material,
or physics model. Front tracking is the unique method presently
demonstrated to avoid systematic errors in an important class of
problems revolving around turbulent mixing [5]. The sharp resolu-
tion of interfaces and steep gradients occurs in a variety of applica-
tions, such as primary breakup of a liquid jet [1], forecasting of cloud
boundaries [7], target design of muon collider in high energy parti-
cle accelerators [4], and electrocardia [23]. The FT/LES/SGS combi-
nation has previously been validated for macro, meso, and micro
scale observables. By this, This means that diagnostics with compar-
ison to experimental data have been applied to assess the solution
accuracy of the turbulent mixing flow at the macro/meso/micro
length scales. Thus, the simulations have achieved agreement with
experimental measurements in the overall size of the mixing zone
(macro), the coherent bubble structure within it (meso), and molec-
ular level mixing (micro) as recorded by chemical reactions [5, 12].

The simulation package, FronTier, has the implementation of all
these algorithms. FronTier supports a range of physics, including
compressible and incompressible flow, turbulence models, fluid-
structure interactions, phase transitions, and crystal growth, each
with its own validation and verification studies [3]. It is parallelized
with a tensor product domain decomposition. MPI is used to pass
states and interface data from one processor to another. FronTier
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has adopted object oriented programming. Many major front track-
ing functionalities have been modularized to allow users to call
them with a minimal knowledge of internal operation and coding.
An API to modularize the front tracking and to make it available to
other simulation codes is constructed [13]. We extend the purely
MPI parallelized code with OpenMP parallelism and develop the
hybrid version of the code. The focus is to optimize and improve the
computational performance and increase the scalability to perform
high resolution numerical simulations efficiently on high perfor-
mance computing systems.

The organization of this paper is as follows. In Section 2, we de-
scribe the model problem, Rayleigh-Taylor instability. In Section 3,
we present the strong and weak scaling analysis of the purely MPI
parallel version of the code and introduce the profiling tool Tuning
and Analysis Tool (TAU) that is used to analyze the runtime behav-
ior of the program. We show how to instrument the FronTier code
using TAU and present performance results. In Section 4, we intro-
duce the hybrid programming model, which is a combination MPI
+ OpenMP parallel programming model and compare the purely
MPI and hybrid models. Section 5 presents reflections on how the
research activities as Blue Waters Interns influence the students’
future careers.

2 PROBLEM DESCRIPTION
The study of the turbulent mixing problem in Rayleigh-Taylor aims
for macro level validation and to predict the overall dimensionless
growth rate of the mixing zone. The growth rate is defined by
the formula hb = αbAдt

2 for the penetration distance hb of the
light fluid into the heavy fluid, д being the acceleration force that
defines the instability, andA = (ρ1−ρ2)/(ρ1+ρ2) the dimensionless
buoyancy correction to gravity, depending on the density difference
between the two fluids. Here, ρ1 denotes the heavy fluid density, and
ρ2 denotes the light fluid density. The determination of the growth
rate αb has been the source of considerable interest. The numerical
simulations are conducted to predict the quantity of interest on
the growth rate of the mixing zone. The uncertainty quantification
analysis associated with initial conditions, the sensitivity analysis
to the parameters such as the initial mass diffusion layer thickness,
and the effect of initial conditions and parameters to the quantity
of interest αb were studied in comparison with experimental data
and presented in [9–12, 24]. The problem with single-mode, multi-
mode, and random initial perturbations is presented in Figure 1.
Here, the validation and verification studies are out of the scope of
this paper. The focus is to optimize and improve the computational
performance of the FronTier software package for the Rayleigh-
Taylor turbulent mixing problem on the Blue Waters petascale
supercomputer.

For the numerical simulations of multiphase flows, one of the
advantages of the front tracking method is in dealing with the con-
tact discontinuities. The front tracking method is used to solve the
conservation laws with discontinuities between fluids. The mathe-
matical formulation is based on the filtered Navier-Stokes equations
for the multiphase flows [10]. These equations are the governing
equations of LES simulations. In the equations of continuity, mo-
mentum, energy, and concentration (1) – (4), the variables that have
been filtered on the grid scale are denoted by the overbar. There

Figure 1: Images of the single-mode, uniform and random
multi-mode Rayleigh-Taylor instabilities.

is also a density-weighted filtering operation, which is denoted by
the tilde. The Favre-filtered continuity equation (1) is obtained by
first applying the grid scale onto the continuity equation

∂ρ

∂t
+
∂ρvi
∂xi

= 0,

then the density-weighted filtering ṽi =
ρvi
ρ

.

For the compressible flows, the Favre-filtered continuity, mo-
mentum, energy, and concentration equations are obtained as

∂ρ

∂t
+
∂ρṽi
∂xi

= 0 (1)

∂ρṽj

∂t
+
∂(ρṽiṽj + pδi j )

∂xi
=
∂di j

∂xi
(2)

∂E

∂t
+
∂(E + p)ṽi
∂xi

=
∂di jṽj

∂xi
+
∂

∂xi
*
,
κ
∂T̃

∂xi
+
-

+
∂

∂xi
*
,
(H̃h − H̃l )ρD̃

∂Ψ̃

∂xi
+
-
,

(3)

∂ρΨ̃

∂t
+
∂ρΨ̃ṽi
∂xi

=
∂

∂xi
*
,
ρD̃
∂Ψ̃

∂xi
+
-
. (4)

where ρ, ṽi ,E,p, and Ψ̃ are the filtered variables for total mass
density, the velocity, the total specific energy, the pressure, and the
mass fraction. The total specific energy is

E = ρẽ + ρṽk
2/2.

H̃h and H̃l are the partial specific enthalpy of each species defined
by

H̃h = ẽh +
p

ρ
, H̃l = ẽl +

p

ρ
,

where ẽh and ẽl are the specific internal energy of each species.
T̃ ,κ, and D̃ are the filtered temperature, the heat conductivity, and
the kinematic mass diffusivity. The viscous stress tensor, di j , in
momentum and energy equations is expressed as

di j = νd

((
∂ṽi
∂x j
+
∂ṽj

∂xi

)
−

2
3
∂ṽk
∂xk

δi j

)
,
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where νd = ρνk is the filtered dynamic viscosity.
The stable and higher order WENO (Weighted Essentially Non-

Oscillatory) scheme [19] is used for solving the Favre-averaged
Navier-Stokes equations. In this section, the WENO scheme is
briefly explained. The main features of the WENO finite difference
methods, finite volume methods, and the discontinuous Galerkin
finite element methods for computational fluid dynamics can be
found in Shu’s paper [20]. The flux-averagedWENOmethod uses lo-
cal Lax-Friedrichs flux-splitting and a characteristic decomposition
of the variables and fluxes. The fluxes in x, y, and z are calculated
separately. High order accurate and non-oscillatory scheme flux re-
construction uses a convex combination of k candidate stencils [8].
For k = 3, the fifth (2k − 1) order finite difference WENO scheme
approximates the derivative F(U)x at a point xi ,

F(U)x |x=xi ≈
1
∆x

(F̂i+1/2 − F̂i−1/2) (5)

where U is the state vector, F(U) is the flux, and F̂i+1/2 and F̂i−1/2
are the right and left fluxes. The fifth order WENO scheme uses
three stencils,

F̂i+1/2 =
3∑
j=1

ωi F̂
(j )
i+1/2

with three third order fluxes F̂ (j )i+1/2 and the nonlinear weights ωi .
For hyperbolic conservation equations, the nonlinear part of

WENO is carried out in local characteristics fields. The implemen-
tation starts by computing the average state Ūi+1/2, j,k using the
average, then the left and right eigenvectors and eigenvalues of
the Jacobian F ′(Ūi+1/2, j,k ) at the average state. One can project
the conservative fields and the fluxes onto the local characteristic
fields using the left eigenvectors matrix and compute the left and
right fluxes in characteristic field. Then, project back the numerical
fluxes in the physical space using the right eigenvector matrix. We
perform the same steps for the other two directions in y and z
using the average states Ūi, j+1/2,k and Ūi, j,k+1/2. In the next sec-
tion, we will observe that WENO flux computation is the most time
consuming in our simulations.

3 PERFORMANCE STUDIES
Our primary goal is to achieve performance improvements of the
numerical simulations for hydrodynamic instabilities. We start with
identifying the parts of the code that are time consuming. For this,
we take advantage of the available performance analysis tools on
Blue Waters. The first tool used for profiling is the Cray Perfor-
mance and Analysis Tools (CPMAT). CPMAT is equipped with
several components used in preparing any project for performance
analysis. CPMAT is able to gather data during the program execu-
tion, and the data can be processed and analyzed for presentation
to the user on its own graphical user interface, Cray Apprentice2.
The details of how the code was prepared and how the analysis
was carried out can be found in Blue Waters’ user guide, but, in
essence, any performance analysis process has three main steps:
code instrumentation, execution, and data analysis. Apprentice2 is
used for visualizing and exploring the data for analysis.

There are other profiling tools on the system, such as PAPI, Perf-
Suite, and TAU [15]. Among these profiling tools, we choose TAU,
which is a comprehensive code profile tool with additional features

Figure 2: CPMAT Apprentice2 visualization.

for our performance analysis. In Section 3.3, the portable, robust,
and parallel scalable TAU tool [18] is introduced for the perfor-
mance instrumentation, measurement, analysis, and visualization.

The Blue Waters system is a Cray XE/XK hybrid machine com-
posed of AMD 6276 “Interlagos” processors and NVIDIA GK110
(K20X) “Kepler” accelerators, all connected by the Cray Gemini
torus interconnect [15]. The XE node has 2 Interlagos processors,
and each processor has 16 bulldozer cores, as shown in Figure 3.
Each bulldozer core’s memory is 4GB, and the total node memory
is 128GB. In the distributed memory parallel programming model
with MPI, we observe that the memory footprint per integer core
is enough to fit in memory, and we could use all 32 integer cores
available on an XE node. We vary the number of MPI processes
per node by setting the “-N” parameter in a job script file to inves-
tigate the effect of the processors per node (ppn) on the runtime.
In Table 1, the time to solution on problem size 64 × 64 × 256 with
different processors per node is presented. The system default task
placement for MPI processes is used in pure MPI runs. The effi-
ciency per MPI process is virtually unaffected when changing the
processors per node from 32 to 8 integer cores, and we observe a
6% loss of efficiency using 4 processors on 8 nodes. See Table 1.

Figure 3: Cray XE6 node type on Blue Waters. Courtesy of
Aaron Weeden, Blue Waters Petascale Institute notes.
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Table 1: Time to solution on 32 MPI processes. #PPN is the
processes per node.

#Node #PPN Time (seconds)

1 32 254
2 16 254
4 8 252
8 4 237

The runtime behavior is investigated by runningweak and strong
scaling analyses. The simulations are performed on a domain 1 ×
1 × 4 cm with a single grid spacing ∆x = ∆y = ∆z. The number of
grids in the z direction is four times the number of the grids in the
x and y directions. The weak and strong scaling analyses are all
performed using 32 processors per node in pure MPI jobs.

3.1 Weak Scaling
We conduct a weak scaling study and run simulations on four dif-
ferent grids: 64 × 64 × 256, 128 × 128 × 512, 256 × 256 × 1,024, and
512×512×2,048, using 32, 256, 2,048, and 16,384 cores, respectively,
so that the amount of computation remains constant per core. The
problem size on each MPI process is fixed and has 32 grid points in
each direction. The runtimes for these problems are reported in Ta-
ble 2, and they include both computation and communication. The
explicit nature of the algorithm described in Section 2 contributes
to the very good weak scaling as shown in Figure 4. The results
for weak scaling indicate that the amount of communication in-
creases 5% from 32 cores to 16,384 cores due to the communication
overhead.

Table 2: Weak scaling for RT simulations. The grid resolu-
tion per MPI process is 32 × 32 × 32.

Grid #Processes Actual Ideal
Time to Solution

64 × 64 × 256 32 254 254
128 × 128 × 512 256 263 254

256 × 256 × 1,024 2,048 266 254
512 × 512 × 2,048 16,384 269 254

3.2 Strong Scaling
To do a strong scaling analysis, we fix the total problem size while
the resources are increased. The resolution of the computational
grids 64 × 64 × 256 (coarse) and 256 × 256 × 1,024 (medium) run
with a number of processes from 32 to 256 and from 1,024 to 8,192,
respectively. Table 3 shows that the efficiency results drop to below
65% and 50% for the coarse and medium meshes. The simulations
of Rayleigh-Taylor instability on the coarse and medium grid reso-
lution are performed on processes with 2 threads (hybrid).
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Figure 4: Runtimes under weak scaling.

Table 3: Strong scaling forRT simulations at grid resolutions
of the coarse (C) and the medium (M) meshes.

#Processes Actual Ideal Efficiency
Time to Solution

C M C M C M C M

32 1,024 254 424 254 424 100% 100%
64 2,048 153 266 127 212 83% 80%
128 4,096 81 200 63.5 106 79% 53%
256 8,192 51 113 32.75 53 63% 47%
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Figure 5: Runtimes under strong scaling for the medium
mesh.

3.3 Profiling and Performance Analysis
In this section, we introduce the portable, robust, and parallel scal-
able TAU tool [18], which is used for performance instrumenta-
tion, measurement, analysis, and visualization. There are several
options for instrumentation to observe the performance measure-
ment, such as source-based, preprocessor-based, compiler-based,
wrapper library-based, binary, interpreter-based, component-based,
virtual machine-based, multi-level selective instrumentation, and
TAU_COMPILER. The details of the instrumentation options are
presented in [18].
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Profiling consists of three stages: (i) compiling and linking the
program with profiling enabled, (ii) executing the program to gener-
ate a profile data file, and (iii) running the profiler to analyze the data.
Without any code modification, by compiling the program with a
debug symbol (“-g ”), a code developer can extract performance data
measurements with minimal effort. TAU supports parallel profil-
ing. Automatic instrumentation of the code using TAU’s compilers
(tau_cxx, tau_cc, tau_f90) and the visualization tool (ParaProf) help
users to collect, analyze and visualize the performance data on
thousands of processes. The TAU measurement system provides
a profile data structure for each node/context/thread. Once com-
piling and building the executable with TAU compilers is done,
we execute the new program to generate the profile data for each
MPI process. The production of parallel profiles for thousands of
processes requires an analysis tool to handle the performance infor-
mation. TAU’s scalable parallel performance profile analysis tool
is called ParaProf. ParaProf provides a graphical interface to dis-
play all performance analysis results. ParaProf’s 3D visualization
option shows the spread of performance data across routines and
processes. Figure 6 shows the profile data for the numerical sim-
ulation of Rayleigh-Taylor Instability. It helps in interpreting the
performance data and presenting the time spent for each routine
and process at once. TAU supports several types of performance
profiles, such as flat, callpath, callsite, and phase profiles. The flat
profile helps us to learn more about the time spent in an event,
exclusive/inclusive, number of calls, and number of child calls. The
profiling shows how much total time was spent in each routine.
The exclusive and inclusive times show the statistics for each func-
tion. The exclusive time is the amount of time spent within that
function, excluding the time spent in all child functions called from
that function. The inclusive time is the amount of time spent within
that function and all its child functions. The mean inclusive and
exclusive times for a parallel test are presented in Figure 7. The
bar graphs show the spread of performance data across routines
on each process. In Figure 7, it is observed that the most time-
consuming (blue bar graph, 34%) is the WENO flux computation.
Each bar shows the mean exclusive time for routines and gives us
an idea of how much time was spent in different routines. In the
Comparison Window, Figure 8, we compare four coarse grid runs
with a number of processes from 32 to 256. We have taken several
steps to optimize the part of the code and work on the enhancement
of the computational performance of the WENO flux computation
in the weno5_get_flux routine.

4 HYBRID PARALLEL SCHEME
Code developers investigate the fastest programming model to han-
dle computationally expensive simulations on clusters. An efficient
programming model of the clusters of shared memory parallelism
(SMP) is needed to handle large scale simulations. The parallel
programming model could be purely MPI parallel or hybrid, de-
pending on the application code. Hybrid programming with the
MPI parallel scheme for internode communications and a shared
memory programming for intranode communication is a prefer-
able approach [6]. Available programming options for the shared
memory parallelism are MPI-3, OpenMP, and OpenMP 4.0 / Ope-
nACC for accelerator support. We investigate the usage of shared

memory parallelism within the MPI processes for the best perfor-
mance. Among the shared programming model options, we choose
OpenMP for the intranode communication. OpenMP’s application
programming interface (API) supports the shared memory multi-
processing programming in C, C++, and Fortran. It is available since
1997 and is being actively developed to standardize directive-based,
multi-language, high-level parallelism that is highly scalable and
portable.

We first assess the performance of the code on the Blue Waters
HPC platform using four different compilers: Cray, PGI, GNU, and
Intel. The compiling and linking is performed using wrappers such
as “ftn” for Fortran, “cc” for C, and “CC” for C++. To invoke the
compiler, we set the programming environment corresponding
to the specific compiler suite. Using the wrapper scripts and the
compilers’ default options provided on the system, a difference
in times is observed. We observe that the PGI (Portland Group)
compiler performed the best among all the compiler suites, as shown
in Figure 4. There are many compiler options that can be used in the
compilation process, and we use the default options that come with
the wrappers. For the OpenMP directives and pragmas, “-h omp”
for Cray, “-mp=nonuma” for PGI, and “-fopenmp” for GNU and
Intel are provided additionally to the wrapper scripts for compiling
the newly developed OpenMP implementation.

Table 4: Compiler performance on the application code.

#Processes MPI Distribution Time (seconds)

Cray PGI GNU Intel
2,048 8 × 8 × 32 285 250 266 263
4,096 8 × 8 × 64 208 192 200 198
8,192 16 × 16 × 32 104 88 113 90

On Blue Waters, the maximum number of threads per node is
32. When running a hybrid (MPI+OpenMP) program, we first set
the number of threads per process using the environment vari-
able OMP_NUM_THREADS. In addition, the number of threads
per process should be set using the depth parameter (“-d”) in the
run command. The depth parameter sets the number of OpenMP
threads per MPI task, and it should have the exact same value as
the environment variable OMP_NUM_THREADS. We specify the
total number of MPI tasks for the job using the “-N” parameter, and
the value for -N multiplied by the value for -d should not exceed
32 on Blue Waters.

The implementation of the WENO scheme described in Section 2
has a parallel region where we calculate the local eigenvalues,
average state, right eigenvectormatrixRmid , and its left counterpart
Lmid = R−1

mid at the mid-points. We transform the conservative
fields, its differences, and flux differences to local characteristic field
by multiplying them with Lmid , and we compute the numerical
fluxes in each characteristic field. The last step is to project back
the numerical fluxes in the physical space by multiplying them
with the right eigenvector matrix Rmid . In this part of the code,
the variables are scoped by using private and shared OpenMP data
scope attribute clauses with the parallel directive.

In Figure 9, the time to solution using purely MPI and hybrid
parallel schemes are compared. In the hybrid parallel scheme, the

Journal of Computational Science Education Volume 12, Issue 1

January 2021 ISSN 2153-4136 53



Figure 6: TAU’s ParaProf 3D visualization shows the spread of performance data across routines and processes.

number of threads in OpenMP parallelism is set to two. The num-
ber of threads is controlled by setting the OMP_NUM_THREADS
environment variable and giving the depth with “-d" option in run-
ning. For the hybrid case, the jobs run with 16 MPI processes per
node and 2 OpenMP threads per process ( "-N 16 -d 2 ”). Figure 10
shows the performance improvement in the hybrid case with the
inclusive time on the coarse grid. The mean exclusive time spent
in the weno5_get_flux routine dropped from 302 seconds to 242
seconds, and the mean inclusive time is reduced by 20%. On the
medium grid, we observe the pure MPI model is faster than the
hybrid model. The newly developed version of the program with
two OpenMP threads inside of each MPI task is slower than the
pure MPI version as shown in Figure 11.

5 INTERNSHIP REFLECTION
The goal of the project is not only to investigate the effect of the
parallel programming models on time to solution for the numerical
simulations of compressible turbulent mixing, but also to engage the
undergraduate students in petascale computing research in the area
of computational fluid dynamics. The Blue Waters interns, Edwards
and McGarigal, had little-to-no experience in Unix, programming
in C, or parallel computing before starting this research project.
A two-week intensive Petascale Institute at the National Center
for Supercomputing Applications at the University of Illinois at
Urbana-Champaign helped them to develop the basic skills needed
to start this research. Within one year, they gained experience

in the usage of Blue Waters, distributed/shared parallel program-
ming models, visualization, and performance tools. During their
internship program, they were selected to attend the International
Conference for High Performance Computing, Networking, Stor-
age, and Analysis as student volunteers. There, they were able to
make many significant connections to help propel them into their
future careers. Edwards and McGarigal presented their first poster
at the American Physics Society Conference for Undergraduate
Women in Physics, which was held at the Texas A&M University
at Corpus Christi and at the 2019 Annual Meeting of the Arkansas
Academy of Science (AAS), which was held at Fort Collins, respec-
tively. Their poster at AAS received the first place undergraduate
poster in computer science and was also selected to be presented
at the 2019 Blue Waters Symposium.

When the mentor created two Blue Waters internship positions
for the two University of Arkansas students who were interested in
developing skills in modeling, simulations, and high performance
computing, she planned a weekly schedule for her directed read-
ing course. This course was a one-on-one independent study to
cover the topics from hydrodynamics instabilities to parallel per-
formance systems. The directed readings were designed to help the
students to see the big picture, provide an overview of the state of
the project, and guide them. The papers of Zhou [25, 26] on the
basic properties of the flow, turbulence, and mixing induced by
hydrodynamic instabilities, Sameer [16, 18] on a TAU user’s guide,
and Shu [19, 20] on numerical schemes were read throughout the
first semester. In the second semester, the interns’ main duties were
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Figure 7: The mean inclusive time, exclusive time, and exclusive percent.
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Figure 8: TAU’s ParaProf Comparison Window shows the mean exclusive time.

Figure 9: Comparing the performance of the weno5_get_flux routine using TAU’s histogram function on the coarse grid.

to conduct simulations and analyze the results. To be eligible to
complete the duties in a limited time, students must have met the
requirements, such as being fluent in C/C++ programming, hav-
ing experience with modeling and simulations, and having basic
knowledge in parallel computing and computational fluid dynamics.
The learning curve, the learner’s performance on a task, and the
number of attempts and time required for the task had taken more
time than planned. In hindsight, it would have been better to add
two levels of participation to the research program as learners and
apprentices before their internships, as in the XSEDE EMPOWER
(Expert Mentoring Producing Opportunities for Work, Education,
and Research) program [17]. This way, the students would have
first focused on strengthening their ability to handle challenges and
taking steps on completing the assigned tasks. In a learner level, a
student could have spend more time developing necessary skills
to contribute to the work of Blue Waters through online tutorials,
workshops, and self learning in programming. At the apprentice

level, a student could have transformed the knowledge into skills
and have the chance to apply the new skills with some additional
trainings in debugging and performance tools to do the assigned
tasks. After completing these two levels in two semesters, in their
second year the students could have performed more independent
work and became more fully engaged in research.

After their research experience in the computational and applied
mathematics group of Kaman, the students pursue graduate studies
and continue to work on computational science research projects.
Edwards was one of the ten students accepted to the Oak Ridge
National Laboratory Pathways to Computing Internship Program
to learn and develop the next-generation explicit methods for radia-
tion transport in astrophysics and explore programming models for
GPUs supported on the fastest supercomputer in the world, Sum-
mit [22]. McGarigal started a new internship at HP as part of the
test automation team, working on designing the robot framework
for computers. The Blue Waters Student Internship Program helped
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Figure 10: TAU’s ParaProf Comparison Window shows the
mean inclusive time before and after optimizingWENOflux
on the coarse grid.
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Figure 11: Comparison of purely MPI and hybrid models on
the medium grid.

two University of Arkansas undergraduate students to develop
strong computational skills in high performance computing and
reflect their perspective of how they can advance their knowledge
and skills for their future career.

6 CONCLUSIONS
Numerical simulations of turbulent mixing are computationally ex-
pensive and require efficient usage of high performance computing
systems. The scalability of the purely MPI application code shows
very good weak, and acceptable strong, scalability properties. We
collect performance data to identify the most time consuming parts
of the application code using the performance measurement and
analysis tool TAU, whose performance system identifies that the

high order accurate weighted essentially non-oscillatory numeri-
cal scheme is the computationally expensive part of the code. The
flux computation starts with i) computing the average state, the
left and right eigenvectors and eigenvalues of the Jacobian at the
average state, ii) projecting the conservative fields and fluxes onto
the local characteristic fields using the left eigenvectors matrix, iii)
computing the left and right fluxes in characteristic field, and iv)
projecting back the numerical fluxes in the physical space using
the right eigenvector matrix. These computations are performed
in a loop that is ideal for shared memory parallelism. In order to
do that, we use the hybrid parallel model with MPI and OpenMP,
where MPI is used for internode communication to pass states and
interface data from one processor to another, and OpenMP is used
for intranode communication to distribute the work equally to each
thread. With the hybrid model, a performance improvement on the
coarse grid is observed, and the total time to solution is reduced
by 20%. However, the pure MPI implementation shows the best
scalability on the medium grid on Blue Waters. The good weak
and strong scalability of the pure MPI model is because of the op-
timized work distribution between processes. The problems with
OpenMP performance could be due to the memory access and cache
use. The use of “numactl”, the core layout, plays an important role
to achieve scalability. To avoid the bottlenecks with memory and
cache, the task placement to distribute MPI processes and threads
per processes will be investigated in the future.
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