
Training Neural Networks to Accurately Determine
Energies of Structures Outside of the Training Set Using

Agglomerative Clustering
Carlos A. Barragan

Department of Chemistry and Biochemistry
California State University, Fullerton

Fullerton, CA

carlosb@csu.fullerton.edu

Michael N. Groves
Department of Chemistry and Biochemistry

California State University, Fullerton
Fullerton, CA

mgroves@fullerton.edu

ABSTRACT

Machine learning has accounted for solving a cascade of data in an

efficient and timely manner including as an alternative molecular

calculator to replace more expensive ab initio techniques. Neural

networks (NN) are the most predictive for new cases that are similar

to examples in their training sets; however, it is sometimes

necessary for the NN to accurately evaluate structures not in its

training set. In this project, we quantify how clustering a training

set into groups with similar geometric motifs can be used to train a

NN so that it can accurately determine the energies of structures not

in the training set. This was accomplished by generating over 800

C8H7N structures, relaxing them using DFTB+, and grouping them

using agglomerative clustering. Some of these groups were

assigned to the training group and used to train a NN using the pre-

existing Atomistic Machine-learning Package (AMP) [10]. The

remaining groups were evaluated using the trained NN and

compared to the DFTB+ energy. These two energies were plotted

and fitted to a straight line where higher R2 values correspond to

the NN more accurately predicting the energies of structures not in

its training set. This process was repeated systematically with a

different number of nodes and hidden layers. It was found that for

limited NN architectures, the NN did a poor job predicting

structures outside of its training set. This was improved by adding

hidden layers and nodes as well as increasing the size of the training

set.

Categories and Subject Descriptors
Computing methodologies - Machine learning, Machine learning

approaches, Neural networks

General Terms
Algorithms, Measurement, Reliability

Keywords
Atomistic Machine-learning Package, neural network, genetic

algorithm, agglomerative hierarchical clustering, Density

Functional Tight Binding.

1. INTRODUCTION
Machine learning programs are becoming increasingly popular and

are a form of widely-accepted method for calculating properties.

Such techniques are readily available in any field to help solve

problems that would be otherwise difficult to solve or envision. An

example of their capabilities is when a research group known as

Laser Interferometer Gravitational-wave Observatory (LIGO)

witnessed the phenomenon of gravitational waves in outer space.

They imposed a technique known as Deep Learning which can

learn from immense raw data using artificial neurons or neural

networks [5]. Machine learning techniques can work to closely

resemble atomistic calculators.

The common approach that we observe when preparing data to train

and test a neural network (NN) — such as images or atomic

descriptions — is to randomly assign data to the train and test sets.

This strategy is appropriate when it is not expected that the NN will

need to make predictions on test candidates that are very different

from what it was trained on. One example of the random strategy

is when researchers prepared tens of thousands of randomly

plausible molecules to understand the relationship between light-

harvesting systems and excitation energy transfer times such as

those found in the pigments of plants [6]. The excitation transfer

time refers to how pigments can transfer energy over long distances

in the presence of a light-harvesting system, such as light from the

sun, to produce energy. In this simulation, machine learning

techniques were used to reduce computational cost and to discover

which chromophoric molecule (or excitation system) had the most

efficient transfer time. Another example of this strategy is using

machine learning to discover drug designs in the field of medical

science [14]. However, even in the light-harvesting system and

excitation study, an improved method is preferred, because the

random method is not evenly-sampled and could have redundant

information.

We discuss the widely used random approach to introduce an

alternative: clustering the data and training the NN with some of

the clusters and testing the NN with the remaining clusters. In this

case, clustering the molecules organizes them into groups of similar

motifs [17]. By training the NN with a group of clusters and then

testing it on another group of clusters, the ability for the NN to

predict structures outside of its training set can be quantified. This

paper will show that when the clustering method is implemented,

the predictive ability of the trained NN will dramatically decrease

relative to the random approach, but as the NN architecture grows,

the NN becomes better at accurately predicting the potential energy

of the trial system. This demonstrates that the clustering method

can help to define how robust a trained NN is to predict properties

of structures not in its training set.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Copyright ©JOCSE, a supported publication of the

Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education

DOI: https://doi.org/10.22369/issn.2153-4136/12/1/5

Volume 12, Issue 1 Journal of Computational Science Education

32 ISSN 2153-4136 January 2021

In this work, we present that NN architectures and the training set

size are both vital components when applying a NN to structures

that are unique from the training set. By clustering the training set,

the robustness of the NN can be quantified. When compared to

randomly selecting the training and testing groups, it is clear how

clustering can help guide designing the structure of a NN so that it

can be used for a wider array of applications. In the Methods

section, we present how NN architectures and the training sets were

assembled using clusters. NNs are trained systematically with

three, four, and five hidden layers, each with 10–35 nodes. In the

Results section, we present plots of R2 values from the linear fit

between the relaxed DFTB+ energies and the NN calculated

energies. Finally, we remark on how clustering training data can

help to ensure NNs are robust and guide the architecture of an

effective NN.

2. Literature Review
Atomistic calculators have become a beneficial tool for calculating

properties at the atomic scale. Calculations start with descriptions

of the physical interactions of the atoms, which then yields

information about their collective behavior [16]. The Density

Functional based Tight Binding (DFTB+) is an example of such

atomistic calculator. Through the DFTB+ package, we collected

potential energy values of readily-formed molecules. Atomistic

calculators have helped perform calculations when studying

computational techniques, including the genetic algorithm (GA).

A GA is a computational heuristic that can be used to solve for the

global atomic minimum of chemical structures. The GA is efficient

at searching through many different molecular motifs in the

potential energy surface by utilizing the principles of natural

selection. In nature, a species must increase its fitness if it is going

to learn to adapt to its environment [18]. The GA is designed to

work in a similar manner, because it will iteratively improve upon

the immediate population [8]. This is because in a real-world

situation the GA does not know the answer. Neither the

configuration space nor the global minimum are known prior to the

search [8]. The evaluation step — the aspect of the GA where the

lowest conformation energy is being searched — will be the most

time-consuming for the optimization of offspring structures.

Typically, structures are relaxed using an expensive ab initio

method.

The GA begins with two parent molecules in a starting population.

The cut-and-splice operator cuts the parent molecules in two,

resulting in four fragments. Typically, a fragment from each is

selected at random to be spliced together to form a new child

molecule [1]. The cut-and-splice apparatus is illustrated on the

upper right-hand corner of Figure 1, where the box-like figures are

meant to represent molecular sites. Two parent molecules are

shown with the same number of boxes to represent their similar

chemical stoichiometry. Upon performing the cut, the parent

molecules are now color-coded to signify their fragments (parent

molecule 1 is shown in blue and green while parent molecule 2 is

shown in red and yellow). Finally, two fragments are collected from

each parent molecule and spliced together to form a new structure.

This new structure is the child structure (shown in blue and yellow)

and is one plausible combination of bringing in genetic information

from both parent molecules. Given that the program will read a

diverse molecular population, the outcome of the cut-and-splice

operation will be different combinations of diverse offspring

structures.

The next step of the GA heuristic is the evaluation process. The

energy of the child structure is evaluated, and if the structure is fit

enough to be in the population, it is added. The search for the lowest

conformation energy then continues with a new parent pair. The

structure with the local minimum is in the bottom-center of Figure

1. In the iterative process of the GA, potential energies of new

offspring structures are constantly being compared to the energy of

the population [9]. Molecular configurations that are better in terms

of minimum potential value replace configurations with a higher

potential energy. If the energy of the offspring structure is lower

than the energy of the population, then it is added to the population.

Conversely, if the potential energy of the child structure is higher

than the energy of the population, then that offspring molecule is

deleted. The program thus continues the evolutionary-driven

perspective of constantly searching for the lowest conformation

energy while eliminating unfit offspring structures with higher

energies. Given enough generations, the population will eventually

get trapped in either a local minimum or find the global minimum.

Figure 1. A flowchart outlining the steps of the GA from start

to end. The program begins with a starting population, which

proceeds in a loop where two molecules are selected and a new

candidate structure is created using a cut-and-splice

operation. The candidate is then evaluated and potentially

replaces the least favorable member of the population. The

GA terminates upon locating the lowest conformation

structure.

The GA can be integrated with a NN to improve its ability to search

the configuration space for the global minimum [12]. Machine

learning techniques have revolutionized data analysis in most

things we use today, such as travel booking, navigation, media

recommendation, image recognition, and competitive board games.

These systems are driven by the computational power, significant

amount of data, and training ability of the neural network [2]. The

neural network is comprised of hidden layers and nodes. Figure 2

depicts a NN containing an input layer, two hidden layers with four

nodes each, and an output layer. Each node passes information

forward in the form of entities known as weights and constant

biases which are calculated via an activation function [10]. The

process of the NN works like the human brain. The NN relies on

the structural connection of nodes, where information can be

obtained and sent between hidden layers, like how the brain relies

on the connection of neurons [11].

Figure 2 showcases a fast feed forward NN. The connection of the

eight nodes and two hidden layers is represented by the gray-

colored arrows. The input layer passes a weight value representing

connection strength to the first, second, third, and fourth nodes of

the first hidden layer. If we focus on the first node of the first hidden

layer, we can witness how that information is then passed on to the

Journal of Computational Science Education Volume 12, Issue 1

January 2021 ISSN 2153-4136 33

first, second, third, and fourth node of the second hidden layer. This

process repeats in the second node of the first hidden layer to all

nodes of the second hidden layer, and so forth, until all nodes are

inter-connected. The NN can only advance in one direction (from

left to right) and terminates with an output value with no loops or

turns [15].

Figure 2. A visualization of a neural network containing an

input layer, two hidden layers with four nodes each, and an

output layer.

Numerous cluster programs exist, but the clustering method

utilized for this project is known as agglomerative hierarchical

clustering (AHC). Clusters created by AHC have been used

efficiently on molecular populations to improve GA efficiency [9].

In general, molecules of the same chemical stoichiometry exist in

different chemical configurations, such as lines, rings, or a

combination of both. The AHC recognizes this diversity of

structures and attempts to group them according to their close

molecular similarity. This is achieved through the similarity

threshold, which is the cutoff that groups structures together. What

makes the AHC unique from other clustering programs is its

bottom-up approach, where each data point starts in its own cluster

and then proceeds by successfully merging similar classes of

clusters together, which forms a hierarchy [7].

Figure 3 showcases this process through the visualization of a

simple dendrogram. At first, each structure lives in its own cluster.

When the AHC recognizes similar structures, it groups those two

clusters (which were separated before) to form one cluster. At the

end, the AHC has created three clusters (presented in blue, red, and

green). Although seven molecules are shown in Figure 3, the AHC

program can read in a variety of readily-formed chemical structures

to form more sophisticated groups.

Figure 3. A segment of a dendrogram showing seven C9H7N

molecules being grouped into three clusters (blue, red and

green) based on a similarity index.

3. METHODS
To test how well the NN performs, we compared its values to those

determined from DFTB+. DFTB+ combines the accuracy given

from the DFT method with the efficiency of the Tight-Binding (TB)

method [3]. This atomistic calculator was chosen because it is a

fast, empirical method that allows us to perform many simulations

with an appropriate level of accuracy. All structures are composed

of C9H7N, whose global minimum is quinoline. This molecule is

chosen because it is complex enough to have many local minima,

but not so many that it becomes difficult to easily categorize them

manually.

The NN was implemented using the Atomistic Machine-learning

Package (AMP), an open-source, Python-based (accelerated by

Fortran) code that was built to interface seamlessly with the Atomic

Simulation Environment (ASE) [13]. ASE is an open-source,

Python-based common front end that is capable of supporting many

molecular calculators. AMP is capable of using several descriptors

and activation functions for its NN; however, for this project, the

default Gaussian descriptor and hyperbolic tangent activation

function were used.

The comparison scheme comparing energies calculated by NN to

those calculated by DFTB+ is illustrated in Figure 4. C9H7N

molecules were evaluated with both NN and DFTB+ calculators.

These energies were compared to determine how well a NN

accurately calculated its energy. Once the testing set was fully

evaluated, the NN and DFTB+ energies were plotted and fit to a

straight line. The R2 value from this fit was used to quantify how

close the NN can represent the DFTB+ calculated value. The R2

value determined from a data set where the train and test sets were

identical was 0.9999, indicating a nearly perfect match. The lower

the R^2 value, the less predictive the NN is on average at

determining the energy calculated by DFTB+.

Figure 4. An overview of the comparison scheme in which NN

and DFTB+ are used to evaluate the predictive nature of the

NN. Both the NN and DFTB+ are used to evaluate the

potential energy of a candidate, and the two values are

compared.

A starting population consisted of 813 molecules generated from

an evolutionary algorithm using the C9H7N stoichiometry. These

were clustered into 21 clusters using AHC. The similarity index

was arbitrarily set to generate 21 clusters, so that each cluster was

sufficiently small, to have some flexibility in grouping them into

five equally-sized groups with roughly 20% of the total structures

in each group. Regardless of this effort, group 1 was composed of

one very large cluster (288 molecules), while the remaining groups

	

Volume 12, Issue 1 Journal of Computational Science Education

34 ISSN 2153-4136 January 2021

were composed of roughly equal numbers of structures (133, 129,

125, and 138 molecules). Figure 5 illustrates a schematic showing

group formation separated by arrows from left to right. The first

step shows a sample of the population set. The second step shows

that all similar molecules were clustered using the AHC method.

The third and final step presents Groups 1–5 (represented by

circles) which contain approximately 16% of the total population

from the 813 molecules (Group 1 has 35% of the structures).

Figure 5. A schematic displaying how groups were formed

from the results of the agglomerative clustering of initially

generated structures. Each group consists of approximately

20% of the atomic molecules from the population.

The train/test cycle presented in Figure 6 outlines how the five

train/test groups were created. When training a NN, a large training

set is ideal. Sometimes this is not possible, so we tested the effect

of 20% and 80% training set sizes to quantify the effect of a limited

training set on a NN versus having a much larger training set.

Figure 6 outlines the case of a 20% training set size. To start, one

of the five groups was designated the training group, while the other

four groups were combined to make the test set. For example, Test

1 included 525 molecules (the combined total of Groups 2–5) while

Train 1 included 288 molecules. A NN was trained using the

training set, and then all the DFTB+ energies of the structures in

the test set were compared to those calculated using the newly-

trained NN (as in Figure 4). This process was repeated four more

times, where each of the five groups had a turn being the training

set. The purpose of the train/test cycle was to average out any

structure-related issues in any of the training sets. For each of the

five sets, a scatter plot of the NN energy versus the DFTB+ energy

was fit to a straight line, and the five R2 values were averaged. To

calculate the results from 80% of the structures being in the

training, the process in Figure 6 was repeated with the training and

testing groups reversed.

Figure 6. The representation of the train/test cycle that results

in determining an R2 value for each of the five assignments of

the groups.

Finally, the effect of the NN architecture was tested by varying the

value of hidden layers and nodes for each cycle. For this study, we

examined three, four, and five hidden layers, each containing 5, 10,

15, 20, 25, 30, and 35 nodes.

4. RESULTS
Figures 7 and 8 plot the results of the random and clustered

grouping of the training set. Each figure displays the average R2

value — each collected from one complete round of the train/test

cycle — for each hidden layer/node combination. The 20%/80%

sized training sets are indicated by the blue and red lines,

respectively.

Figure 7. Three linear plots depicting averaged R2 values and

their uncertainties, where the NN is trained with three (in a),

four (in b), and five (in c) hidden layers. The red line shows

the 80% training set, and the blue line shows the 20% set.

Figures 7a, 7b, 7c, are the analysis for the randomly arranged

groups. Figure 7a has three hidden layers, Figure 7b has four hidden

layers, and Figure 7c has five hidden layers. Each figure displays

averaged R2 values as the number of nodes increased. The 80%

training sets in Figures 7a, 7b, and 7c, have much smaller slopes

and higher y-intercepts compared to the clustered data. Conversely,

the 20% training sets have greater slopes and lower y-intercepts.

There is less uncertainty in each of the averaged R2 values in the

80% sets than in the 20% sets, as demonstrated by the smaller error

bars. In general, the 80% training sets have higher R2 values

compared to the 20% training sets.

y = 0.0068x + 0.612

y	=	-6E-05x	+	0.9596

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 R
²

V
a
lu

e

Number of Nodes in Each Hidden-layer

y = 0.0018x + 0.764

y = 0.0016x + 0.914

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 R
²

V
a
lu

e

Number of Nodes in Each Hidden-layer

y = 0.0136x + 0.532

y = 0.0022x + 0.914

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15 20 25 30

A
v
e
ra

g
e
 R
²

V
a
lu

e

Number of Nodes in Each Hidden-layer

20% Training

80% Training

20% Training

80% Training

20% Training

80% Training

Journal of Computational Science Education Volume 12, Issue 1

January 2021 ISSN 2153-4136 35

Figures 8a, 8b, 8c, show the results for the clustered groups. Figure

8a has three hidden layers, Figure 8b has four hidden layers, and

Figure 8c has five hidden layers. In general, the 80% training sets

in the clustered data have greater slopes and higher y-intercepts.

The 20% training sets have smaller slopes and lower y-intercepts.

The uncertainties of the 80% and 20% training sets appear to be

similar. The 80% training sets have higher R2 values, while the 20%

training sets have lower R2 values. In both instances (regarding

random and clustered populations), the training set with more

molecules resulted in an increase in R2 values. These data are

summarized in Table 1.

Figure 8. Three linear plots depicting averaged R2 values and

their uncertainties where the NN is trained with three (in a),

four (in b), and five (in c) hidden layers. The red line shows

the 80% training set, and the blue line shows the 20% set.

5. DISCUSSION
In the random data, the slopes for the 20% training sets are larger

compared to the slopes for the 80% training sets. Even though the

20% trained data have much lower y-intercepts (meaning that they

are not as accurate as the 80% data for small number of nodes), the

slopes mean they eventually make up the difference as the number

of nodes increases. One reason for the small slopes in the 80% data

is that the R2 values are already close to the maximum value of 1.

This indicates that with a large amount of data, this NN is able to

reliably calculate the DFTB+ energy for structures that are similar

to those in its training set, regardless of the NN architecture. If a

limited amount of data is available for the training set, reliable

predictions can still be made with a NN, so long as the NN

architecture is large.

This is different for the clustered data. The slopes (in general) for

the 20% trained data are much smaller than the slopes for the 80%

trained data. This means that smaller training data sets will require

a very large number of nodes if they are going to catch up to the

80% data, if at all. Furthermore, contrary to the random data, for

the larger training sets, there appears to be a much stronger

correlation between NN architecture and the number of nodes in

each hidden layer. This probably stems from the NN needing more

extensive architectures to help predict structures that are not in the

training set.

Table 1: Summary of the slopes and y-intercepts

from Figures 7 and 8.

The larger y-intercepts for the 80% cases shows that they are much

better at predicting structures outside of the training set for small

NN architectures. It follows that when more examples are shown to

the NN, it translates to better accuracy. The fact that the y-intercept

drops significantly between the random and clustered data suggests

that it matters to train the NN in a specific way if it needs to

accommodate structures that it has never seen before. This is due

to the fact that the random training set is comprised of all types of

structures, while the clustered case attempts to segregate molecule

types. and this is maintained in forming the training and testing

groups. As a result, a false sense of accuracy exists for structures

that have never been seen before when training with a random

starting population.

Neural network architectures and training set size are important

when trying to apply the NN calculator to structures that were not

in the training set. This is illustrated by comparing the random

training sets to the clustered ones. For the random training sets,

regardless of the NN arrangement, it appears that we get at least a

reasonable, if not very close, match to the DFTB+ energy value.

Conversely, in the clustered data, we get a dramatically-reduced

ability to predict the energy of the testing set structures, especially

for architectures with a smaller number of hidden layers. This

indicates that clustering should be used as a strategy to train NNs

when it is expected that the NN will predict structures that are

unique from the training set.

There are other examples of effective pairing of clustering data with

other machine learning techniques. One study showed that the GA

efficiently located the global minimum because it took advantage

of the clustered configuration space [1]. Because of their potential

for locating the global minimum, clusters and the GA are often

found working simultaneously in areas of computational research.

Another example showing the effectiveness of combining the GA

y = -1E-17x + 0.1567

y = 0.0065x + 0.553

0 5 10 15 20 25 30 35 40 45

A
v
e
ra

g
e
 R
²

V
a
lu

e

Number of Nodes in Each Hidden-layer

y = 0.0168x - 0.148

y = 0.0102x + 0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 R
²

V
a
lu

e

Number of Nodes in Each Hidden-layer

y = 0.0074x + 0.083

y = 0.0282x + 0.134

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40

A
v
e
ra

g
e
 R
²

V
a
lu

e

Number of Nodes in Each Hidden-layer

Slope y-intercept Slope y-intercept
Random Grouping
3 Hidden Layers 0.0068 0.612 -6.00E-05 0.9596

4 Hidden Layers 0.0018 0.764 0.0016 0.914
5 Hidden Layers 0.0136 0.532 0.0022 0.914
Clustered Grouping
3 Hidden Layers -1.00E-17 0.1567 0.0065 0.553

4 Hidden Layers 0.0168 -0.148 0.0102 0.5
5 Hidden Layers 0.0074 0.083 0.0282 0.134

20% Training 80% Training

20% Training

80% Training

20% Training

80% Training

20% Training

80% Training

Volume 12, Issue 1 Journal of Computational Science Education

36 ISSN 2153-4136 January 2021

and clusters is found in a study where an approach known as the

distributed hierarchical genetic algorithm (DHGA) was used for

optimization, pattern matching, and space search exploration [4].

One study showed that when starting populations were clustered,

the chances of finding the local minimum increased within a margin

of error opposed to populations that were not subjected to the

clustered approach [9]. The combination of the GA and clusters is

constructive due to the ability of the GA to recognize a pattern

when searching through the clustered configuration space. The GA

can act upon this information and continue the search for the local

minimum [1].

This project shows how clustering can work to illustrate how robust

a trained NN is at accurately calculating properties of structures not

in its training set. Traditional training of NN’s with randomly

chosen structures might provide a false sense of accuracy. The

common starting conditions for NN are typically based on a random

set, such as those found in the neural network potential (NNP)

simulations that aimed to learn transferable potentials for organic

molecules [15]. We have shown that certain NN architectures do

not appear to do well when given a previously unseen structure.

Clustering should be considered to determine a NN architecture

that is robust enough to recognize structures that it has not seen

before, since it can be quantified how accurate the NN is as a part

of the training/testing sets. When randomly selected training/testing

sets are used, the NN will perform well, but that is expected, since

the test set is composed of structures similar to those on which it

was trained.

We believe clusters should help improve the search scheme when

deciding to create improved sophisticated programs of chemically

relevant molecules in the potential energy surface. By learning to

make the NN more robust in this project, we can discuss training a

NN to generate starting populations for GAs. We envision a

strategy where clustering is used to group together previous search

results, and new starting populations can be quickly evaluated using

a NN and compared to the clustered data to find new structural

motifs and start new GA searches in unseen areas of the potential

energy surface. This work informs how the NN should be

constructed for this eventual application of a thorough and

complete search for the global minimum. Ultimately, we have

showed how training a NN requires some analysis to determine an

architecture that will be robust enough to predict results from trial

cases that it has not seen before using clusters.

6. CONCLUSION
In this paper, we demonstrate the importance of training NNs for

calculating the energy of molecular structures using clustering to

group together the training and testing data if it is expected that the

NN will evaluate new structures that are outside of the training set.

Using a random grouping in the training and testing sets resulted in

the NN being able to almost exactly reproduce the correct energies

of all tested structures. However, when the NN was trained with a

group of clustered structures and tested on a separate group of

clustered structures, the NN performed much worse. Enlarging the

training set and increasing the number of hidden layers and nodes

dramatically improves the ability of the NN to predict molecular

energies of structures that are not similar to those in the training set.

This approach provides a framework to determine the proper

architecture to train more robust NNs with a quantifiable metric.

7. REFLECTION
I (CB) am excited to have been a part of the Blue Waters Student

Internship Program. The financial support replaced having to work

a part-time job, which provided the time necessary to complete the

work for this publication. Furthermore, the two-week long

computational science institute at the University of Illinois at

Urbana-Champaign, hosted by the Shodor foundation, was a great

experience. I really enjoyed learning about the many applications

of high-performance computing, and the whole experience allowed

me to build upon my computer science and chemistry backgrounds.

This whole process really opened my mind to the opportunities in

this field, and I hope to pursue these opportunities in the future. I

would like to thank everyone involved with this program for a

genuinely great experience.

8. REFERENCES
[1] Ulrich Bodenhofer. 2004. Genetic Algorithms: Theory and

Applications. Fuzzy Logic Laboratorium Linz-Hagenberg.

Johannes Kepler University, Linz, Austria. Retrieved from

https://www.flll.jku.at/div/teaching/Ga/GA-Notes.pdf

[2] Yudong Cao, Gian G. Guerreschi, and Alán Aspuru-Guzik.

2017. Quantum Neuron: An elementary building block for

machine learning on quantum computers. arXiv: 1711.11240.

Retrieved from https://arxiv.org/abs/1711.11240

[3] Ye Chen, Meng Liu, Jianhua Chen, Yuqiong Li, Cuihua

Zhao, and Xiao Mu. 2018. A density functional based tight

binding (DFTB+) study on the sulfidization-amine flotation

mechanism of smithsonite. Appl. Surf. Sci. 458 (Nov. 2018),

454-463. DOI: https://doi.org/10.1016/j.apsusc.2018.07.014

[4] Gautam Garai and B.B. Chaudhuri. 2007. A distributed

hierarchical genetic algorithm for efficient optimization and

pattern matching. Pattern Recogn. 40, 1 (Jan. 2007),

212-228. DOI: https://doi.org/10.1016/j.patcog.2006.04.023

[5] Daniel George and E.A. Huerta. 2018. Deep Learning for

real-time gravitational wave detection and parameter

estimation: Results with Advanced LIGO data.

Phys. Lett. B. 778 (Mar. 2018), 64-70.

DOI: https://doi.org/10.1016/j.physletb.2017.12.053

[6] Florian Häse, Christoph Kreisbeck, and Alán Aspuru-Guzik.

2017. Machine learning for quantum dynamics: deep

learning of excitation energy transfer properties.

Chem. Sci. 8, 12 (Dec. 2017), 8419-8426.

DOI: https://doi.org/10.1039/c7sc03542j

[7] Anil K. Jain. 2010. Data clustering: 50 years beyond

K-means. Pattern Recogn. Lett. 31, 8 (Jun. 2010), 651–666.

DOI: https://doi.org/10.1016/j.patrec.2009.09.011

[8] Mathias S. Jørgensen, Michael N. Groves, and

Bjørk Hammer. 2017. Combining Evolutionary Algorithms

with Clustering toward Rational Global Structure

Optimization at the Atomic Scale.

J. Chem. Theory Comput. 13, 3 (Feb. 2017), 1486-1493.

DOI: https://doi.org/10.1021/acs.jctc.6b01119

[9] Nicholas Kellas and Michael N. Groves. 2020. Improvement

of the Evolutionary Algorithm on the Atomic Simulation

Environment Though Intuitive Starting Population Creation

and Clustering. Journal of Computational Science Education

11, 2 (Apr. 2020), 29-35.

DOI: https://doi.org/10.22369/issn.2153-4136/11/2/5

[10] Alireza Khorshidi and Andrew A. Peterson. 2016. Amp: A

modular approach to machine learning in atomistic

simulations. Comput. Phys. Commun. 207, (Oct. 2016),

310-324. DOI: https://doi.org/10.1016/j.cpc.2016.05.010

Journal of Computational Science Education Volume 12, Issue 1

January 2021 ISSN 2153-4136 37

[11] Philipp Koehn. 1994. Combining Genetic Algorithms and

Neural Networks: The Encoding Problem. Master’s thesis.

The University of Tennessee, Knoxville, Knoxville, TN.

[12] Esben L. Kolsbjerg, Andrew A. Peterson, and

Bjørk Hammer. 2018. Neural-network-enhanced

evolutionary algorithm applied to supported metal

nanoparticles. Phys. Rev. B. 97, 19 (May 2018), 195424.

DOI: https://doi.org/10.1103/PhysRevB.97.195424

[13] Ask Hjorth Larsen, et al. 2017. The atomic simulation

environment—a Python library for working with atoms.

J. Phys.-Condens. Mat. 29, 27, (Jun. 2017), 273002.

DOI: https://doi.org/10.1088/1361-648X/aa680e

[14] Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and

Mark P. Waller. 2018. Generating Focused Molecule

Libraries for Drug Discovery with Recurrent Neural

Networks. ACS Cent. Sci. 4, 1 (Dec. 2017), 120-131.

DOI: https://doi.org/10.1021/acscentsci.7b00512

[15] Justin S. Smith, Olexandr Isayev, and Adrian E. Roitberg.

2017. ANI-1: an extensible neural network potential with

DFT accuracy at force field computational cost.

Chem. Sci. 8, 4 (Feb. 2017), 3192-3203.

DOI: https://doi.org/10.1039/c6sc05720a

[16] Logan Ward and Chris Wolverton. 2017. Atomistic

calculations and materials informatics: A review.

Curr. Opin. Solid St. M. 21, 3 (Jun. 2017), 167-176.

DOI: https://doi.org/10.1016/j.cossms.2016.07.002

[17] Yi Yang, Dong Xu, Feiping Nie, Shuicheng Yan, and

Yueting Zhuang. 2010. Image Clustering Using Local

Discriminant Models and Global Integration.

IEEE T. Image Process. 19, 10 (Apr. 2010), 2761-2773.

DOI: https://doi.org/10.1109/TIP.2010.2049235

[18] Xinjie Yu and Mitsuo Gen. 2010. Introduction to

Evolutionary Algorithms. Springer-Verlag London.

DOI: https://doi.org/10.1007/978-1-84996-129-5

Volume 12, Issue 1 Journal of Computational Science Education

38 ISSN 2153-4136 January 2021

	1. INTRODUCTION
	2. Literature Review
	3. METHODS
	4. RESULTS
	5. DISCUSSION
	6. CONCLUSION
	7. REFLECTION
	8. REFERENCES

