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Using Blue Waters to Assess Tornadic Outbreak Forecast Capability by
Lead Time 23
Caroline MacDonald and Andrew Mercer

Improvement of the Evolutionary Algorithm on the Atomic Simulation
Environment Though Intuitive Starting Population Creation and Clustering 29
Nicholas Kellas and Michael N. Groves



	
  



Introduction to Volume 11 Issue 2
Steven I. Gordon 

Editor 
The Ohio State University 

Columbus, OH 
gordon.1@osu.edu 

 
 

FOREWORD 
This issue begins with an article by McCarthy et al. describing the 
implementation of a molecular visualization model that was 
incorporated into two biochemistry courses.  This inquiry-based 
activity explored the molecular basis and cultural relevance of 
sickle cell anemia.  The article describes the activity and then 
provides an analysis of its impacts on student engagement and 
cultural awareness. 

The article by Gordon and Cahill describes a recent survey of 
undergraduate programs in computational science.  The results 
indicate that such programs face several challenges including 
student recruitment and faculty participation.  They discuss the 
challenges that the programs face and some possible short- and 
long-term strategies that might address the challenges. 

We also have three student articles in this issue.  Those articles 
summarize the results of student internship experiences and the 
impacts of those experiences on the students’ academic career. 

Guevara et al. describe the development of a molecular model of 
relating to the interaction of polymer metal interfaces in 
micropumps.  Their model simulates the sealant material 
polydimethylsiloxane and characterize its behavior with a model 
Ni-Md-Ga surface. 

McDonald and Mercer used the Blue Waters supercomputer to 
assess tornadic outbreak forecast capability by lead time.  They 
tested several parameter sets to ascertain which provided the best 
lead time forecasts of potential tornadic events. 

Finally, Kellas and Groves tested several approaches to using an 
evolutionary algorithm to simulate lowest energy conformation 
molecule of a given stoichiometry.  They compare the results using 
a clustering algorithm and intuitive population creation.
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ABSTRACT 
The central dogma is a key foundational concept in biochemistry. 
The idea that DNA mutations cause change at the protein level can 
be abstract for students. To provide a real-world example of the 
effect of mutation on protein function, a molecular visualization 
module was developed and incorporated into two biochemistry 
courses. This inquiry-based activity explored the molecular basis 
and cultural relevance of sickle cell anemia. Hemoglobin structural 
changes from the disease were examined. Participants used free 
tools including NCBI, RCSB PDB, LALIGN and Swiss PDB 
DeepView protein visualization software from EXPASY. This 
module was an active, engaging exercise which exposed students 
to protein visualization and increased cultural awareness. 

Keywords 
Biochemistry, Computer-Based Learning, Inquiry-
Based/Discovery Learning, Internet/Web-Based Learning, 
Proteins/Peptides, Underrepresented Minorities, Culturally-
Relevant Pedagogy  

1. INTRODUCTION 
Effective teaching of biochemistry often uses computational tools 
for students to visualize and analyze macromolecular structure [1, 
2]. Numerous science education articles describe addition of 
bioinformatics to the chemistry/biochemistry curriculum [3]. Many 
exercises use free stand-alone or web-based tools [4] making 
incorporation of bioinformatics achievable. Students used 
bioinformatics to investigate multiple topics such as drug design [5, 
6, 7, 8, 9], visualization of protein structure [10, 11, 12, 13, 14], 
homology modeling [15, 16, 17], genomics/proteomics [18, 19] and 
genetic diseases [20]. The work described here is distinct because 
students use bioinformatics to investigate a genetic disease and 
explores the racial disproportionality of this disease. The goal of 
this activity was to provide students an engaging experience in 
protein visualization in a culturally relevant way. 

 

The term culturally relevant or culturally responsive pedagogy was 
first described over twenty years ago [21, 22]. In short, this 
describes a teaching approach that embraces students’ different 
cultural perspectives to further the learning experience. One aspect 
of this pedagogy is cultural competence. Culturally competent 
pedagogy allows a teacher to impart knowledge that allows 
students’ to appreciate their own culture and learn about the culture 
of others [23]. Sickle cell anemia afflicts African-Americans 
disproportionately. This activity provides an opportunity for a 
diverse set of students to research the epidemiology of the disease 
thereby increasing cultural awareness [24].  

Genetic diseases arise from changes in DNA which leads to 
changes at the protein level [25]. Sickle cell anemia is caused by a 
point mutation in the gene message encoding hemoglobin [26]. The 
most prevalent mutation is a change of glutamic acid to valine in 
the beta subunit. Hydrophobic “sticky” patches are produced that 
associate with the beta subunit of other hemoglobin molecules [27]. 
One result of this aggregation is a decrease in iron binding and fibril 
formation leading to sickle-shaped red blood cells [28]. The DNA, 
mRNA and amino acid sequence of both types of hemoglobin are 
known. This activity uses free bioinformatics software and tools 
(Table 1) to increase student engagement with computational 
analysis and cultural awareness.  

2. ACTIVITY INFORMATION 
2.1 Software Used 
Freely available software and tools were used in this activity. These 
are described in Table 1.  

2.2 Learning Goals 
There are five student learning goals each with specific outcomes. 
Learning Goal 1. Students will understand the relationship 
between DNA, RNA and protein sequence. Outcomes from Goal 1. 
If given an RNA sequence, students should be able to: a) derive the 
original strands of DNA; b) manually translate into amino acid 
sequence; use bioinformatic tools to translate into amino acid 
sequence. Learning Goal 2. Students will understand the effects of 
amino acid change on protein structure and function. Outcomes 
from Goal 2. Students should be able to: a) compare two amino acid 
sequences; b) classify and predict the severity of amino acid 
substitutions based on the chemical properties of amino acids; c) to 
highlight and label amino acids at both termini of a protein. 
Learning Goal 3. Students will understand how to use molecular 
visualization software to display and modify protein structures.  

                                                                    
1 Additional authors under “Author List” 
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Outcomes from Goal 3. Students should be able to: a) highlight and 
label amino acids that interact with a ligand during binding; b) to 
report the racial incidence of sickle cell anemia. Learning Goal 4. 
Students will understand the cultural relevance of sickle cell 
anemia. Outcomes from Goal 4. Students should be able to: report 
the global incidence of sickle cell anemia. Summative assessments 
were used for each outcome with specific problems within the 
assignment. 

 
Table 1. Software and tools used in activity [29, 30, 31] 

Name Provided by Address Function 

NCBI 
NIH National 

Library of 
Medicine 

http:/www.ncbi.nl
m.nih.gov 

-Provides 
access to 

biomedical 
and genomic 

data 

RCSB 
PDB 

The Research 
Collaboratory 
for Structural 

Bioinformatics 

http://www.rcsb.or
g/pdb/home/home.

do 

-Repository of 
protein 

structural data 

LALIGN 
ExPASy SIB 

Bioinformatics 
Resource Portal 

http://embnet.vital
-

it.ch/software/LA
LIGN_form. 

html 

-Aligns two 
sequences to 

determine 
matching 
segments 

DeepView 
ExPASy SIB 

Bioinformatics 
Resource Portal 

http://spdbv.vital-
it.ch/refs.html 

-Protein 
visualization 

software 

Translate 
ExPASy SIB 

Bioinformatics 
Resource Portal 

https://web.expasy
.org/translate/ 

-Translates 
nucleotide 

sequence to 
protein 

sequence 

Google 
Docs Google http:/docs.google.

com 

-Web-based 
word 

processing 
tool 

 

2.3 Tenets of Culturally Sensitive Teaching 
Adopted 
This activity was developed as one part of a wider inter-department 
goal of increasing culturally sensitive teaching in STEM courses 
[32]. A cohort of faculty from the departments of Mathematics, 
Computer Science, Chemistry, Biology, Physics, Industrial 
Engineering and Information Sciences and Systems developed five 
tenets for culturally-sensitive pedagogy in our courses. These were: 
1) to incorporate physical and hands on activities in instructional 
practice, 2) to incorporate physical and hands on activities in 
instructional activities, 3) to become conscious of biased 
judgements about students based on limited perceptions of them 
and be willing to change these perceptions, 4) to have student 
apprenticeships that foster empowered learning communities and 
5) to use students’ lived experiences as content for course content 
and activities.  

2.4 Activity Information 
2.4.1 Participants and Materials 
Students in CHEM 202 Biochemistry for Health Majors are 
second-year undergraduate Medical Technology majors and upper-
division undergraduate Nutrition majors. Students in CHEM 304 
Biochemistry are upper-division level Chemistry and Biology 
majors. These students anticipate entering graduate or medical 
school after graduation. Activities were performed during 
consecutive laboratory periods. CHEM 202 has 2 hr 50 min allotted 
for lab each week while CHEM 304 has 3 hr 50 min allotted. 

Ten laptop computers were provided by the Chemistry Department. 
Groups of 2-4 students performed the activity. One computer was 
provided per group. 

2.4.2 Pre-laboratory Activities 
Students were assigned a pre-lab activity about the Protein Data 
Bank (PDB) and hemoglobin structure and function. A YouTube 
video [32a] about the PDB was made available on the online course 
management system. An article from the Molecule of the Month on 
the PDB website [33] about hemoglobin and sickle-cell anemia was 
assigned and students answered instructor-supplied questions. 

2.4.3 Overview of Laboratory Activity 
Modules were performed over two course laboratory periods. In the 
first week, students learned crystal structure basics and how to use 
computer software to visualize them. Targeted questions discuss 
cultural relevance and impact. The assignment called for students 
to download the crystal structure of normal hemoglobin from the 
PDB (PDB ID: 1hho [34]) and visualize its structure in Swiss 
DeepView. Next, they examined the secondary structure elements 
present in the protein. Students identified and labeled the N- and C- 
termini and the histidine residues that coordinate the heme group. 
The amino acid position that will be changed in the sickle cell 
variant was also identified and labeled by students. At the end of 
the exercise students are asked to answer questions related to rate 
of occurrence, racial incidence, symptoms and cure for the disease. 

In the second week, students compare the 3-dimensional structure 
of sickle cell hemoglobin (PDB ID: 2hbs [35], Figure 1) to normal. 

 

 
Figure 1. Crystal Structure of Sickle Cell Hemoglobin (2hbs) 

 
They also engage with the central dogma by analyzing the DNA, 
RNA and amino acid sequence manually and with online 
bioinformatics software. As before, students use Swiss DeepView 
to label pertinent histidine residues. Students are also asked to 
discuss changes in the crystal structure between the normal and 
sickle hemoglobin. A portion of mRNA from wild type and sickle 
cell hemoglobin are given to students to translate into amino acid 
sequence manually. They also derive the original DNA sequence 
for both variants of hemoglobin. Next, the entire mRNA sequence 
of both types of hemoglobin is provided and online tool is used to 
translate sequences. LALIGN was used to compare similarity. All 
answers went into a Google document shared with group members 
and the instructor. 
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3. RESULTS AND DISCUSSSION 
3.1 Impact of Activity on Student 
Engagement and Cultural Awareness 
This activity was developed over two summers and implemented in 
Spring 2016 for CHEM 202. It was used in both courses the 
following academic year. Over 70 students have been exposed to 
this activity over this time. This activity is student-centered with 
very little instructor interaction. The instructor offers a brief 
introduction to the activity and the students begin following the 
step-by-step instructions for each week. When questions arise, the 
instructor clarifies for students. They also have access to the 
internet during this time. This activity was successful in engaging 
students. During implementation of the module in CHEM 202 in 
Spring 2016, a team of evaluators observed the class and scored the 
activity on the level of student engagement and use of 
computational tools. The scale runs from 1 (lowest) to 7 (highest). 
Evaluators found that the module scored high on all aspects. 
Specifically, the module “incorporated engaging team-based, real 
world projects” (score = 7), “used computational tools for modeling 
and simulations” (score = 7), students “understood why they were 
using computational tools” (score = 6) and “student’s interest in the 
class” (score = 7). 

Sickle cell anemia was chosen for its cultural relevance and because 
students were introduced to it earlier in the semester. Morgan State 
University is becoming increasingly diverse. Morgan State 
University is a Historically Black College or University (HBCU) 
located in Baltimore, MD. In 2016-2017, 22 participants identified 
themselves as African-American (64%), 6 as Caucasian (18%), 5 
were international (15%), and 1 was multiracial (3%). Therefore, 
many cultural backgrounds learned about this disease and its 
incidence. 

3.2 Alignment with Developed Tenets of 
Culturally Sensitive Teaching 
This exercise was developed keeping five main culturally-sensitive 
goals in mind. These were 1) to incorporate physical and hands on 
activities in instructional practice, 2) to incorporate more student-
led discussions and teaching opportunities in class, 3) to becoming 
conscious of biased judgments about students based on limited 
perceptions of them and be willing to change these perceptions, 4) 
to have student apprenticeships that foster empowered learning 
communities and 5) to use students’ lived experiences as content 
for course content and activities. All five of these goals were 
achieved. This was primarily a student-led protein visualization 
project. There was a very brief introduction to the students by the 
instructor about what they will be doing, but the students discussed 
within their group and across groups how best to complete 
assignments (Tenets 1, 2, and 4). All students were treated in an 
equitable fashion and resources were made available to all students 
(Tenet 3). During the activity, one student was also able to offer a 
personal perspective as they had a family member that has the 
disease (Tenet 5). 

3.3 Activity Outcomes 
At implementation of this activity, students have already learned 
about the different levels of protein structure and are starting to 
learn the details of the central dogma. Hemoglobin and sickle cell 
hemoglobin had been discussed. Relevant concepts such as 
quaternary structure, protein-ligand binding and allosterism had 
also been discussed. This activity was designed to integrate early 
course material with new material that they are learning. 

Learning goals and outcomes are described in Section 2.2. In the 
Bloom’s taxonomy hierarchy [36], these integrated questions range 
from lower level “knowledge” to higher level “evaluation” and 
“synthesis”. One example of an integrated question asks students 
to look at the amino acid sequences of the proteins and label the N- 
and C-termini of each subunit and determine whether the structure 
is the oxygen-bound form. Students must recall their knowledge of 
amino acid codes, protein directionality, and hemoglobin subunits. 
An example of an “evaluation” type is when students are asked to 
translate both types of hemoglobin into amino acid sequence. 
During alignment of the two sequences students must determine 
which alignments are correct and the number of sequence positions 
where they differ. Overall, the module successfully introduced 
students to protein visualization, reinforced knowledge of the 
central dogma and increased cultural awareness. 

4. CONCLUSIONS AND FUTURE WORK 
Genetic diseases can serve as tractable examples of the central 
dogma’s importance. A mutation in sickle cell anemia leads to 
hemoglobin structural changes that students were able to 
investigate using free resources. This module explored the 
molecular basis and cultural relevance of sickle cell anemia to help 
increase cultural competency. Future versions of this module will 
better assess student engagement with protein visualization. 

Student handouts with step-by-step instructions and laboratory 
questions, Student pre-lab activity; mRNA sequence of normal and 
sickle-cell hemoglobin chain A, and example student data are 
available from the authors by email request to 
Pumtiwitt.McCarthy@morgan.edu. 
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ABSTRACT 
A number of efforts have been made to introduce computational 
science in the undergraduate curriculum. We describe a survey of 
the undergraduate computational science programs in the U.S. The 
programs face several challenges including student recruitment and 
limited faculty participation in the programs. We describe the 
current state of the programs, discuss the problems they face, and 
discuss potential short- and long-range strategies that might address 
those challenges. 
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1. INTRODUCTION 
Modeling and simulation has become an integral part in the 
advancement of knowledge in science and engineering along with 
theory and experimentation. Computer modeling allows for the 
exploration of systems that are too complex, too large or sensitive 
for experiments, or too small to instrument. A majority of large 
companies in the U.S. use modeling and simulation to produce 
goods faster and cheaper. The ability to use this technology is 
essential to commercial competitiveness. Recognition of the 
importance of computational modeling has led to a widespread call 
to educate students on the principals of modeling and simulation 
and the use of computational tools and algorithms to address those 
modeling needs. 

SIAM (The Society for Industrial and Applied Mathematics) 
formed a working group on computational science in 1998. 
Subsequently, a seminal article by Yasar and Landau provided one 
of the first, comprehensive descriptions of the nature of the field 
and curricular elements necessary to provide students with the 
appropriate expertise [1]. A further SIAM task force completed a 
comprehensive report in 2006 [2]. 

 

 

There have also been a number of national science and technology 
groups that have cited computational science as a key to future 
discoveries in science and engineering as well as crucial to the 
competitiveness of US industry.  

In 2005, the President’s Information Technology Advisory 
Committee highlighted the importance of computational science to 
the national economy and cited the lack of qualified personnel to 
fill the needs of both research and commercial enterprises [3]. 

The National Science Foundation Blue Ribbon Panel on 
Simulation-Based Engineering Science indicated that this 
discipline is “central to advances in biomedicine, 
nanomanufacturing, homeland security, microelectronics, energy 
and environmental sciences, advanced materials, and product 
development.” [4] They went on to say that the education of 
engineers and scientists in the use of simulation techniques is a 
major challenge. 

There have been many efforts to insert computational science into 
the undergraduate curriculum in an attempt to meet these needs. 
The National Computational Science Institute (NCSI), developed 
by the Shodor Education Foundation aimed to develop a national 
community of faculty interested in incorporating computational 
science into their undergraduate curriculum [5]. Thomley and 
Searcy provide a brief overview of this effort along with a 
comprehensive review of the history of computational science 
education [6]. 

Searcy and Thomley [7] completed an evaluation of the Shodor 
program which points to a number of barriers to the implementation 
of new academic programs. They surveyed 768 individuals that 
attended the NCSI workshops. The respondents reported a number 
of issues with implementing computational science into their 
courses. 

“Between one quarter and one half highlighted the following 
issues: staying current with changes in technology (49 %), deciding 
where to make a big shift in their department’s curriculum (43 %), 
lack of available computational science educational materials 
(39 %), making choices of which technologies/software to use 
(35 %), having no one else to discuss computational science ideas 
within their department (32 %), implementing computational 
science in the face of indifference from other faculty in their 
department (31 %), trying to incorporate other disciplines’ content 
into a course (31 %), lack of understanding of how software 
package(s) work (28 %), trying to coordinate content across 
multiple professors and/or multiple sections of a course (26 %), and 
trying to coordinate programmatic changes across departments 
(26 %).” [7 page 3]. 
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Other efforts at integrating computational science in the curriculum 
have focused on the introduction of formal emphasis or minor 
programs that include four to six courses focused on the tools and 
techniques used in the field. Gordon, Carey, and Vakalis [8] review 
some of these efforts. They then summarize their efforts to start 
computational science programs at multiple institutions in Ohio. 
Those efforts included the creation of a set of competencies for 
undergraduate students in computational science. Those 
competencies have been updated and are part of the efforts of the 
XSEDE education program to help other institutions start 
computational science programs [9]. 

A number of grants by the National Science Foundation and other 
institutions have supported efforts such as those cited above. Yet, 
the number of formal undergraduate computational science 
programs has grown very slowly. A recent web based search for 
such programs yielded a list of only 29 programs in the U.S. [10]. 
The program links on that site were checked and a further search 
conducted by the authors to ensure that the list is up-to-date. 

There are many questions related to the state of these programs. 
How have the programs faired in producing graduates with 
computational science knowledge and skills? Are there continuing 
barriers to the integration of these important skills in the 
undergraduate curriculum? What are the institutional, personnel, 
and resource issues that have contributed to the success and/or 
limitations on the programs? What sorts of institutional or 
environmental changes that might help to scale up the programs? 
In order to address these questions, we conducted a survey of the 
existing programs focusing on the current state of their efforts as 
well as continuing barriers to program implementation. That is the 
subject of this paper. 

2. THE SURVEY 
For each of the undergraduate programs in the updated web list, 
contact information for the program advisors was assembled either 
as indicated on a program webpage or via a phone call to the 
appropriate person. For the 29 programs at 26 institutions, a survey 
of 11 questions addressing some of the motivations and barriers to 
program implementation was assembled and sent via an email link 
to the program lead. Of those, ten programs responded.  

The survey questions were based on the previous work by Thomley 
and Searcy as well as informal discussions with program 
coordinators as part of the work on the XSEDE education program. 
The survey was distributed via email using the Qualtrics survey 
tools. A copy of the basic survey can be found in Appendix 1. Email 
reminders were sent to non-respondents weekly over a one month 
period. 

Follow-up in-depth interviews were also made with three of the 
respondents to gain additional insight into the state of their 
programs. Two of the programs selected for interviews were of 
long-standing and were selected to provide insights into the barriers 
to program implementation as well as possible changes that would 
enhance program success. The third is a program that was recently 
started, hoping to gain insights into continuing motivations and 
barriers to program initialization. Those interviews were conducted 
by telephone and guided by a series of the follow-up questions. 
Those questions are also shown in the appendix. Those interviews 
were more open-ended, asking for the broader opinions of the 
program directors. 

 

 

3. SURVEY RESULTS 
3.1 Nature of the Programs 
Of the 29 programs, 10 (34%) responded to the survey. The 
responding programs surveyed varied in their composition 
(4 department level programs, 3 college-wide, and 2 university-
level programs) and all have been active for more than 5 years. 

Table 1 shows the distribution of respondents and non-respondents. 
Those responding appear a reasonable representation of the 
population across types of institutions, public or private, and 
Carnegie classification. 

 
Table 1. Comparison of Respondents and Non-Respondents 

   Carnegie Classification 
 Public Private R1/R2 M1/M2 Other 

Responded 6 4 5 3 2 
No 
Response 8 9 8 5 4 

	
All of the responding programs are modest in size. The average 
number of students completing the program annually ranged from 
1 (two programs) to 3-5 (four programs) to 15 (two programs). 
Administratively, two of the programs are university-wide 
programs. Three of the programs are college-wide while three 
others are departmentally based. 

Most of the programs are marketed through announcements in 
basic, required courses. One depends entirely on a website for 
recruitment. 

Respondents were asked what percentage of their students went on 
to graduate school or professional jobs. Several did not answer this 
question or answered inconsistently. Of those who responded, there 
was a range of 33 to 70 percent that go on to graduate school or an 
average of 41 percent. Similarly, an average of 44% go to 
professional jobs with a similar range. However, the inconsistency 
in the responses leads one to believe that there the institutions are 
not fully able to track what happens to their graduates. 

3.2 Program Challenges 
A series of questions focused on some of the program challenges 
that were cited in the study of the Shodor program. These are shown 
in Table 2. The first two questions focused on student recruitment. 
Here, the majority of respondents indicated that student recruitment 
is a major problem. Seventy-one percent of respondents strongly 
agree or somewhat agree that it is difficult to recruit students into 
their programs. Likewise, the same percentage somewhat disagree 
or strongly disagree that that they have little or no difficulty getting 
students into their program. 

A second problem facing the programs is the burden of instruction. 
Here again, 71% of the respondents indicated that the burden for 
teaching courses falls to too few faculty. 

Most programs found their students were prepared in math 
(78% strongly or somewhat agree) but less in programming 
(44% strongly or somewhat agree). 

People were then asked to indicate the top three problems 
impacting their programs. Almost 30% indicated that recruiting 
students was a major problem. Next was engaging faculty in other 
departments to participate (22%), distribution of teaching loads 
(17%), and getting advisors to recommend the program to students 
early in their careers (17%).
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Table 2. Responses to Program Challenges Survey Questions 

 Strongly 
Agree 

Somewhat 
Agree 

Neither Agree 
Nor Disagree 

Somewhat 
Disagree 

Strongly 
Disagree 

It is difficult to recruit students to enroll in our program. 4 2 2 0 1 

We have little or no difficulty getting a sufficient number of 
students in our program courses. 1 1 0 4 3 

The burden for teaching the courses at our institution falls to only 
a few faculty. 3 2 1 2 1 

Students enrolling in our program have the required pre-requisite 
skills and knowledge in mathematics. 2 5 0 2 0 

Students enrolling in our program have the required pre-requisite 
computing skills. 1 3 0 4 1 

Follow-up telephone interviews were conducted with three 
programs. Two were programs of long standing while the third has 
just started their program. All three indicated that student	
recruitment was a major problem. 

The telephone interviews focused on possible policies that might 
alleviate some of the barriers to program success. One suggestion 
that was discussed was a possible national effort to publicize the 
need	 for computational scientists like that given to computer 
science. The response was that this might be helpful, but it still may 
not address the overall problem faced while trying to recruit 
students: what is the job or career path that this program will 
prepare me for? 

Another possible boon to student recruitment would be a university 
requirement that all science and engineering majors take an 
introductory modeling and simulation course. This, along with the 
need for an introductory programming course for non-computer 
science majors, would potentially increase student interest in 
computational science. 

Addressing the issue of “what is the job,” the respondents were 
asked whether stronger ties with businesses that use computational 
science would assist in improving program numbers. Such ties 
would be welcomed but the one respondent to this question 
indicated that they did not have enough contacts or time to make 
those connections. 

All of the telephone interviews echoed the problems of recruiting 
students. Indications were that some students still take one or two 
of the core computational science courses but do not complete the 
entire program. 

4. DISCUSSION 
The response rate to the survey of 34% was disappointing, yet it is 
a decent response rate to an online survey. Nevertheless, we believe 
that those long-standing programs that did respond are emblematic 
of the problems facing computational science education. We can 
only surmise whether the non-respondents represent programs that 
are inactive, are run by faculty with too little time to make 
responding a priority, or some combination of these and other 
factors. 

Based on the responses, it is clear that current, undergraduate 
computational science education efforts are making only modest 
progress in helping to build a workforce competent in this area. 
They continue to face ongoing problems in student recruitment, in 
the engagement of the full range of disciplines for which 
computational science is important, and the active engagement of 

businesses that likewise are seeking graduates ready to contribute 
to their computational science endeavors. 

Student recruitment efforts are foremost among the problems 
facing the existing programs. There appear to be a number of 
reasons for this. First, the interdisciplinary nature of the field makes 
it difficult to point to particular career paths associated with 
computational science. That confusion may also carry forward to 
academic advisors that may not fully understand what 
computational science is and therefore do not advise students to 
look into those programs early in their academic careers. Recruiting 
of students is also hampered by the fact that most of the programs 
are minors that require an additional 15-24 credit hours of 
additional courses. Students may take part of the sequence but do 
not complete the program. Should they start the program later in 
their academic career, they may not have enough time to complete 
all of the courses. At a time when the costs of higher education are 
high, delays in graduation pose a significant barrier for students to 
take on supplementary course work for a career path that is fuzzy 
at best. 

Computational science continues to suffer from the limitations on 
the number of faculty that are prepared to participate in the 
programs. A combination of lack of expertise along with the 
required teaching loads for more traditional courses is probably to 
blame. 

There are no simple solutions to these program impediments. One 
possible approach might be to introduce a university-wide course 
that introduces modeling and simulation to all students. This could 
be done without requiring pre-requisite programming expertise. For 
example, the University of California at Berkeley has developed a 
“data science for all” course for freshman students (11). A 
modeling and simulation course could be one of several alternatives 
in this vein, introducing students to the area early in their careers 
and promoting their continued interests. 

If modeling and simulation expertise is truly required in the current 
workforce, then both business and the research community must 
also play a larger role in supporting program development. 
Businesses will need to more actively engage with academic 
institutions providing internships and help with student recruitment 
by publicizing the need for modeling and simulation skills. Grant 
programs that encourage the integration of computational science 
into the curriculum should be put in place in parallel with the efforts 
for computer science and data science. 
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Getting widespread participation for computational science across 
the faculty is probably the most difficult challenge. It may take a 
generational change in the faculty to fully address the problem. A 
much larger proportion of recent Ph.D. graduates in science and 
engineering are using modeling and simulation as part of their 
research and thus more likely to embrace the integration of those 
skills in the curriculum. Currently the science and engineering labor 
force is aging with 33% of the workforce in the ages between 51 
and 75 years while only 16% was in the under the 30 age group 
(12). This implies a high rate of retirement and replacement in the 
coming years. Perhaps that will help the community to fully 
embrace the need for computational science expertise. 
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A. SURVEY INSTRUMENTS 
A.1 Undergraduate Computational Science 

Programs 
Q1 Is your undergraduate computational science program still 
active? 

• Yes (1) 
• No (2) 

Q2 How many credit hours are required for students to complete the 
program? 

Q3 What is the average number of students that complete the 
program each year? 

Q4 For each of the following questions, please indicate the degree 
to which you agree or disagree with the statement. 

(Strongly agree, Somewhat agree, Neither agree nor disagree, 
Somewhat disagree, Strongly disagree) 
• It is difficult to recruit students to enroll in our program. 

(1) 
• We have little or no difficulty getting a sufficient number 

of students in our program courses. (2) 
• The burden for teaching the courses at our institution falls 

to only a few faculty. (3) 
• Students enrolling in our program have the required pre- 

requisite skills and knowledge in mathematics. (4) 
• Students enrolling in our program have the required pre- 

requisite computing skills. (5) 

Q5 What proportion of students graduating from your program go 
to: 

• Graduate school (1) 
• Professional Jobs (2) 
• Other (3) 
• Not sure (4) 

Q6 What do you think are the major problems associated with 
maintaining your program? 

Q7 Administratively, where is your program located? 
• University-wide program (1) 
• College-wide program (2) 
• Departmental program (3) 

Q8 Please list all of the departments that play a role in teaching 
courses in your program. 

Q9 How many years has your program been operating? 

Q10 How do students find out about your program? 
• Announced in various basic courses in related disciplines 

(1) 
• Website (2) 
• Program brochures (3) 
• Listed in university catalog (4) 
• Other (5) 
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Q11 Please choose what you see as the top three problems with your 
undergraduate computational science program. 

• Difficulty recruiting students (1) 
• Limited dedicated resources for program implementation 

(2) 
• Distribution of teaching loads (3) 
• Availability of relevant hardware and software (4) 
• Getting advisors to recommend the program to their 

students early in their careers (5) 
• Engaging faculty in other departments to participate (6) 
• Other (7) 

A.2 Follow Up Questions for Respondents 
We would like to thank you for responding to our survey about your 
computational science program. We would like to take a few 
minutes to follow-up with you on some questions that arose from 
the survey. Do you have a few minutes to speak now or can we set 
a time that is more convenient for you? 

A number of problems associated with maintaining a program were 
cited by those completing the survey. We would like to get your 
thoughts on these problems and actions that might help to reduce 
them. 

The first problem is cited is the difficulty of recruiting students. Is 
this a major problem for your program? 

 

 

 

 

 

 

Which of these actions might help to alleviate that problem: 
• National attention given to the need for scientists and 

engineers to understand modeling and simulation similar 
to that given recently to computer science? 

• University requirement for introductory modeling and 
simulation class for all science majors 

• An introductory computer coding class oriented for non-
computer science majors 

• Working with high schools to bring computational science 
into HS courses 

• Other? 

A second problem noted is the lack of resources from the university 
to offer courses and related limitations on the number of a faculty 
who can offer courses. What do you see as possible solutions to 
these problems? 

Which of these might help: 
• On-going funds the college or university to “buy” courses 

from other faculty to release them to teach a 
computational science course 

• Funding for adjunct (is this the right word) faculty from 
industry to teach or co-teach some of the courses 

• Sharing course instruction with other institutions using 
distance learning infrastructure 

Several programs require an internship or research experience as 
part of their programs. Does your program have such a 
requirement? What do you see as problems managing this 
program? How might these problems be overcome? 

• Deeper connections with businesses that use 
computational science to employ your students as interns 

• A central database of internship opportunities at a 
national scale University program for undergraduate 
research opportunities
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ABSTRACT

Medical micropumps that utilize Magnetic Shape Memory (MSM)
alloys are small, powerful alternatives to conventional pumps be-
cause of their unique pumping mechanism. This mechanismÐthe
transfer of luid through the emulation of peristaltic contractionsÐis
enabled by the magneto-mechanical properties of a shape mem-
ory alloy and a sealant material. Because the adhesion between
the sealant and the alloy determines the performance of the pump
and because the nature of this interface is not well characterized,
an understanding of sealant-alloy interactions represents a funda-
mental component of engineering better solid state micropumps in
particular, and metal-polymer interfaces in general. In this work we
develop computational modeling techniques for investigating how
the properties of sealant materials determine their adhesive proper-
ties with alloys. Speciically, we develop a molecular model of the
sealant material polydimethylsiloxane (PDMS) and characterize its
behavior with a model Ni-Mn-Ga surface. We perform equilibrium
molecular dynamics simulations of the PDMS/Ni-Mn-Ga interface
to iteratively improve the reliability, numerical stability, and ac-
curacy of our models and the associated data worklow. To this
end, we develop the irst model for simulating PDMS/Ni-Mn-Ga
interfaces by combining the Optimized Potentials for Liquid Sim-
ulations (OPLS) [21] force ield with the Universal Force Field [5],
and show promise for informing the design of more reliable MSM
micropumps. We also relect on the experiences of Blue Waters
Supercomputing intern Guevara (the irst author) to identify key
learning moments during the one-year internship that can help
guide future molecular simulation training eforts.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proit or commercial advantage and that copies bear this notice and the full
citation on the irst page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speciic permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/2/3

KEYWORDS

molecular dynamics, organic polymers, coarse-graining, magnetic-
shape memory alloys, magnetic-shape memory, materials science,
micropumps, BWSIP

1 INTRODUCTION

MSM micropumps (Figure 1) represent a new paradigm of microlu-
idic mechanism, enabling accurate delivery of luids over a wide
range of densities and pressures [33]. MSM alloys including Ni-Mn-
Ga enable such pumping through deformation under the inluence
of a magnetic ield, which inluences properties including twin mo-
tion deformation [38], strain [30], stress [29], magnetic and thermal
activation [4, 38], operating temperatures [11, 35], magnetic per-
meability [22], and electric resistivity [32]. These properties make
MSM alloys advantageous for use as actuators, channels, and pump
membranes. In the case of MSM pumps, the aim is to exploit a
localized constriction in the material (Figure 2) to encapsulate and
propagate the working luid against a sealant material as shown
in Figures 2 and 3. Polydimethylsiloxane (PDMS) gel is a common
sealant due to its low cost, bio-compatibility, moldability [8]. As
the alloy is actuated it pulls away from the PDMS sealant, allowing
luid to be drawn in through the inlet port. Subsequently, as the
luid-illed constriction propagates toward the outlet due to the
rotating magnetic ield, the sealant re-adheres to the Ni-Mn-Ga
surface, closing the inlet.

1.1 Simulations of Materials

The main focus of this manuscript is to advance understanding
of PDMS/Ni-Mn-Ga interfaces by investigating the adhesion char-
acteristics of the polymer sealant. Characterizing the nanoscale
interface between PDMS and Ni-Mn-Ga (as seen in Figure 3) is
challenging experimentally, so we use molecular simulations to
explore PDMS/Ni-Mn-Ga adhesion. Molecular models for PDMS
and Ni-Mn-Ga are individually available, but until this work no
model exists that combines and describes interactions between both
materials. Therefore, a focus of this work is creating this model.

A key component of the model is the łforce ieldž deined by
potential energy functions describing bonded and non-bonded in-
teractions between each type of particle in the system. Bonded
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Figure 1: Model of a Ni-Mn-Ga micropump, showing place-

ment of the MSM element, which is encapsulated in PDMS

sealant, below the inlet/outlet reservoir.

interactions are described as a set of constraints between bonded
pairs (bond), triplets (angle) and quadruplets (dihedral) of particles
that belong to the same molecule. Diferent forceields vary in the
functional forms used to model these constraints, so it is important
to keep in mind any conversion factors when mapping from one
forceield to another and when combining multiple forceields as
we do here. Small diferences in forceield parameters can give rise
to qualitatively diferent phase behavior and equilibrium structure
[1].

We base our model on the Optimized Potentials for Liquid Sim-
ulations - United Atom model [21] (OPLS-UA) and UFF [5] force
ields. There are several considerations to be made when construct-
ing a new model. For instance, while some polymer models can
describe how the conformation of a polymer chain evolves in a
pristine thin ilm, varying the number of chains in the simulation,
the average chain length, and polydispersity can strongly inluence
the interactions of the chains with themselves and other materials
in the system [26]. Also, many alloy models are parameterized for
a speciic crystal structure and unit cell lattice parameters that are
not necessarily transferable to other unit cells or crystallographic
planes. Finally, it is important to ensure that the forceields being
combined are compatible with each other. As an example, the non-
bonded Lennard-Jones interaction potentials used by Rappe et al.
[5] in UFF are parameterized based on general hybridization rules,
whereas Elliott and Akerson [7] rescale based on the bond dissoci-
ation energy, resulting in a thousand-times stronger interactions.
While both approaches are self-consistent in that they correctly
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Figure 2: Three side views of the MSM micropump element

illustrating the translation of the constriction along the c-

axis as the magnetic ield (H) is rotated. In a MSM pump,

luid is held between this constriction and the sealant mate-

rial.

describe the diference in interaction potentials between atoms de-
ined within, naïvely combining the two would lead to the Elliott

Figure 3: Schematic of a MSM pump interface showing the

pocket of luid bounded by the MSM and PDMS in transit

from the inlet to outlet port of the pump.
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forceield dominating. Care must therefore be taken when combin-
ing interactions from diferent forceields in the same simulation
volume and so we iteratively test our model as we proceed and
compare to observations in the literature to validate our work.

2 METHODS

We perform molecular dynamics (MD) simulations using HOOMD-
Blue [2, 10] onNVIDIATesla K20XGraphic Processing Units (GPUs)
at the Blue Waters supercomputer at the National Center for Super-
computing Applications [31] and P100 GPUs on our local cluster
łFryž.

2.1 Molecular Dynamics

MD simulations can eiciently sample the equilibrium structure
of molecular systems by iteratively calculating the forces between
neighboring particles and numerically updating positions using
velocity and force information over discretized time steps. Here we
employ the velocity-Verlet algorithm [1] and a tree-based neighbor
list [15] that provides performance beneits for the non-isotropic
systems studied here.

We perform MD simulations in the canonical (constant num-
ber of simulation elements N , volume V , and temperature T ) en-
semble. The number of time steps to relax to equilibrium and to
subsequently sample equilibrium microstates must be determined
empirically as they depend on the forceield, ensemble, and initial
conditions. The initial coniguration is speciied with an XML ile,
which describes all of the particle properties including position,
mass, atom type, charge, and velocity. The force ield is then used
to calculate the total force acting on each particle due to the in-
teractions with their neighbors, which becomes an acceleration of
the particle according to Newton’s second law of motion, F =ma,
which in turn updates the velocity of the particle for the time step,
which in turn updates the particle’s position. After particle posi-
tions are updated, these steps are repeated for each subsequent
time steps. Individual microstates (specifying instantaneous posi-
tions and velocities) are written to a trajectory ile (here, every
500 steps) as the simulation progresses. The trajectory is useful
for visualizing system evolution and for post-processing material
properties. Instantaneous potential energy and kinetic temperature
measurements are recorded to quantify equilibration and check for
unphysical behavior.

2.2 Computational Resources

The theoretical peak performance of K20X GPUs is 1.22 TeraFLOPS
(or 1.22 × 1015 loating-point operations per second) for double
(64-bit) precision performance and 2.9 TeraFLOPS for single (32-bit)
precision performance. P100 GPUs have a peak performance of 4.7
TeraFLOPS for double-precision performance and 9.3 TeraFLOPS
for single precision performance. When referring to the perfor-
mance of these GPUs, double and single precision refers to the
number of bits used to represent each loating point number used
in the calculations. Generally, for these types of molecular simula-
tions, single point loat precision is suicient for numerical stability
without compromising computational eiciency [2]. Each MD sim-
ulation performed herein used a single CPU core driving a single

GPU, using BlueWaters’ K20X and Fry’s P100 hardware. Simulation
benchmarking on both GPUs is presented in the Section 5.

3 MODEL

We specify the bonded and non-bonded PDMS interactions with
the OPLS-UA force ield. When running the surface interaction
simulations with Ni-Mn-Ga we describe the polymer-surface in-
teractions using UFF force ield and polymer-polymer interactions
with OPLS-UA. Surface-surface interactions are omitted from our
investigation, and the Ni-Mn-Ga degrees of freedom are not inte-
grated. This avoids modeling fast degrees of freedom of metallic
bonds, which would require additional force ields such as the Em-
bedded Atom Model [6] and more computational cost. Intrinsic
to this constraint is the assumption that surface luctuations are
negligible on polymer luctuation timescales. Here we describe the
implementation details of the two material models individually and
in combination.

3.1 Construction of PDMS

We construct PDMS topologies using the Avogadro [3] chemical
drawing software. Using the tool, we draw the repeating monomer
units (5 repeats shown in Figure 5), until reaching 20 (1.6 kDa), after
which end caps (Figure 4 are added).

Figure 4: Chemical formula for Polydimethylsiloxane

(PDMS) [8].

We then reine the 20-mer model from above in Jupyter notebook
[24] that utilize mBuild [23] and Foyer [17], toolkits for managing
molecule creation and forceields. In Figure 5 and Figure 6 each
sphere represents one United Atom (UA) simulation element. Each
UA simulation element represents a łheavyž atom such as Carbon,
Oxygen, or Silicon and its associated Hydrogens. This simpliication
accelerates sampling of the molecular dynamics without sacriicing
structural accuracy [12, 27, 28].

PDMS has been studied extensively in the literature, and there is
a wealth of information on possible simulation forceields. For this
investigation, we describe the non-bonded inter-molecular, and
bonded intra-molecular interactions of PDMS using parameters
obtained from the works of Frischknecht and Curro [9] and Tamai

et al [36]. The complete set of parameters is given in Table 1.
The bonded interaction parameters are described as parameteri-

zations of the following equations [9]:

Vb (r ) = kb (r − r0)
2 (1)

Va (θ ) = kθ (θ − θ0)
2 (2)
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Figure 5: 5-mer chain of PDMS built using a Jupyter note-

book, with energy minimized through Avogadro [3], and vi-

sualized with VMD [16]

Figure 6: 20-mer chain of PDMS visualized with VMD [16]

Vt (ϕ) = kt [1 + cos(nϕ)] and ϕ = π (3)

where Vb , Va , and Vt describe the pairwise bond, triplet angle, and
quadruplet dihedral potentials, and are functions of separation, r ,
in-plane angle, θ , and out-of-plane angle, ϕ, respectively. These
potentials are dependent on the constraint coeicients kb , kθ , and
kt , which are taken from the work of Frischknecht and Curro.

The non-bonded pairwise interactions were taken from Tamai

et al., describing the balance between short-range atomic repul-
sion and long-range Van der Waals attraction as a Lennard-Jones
potential:

V (r ) = −4ϵ

(

(

σ

r

)12
−

(

σ

r

)6
)

, (4)

where σ and ϵ control the shape of the interaction at varying sepa-
ration r , and are dependent on the types of atoms in the pair being
considered.

bonds ro[Å] kb [kJ/(mol nm2)]
Si-O 1.647 146490.2

Si-CH3 1.866 79337.0
angles θo[rad] kθ [kJ/(mol rad2)]
Si-O-Si 2.547 59.162
O-Si-O 2.076 395.388

CH3-Si-CH3 1.844 209.074
O-Si-CH3 1.875 209.074
dihedrals n kt [kJ/mol]
Si-O-Si-O 1 1.8828

Si-O-Si-CH3 3 0.083638
nonbonded σ [Å] ϵ [kJ/mol]

Si 3.385 2.4480
O 2.955 0.8493

CH3 3.786 0.7532
Ni 2.522 0.2510
Mn 2.635 0.2176
Ga 3.901 6.9454

Table 1: Potential Parameters for PDMS and Ni-Mn-Ga [5, 9,

36]

Figure 7: Unit cell of Ni-Mn-Ga with lattice parameters for

a Non-Modulated (NM) crystal, visualized using VMD [16]

As per the molecular dynamics algorithm, interaction forces
are calculated at each discrete time step (δ t). For our initial PDMS
simulations, we use δt = 0.001 fs. After calibrating our model,
we found we could increase this time step without resulting in
numerical inconsistencies. Therefore, for the inal PDMS simulation
and for all the interface simulations, we use δt = 1 fs. The increase
in simulation time step is beneicial as it permits a longer period of
material simulation per minute of elapsed łwall-clockž time.

3.2 Construction of Ni-Mn-Ga

We use Avogadro [3] to construct the Ni-Mn-Ga surface, as it in-
cludes crystallography tools to position the atoms of the unit cell.
We employ lattice constants

a = b = 0.546 nm

c = 0.658 nm.

as speciied in Sozinov et al. [34].
The atomic coordinates themselves are taken from Hickel et al.

[13]. The resulting unit cell of Ni-Mn-Ga, as shown in Figure 7, is
then used as a building block for surfaces of varying sizes based on
arranging multiple cells in a lattice, the size of which can be easily
tuned as an input.

We employ UFF developed by Rappé et al [5] to provide inter-
action parameters for PDMS with Ni-Mn-Ga. However, because
UFF lacks bonded constraint parameterizations for PDMS we must
simultaneously employ OPLS-UA and UFF to simultaneously model
surface-PDMS and PDMS-PDMS interactions. This is the irst work
to our knowledge to combine these force ields to investigate PDMS
on Ni-Mn-Ga. The complete list of nonbonded interaction parame-
ters for Ni-Mn-Ga used in our investigation can be found in Table
1.
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4 DATA WORKFLOWS

Key open-source software packages used in this work include:
mBuild [23], Foyer [17], MorphCT [18, 20], and Rhaco [19]. mBuild
and Foyer are MD toolkits developed by the Molecular Simulation
Design Framework team, aiding molecule building and atom typ-
ing, respectively, used here to create XML iles input into HOOMD.
MorphCT and Rhaco are used for checking periodic particle image
information and initializing molecules on surfaces. As part of this
work, Rhaco was generalized in order to accept a Ni-Mn-Ga unit
cell as the surface template allowing us to initialize PDMS in its
vicinity and to control the MD simulation of these two materials.

Therefore, the key contributions of this paper are the following:

• MSMśPolymer Simulations -
These are the irst MD simulation of Ni-Mn-Ga with PDMS.
This work also difers from prior MSM work that focuses on
twin boundary movement within the alloy and the mecha-
nisms by which this occurs. This paper reports the simulated
interactions of this alloy with PDMS.
• Educational Value (J.Guevara) -
Working on this project has exposed me to many areas of
both research and Computational Science, from learning
how to gather the necessary data to begin simulations, to
knowing how to collaborate with others. I gained signiicant
experience in how to use Python for scripting, programming,
and statistical analysis, as well as signiicant knowledge on
the interaction of organic polymer and metal interfaces from
a molecular standpoint. Furthermore, this experience has
made me want to continue to pursue, and learn more about,
High Performance Computing.

5 RESULTS

5.1 Performance

Initial PDMS simulations containing 7,120 particles took 45 minutes
to complete 107 time steps on Blue Waters XK nodes (over 3,700
time steps per second (TPS)).These simulations informed additional,
larger simulations on P100 GPUs on Fry. With P100 cards, we
perform simulations of 36,900 particles at 3,600 TPS ś a factor of 5
increase in system size with similar run time. In total, we submitted
60 pure (łneatž) PDMS jobs (25 on Blue Waters and 35 on Fry) and
14 jobs with PDMS/Ni-Mn-Ga interfaces (all on Fry) for a total of
33 hours and 14 minutes of wall clock time for simulations with
analyzable trajectories. We estimate many hundreds of unsuccessful
simulation jobs were submitted (unphysical initial conditions, δt
too large, missing packages in the software stack, etc).

5.2 Neat PDMS

Neat PDMS systems containing 80 20-mer chains (7,120 particles)
are simulated using HOOMD for 105 time steps at a temperature of
T = 294 K. However, for transferability of simulations and numeri-
cal accuracy, HOOMD records the temperature in reduced units,
T ∗, based on a reduced energy scaling parameter, ε . For the initial
PDMS volumes ε = 0.585 kcal/mol. The following equation can be
used to map between the real and dimensionless temperatures:

T ∗ =
kBT

ε
, (5)

where kB is Boltzmann’s constant. We encountered some issues
simulating our initial PDMS volumes, which are detailed in Sec-
tion 7.1.

Figure 8 shows the simulation temperature, nonbonded potential
energy, and total potential energy for our PDMS system after ixing
issues corresponding to volume packing, image, and interaction
parameter corrections. The kinetic temperature (8a) equilibrates
quickly, with non-periodic temperature luctuations of around 20-
30K. Additionally, the potential energies presented in 8b and c
exhibit a roughly-exponential relaxation as molecules reorganize
into free energy minimizing conigurations, followed by a period
of constant average energy signifying equilibration of the system.

Another useful tool for analyzing the output of our simulation
is the visualization software VMD (Visual Molecular Dynamics)
[16]. VMD allows us to view the trajectories, helping to understand
how the system evolves over time and what the inal relaxed sys-
tems looks like. Visualizing the inal trajectory can provide useful
insights into any issues with the initialization of our simulations,
or any bugs in the code, as described in Section 7.1.

5.3 PDMS with Ni-Mn-Ga Surface

Several issues needed to be addressed before equilibrated PDMS
on Ni-Mn-Ga conigurations could be sampled (Section 7.1). After
ixing these bugs, we perform simulations of 100 PDMS chains in
the presence of a 20x20x1 unit cell Ni-Mn-Ga slab at 294K. These
simulations took around 40 seconds to simulate 104 time steps, and
around 45 minutes to simulate 107 time steps - a similar wall-clock
time to those noted in our initial neat PDMS tests. The resultant
simulation trajectories after are shown in Figure 9. We also present
the temperature and potential energy evolution of the simulations
in Figure 10, demonstrating the small non-periodic luctuations
in both, and the eventual equilibration of the system according
to the potential energy. That the kinetic temperature, nonbonded,
and total energies all independently stabilize after ≈2 ns supports
our interpretation that these systems reach equilibrium (or at least
a metastable state). The PDMS is observed to quickly aggregate
(within the irst 50 frames of our visualization) and then sticks to
the surface to form a ilm over the alloy layer.

To test our simulation model and Rhaco further, we simulate
the same system at a higher temperature: 500 K (approx. 227◦C).
The increased thermal energy should translate to an increase in
the speed at which the PDMS atoms move. Additionally, since
the boiling point of PDMS is around 473 K, we would expect the
vaporization of the polymer, leading to it illing the simulation
volume rather than forming a liquid ilm at the alloy surface. Indeed,
the visualization of the simulation shows the molecules interacting
faster with each other, and Figure 11 shows the PDMS illing the
simulation volume and adhering less to the alloy at 500 K compared
to 294 K. Figure 11 also shows a rather visually drastic change in
the PDMS, however the chains do stick together and seem far more
drastic since we are compressing 105 - 107 timesteps into a much
shorter 500 simulation frames during visualization. Figure 12 shows
the equilibration of the temperature and potential energy of the
high-temperature system. Note that the luctuations are larger and
the system equilibrates sooner than in the liquid case at 294 K.
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Figure 8: Energy proiles for an 80 20-mer volume of PDMS, for the same simulation temperature, kBT = 1, approximately 500

K. Potential energies (both Lennard-Jones and total) are per mole.

6 DISCUSSION

The inal model presented here permits the equilibration and sam-
pling of PDMS on Ni-Mn-Ga eiciently across a range of state
points. Identifying this model required iterative testing checking
for artefacts including periodic oscillation of temperature, or inac-
curate combinations of forceields. Early test showed that PDMS
did not adhere as the sealant on the alloy, instead aggregating away
from the surface (Section 7.1). The inal model instead shows the

Figure 9: First time step (top) and the contrast of the 20th

time step (bottom-left) and the last time step (bottom-right),

of our interface.

two materials to attract and permits surface structure to be investi-
gated, therefore providing a starting point for understanding the
sealant-alloy interface.

We now turn to comparing our simulation results to literature,
in order to validate our model’s accuracy. While there are not to our
knowledge experimental values of PDMS and Ni-Mn-Ga surface
energies to compare against there have been molecular investiga-
tions with PDMS interacting with other materials. Comparisons of
molar energies and surface energies with such studies, despite their
diferences, provide useful benchmarks for future improvements to
the present work. For instance, the work of Liu et al. [25] shows the
MD simulation of PDMS interacting with a Zeolite (ZSM-5) surface
using the COMPASS force ield. We note that ZSM-5’s structure
is dissimilar to Ni-Mn-Ga, however we are interested in the fact
that this is an MD simulation of PDMS with another material for
which energy values are provided in a manner that we can eas-
ily calculate and compare to ours. In the manuscript, the authors
report the total nonbonded interaction energy of PDMS as being
-1885.6 kcal/mol. This interaction energy is a total energy of the
system as a whole, in contrast to the energies per mole reported in
Figures 10 and 12. Reporting energies per mole allows for a direct
comparison between the 7,120 particle PDMS-only simulations and
the 21,700 particle combined PDMS Ni-Mn-Ga simulations. The
simulations in Liu et al. contain ive chains, each made up of four
repeating units, which we calculate to contain 235 total atoms in
the system. The per-atom PDMS nonbonded potential energy from
Liu et al. is therefore 8.02 kcal/mol, which is in good agreement
with our simulated value of 2.6 kcal/mol for our simulated volume
of PDMS by being within the same order of magnitude. We would
not expect our non-bonded values to align perfectly, given that
the biggest diference in simulation is the simulation temperatures:
303K for Liu et al. vs. 500K for ours. We can perform similar anal-
ysis for the PDMS-Zeolite simulations, according to the reported
total nonbonded potential energy of -13073.4 kcal/mol. Using the
same number of atoms, and an estimated 288 atoms present in the
authors’ Zeolite unit cell, we obtain a per-atom nonbonded PDMS-
Zeolite potential energy of 25.00 kcal/mol, which is within a factor
of two of the 14.62 kcal/mol energy calculated from our simulations.
We also note a consistent ratio between the neat PDMS interaction
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Figure 10: Energy proiles for our Ni-Mn-Ga−PDMS interface at a set simulation temperature of 294K. Both potential energies,

Lennard-Jones and total, are per mole.

energies and the surface energies in our work compared to Liu et al.
The ratio of PDMS-Ni-Mn-Ga interaction energies to neat PDMS is
5.6. Similarly, the ratio between PDMS-Zeolite interaction energies
and neat PDMS in Liu et al. is 3.1. The similarity and order-of-
magnitude quantitative agreement in these calculated energy levels
lends additional conidence to our hybrid OPLS-UA/UFF forceield,
while providing additional versatility over COMPASS by parame-
terizing interactions between any elemental atoms in the periodic
table. Furthermore, it must be noted that the substrates in the sim-
ulations of Liu et al. and ours, Zeolite and Ni-Mn-Ga respectively,
are dissimilar which is why despite the energy ratios not being the
same, the fact that they’re within an order of magnitude gives us
conidence that our model is within the realm of credibility. This

Figure 11: Progression of our interface model at a tempera-

ture of 500 K. First frame (top-left), 100th frame (top-right),

250th frame (bottom-left), and inal frame (bottom-right).

We observe PDMS self-aggregating at less 500 K than at 294

K (Fig. 9), as expected.

is not to say that the model cannot be more inely tuned to more
closely yield results to those of Liu et al., but rather that by being
within such a factor and order of magnitude our simulation does
not, at this current irst glance, require more than some parameter
modiications as opposed to a full rebuild. Tsige et al. [37] present
a similar simulation of neat PDMS, containing 100 20-mers of the
elastomer with SiO2. This simulation is important, not because of
the substrate, but rather because the PDMS used in this simulation
covers the exact same chain length and number of chains as our
simulation, making it another great point of reference. The authors
report a nonbonded potential energy of 6 kcal/mol at a separation
of 4 Å, in good agreement with the current model. This is to say
that this reported value lies within the range of nonbonded values
that we see in our model: 2.6 kcal/mol for PDMS by itself and 14.62
kcal/mol for PDMS−Ni-Mn-Ga, where our metal substrate has more
of an inluence than SiO2.

Being able to simulate PDMS and Ni-Mn-Ga together opens up
signiicant opportunities for future study, from both HPC and ma-
terials science perspectives. We can continue to hone our toolkits
and algorithms to yield more eicient and accurate simulations,
reducing computational cost while maintaining good quantitative
agreement with experiment. From a materials viewpoint, the model
demonstrated here provides an excellent staging ground for under-
standing surface-sealant interactions for micro-electro-mechanical
systems, guiding manufacturing processes and focussing future
experimentation eforts.

7 INTERNSHIP REFLECTION

To meet the JOCSE aim of improving computational science educa-
tion, we relect on pivotal learning moments over the course of the
Blue Waters Student Internship Program (BWSIP).

A problem that can arise through these simulations comes when
particles are too tightly bound within a simulation space. If the
user doesn’t take care in adjusting time steps and integrator time
constants to control thermostatting, numerical instabilities can
result in unphysical particle displacements (sometimes referred to
as the simulation łexplodingž).
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Figure 12: Energy proiles for our Ni-Mn-Ga−PDMS interface at a set simulation temperature of 500K. Both potential energies,

Lennard-Jones and total, are per mole.

Figure 13: Larger time steps advance simulations faster. (top

row) After the irst time step δt = 10−3 fs (left) and δt = 1 fs
(right). (bottom row) inal snapshots after 103 steps.

7.1 Troubleshooting

After the two basic structures for our PDMS molecule, and our
Ni-Mn-Ga alloy, were inished they were then put into simulations.
Previously, it was mentioned that PDMS was chosen to be con-
structed irst, as it would allow for better early testing. This testing
was not only meant to be of the material, but also of the code we
wrote to initialize and perform these simulations. Over the course of
the last year many issues were resolved with the PDMS simulations,
the biggest of these problems being the following:

7.1.1 Timestep Selection. In Figure 13 we can see a problem
resulting when the time step is too small. The snapshots in the left

column show after the 1st (top) and 1000th (bottom) step when
δt = 0.001 fs. The snapshots in the right column show after the 1st
(top) and 1000th (bottom) step when δt = 1 fs. Even after the irst
snapshot there is a visible diference between th 0.001 fs and 1 fs
cases, and after 1000 steps the 1 fs case shows PDMS aggregating
while the 0.001 fs case has now changed. Here, a step size of 0.001
fs is so small that position changes fall below the rounding thresh-
old in 32-bit precision addition during integration, and the system
is essentially frozen. Visualizing the trajectory quickly identiies
this problem, but such a problem may go undetected if not visual-
ized because the 0.001 fs system is numerically stable and quickly
łequilibratesž.

7.1.2 Image Correction. To enable a inite number of particles
to represent bulk interfacial areas, periodic boundary conditions
are employed. These boundaries are not boundaries: when a simu-
lation element moves out of the left-hand face of the box, it enters
again from the right, and particle interactions are considered across
periodic boundaries along each axis. HOOMD therefore needs to
keep track of which periodic image that the particle is in, in order
to calculate how far it has traveled in the system. Initially, every
particle in the system is located in the original simulation volume
and has image indices [0, 0, 0]. However, our initial XML iles did
not contain these indices even after we had established the other
parameters in our XML, leading to numerical instabilities in our
simulation. This problem was solved through by using MorphCT
to manipulate our initial XML ile to obtain the correct formatting
for HOOMD.

7.1.3 Coeficient Correction. When trying to simulate a larger
volume of PDMS from the molecules we irst produced, an error
with the bond, angle, and dihedral coeicients was encountered:
They were missing from the XML ile. Without these coeicients,
the conformational structure of PDMS could not be maintained and
the atoms in the molecules would act as if they were not bonded
to anything. This would undoubtedly lead to incorrect particle
trajectories and unreliable results about the interaction of PDMS
with the Ni-Mn-Ga surface. This problem was solved by using
mBuild’s builder package to populate the bond, angle, and dihedral
coeicients accordingly based on a neighbor list it created for each
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of the particles present in the system. Furthermore, we also needed
to rescale the system in order to correct incorrect, and inconsistent,
distances along with the energy that the system takes in from the
forceield used.

In the initial surface simulations, we noticed very strong polymer-
polymer interactions but signiicantly weaker polymer-surface ad-
sorption as shown in Figure 14. At irst this was attributed to PDMS
desorbing over long timescales. Further investigation revealed that
a UFF unit conversion problem resulting in negligible interactions
between the PDMS and the Ni-Mn-Ga. Reworking the potential
parameters to the units Rhaco expected resolved this issue: After
the OPLS-UA and UFF potentials were calibrated, PDMS integrated
was successful and adsorption onto Ni-Mn-Ga was observed.

7.1.4 Volume Packing. This problem presented early on when
trying to produce a sample volume of PDMS where the number
of molecules being packed into our early systems exceeded the
size of the system itself. This then would continuously lead to our
simulations łexplodingž - a colloquial term used when atoms are
placed so close to each other that they experience strong repulsion
from the Lennard-Jones equation, often many orders of magnitude
greater than the forces expected throughout the rest of the system.
The large forces lead to large velocities of particles, and in a single
time step an atom can move distances many times larger than the
simulation volume, causing the program to crash. This issue was
resolved by changing our input of molecules by using an reduced
number, this then let mBuild pack our molecules at a lower density
than the physical material.

7.1.5 Integrator ringing. The evolution of the system tempera-
ture in Figure 15 for this initial simulation shows that the simulation
needs to run for at least 100,000 time steps in order for it to sta-
bilize around the set point. Additionally, periodic łringingž of the
temperature can be observed, as the thermal energy of the system
oscillates around the set point. HOOMD regulates its temperature
through the use of the Nosé-Hoover thermostat [14], which couples
to an ininite thermal bath and injects (removes) thermal energy to
(from) the simulation by increasing (decreasing) the velocities of the
atoms in the simulation, regulating its temperature. The strength of
this coupling can be modiied using the parameter τ . Selecting an

Figure 14: End state of initial testing of PDMS and Ni-Mn-Ga

through the use of Rhaco

appropriate τ is extremely important to avoid unphysical ringing
from the integrator. If τ is too high, then the timescale of energy
control is large and initial deviations from the set point may take
millions of steps before stabilizing. If τ is too low it permits the
integrator to łovershootž the set point, and the ringing seen above
occurs as the integrator iteratively removes and adds kinetic energy
over short times, oscillating about the setpoint. Periodic oscillations
of the temperature are indicative of an unbalanced τ value, and
it is important to modify tau incrementally to obtain consistent,
random luctuations around the set point temperature.

In addition to having a stable temperature, the stability of the
potential energy of the system is also important for molecular
dynamics simulations. As the molecules relax in the system, the
potential energy decreases as the simulation attempts to ind the
global minimum of free energy (balancing potential energy mini-
mization with entropy maximization and therefore the most likely
conformations of molecules thermodynamically). When the po-
tential energy no longer evolves, the equilibrium energy has been
found. Generally, small systems and those at high temperature
equilibrate quickly, whereas larger systems or those at low tem-
perature can take millions of time steps for the potential energy
to stop evolving. It is therefore imperative to consider both the

Figure 15: Energy plots for our initial 5-mer chain. Temper-

ature/Kinetic (top), and Potential (bottom)
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temperature and the potential energy before reporting structural
or energetic results for a molecular dynamics simulation.

As an example, initial simulations of the PDMS and alloy yielded
some promising results, as shown in Figure 16 for a system of 36,100
particles. However, the temperature proile of the simulation also
demonstrates integrator ringing. This indicates that the value of τ is
unbalanced, and could also suggest that longer runtimes are needed
for this simulation. In fact, on further review, these data identiied
a critical bugs in Rhaco. While Rhaco was successfully able to gen-
erate the interface observed in Figures 16 and 14, the conversion
calculation between the dimensionless simulation temperature and
the real temperature in Kelvin was incorrect and needed to be ixed.
This error arose from the surface atoms being assigned initial ve-
locities, even though those atoms were omitted from the integrator
and never actually moved in the simulation. The additional kinetic
energy in the system was interpreted as an increased temperature,
ofsetting our reported temperatures by several hundreds of Kelvin.

Figure 16: Initial testing of the PDMS-Ni-Mn-Ga interface

showing some attempt at temperature stabilization.

8 CONCLUSIONS

While being able to fully simulate the interaction of PDMS and Ni-
Mn-Ga alloy inside of a microluidic pump is a signiicant challenge,
we here demonstrate the irst steps towards achieving that goal. We
develop and present a successful model and toolkit for simulating
the interactions of the sealant at an alloy surface. Our model is
versatile in terms of input parameters, allowing us to test systems
of diferent sizes, PDMS densities, alloy thickness, and processing
temperatures, and can be easily extended to include additional ma-
terials such as solvents and dyes in the simulation volume. For
the future we hope to develop additional analysis tools that can
calculate surface energies more rigorously, include additional in-
frastructure to simulate twin-boundary dislocations in the alloy
and ascertain the efect this has on the PDMS adsorption, as well
as identify other, superior sealant candidates for this application.
Pedagogically, this has been a great introduction into High Perfor-
mance Computing (HPC) and computation in general, especially in
how to best optimize code: The original simulation code took 40-45
minutes to produce a trajectory for a relatively small amount of
neat PDMS, whereas the inal tool could simulate the interactions
large amounts of both PDMS and Ni-Mn-Ga alloy in approximately
the same wall-clock time, representing a simulation time of several
nanoseconds. Although my allocation on Blue Waters has come to
an end for this project, the lessons learned over my time working
with this system will deinitely aid JG in the future, be it in contin-
uing with this work, testing diferent versions of this interface, or
with HPC as a whole.
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ABSTRACT 
Severe weather outbreaks come with many different hazards. One 
of the most commonly known and identifiable outbreaks are those 
with tornadoes involved. There has been some prior research on 
these events with respect to lead time, but shifts in model 
uncertainty by lead time has yet to be quantified formally. As such, 
in this study we assess tornado outbreak model uncertainty by lead 
time by assessing ensemble model precision for outbreak forecasts. 
This assessment was completed by first identifying five major 
tornado outbreak events and simulating the events using the 
Weather Research and Forecasting (WRF) model at 24, 48, 72, 96, 
and 120-hours lead time. A 10-member stochastically perturbed 
initial condition ensemble was generated for each lead time to 
quantify uncertainty associated with initialization errors at the 
varied lead times. Severe weather diagnostic variables derived from 
ensemble output were used to quantify ensemble uncertainty by 
lead time. After comparing moment statistics of several convective 
indices, the Energy Helicity Index (EHI), Significant Tornado 
Parameter (STP), and Supercell Composite Parameter (SCP) did 
the best job of characterizing the tornadic outbreaks at all lead 
times. There was good consistency between each case utilizing 
these three indices at all five lead times, suggesting outbreak model 
forecasting confidence may be able to extend up to 5 days for major 
outbreak events. These results will be useful for operational use by 
forecasters in forecast ability of tornadic events. 

Keywords 
Tornado outbreaks, stochastic initial condition perturbation, 
numerical weather prediction, ensemble forecasting 

1. INTRODUCTION 
Tornado outbreaks are one of the premier atmospheric phenomena 
that cause substantial damage across the United States each year. 
While considerable research has been performed on these outbreaks 
[1, 2, 3], many questions remain regarding outbreak predictability 
and model uncertainty at increasing forecast lead time. 

 

 

Previous research defines a tornado outbreak as ten or more 
tornadoes associated with a single synoptic-scale system and 
confined to a specific geographic area [1]. Importantly, 73% of 
deaths associated with historic tornadoes were associated with 
tornadic outbreak events [1]. On average, over 1,000 tornadoes 
occur across the United States each year (NCDC), a majority of 
which are associated with outbreaks. Additionally, tornadoes have 
the highest ten-year average fatality rate among weather related 
hazards from 2008 to 2017 [5]. 

Given the hazardous nature of tornadic events, forecasting of these 
events several days in advance is vital. Frequently, convective and 
kinematic indices are utilized to quantify outbreak characteristics 
and predict outbreak mode at varying lead times [3]. Many previous 
studies have studied short and medium-term outbreak model 
uncertainty using these indices [3, 6, 7, 8, 9, 10]. Research has 
shown that there is a statistical drop off in forecast skill at lead times 
of 72 hours or longer [7], which is typical in most forecasting 
research. Keeping these limitations in mind, little research has been 
conducted looking beyond 72 hours in advance of tornadic 
outbreaks. 

Recently, improvements in numerical weather predication models 
such as the Weather Research and Forecasting model (WRF) have 
resulted in improved forecasts of tornado outbreaks [9]. Such 
improvements result from prior knowledge and pattern recognition, 
and the availability of the WRF to reproduce historic major events 
has helped forecasters identify important meteorological details in 
these events. Thompson and Edwards [11] recognized that large 
scale outbreaks may not be as evident through numerical model 
output as previously thought. Their work showed that forecasts 12 
to 24 hours in advance of the major 3 May 1999 tornado outbreak 
relied heavily on poor model output, which led to greater forecast 
uncertainty. An additional study, [12] relied on the WRF model to 
conduct similar case study research at varying lead times, noting 
forecast uncertainty increases with lead time. This suggests more 
work into model uncertainty is needed at both short and medium 
lead times. Clearly, a need for improved understanding of model 
uncertainty in tornado outbreak forecasts exists. 

The objective of this research is to quantify uncertainty in tornado 
outbreak convective indices by lead time, which in turn will allow 
forecasters to have greater confidence when forecasting major 
tornadic outbreaks. Uncertainty quantification via ensemble 
modeling is a primary way to assess predictability as increasing 
ensemble spread relates directly to reduced model precision. 
Following the methods of previous research [13], five major 
tornado outbreaks were selected and WRF simulations conducted 
at lead times of 24, 48, 72, 96, and 120-hours were completed. 
Previous work suggests that short-term forecast uncertainty will be 
significantly less than medium-term (96 to 120 hour) forecasts, 
which is the primary hypothesis of this study. 
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This student paper summarizes the purpose and results from 
research conducted through the Blue Waters Student Internship 
Program. Through this program, computational resources were 
utilized via the Blue Waters supercomputing facility. Section 2 will 
describe the data and methods utilized in this study as well as the 
computer and statistical modeling that aided in this research. 
Section 3 will discuss findings from this research at varying lead 
time intervals and the education impact related to this research. 
Additionally, this section will discuss the overall student goal and 
challenges associated with this study. The 4th section will refer to 
reflections and discussion about what the student learned through 
this research and the computing knowledge the student gained 
through this program. Section 5 will highlight the summaries and 
draw conclusions from this study and highlight the needs of future 
research. 

2. DATA AND METHODS 
2.1 Data 
As the primary goal of this research was to analyze the importance 
of lead time for tornadic severe weather outbreak forecasting, five 
major tornado outbreaks were selected from the Storm Event 
database [14] from the National Climatic Data Center. A major 
tornado outbreak was selected based on the number of tornadoes 
produced and overall damage extent of such tornadoes. Each of the 
five cases produced millions of dollars in damage, had several 
large, significant tornadoes, and frequently resulted in multiple 
deaths. Table 1 displays such statistics for each of the five outbreak 
cases [15-19]. 

 
Table 1. Displays of case date and statistical information for 

all five tornado outbreak cases utilized within this study 

 

A robust database of three-dimensional meteorological analyses 
was required to complete WRF simulations on the five outbreaks. 
Given the spatial scale of the outbreak events and the dates of the 
events, data was obtained from a mesoscale reanalysis analysis 
dataset, the North American Regional Reanalysis [20]. The NARR 
are provided on a 32-km Lambert conformal North American grid 
with 3-hourly temporal resolution and 29 vertical levels, spanning 
1979 to present. NARR fields were retained such that lead times of 
24, 48, 72, 96, and 120 hours could be simulated using the WRF. 

2.2 Model Configuration and Simulations 
In this study, the WRF model was used to formulate the outbreak 
forecasts at varying lead times. The WRF is highly configurable, 
and in this study the configuration was kept consistent with 
previous research [13]. In particular, the WRF was configured 
using the WRF Single-Moment six class microphysics scheme 
[21], the Grell-Freitas convective scheme [22], the Yonsei 
University boundary layer scheme [23], the Rapid Radiative 
Transfer Model radiation scheme for longwave [24], and the 
Dudhia scheme [25] for shortwave radiation. 

The WRF model (version 3.9) was utilized to run simulations of 
five tornadic outbreak events listed in Table 1. Since the primary 
goal of this research was to relate outbreak lead time intervals to 
forecast uncertainties as it relates to short and medium-term 
forecasting of tornadic outbreak events, each case was run at the 
five previously described lead time intervals. In this study, the 
simulation period was established by defining the end of the 
outbreak as 1200 UTC the day after the event. Lead times were then 
taken relative to this time, so that a 24-hour forecast started at 1200 
UTC the day of the event, and so forth. All outbreaks had a peak 
activity time between 2100 UTC and 0600 UTC, meaning this 
simulation period sufficiently captured the active tornadic activity 
during the event. 

Following the WRF simulations, severe weather diagnostics were 
computed on the simulation output, including Convective 
Available Potential Energy (CAPE), Significant Tornado 
Parameter (STP), Supercell Composite Parameter (SCP), Energy 
Helicity Index (EHI), and Storm Relative Helicity (SRH). CAPE 
and SRH are commonly utilized meteorological parameters for 
severe weather forecasting, where CAPE describes available 
thermodynamic potential energy (in J/kg) and SRH describes 
streamwise vorticity (in m2/s2) available to be tilted vertically and 
contribute to mesocyclone development. The remaining parameters 
were derived from a combination of SRH and CAPE. The three 
main equations discussed in further depth below are typically 
utilized with right-moving supercells, which is the predominant 
storm motion type within tornadic outbreaks utilized in this 
research. 

EHI combines CAPE and SRH into a single convective index: 
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Larger values of EHI are thought to be indicative of environments 
supporting large tornadoes and tornadic supercells. 

The STP is an index used to highlight the co-existence of 
ingredients favoring strong, damaging tornadoes [26]. This index 
was developed at the Storm Prediction Center to help identify 
meteorologically suitable regions for significant (EF2 or stronger) 
tornado activity [26]. The STP is given by: 
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Here, MLCAPE represents mixed-layer (ML) CAPE, a measure of 
CAPE derived from a parcel originating from a well-established 
mixed-layer. ESRH represents the SRH computed over the 
effective inflow layer [26]. EBWD represents the effective bulk 
wind difference (the wind vector difference between the top and 
bottom of the effective inflow layer). MLLCL represents the lifted 

Date Total # of 
Tornadoes 

EF/F 3+ 
Tornadoes Deaths Damage 

(millions) 

10 
April 
1979 

29 5 50 63 

28 
March 
1984 

24 12 57 600 

31 
May 
1985 

43 14 89 600 

3 May 
1999 75 9 46 1500 

17 
June 
2010 

74 8 4 100 
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condensation level of a parcel originating from the mixed layer. 
Smaller MLLCL values (ideally less than 1000 m) are typical in 
tornadic environments. Finally, MLCINH represents the mixed-
layer (ML) convective inhibition (CINH), which is needed to 
inhibit early-morning convection and create a buildup of boundary 
layer potential energy for afternoon explosive convective 
development. 

The SCP is also a commonly used parameter in forecasting tornadic 
outbreak events, as it was developed to highlight areas where 
supercell development is favorable [26]. SCP was developed at the 
Storm Prediction Center in Norman, Oklahoma as well. The 
equation is as follows: 
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Here, MUCAPE represents the most-unstable (MU) convective 
available potential energy (CAPE), based on the most unstable 
parcel in the lowest 300 mb of the atmosphere, and all other terms 
have been defined previously.  

2.3 Simulation Analysis 
To quantify forecast uncertainty, a spread in the forecast output was 
required. This spread was obtained by using the Stochastic Kinetic 
Energy Backscattering Scheme (SKEBS) [27] within the WRF 
configuration. The SKEBS provides initial condition perturbations 
to potential temperature and streamfunction values, essentially 
introducing random thermodynamic and kinematic noise into the 
model boundary conditions, which in turn creates model spread as 
the simulation progresses. Here, ten simulations for each case and 
lead time (a total of 250 simulations for all cases, perturbations, and 
lead times) were completed to assess WRF output uncertainty in 
the severe weather diagnostic fields. Uncertainty and distribution 
shape among the 10 perturbed simulations was identified through 
moment statistics (mean, variance, skewness, and kurtosis). The 
ten-member ensemble output was bootstrap-resampled 1000 times 
for each forecast timestep and moment statistics were formulated 
on the bootstrap replicates. The median bootstrap replicate for each 
moment statistic was then retained to assess ensemble member 
performance. The results are described below. 

3. DISCUSSION AND LESSONS LEARNED 
(EDUCATIONAL IMPACT) 
The primary goal of this study was to quantify uncertainty within 
tornado outbreak simulations with increasing lead time (24, 48, 72, 
96, and 120-hours). A multi-member stochastic perturbation initial 
condition ensemble was used to create simulation uncertainty, 
while outbreak characteristics were quantified using various severe 
weather indices. Overall, several indices stood out compared to 
other indices which aligned with previous research [7, 9]. SCP, 
STP, and EHI appear to be three of the convective indices that 
seemed to have the smallest uncertainty for on tornadic outbreak 
events at varying lead times, as indicated by the moment statistics 
calculated for the five test cases. Thermodynamic indices such as 
CAPE had a much larger spread of data as compared to these three 
indices. The ensembles and moment statists for these three 
variables appeared to be more consistent and uniform. While 
previous research [3, 6, 7, 8, 9, 10] has shown some variations in 
these indices as you increase lead time, this study seemed to show 
more consistent results at all five lead times. Figure 1 shows 
moment statistics from the May 3, 1999 tornado outbreak case 
utilizing the SCP guidance. For this case, peak outbreak time 
occurred at 00Z on May 4th (denoted by the vertical bar in the 

figures). At this time, all five lead time mean intervals peaked at 
nearly the same SCP value and provided minimal positive 
skewness and some leptokurtic behavior, suggesting a gamma-
distribution type shape to the ensemble members that was 
consistent among all lead times.  

 
Figure 1. The four moment statistics (mean, standard 

deviation, skewness, and kurtosis) for the May 3, 1999 case 
are shown. All four moment statistics show similar results 

across all five lead time intervals. The only outlier is the 24-
hour lead time in the skewness and kurtosis plots, which could 

be due to the small amount of time as compared to the 
remaining four lead time intervals. Peak outbreak time is 

represented by the vertical black line. 

 
These results suggest uncertainty remains consistent by lead time 
for these events, suggesting similar predictability at 120 hours 
exists at 24 hours. 
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Kinematic indices such as SCP, STP, and EHI appear to be more 
beneficial in medium-term forecasting of tornadic outbreak events. 
These three indices had similar distribution characteristics at all 
five lead times and had the smallest spread, suggesting high 
ensemble precision in the kinematic fields, as shown in Figure 2. 

 
Figure 2. Standard Deviation (SD) statistics for all five 

tornadic outbreak cases in order of: April 10, 1979, March 28, 
1984, May 31, 1985, May 3, 1999, and June 17, 2010 outbreak 
cases. Peak outbreak time is displayed by the vertical black 

line in each graph. 

 
These results are not surprising as kinematic fields within tornado 
outbreaks are typically governed by the highly predictable 
synoptic-scale background flow patterns. Interestingly, the only 
major differences were observed in the 24-hour ensemble forecasts, 
suggesting predictability above 24-hours lead time remains 
consistent for tornado outbreak events. Thermodynamic indices 

exhibited more variability, but the general trend of 48-hour lead 
times and beyond performing consistently remained intact. 

This research was conducted through the Blue Waters Student 
Internship Program which utilized the Blue Waters supercomputing 
center. Through this program, the student was exposed to high-
performance computing research in the atmospheric sciences and 
gained many valuable educational lessons. For example, the student 
learned that scientific research requires flexibility in the research 
timeline. On numerous occasions timelines were altered to allow 
for unforeseen complications, including compilation issues, big 
data issues, and data transfers that took longer than originally 
anticipated. 

Along with the computation and educational lessons learned, the 
student gained valuable experience in big data problems, which are 
becoming the standard in atmospheric science research, particularly 
research involving numerical weather prediction. In particular: 

1. The student learned that computational resources must be 
modified at times to meet the needs of the research that 
is trying to be done. Due to a compilation issue, the 
student had to transfer all simulation output between an 
in-house computer and the Blue Waters system for post-
processing. This required tedious organization to ensure 
all cases were stored and post-processed properly and 
required some cases to be redone. The in-house computer 
was also a shared resource, which further hindered 
progress and required the student to be fully apprised of 
time and resource issues. 

2. Time management played a huge role within this 
research, particularly accounting for run-times of some 
of the longer simulations. Many of the outbreak 
simulations took hours to run, so the student needed to 
set up distinct times for running these codes and a lot of 
time to transfer the data between an in-house computer 
and the Blue Waters computer. Additionally, transferring 
the cases for post-processing added an additional time 
component that was not foreseen at the beginning of this 
research. 

3. The student gained valuable knowledge into the 
difficulties and limitations with tornadic outbreak 
modeling, as well as some of the meteorological 
advantages and disadvantages of diagnostic fields in 
outbreak research. While there are many convective 
indices that are utilized, and data can be collected for, not 
all of these indices are good at predicting such outbreaks 
at varying lead-time intervals. 

Despite these computational challenges, this research would not 
have been able to have been completed without the computational 
power provide by the Blue Waters supercomputing center. Each 
simulation required roughly 16 GB of RAM, and each simulation 
produced roughly 20 GB of output after post-processing (leading to 
a final output size for all cases exceeding 2 TB). The project would 
not have scaled well to systems at the student’s university and 
would have required much longer than one year to complete, simply 
owing to the volume of simulations required. 

4. REFLECTIONS 
With any undergraduate research project, student inexperience with 
research and computing can increase the difficulty in a successful 
outcome. While the research done through this project was 
challenging at times, the student gained valuable experience with 
programming and high-performance computing, equipping the 
student for future research in big data and supercomputing, 
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currently among the highest priorities in meteorological research. 
In particular, supercomputing has become highly prevalent in 
multiple public and private disciplines of atmospheric sciences. 
This research opportunity helped set the student apart from their 
peers by providing critical experience in a High-Performance 
Computing environment which will have further benefits as the 
student continues their education. The lessons and processes 
learned through this research will aid in the student’s graduate 
studies beginning this fall. This research, in conjunction with the 
Blue Waters Student Internship Program and Summer Experience 
has given the student diligent training and preparedness for future 
graduate work and eventual career working with big data in 
atmospheric sciences. 

5. SUMMARY AND CONCLUSIONS 
It has been well established that tornadic outbreak events can be 
extremely difficult to forecast, especially several days in advance 
[1, 2, 3]. While efforts have been made to enhance such forecasts 
[3, 6, 7, 8, 9, 10], there is still room for growth within this field, 
particularly in medium-range outbreak forecasting. The primary 
goal of this research was to obtain an improved understanding of 
forecast uncertainty within tornado outbreaks at increasing lead 
times out to 5 days (considered medium-range forecasting). To 
accomplish this task, five major tornado outbreaks were simulated 
using stochastic perturbation ensembles at lead times out to 120 
hours. Each of the five tornado outbreak cases chosen produced 
many tornadoes (over 20 per case), with many of them being 
violent EF2 or greater intensity tornadoes. 

Once the test cases were chosen, utilizing input data from NARR, 
this data was run through ensemble simulations of WRF at 24, 48, 
72, 96, and 120-hour lead time intervals. Each case and lead time 
included a ten-member stochastically perturbed ensemble to help 
generate (and thereby quantify) uncertainty in the 250 simulations. 
Post-processing of the data collected from WRF output files 
allowed many convective indices to be assessed using moment 
statistics, including MLCAPE, MLCINH, 0-3 km SRH, 0-1 km 
EHI, SCP, and STP. 

Overall, thermodynamic convective indices seemed to show more 
variability across cases than index indices such as SCP, STP, and 
EHI. Moment statistics, such as standard deviation, show a much 
larger spread of data through thermodynamic convective indices 
like CAPE than with index indices like the three listed above. As 
shown in Figure 3, thermodynamic parameter such as CAPE show 
a bigger shift from the 24-hour forecast period to additional lead 
times, though the 48-hour to 120-hour lead times still behave 
similarly. This bigger shift from the 24-hour forecast to later lead 
times suggests outbreak predictability using CAPE alone is not 
sufficient, which has been well established in previous work [7]. 

The major finding in this study was that both thermodynamic and 
kinematic indices all behaved similarly at 48, 72, 96, and 120-hour 
lead times, regardless of the moment statistic selected. This was a 
surprising result given previous research, which typically noted a 
substantial increase in uncertainty after 72 hours lead time. This 
suggests outbreak predictability for these major events may not 
change significantly between 48 hours and 120 hours, which may 
give forecasters additional potential for predicting these events at 
longer lead times. 

Furthermore, these results can be utilized in the future to continue 
drawing conclusions about forecasting techniques at short-term and 
medium-term ranges for tornado outbreaks. Future research is 
needed to ascertain the generalization of these results to all major 
tornado outbreak events. Some future work would include utilizing 

more test cases and more ensemble WRF forecasts to have more 
data to compare across tornadic outbreak cases. Additionally, 
previous research [13] has been done assessing medium-term 
forecast uncertainty of non-tornadic outbreak cases, and those 
results could be compared with the results of this study to gain a 
broader understanding of outbreak predictability across the full 
spectrum of outbreak events. 

 
Figure 3. Average standard deviation (SD) statistics for one 
thermodynamic indices (MLCAPE) and for three kinematic 

indices (EHI, STP, and SCP). 
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ABSTRACT 
The Evolutionary algorithm (EA), on the Atomic Simulation 
Environment (ASE), provides a means to find the lowest energy 
conformation molecule of a given stoichiometry. In this study we 
examine the ways in which the initial population of molecules 
affect the success of the EA. We have added a set of rules to the 
way in which the molecules are created that leads to more 
chemically relevant structures using chemical intuition. We have 
also implemented a clustering program that selects molecules that 
differ from each other from a large pool of molecules to form the 
initial population. Through testing of EA runs with and without 
clustering and intuitive population creation, the following success 
rates were obtained; no intuition and no clustering, 28±3%, no 
intuition with clustering, 31±4%, with fixed intuition but without 
clustering, 49±5%, with fixed intuition and clustering, 49±4%, with 
variable intuition and without clustering, 47±4%, and with variable 
intuition and clustering, 50±3%. A significant increase in success 
rate was found when implementing intuitive population creation 
while clustering the initial population seems to marginally help as 
the population becomes more diverse. 

Keywords 
Evolutionary Algorithm, Agglomerative Clustering 

1. INTRODUCTION 
Determining the structure of a molecule is an important heuristic in 
understanding its function. As chemical structures become larger, 
predicting the global minimum becomes increasingly challenging. 
To find global minimum structures, several strategies have been 
developed including molecular dynamics [1], Monte Carlo [2], 
particle swarm optimization [3], random search [4], as well as 
evolutionary algorithms [5]. Evolutionary algorithms are well 
suited for chemical structure problems because they can quickly 
cover large regions of configuration space and can be easily 
parallelized dramatically improving the search efficiency. 

An Evolutionary Algorithm (EA) is a metaheuristic that uses 
principles inspired by natural selection to find optimized solutions 
to complex problems. A population is created from possible 
solutions and through a process of combining information, 
optimized solutions can be found [6]. EA’s utilize terminology 
derived from evolution theory such as individual, parent, offspring, 
and fitness. The EA we use involves 6 steps [7]: first, a starting 
population of individuals is generated from possible solutions to the 
complex problem being computed; second, the individuals are 
evaluated based on the desired metric and ranked from best solution 
to the problem to worst; third, two of these solutions are then 
selected to undergo the fourth step, a recombination of information 
to generate a new solution made from parts of the information from 
each; fifth, the new solution is compared to the population of 
solutions, and the worst solution is removed from the population; 
lastly, a check is done to evaluate if a completion condition has 
been met, and the selection, crossover, and re-evaluation steps are 
repeated until one of these conditions is met. 

 

 

Figure 1. Steps of an evolutionary algorithm: 1. Generate 
Starting Population, 2. evaluate the starting population 
energy, 3. select two candidates to undergo crossover, 4. 

crossover of two molecules via cut and splice, 5. re-evaluate 
population to determine if improvement has occurred, and 6. 

check for completion condition (as the end of the re-evaluation 
step). This process loops from selection through check for 

completion until a completion condition is met. 

 
Originally written on by Alan Turing in 1950, computational 
scientists have theorized about machines using the principles of 
evolution to solve problems since the beginning of computational 
science [8]. By the 1960s “artificial evolution” had become a 
widely-used optimization method and notably was used by Ingo 
Rechenberg to generate new aerodynamic wing designs [9]. At the 
same time, Lawrence J. Fogel developed evolutionary 
programming in his attempts to create artificial intelligence [10]. 
The modern evolutionary algorithm was developed by John Henry 
Holland and published in his 1975 book, "Adaptation in Natural 
and Artificial Systems" [11]. In the 1980s EA’s began to see 
commercial use by General Electric [12] and Axcelis, Inc. [13] and 
in 2006 NASA used an EA to develop the evolved entenae [11]. 
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Today, evolutionary algorithms are used in the field of 
computational chemistry to find the morphology of bulk surface, 
and nanoparticle systems [14, 15, 16, 17]. 

The ASE EA begins by generating an initial population of 
molecules, made from the desired molecular formula by plotting 
the positions of the atoms as a virtual object. This step can be done 
stochastically, by assigning the positions of each atom randomly, 
or semi randomly by specifying properties that the molecules must 
have such as having set distances between each atom or set angles 
formed by 3 atoms. By placing restrictions on the kinds of 
molecules that can be made we are limiting the regions on the 
potential energy surface that can be represented in the starting 
population. The algorithm makes a number of these molecules 
specified by the scientist to form the starting population. Each of 
these molecules then has its potential energy calculated and they 
are ranked from highest energy to lowest energy. 

Two of the molecules from the initial population are then selected 
to undergo crossover. This selection is skewed to favor lower 
energy molecules over higher energy molecules so that more 
favorable structures are more likely to be replicated [15]. Each of 
the two molecules are then cut and spliced [7] along a plane and the 
portion of the molecule on one side of this plane is combined with 
a counterpart from the other molecule as demonstrated in Figure 2. 
This process is random and may result in the creation of molecules 
with incorrect molecular formula. The newly created molecule will 
either be rejected, and new matched planes will be made, or the 
molecule will be altered, with extra atoms being removed or added 
to random locations to correct the molecule. 

 

 
Figure 2. Crossover of molecules with a portion of the 

structure of two parent molecules making one child molecule. 

 
The new molecule is analyzed and compared with the population 
and the molecule with the highest energy is removed. If the newly 
created molecule is higher in energy than all the molecules in the 
population, it is discarded, and the next generation is identical to 
the first. If a molecule from the population is higher in energy then 
the newly created individual, the highest energy molecule from the 
population is removed and the new molecule is added. This new 
generation is again sorted from low to high energy. 

Through this process, the energy of the population will either stay 
the same or be lowered with each new generation. The selection, 
crossover, and analysis steps of the EA will be repeated until a set 
goal is met. This goal can be a number of generations, a desired 
energy being reached, or convergence, where the same lowest 
energy molecule is created frequently enough to suggest the 
population has become trapped into some local minima and cannot 
escape. This minimum may be the global minima, or it may be a 
local minimum. 

The most computationally intense portion of the EA is the analysis 
step, in which the candidate molecule is optimized into its nearest 
local minimum energy structure and its energy is calculated. The 
energy calculation can be done in many ways depending on the 
accuracy needed and the complexity of the system being calculated. 

Although energy calculators are effective in locating local energy 
minima, for large molecules, it becomes increasingly more costly 
for them to find the global energy minimum. When a molecule is 
diatomic, containing only two atoms, there is only one optimized 
shape for it to be in, shown in Figure 3. This shape is the point 
where the intermolecular attractions most overwhelm the 
repulsions. 

 

  
Figure 3. Morse potential diagram showing the energy of a 
diatomic molecule in response to the distance between the 

atoms. 

 
When dealing with multi-atom molecules, the interactions between 
the atoms becomes increasingly complex and multiple 
configurations can be created that are lower in energy then all other 
nearby structures; these are known as local minima. Even though 
these structures are stable the molecules are still capable of 
restructuring into more stable configuration. The only point where 
this is not true is the global minimum, the structure that is the most 
stable for the given stoichiometry of atoms. The many ways that 
the molecule can be arranged can be represented in a 3N 
dimensional matrix where N is the number of atoms in the 
molecule. The dimensions are the x, y, and z coordinates of each 
atom. This matrix is the potential energy surface of the molecule, 
and, when energy is added as an extra dimension, it forms a 
topographical map of all molecular structures involving the target 
molecular formula. 

It is impossible for a human to view a 3N dimensional matrix for 
any polyatomic molecule, so a simplified view of the potential 
energy surface must be designed to be understood. For the C9H7N 
formula, a representation of the surface is shown in Figure 4 from 
data collected in this study. This 2-dimensional contour graph 
represents the farthest carbon-nitrogen distance and farthest 
carbon-carbon distance of each molecule as its x and y coordinates 
with the energy of the molecule shown by its color with red being 
high energy and blue being low energy. The largest region of low 
energy occurs when the farthest carbon-carbon and carbon-nitrogen 
distances are both small, meaning the molecule is coiled into itself 
in the form of rings. The molecule quinoline is known to be the 
global minimum of this formula and is composed of two six-
member rings meaning it would exist in this low energy area. The 
region of the graph with greatest carbon-carbon and carbon-
nitrogen distance would conversely represent fully stretched linear 
molecules with nitrogen on one end. 
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Figure 4. Simplified Potential Energy Surface for C9H7N using 

the furthest carbon-nitrogen distance and carbon-carbon 
distance in a molecule. 

 
The starting population can be made more diverse by applying 
clustering [17]. Clustering is the process of grouping individuals 
based on similarity. In agglomerative hierarchical clustering, each 
individual is evaluated by analyzing target features. In this case, the 
features used are the intramolecular carbon-carbon and carbon-
nitrogen distances that are compared to each other to determine the 
similarity between the individuals. When clustering begins each 
molecule is its own cluster. The program then begins clustering 
similar molecules together. These clusters are then evaluated based 
on the averaged characteristics of all the molecules in the cluster. 
This process continues until a similarity goal is reached, meaning 
that no clusters are similar enough to be clustered together based 
on the desired similarity level. This mapping can be seen in Figure 
5. When using clustering, a large number of molecules are 
generated and then a similarity level [7] is found that results in a 
number of clusters equal to the numbers of individuals required for 
the starting population. By randomly selecting one molecule from 
each cluster to form the starting population the diversity of the 
population will be greater than when the population is made 
without clustering due to the larger pool of molecules to choose 
from [18]. 

 

 

Figure 5. Example agglomerative hierarchical clustering 
dendrogram at an inconsistency threshold of 2.8. 

 
When a starting population is made without clustering, there is a 
likelihood for areas of the potential energy surface to not be 
represented in the starting population. By generating a large 
number of molecules and then clustering, the diversity of the 
starting population can be increased by choosing molecules from 
all clustered groups. We predict that this increase in diversity will 
increase the likelihood that molecules similar to the global 
minimum molecule will be included in the starting population 
leading to an increase in EA efficiency. 

There is, however, a competing element proposed by Oganov [14]. 
Oganov predicted that when dissimilar molecules undergo cut-and-
splice, the offspring will be high in energy due to the merging of 
incompatible structures. This would mean that the increased 
diversity of the clustered populations would decrease the efficiency 
of the EA because of an increased number of unproductive cycles 
where lower energy molecules are not created and the population 
does not evolve. 

In this study we will show that by building the initial population 
with chemically intuitive molecules, we can significantly increase 
the success rate of the GA to find the global minimum. 
Furthermore, we will show that the role of clustering is more 
nuanced. In cases where the population is diverse, agglomerative 
clustering seems to have a minor benefit to the success rate of the 
GA. When the population is more uniform, agglomerative 
clustering seems to hinder the success of the GA. This appears to 
be a demonstration of the trade-off between creating and 
maintaining a diverse population while being able to form 
competitive candidate structures which can enter the population. 

2. EXPERIMENTAL AND 
COMPUTATIONAL DETAILS 
By augmenting the way in which the EA creates its starting 
population, the efficiency with which it locates the most stable 
molecular configuration can be improved. For this purpose, the 
starting population generation was altered to generate molecules 
using standard hybridized orbital geometries to determine bond 
angles and bond lengths that would result in more optimized 
molecules. An agglomerative clustering program was also 
implemented in which molecules were analyzed for similarity and 
divided into groups, or clusters. C9H7N was used as the molecular 
stoichiometry for testing purposes because the global minimum 
(GM) is known (quinoline), the potential energy surface is well 
explored, and because the presence of a double ring structure in the 
GM makes it computationally challenging to find. 

The method was written to generate molecules based on rules of 
molecular geometry using the standard documented orbital 
hybridization geometries of the atoms. The program begins when it 
is fed the desired molecular formula. An atom is chosen randomly 
from those available to fit the formula and placed in position (0,0,0) 
of the configuration space and then is given a geometry consistent 
with the element. For example, Carbon can form sp3 hybridization, 
where four single bonds are formed 109.5 degrees from each other; 
sp2 hybridization, where one double bond and two single bonds are 
formed 120° apart; or sp hybridization, where either one triple bond 
and one single bond, or two double bonds, are formed 180° from 
each other. Unit vectors signifying these bonds are added to the 
information stored for this atom. When another atom is chosen, an 
already-placed atom is selected for it to bond to. The new atom is 
placed along an available unit vector a distance away from the 
bonding atom equal to the covalent radii of both atoms added 
together. The program then checks if the atom is too close to any 
other atoms, defined as less than 70% of a bond radius as 
determined above, to prevent energy calculation errors that may 
occur when atoms are placed inside each other’s atomic radii. The 
new atoms are then similarly assigned a geometry and aligned so 
that one of the unit vectors is pointed towards the bonded atom. 
Finally, the unit vectors of bonds that were used in this process are 
removed from the list of available bonds. Molecules created in this 
manner have many advantages over molecules created randomly; 
these molecules require less time to optimize and are far more likely 
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to form complex, chemically-relevant shapes such as rings and long 
chains. 

 

 

Figure 6. Molecular geometries of carbon. 

 
Two different forms of intuitive population generation were tested 
in this study; in fixed hybridization, each hybridization type was 
given equal likelihood to be chosen for each atom. 20 of these 
molecules are generated in the non-clustered cases and 500 are 
created in the clustered cases and then made into 20 clusters with 
one molecule chosen randomly from each to form the starting 
population. In the second, called variational hybridization, variable 
probabilities to select different hybridizations for carbon and 
nitrogen were utilized in the following manner: the possible 
hybridizations of both carbon and nitrogen are sp, sp2, and sp3. Each 
of these hybridizations are assigned a 0, 25, 50, 75, or 100% chance 
to be selected to be assigned to each atom with the restriction that 
the total probability to select any of the three is 100%. All potential 
combinations for the probabilities are sampled. For example, a 
molecule could be generated with each carbon having a 50% 
chance to be sp3 hybridized, a 50% chance to be sp2 hybridized, and 
a 0% chance to be sp hybridized. The nitrogen is independently 
assigned to have a 100% chance to be sp hybridized with no chance 
to be sp2 or sp3 hybridized. Not all these probabilities can be used 
to make a viable molecule with a given stoichiometry. As a result, 
the program must also be able to identify and skip those cases. 
When this generation method is used in the non-clustered case, each 
variation is used to produce 4 molecules, and then 20 are chosen at 
random from this pool. In the clustered case, 4 molecules are 
created for each variation and then clustered to generate 20 clusters, 
and one molecule is chosen from each randomly to form the starting 
population. These methods are compared to the null case by 
running random molecule generation trials. For the non-clustered 
random cases 20 molecules are generated and for the clustered 
cases 500 molecules are created randomly and then clustered down 
to 20. 

The most obvious alternative to the intuitive population generation 
method developed here would be one involving the SMILES 
technique [14] for generating molecular structures. This technique 
can be used to generate varied molecules easily and with built-in 
chemical intuition. The reason we chose to write our own program 
for molecule generation is to have more control over the amount of 
intuition used in molecule creation and so that the EA can be used 
to study metallic compounds, as SMILES does not support 
inorganic complexing [20]. 

The clustering algorithm takes in a large number of unrelaxed 
molecules and sorts them based on intermolecular distances. For 
the test molecular formula, C9H7N, the fact that there was only one 
Nitrogen was taken advantage of, and the C-N and C-C distances 
were compared. Hydrogens are ignored because it was found that 
including C-H and N-H distances did not meaningfully change the 

functionality of the clustering process [7]. The factors that will be 
effective in clustering are strongly dependent on the stoichiometry 
given, and so additional work must be done to fit clustering to an 
EA run for different formulas. The molecules are then fitted to 
centroids as described in the introduction to form a number of 
clusters equal to the desired starting population size using the 
methods detailed in Jørgensen et al [7]. One molecule from each 
cluster is chosen at random to form the starting population. 

Molecules were optimized using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm [21] and their energy calculated using 
Density Functional Tight Binding (DFTB) method [22] with the 
calculator DFTB+ [23]. A more popular energy calculation method 
is Density Functional Theory (DFT) [13] which calculates the 
energy of the system using the density of the electron clouds. While 
this method is a good mix of fast and accurate and is widely used, 
it is best to have an extremely fast method for testing molecular 
EAs. For this reason, the empirical method Density Functional 
Tight Binding (DFTB) is used. DFTB uses a library of ab initio 
constants to quickly calculate energy at the expense of accuracy. 
Using this method reduces the time spent optimizing a 17-atom 
molecule, like the one used for testing this EA, from minutes per 
molecule to seconds per molecule. Though the method is not highly 
accurate, DFTB+ was chosen due to the speed at which it calculates 
energy. This was acceptable to test the hypothesis because high 
accuracy of calculation was not needed to test the program's ability 
to move from relatively high energy molecules to low energy 
molecules [7]. 

There are two stop conditions for each of these trials. The first is if 
the EA locates quinolone, and the second is if 5000 cycles have 
occurred. We set a step count end condition, because we believe 
that after 5000 cycles the chance of the EA finding quinoline goes 
down greatly. This is because the EA has likely become stuck in 
some local minima with all the members of the current population 
being too similar to find any other structure and escape. This is 
demonstrated in Figure 7 where we can see that the likelihood of 
the EA finding quinoline goes down as it reaches higher cycle 
counts. 

 

 

Figure 7. Histogram of the completion steps of the fixed 
intuitive starting population generation with clustering runs. 

 

3. RESULTS 
Each of the six permutations of the experiment were run until they 
converged to a consistent success rate and are shown in Table 1. 
The null case, run with random population generation and without 
clustering, was found to have a 28±3% success rate. 
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The runs conducted with random population generation and with 
clustering were found to have a 31±4% success rate. The runs 
conducted with fixed intuitive starting population generation and 
without clustering were found to have a 49±5% success rate, and 
the runs conducted with both fixed intuitive starting population 
generation and clustering were found to have a 49±4% success rate. 
For variational intuitive starting population generation without 
clustering, a 47±4% success rate was found. Finally, for variational 
intuitive starting population generation with clustering, a 50±3% 
success rate was found. 

Data from the above trials is re-expressed in Figure 8 showing the 
percentage of runs that locate quinoline at or before each cycle 
count until the 5000th cycle. The value of this plot at the 5000th 
iteration corresponds to the Success Rate column in Table 1. 

 
Table 1. Evolutionary Algorithm Results 

Run type Completed 
Found 

GM 
(%) 

Success 
rate 
(%) 

Average Standard 
deviation 

Random, 
not 

clustered 
667 185 28±3 4295 1330 

Random, 
clustered 462 143 31±4 4179 1421 

Fixed, not 
clustered 480 234 49±5 3378 1881 

Fixed, 
clustered 618 303 49±4 3509 1771 

Variational, 
not 

clustered 
701 330 47±4 3615 1761 

Variational, 
clustered 959 484 50±3 3431 1811 

 

A representation of the energy of the molecules in the starting 
populations generated with each method is shown in figure 9. The 
box plots illustrate the median energy as well as all four quartiles 
of the energy of the molecules relative to the energy of quinoline. 
The top three quartiles of the randomly generated starting 
molecules are in the same range as the top of the highest quartile of 
the intuitively generated populations. Furthermore, the energy 
ranges of the intuitively generated starting populations overlap 
significantly. 

 

 

Figure 8. Success rate for each trial type expressed as percent 
completed by cycle. 

 
 

4. DISCUSSION 
The implementation of intuitive starting population generation led 
to a significant increase in success rate, going from a roughly 30% 
success rate for the two randomly generated cases to roughly 50% 
success rate for the intuitively generated cases. Intuition led to a 
sharp increase in the efficiency of the EA by selectively generating 
molecules in lower energy areas of the potential energy surface. 
There is also the possibility that the intuitive population generator 
created molecules with a structure similar to the global minimum. 
From these results, we can say that seeding the population with 
chemically intuitive molecules has a positive effect on the EA 
finding the GM in the case of quinoline. 

As reported in Table 1, the average number of candidate structures 
to find the global minimum was higher for the random cases, but 
the standard deviation was lower. This lower deviation is theorized 
to be due to the average completion cycle being closer to 5000 
cycles where data collection was set to end. This causes the portion 
above the average to be cut off at that point, leading to an artificially 
lower standard deviation. 

When clustering is applied to the EA runs without intuitive 
population generation, the average success rate increases by 3%. 
When applied to the EA runs with fixed intuitive population 
generation, little or no change in success rate is found, and when 
applied to the EA runs with variable intuitive population 
generation, the success rate increases by 3%. These differences are 
within the margin of error, so we cannot say that there is a definite 
difference. We can only remark on the pattern of the differences. 

 

 
Figure 9. Box plots for the starting populations of each trial 

type. 

 
Figure 8 shows the cumulative success rate as a function of cycle 
count. When looking at the trials completed using randomly 
generated starting populations, it can be seen that there was a 
consistently higher success rate for the clustered case at all cycle 
counts. Because these molecules were created using less rules then 
the intuitive populations, we believe they are capable of forming 
the most diverse populations and as such benefit most from 
clustering. Clustering was effective in seeding the starting 
population with molecules whose structures had similarities with 
the global minimum. It should be noted that the difference between 
the clustered and non-clustered success rate never varied greater 
than the margin of error, but the consistent difference in success is 
indicative of a positive, albeit minor, effect. 

For the populations generated using fixed intuitive starting 
populations, it was seen that the non-clustered trials were much 
more successful for the first roughly 3000 steps. After this point the 
clustered runs slowly caught up to them until they had the same 
success rate. The fixed intuitive populations are the most focused 

Journal of Computational Science Education Volume 11, Issue 2

April 2020 ISSN 2153-4136 33



due to only utilizing one hybridization ratio. This means that the 
starting population will contain similar molecules. Clustering 
attempts to maximize diversity, but because this population 
creation method produces a fairly homogeneous population, it 
instead creates a population that has a greater challenge forming 
viable candidates during crossover. This agrees with Oganov’s 
theory [9] that diverse molecules have difficulty producing lower 
energy offspring when cut-and-spliced. Because of this effect, the 
non-clustered populations can move toward the global minimum 
structure more quickly while the clustered populations undergo 
ineffective crossover until the population filters out its diversity 
through repeated selection of the more closely related molecules. 

For the populations generated using variable intuitive population 
generation, the clustered populations outperformed the non-
clustered cases. These populations were made from many different 
hybridization ratios, which presumably produced a much more 
diverse initial population then the fixed intuitive method. 
Clustering is beneficial in this case to ensure that this diversity is 
maintained. It appears that Oganov’s crossover hindrance 
overcomes the benefits of clustering only in cases were the 
population generation method is apparently more uniform. 

Clustering initial populations and using crossover to generate new 
candidate structures appear to be competing processes. Clustering 
is used to increase the diversity of a population while crossover 
benefits from homogeneity in the population to form viable 
candidate structures. The benefit or penalty due to clustering 
appears to be minor and temporary. In contrast to this, building 
molecules using chemical intuition appears to significantly increase 
the success rate of the GA compared to random population 
generation. This can be attributed to the fact that it takes many 
cycles for the random population to start creating candidates that 
exhibit the same geometries that the intuitive generator creates in 
the starting population. This is a deficit which cannot be overcome. 
Furthermore, the two different intuitive generation schemes 
produced different types of starting populations with similar 
results. This indicates that this process might be robust and tolerant 
of imperfect schemes which can result in significant improvements 
in other applications. 

Although this experiment was conducted on a single molecular 
formula, the techniques used are readily applicable to other 
molecules to test for optimized structures. C9H7N was chosen to 
test improvements on the genetic algorithm because of the 
complexity of its structure and the relatively low atom count 
leading to comparatively low computational time. The technique 
has been built so that any number of atoms and configurations can 
be applied including organics and metals. For example, a surface 
reconstruction of a step edge of TiO2 is a second test case that has 
been used previously [7] and would validate the increased 
cumulative success rate of this methodology. A similar starting 
population generator can be created based on typical Ti and O 
hybridizations so that a similar study could be conducted. 

5. CONCLUSIONS 
This study was conducted to examine the effect that intuitive 
starting population generation and clustering have on an 
evolutionary algorithm. Testing was conducted using the EA on the 
Atomic Simulation Environment [24] written for the Python 
programming language. The effect of intuitive population 
generation and clustering was tested by running EA’s on the 
molecular formula C9H7N until the known global minima structure, 
quinoline, was found, or until 5000 cycles were completed.  
 

Intuitive population generation was tested by comparison with 
random population generation and was split into two forms of 
intuitive population generation: a form where each hybridization 
type had equal chance of being selected, and a variable type where 
molecules were made with various likelihoods of hybridization 
selection. The effect of clustering on the EA was evaluated by 
testing each of these population generation methods with and 
without clustering, creating baseline runs and comparing them to 
modified runs. It was found that both methods of intuitive 
population generation had a similar positive effect on the success 
of the EA, increasing the success rate by approximately 30% in 
5000 iterations. Clustering was found to have little effect on the 
efficiency of the EA, with all results having overlapping confidence 
intervals between the clustered and non-clustered versions of each 
generation type. We can remark on trends showing a relationship 
between the population diversity possible from each molecule 
generation method and the effect of clustering. The methods that 
generated the most diverse populations benefited from clustering 
due to an increased likelihood of the population being seeded with 
molecules with similar structure to the global minimum structure. 
However, methods that generate focused populations that include 
global minimum-like structures were slowed in their ability to find 
the global minimum due to poor crossover between dissimilar 
molecules. 
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