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ABSTRACT 
The Evolutionary algorithm (EA), on the Atomic Simulation 
Environment (ASE), provides a means to find the lowest energy 
conformation molecule of a given stoichiometry. In this study we 
examine the ways in which the initial population of molecules 
affect the success of the EA. We have added a set of rules to the 
way in which the molecules are created that leads to more 
chemically relevant structures using chemical intuition. We have 
also implemented a clustering program that selects molecules that 
differ from each other from a large pool of molecules to form the 
initial population. Through testing of EA runs with and without 
clustering and intuitive population creation, the following success 
rates were obtained; no intuition and no clustering, 28±3%, no 
intuition with clustering, 31±4%, with fixed intuition but without 
clustering, 49±5%, with fixed intuition and clustering, 49±4%, with 
variable intuition and without clustering, 47±4%, and with variable 
intuition and clustering, 50±3%. A significant increase in success 
rate was found when implementing intuitive population creation 
while clustering the initial population seems to marginally help as 
the population becomes more diverse. 
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1. INTRODUCTION 
Determining the structure of a molecule is an important heuristic in 
understanding its function. As chemical structures become larger, 
predicting the global minimum becomes increasingly challenging. 
To find global minimum structures, several strategies have been 
developed including molecular dynamics [1], Monte Carlo [2], 
particle swarm optimization [3], random search [4], as well as 
evolutionary algorithms [5]. Evolutionary algorithms are well 
suited for chemical structure problems because they can quickly 
cover large regions of configuration space and can be easily 
parallelized dramatically improving the search efficiency. 

An Evolutionary Algorithm (EA) is a metaheuristic that uses 
principles inspired by natural selection to find optimized solutions 
to complex problems. A population is created from possible 
solutions and through a process of combining information, 
optimized solutions can be found [6]. EA’s utilize terminology 
derived from evolution theory such as individual, parent, offspring, 
and fitness. The EA we use involves 6 steps [7]: first, a starting 
population of individuals is generated from possible solutions to the 
complex problem being computed; second, the individuals are 
evaluated based on the desired metric and ranked from best solution 
to the problem to worst; third, two of these solutions are then 
selected to undergo the fourth step, a recombination of information 
to generate a new solution made from parts of the information from 
each; fifth, the new solution is compared to the population of 
solutions, and the worst solution is removed from the population; 
lastly, a check is done to evaluate if a completion condition has 
been met, and the selection, crossover, and re-evaluation steps are 
repeated until one of these conditions is met. 

 

 

Figure 1. Steps of an evolutionary algorithm: 1. Generate 
Starting Population, 2. evaluate the starting population 
energy, 3. select two candidates to undergo crossover, 4. 

crossover of two molecules via cut and splice, 5. re-evaluate 
population to determine if improvement has occurred, and 6. 

check for completion condition (as the end of the re-evaluation 
step). This process loops from selection through check for 

completion until a completion condition is met. 

 
Originally written on by Alan Turing in 1950, computational 
scientists have theorized about machines using the principles of 
evolution to solve problems since the beginning of computational 
science [8]. By the 1960s “artificial evolution” had become a 
widely-used optimization method and notably was used by Ingo 
Rechenberg to generate new aerodynamic wing designs [9]. At the 
same time, Lawrence J. Fogel developed evolutionary 
programming in his attempts to create artificial intelligence [10]. 
The modern evolutionary algorithm was developed by John Henry 
Holland and published in his 1975 book, "Adaptation in Natural 
and Artificial Systems" [11]. In the 1980s EA’s began to see 
commercial use by General Electric [12] and Axcelis, Inc. [13] and 
in 2006 NASA used an EA to develop the evolved entenae [11]. 
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Today, evolutionary algorithms are used in the field of 
computational chemistry to find the morphology of bulk surface, 
and nanoparticle systems [14, 15, 16, 17]. 

The ASE EA begins by generating an initial population of 
molecules, made from the desired molecular formula by plotting 
the positions of the atoms as a virtual object. This step can be done 
stochastically, by assigning the positions of each atom randomly, 
or semi randomly by specifying properties that the molecules must 
have such as having set distances between each atom or set angles 
formed by 3 atoms. By placing restrictions on the kinds of 
molecules that can be made we are limiting the regions on the 
potential energy surface that can be represented in the starting 
population. The algorithm makes a number of these molecules 
specified by the scientist to form the starting population. Each of 
these molecules then has its potential energy calculated and they 
are ranked from highest energy to lowest energy. 

Two of the molecules from the initial population are then selected 
to undergo crossover. This selection is skewed to favor lower 
energy molecules over higher energy molecules so that more 
favorable structures are more likely to be replicated [15]. Each of 
the two molecules are then cut and spliced [7] along a plane and the 
portion of the molecule on one side of this plane is combined with 
a counterpart from the other molecule as demonstrated in Figure 2. 
This process is random and may result in the creation of molecules 
with incorrect molecular formula. The newly created molecule will 
either be rejected, and new matched planes will be made, or the 
molecule will be altered, with extra atoms being removed or added 
to random locations to correct the molecule. 

 

 
Figure 2. Crossover of molecules with a portion of the 

structure of two parent molecules making one child molecule. 

 
The new molecule is analyzed and compared with the population 
and the molecule with the highest energy is removed. If the newly 
created molecule is higher in energy than all the molecules in the 
population, it is discarded, and the next generation is identical to 
the first. If a molecule from the population is higher in energy then 
the newly created individual, the highest energy molecule from the 
population is removed and the new molecule is added. This new 
generation is again sorted from low to high energy. 

Through this process, the energy of the population will either stay 
the same or be lowered with each new generation. The selection, 
crossover, and analysis steps of the EA will be repeated until a set 
goal is met. This goal can be a number of generations, a desired 
energy being reached, or convergence, where the same lowest 
energy molecule is created frequently enough to suggest the 
population has become trapped into some local minima and cannot 
escape. This minimum may be the global minima, or it may be a 
local minimum. 

The most computationally intense portion of the EA is the analysis 
step, in which the candidate molecule is optimized into its nearest 
local minimum energy structure and its energy is calculated. The 
energy calculation can be done in many ways depending on the 
accuracy needed and the complexity of the system being calculated. 

Although energy calculators are effective in locating local energy 
minima, for large molecules, it becomes increasingly more costly 
for them to find the global energy minimum. When a molecule is 
diatomic, containing only two atoms, there is only one optimized 
shape for it to be in, shown in Figure 3. This shape is the point 
where the intermolecular attractions most overwhelm the 
repulsions. 

 

  
Figure 3. Morse potential diagram showing the energy of a 
diatomic molecule in response to the distance between the 

atoms. 

 
When dealing with multi-atom molecules, the interactions between 
the atoms becomes increasingly complex and multiple 
configurations can be created that are lower in energy then all other 
nearby structures; these are known as local minima. Even though 
these structures are stable the molecules are still capable of 
restructuring into more stable configuration. The only point where 
this is not true is the global minimum, the structure that is the most 
stable for the given stoichiometry of atoms. The many ways that 
the molecule can be arranged can be represented in a 3N 
dimensional matrix where N is the number of atoms in the 
molecule. The dimensions are the x, y, and z coordinates of each 
atom. This matrix is the potential energy surface of the molecule, 
and, when energy is added as an extra dimension, it forms a 
topographical map of all molecular structures involving the target 
molecular formula. 

It is impossible for a human to view a 3N dimensional matrix for 
any polyatomic molecule, so a simplified view of the potential 
energy surface must be designed to be understood. For the C9H7N 
formula, a representation of the surface is shown in Figure 4 from 
data collected in this study. This 2-dimensional contour graph 
represents the farthest carbon-nitrogen distance and farthest 
carbon-carbon distance of each molecule as its x and y coordinates 
with the energy of the molecule shown by its color with red being 
high energy and blue being low energy. The largest region of low 
energy occurs when the farthest carbon-carbon and carbon-nitrogen 
distances are both small, meaning the molecule is coiled into itself 
in the form of rings. The molecule quinoline is known to be the 
global minimum of this formula and is composed of two six-
member rings meaning it would exist in this low energy area. The 
region of the graph with greatest carbon-carbon and carbon-
nitrogen distance would conversely represent fully stretched linear 
molecules with nitrogen on one end. 
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Figure 4. Simplified Potential Energy Surface for C9H7N using 

the furthest carbon-nitrogen distance and carbon-carbon 
distance in a molecule. 

 
The starting population can be made more diverse by applying 
clustering [17]. Clustering is the process of grouping individuals 
based on similarity. In agglomerative hierarchical clustering, each 
individual is evaluated by analyzing target features. In this case, the 
features used are the intramolecular carbon-carbon and carbon-
nitrogen distances that are compared to each other to determine the 
similarity between the individuals. When clustering begins each 
molecule is its own cluster. The program then begins clustering 
similar molecules together. These clusters are then evaluated based 
on the averaged characteristics of all the molecules in the cluster. 
This process continues until a similarity goal is reached, meaning 
that no clusters are similar enough to be clustered together based 
on the desired similarity level. This mapping can be seen in Figure 
5. When using clustering, a large number of molecules are 
generated and then a similarity level [7] is found that results in a 
number of clusters equal to the numbers of individuals required for 
the starting population. By randomly selecting one molecule from 
each cluster to form the starting population the diversity of the 
population will be greater than when the population is made 
without clustering due to the larger pool of molecules to choose 
from [18]. 

 

 

Figure 5. Example agglomerative hierarchical clustering 
dendrogram at an inconsistency threshold of 2.8. 

 
When a starting population is made without clustering, there is a 
likelihood for areas of the potential energy surface to not be 
represented in the starting population. By generating a large 
number of molecules and then clustering, the diversity of the 
starting population can be increased by choosing molecules from 
all clustered groups. We predict that this increase in diversity will 
increase the likelihood that molecules similar to the global 
minimum molecule will be included in the starting population 
leading to an increase in EA efficiency. 

There is, however, a competing element proposed by Oganov [14]. 
Oganov predicted that when dissimilar molecules undergo cut-and-
splice, the offspring will be high in energy due to the merging of 
incompatible structures. This would mean that the increased 
diversity of the clustered populations would decrease the efficiency 
of the EA because of an increased number of unproductive cycles 
where lower energy molecules are not created and the population 
does not evolve. 

In this study we will show that by building the initial population 
with chemically intuitive molecules, we can significantly increase 
the success rate of the GA to find the global minimum. 
Furthermore, we will show that the role of clustering is more 
nuanced. In cases where the population is diverse, agglomerative 
clustering seems to have a minor benefit to the success rate of the 
GA. When the population is more uniform, agglomerative 
clustering seems to hinder the success of the GA. This appears to 
be a demonstration of the trade-off between creating and 
maintaining a diverse population while being able to form 
competitive candidate structures which can enter the population. 

2. EXPERIMENTAL AND 
COMPUTATIONAL DETAILS 
By augmenting the way in which the EA creates its starting 
population, the efficiency with which it locates the most stable 
molecular configuration can be improved. For this purpose, the 
starting population generation was altered to generate molecules 
using standard hybridized orbital geometries to determine bond 
angles and bond lengths that would result in more optimized 
molecules. An agglomerative clustering program was also 
implemented in which molecules were analyzed for similarity and 
divided into groups, or clusters. C9H7N was used as the molecular 
stoichiometry for testing purposes because the global minimum 
(GM) is known (quinoline), the potential energy surface is well 
explored, and because the presence of a double ring structure in the 
GM makes it computationally challenging to find. 

The method was written to generate molecules based on rules of 
molecular geometry using the standard documented orbital 
hybridization geometries of the atoms. The program begins when it 
is fed the desired molecular formula. An atom is chosen randomly 
from those available to fit the formula and placed in position (0,0,0) 
of the configuration space and then is given a geometry consistent 
with the element. For example, Carbon can form sp3 hybridization, 
where four single bonds are formed 109.5 degrees from each other; 
sp2 hybridization, where one double bond and two single bonds are 
formed 120° apart; or sp hybridization, where either one triple bond 
and one single bond, or two double bonds, are formed 180° from 
each other. Unit vectors signifying these bonds are added to the 
information stored for this atom. When another atom is chosen, an 
already-placed atom is selected for it to bond to. The new atom is 
placed along an available unit vector a distance away from the 
bonding atom equal to the covalent radii of both atoms added 
together. The program then checks if the atom is too close to any 
other atoms, defined as less than 70% of a bond radius as 
determined above, to prevent energy calculation errors that may 
occur when atoms are placed inside each other’s atomic radii. The 
new atoms are then similarly assigned a geometry and aligned so 
that one of the unit vectors is pointed towards the bonded atom. 
Finally, the unit vectors of bonds that were used in this process are 
removed from the list of available bonds. Molecules created in this 
manner have many advantages over molecules created randomly; 
these molecules require less time to optimize and are far more likely 
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to form complex, chemically-relevant shapes such as rings and long 
chains. 

 

 

Figure 6. Molecular geometries of carbon. 

 
Two different forms of intuitive population generation were tested 
in this study; in fixed hybridization, each hybridization type was 
given equal likelihood to be chosen for each atom. 20 of these 
molecules are generated in the non-clustered cases and 500 are 
created in the clustered cases and then made into 20 clusters with 
one molecule chosen randomly from each to form the starting 
population. In the second, called variational hybridization, variable 
probabilities to select different hybridizations for carbon and 
nitrogen were utilized in the following manner: the possible 
hybridizations of both carbon and nitrogen are sp, sp2, and sp3. Each 
of these hybridizations are assigned a 0, 25, 50, 75, or 100% chance 
to be selected to be assigned to each atom with the restriction that 
the total probability to select any of the three is 100%. All potential 
combinations for the probabilities are sampled. For example, a 
molecule could be generated with each carbon having a 50% 
chance to be sp3 hybridized, a 50% chance to be sp2 hybridized, and 
a 0% chance to be sp hybridized. The nitrogen is independently 
assigned to have a 100% chance to be sp hybridized with no chance 
to be sp2 or sp3 hybridized. Not all these probabilities can be used 
to make a viable molecule with a given stoichiometry. As a result, 
the program must also be able to identify and skip those cases. 
When this generation method is used in the non-clustered case, each 
variation is used to produce 4 molecules, and then 20 are chosen at 
random from this pool. In the clustered case, 4 molecules are 
created for each variation and then clustered to generate 20 clusters, 
and one molecule is chosen from each randomly to form the starting 
population. These methods are compared to the null case by 
running random molecule generation trials. For the non-clustered 
random cases 20 molecules are generated and for the clustered 
cases 500 molecules are created randomly and then clustered down 
to 20. 

The most obvious alternative to the intuitive population generation 
method developed here would be one involving the SMILES 
technique [14] for generating molecular structures. This technique 
can be used to generate varied molecules easily and with built-in 
chemical intuition. The reason we chose to write our own program 
for molecule generation is to have more control over the amount of 
intuition used in molecule creation and so that the EA can be used 
to study metallic compounds, as SMILES does not support 
inorganic complexing [20]. 

The clustering algorithm takes in a large number of unrelaxed 
molecules and sorts them based on intermolecular distances. For 
the test molecular formula, C9H7N, the fact that there was only one 
Nitrogen was taken advantage of, and the C-N and C-C distances 
were compared. Hydrogens are ignored because it was found that 
including C-H and N-H distances did not meaningfully change the 

functionality of the clustering process [7]. The factors that will be 
effective in clustering are strongly dependent on the stoichiometry 
given, and so additional work must be done to fit clustering to an 
EA run for different formulas. The molecules are then fitted to 
centroids as described in the introduction to form a number of 
clusters equal to the desired starting population size using the 
methods detailed in Jørgensen et al [7]. One molecule from each 
cluster is chosen at random to form the starting population. 

Molecules were optimized using the Broyden–Fletcher–Goldfarb–
Shanno (BFGS) algorithm [21] and their energy calculated using 
Density Functional Tight Binding (DFTB) method [22] with the 
calculator DFTB+ [23]. A more popular energy calculation method 
is Density Functional Theory (DFT) [13] which calculates the 
energy of the system using the density of the electron clouds. While 
this method is a good mix of fast and accurate and is widely used, 
it is best to have an extremely fast method for testing molecular 
EAs. For this reason, the empirical method Density Functional 
Tight Binding (DFTB) is used. DFTB uses a library of ab initio 
constants to quickly calculate energy at the expense of accuracy. 
Using this method reduces the time spent optimizing a 17-atom 
molecule, like the one used for testing this EA, from minutes per 
molecule to seconds per molecule. Though the method is not highly 
accurate, DFTB+ was chosen due to the speed at which it calculates 
energy. This was acceptable to test the hypothesis because high 
accuracy of calculation was not needed to test the program's ability 
to move from relatively high energy molecules to low energy 
molecules [7]. 

There are two stop conditions for each of these trials. The first is if 
the EA locates quinolone, and the second is if 5000 cycles have 
occurred. We set a step count end condition, because we believe 
that after 5000 cycles the chance of the EA finding quinoline goes 
down greatly. This is because the EA has likely become stuck in 
some local minima with all the members of the current population 
being too similar to find any other structure and escape. This is 
demonstrated in Figure 7 where we can see that the likelihood of 
the EA finding quinoline goes down as it reaches higher cycle 
counts. 

 

 

Figure 7. Histogram of the completion steps of the fixed 
intuitive starting population generation with clustering runs. 

 

3. RESULTS 
Each of the six permutations of the experiment were run until they 
converged to a consistent success rate and are shown in Table 1. 
The null case, run with random population generation and without 
clustering, was found to have a 28±3% success rate. 
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The runs conducted with random population generation and with 
clustering were found to have a 31±4% success rate. The runs 
conducted with fixed intuitive starting population generation and 
without clustering were found to have a 49±5% success rate, and 
the runs conducted with both fixed intuitive starting population 
generation and clustering were found to have a 49±4% success rate. 
For variational intuitive starting population generation without 
clustering, a 47±4% success rate was found. Finally, for variational 
intuitive starting population generation with clustering, a 50±3% 
success rate was found. 

Data from the above trials is re-expressed in Figure 8 showing the 
percentage of runs that locate quinoline at or before each cycle 
count until the 5000th cycle. The value of this plot at the 5000th 
iteration corresponds to the Success Rate column in Table 1. 

 
Table 1. Evolutionary Algorithm Results 

Run type Completed 
Found 

GM 
(%) 

Success 
rate 
(%) 

Average Standard 
deviation 

Random, 
not 

clustered 
667 185 28±3 4295 1330 

Random, 
clustered 462 143 31±4 4179 1421 

Fixed, not 
clustered 480 234 49±5 3378 1881 

Fixed, 
clustered 618 303 49±4 3509 1771 

Variational, 
not 

clustered 
701 330 47±4 3615 1761 

Variational, 
clustered 959 484 50±3 3431 1811 

 

A representation of the energy of the molecules in the starting 
populations generated with each method is shown in figure 9. The 
box plots illustrate the median energy as well as all four quartiles 
of the energy of the molecules relative to the energy of quinoline. 
The top three quartiles of the randomly generated starting 
molecules are in the same range as the top of the highest quartile of 
the intuitively generated populations. Furthermore, the energy 
ranges of the intuitively generated starting populations overlap 
significantly. 

 

 

Figure 8. Success rate for each trial type expressed as percent 
completed by cycle. 

 
 

4. DISCUSSION 
The implementation of intuitive starting population generation led 
to a significant increase in success rate, going from a roughly 30% 
success rate for the two randomly generated cases to roughly 50% 
success rate for the intuitively generated cases. Intuition led to a 
sharp increase in the efficiency of the EA by selectively generating 
molecules in lower energy areas of the potential energy surface. 
There is also the possibility that the intuitive population generator 
created molecules with a structure similar to the global minimum. 
From these results, we can say that seeding the population with 
chemically intuitive molecules has a positive effect on the EA 
finding the GM in the case of quinoline. 

As reported in Table 1, the average number of candidate structures 
to find the global minimum was higher for the random cases, but 
the standard deviation was lower. This lower deviation is theorized 
to be due to the average completion cycle being closer to 5000 
cycles where data collection was set to end. This causes the portion 
above the average to be cut off at that point, leading to an artificially 
lower standard deviation. 

When clustering is applied to the EA runs without intuitive 
population generation, the average success rate increases by 3%. 
When applied to the EA runs with fixed intuitive population 
generation, little or no change in success rate is found, and when 
applied to the EA runs with variable intuitive population 
generation, the success rate increases by 3%. These differences are 
within the margin of error, so we cannot say that there is a definite 
difference. We can only remark on the pattern of the differences. 

 

 
Figure 9. Box plots for the starting populations of each trial 

type. 

 
Figure 8 shows the cumulative success rate as a function of cycle 
count. When looking at the trials completed using randomly 
generated starting populations, it can be seen that there was a 
consistently higher success rate for the clustered case at all cycle 
counts. Because these molecules were created using less rules then 
the intuitive populations, we believe they are capable of forming 
the most diverse populations and as such benefit most from 
clustering. Clustering was effective in seeding the starting 
population with molecules whose structures had similarities with 
the global minimum. It should be noted that the difference between 
the clustered and non-clustered success rate never varied greater 
than the margin of error, but the consistent difference in success is 
indicative of a positive, albeit minor, effect. 

For the populations generated using fixed intuitive starting 
populations, it was seen that the non-clustered trials were much 
more successful for the first roughly 3000 steps. After this point the 
clustered runs slowly caught up to them until they had the same 
success rate. The fixed intuitive populations are the most focused 
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due to only utilizing one hybridization ratio. This means that the 
starting population will contain similar molecules. Clustering 
attempts to maximize diversity, but because this population 
creation method produces a fairly homogeneous population, it 
instead creates a population that has a greater challenge forming 
viable candidates during crossover. This agrees with Oganov’s 
theory [9] that diverse molecules have difficulty producing lower 
energy offspring when cut-and-spliced. Because of this effect, the 
non-clustered populations can move toward the global minimum 
structure more quickly while the clustered populations undergo 
ineffective crossover until the population filters out its diversity 
through repeated selection of the more closely related molecules. 

For the populations generated using variable intuitive population 
generation, the clustered populations outperformed the non-
clustered cases. These populations were made from many different 
hybridization ratios, which presumably produced a much more 
diverse initial population then the fixed intuitive method. 
Clustering is beneficial in this case to ensure that this diversity is 
maintained. It appears that Oganov’s crossover hindrance 
overcomes the benefits of clustering only in cases were the 
population generation method is apparently more uniform. 

Clustering initial populations and using crossover to generate new 
candidate structures appear to be competing processes. Clustering 
is used to increase the diversity of a population while crossover 
benefits from homogeneity in the population to form viable 
candidate structures. The benefit or penalty due to clustering 
appears to be minor and temporary. In contrast to this, building 
molecules using chemical intuition appears to significantly increase 
the success rate of the GA compared to random population 
generation. This can be attributed to the fact that it takes many 
cycles for the random population to start creating candidates that 
exhibit the same geometries that the intuitive generator creates in 
the starting population. This is a deficit which cannot be overcome. 
Furthermore, the two different intuitive generation schemes 
produced different types of starting populations with similar 
results. This indicates that this process might be robust and tolerant 
of imperfect schemes which can result in significant improvements 
in other applications. 

Although this experiment was conducted on a single molecular 
formula, the techniques used are readily applicable to other 
molecules to test for optimized structures. C9H7N was chosen to 
test improvements on the genetic algorithm because of the 
complexity of its structure and the relatively low atom count 
leading to comparatively low computational time. The technique 
has been built so that any number of atoms and configurations can 
be applied including organics and metals. For example, a surface 
reconstruction of a step edge of TiO2 is a second test case that has 
been used previously [7] and would validate the increased 
cumulative success rate of this methodology. A similar starting 
population generator can be created based on typical Ti and O 
hybridizations so that a similar study could be conducted. 

5. CONCLUSIONS 
This study was conducted to examine the effect that intuitive 
starting population generation and clustering have on an 
evolutionary algorithm. Testing was conducted using the EA on the 
Atomic Simulation Environment [24] written for the Python 
programming language. The effect of intuitive population 
generation and clustering was tested by running EA’s on the 
molecular formula C9H7N until the known global minima structure, 
quinoline, was found, or until 5000 cycles were completed.  
 

Intuitive population generation was tested by comparison with 
random population generation and was split into two forms of 
intuitive population generation: a form where each hybridization 
type had equal chance of being selected, and a variable type where 
molecules were made with various likelihoods of hybridization 
selection. The effect of clustering on the EA was evaluated by 
testing each of these population generation methods with and 
without clustering, creating baseline runs and comparing them to 
modified runs. It was found that both methods of intuitive 
population generation had a similar positive effect on the success 
of the EA, increasing the success rate by approximately 30% in 
5000 iterations. Clustering was found to have little effect on the 
efficiency of the EA, with all results having overlapping confidence 
intervals between the clustered and non-clustered versions of each 
generation type. We can remark on trends showing a relationship 
between the population diversity possible from each molecule 
generation method and the effect of clustering. The methods that 
generated the most diverse populations benefited from clustering 
due to an increased likelihood of the population being seeded with 
molecules with similar structure to the global minimum structure. 
However, methods that generate focused populations that include 
global minimum-like structures were slowed in their ability to find 
the global minimum due to poor crossover between dissimilar 
molecules. 
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7. ACKNOWLEDGMENTS 
This study was conducted as part of the Blue Waters Student 
Internship Program, which is run by Shodor with funding provided 
by the National Science Foundation. Data was collected using 
Kepler, a cluster located at California State University, Fullerton. 
Clustering code was provided by Mathias S. Jørgensen. 
 

Volume 11, Issue 2 Journal of Computational Science Education

34 ISSN 2153-4136 April 2020



8. REFERENCES 
[1] Goedecker, S. J. 2004. Minima hopping: An efficient search 

method for the global minimum of the potential energy 
surface of complex molecular systems. J. Chem. Phys. 120, 
21, 9911-9917. DOI=10.1063/1.1724816. 

[2] Wales, D. J., and Doye, J. P. K. 1997. Global Optimization 
by Basin-Hopping and the Lowest Energy Structures of 
Lennard-Jones Clusters Containing up to 110 Atoms. J. Phys. 
Chem. A 101, 28, 5111−5116. DOI= 10.1021/jp970984n. 

[3] Call, S. T., Zubarev, D. Y., and Boldyrev, A. I. 2007. Global 
minimum structure searches via particle swarm optimization. 
J. Comput. Chem. 28, 7, 1177−1186. DOI= 
10.1002/jcc.20621 

[4] Pickard, C. J. and Needs, R. J. 2011. Ab initio random 
structure searching J. Phys.: Condens. Matter. 23, 5, 053201. 
DOI=10.1088/0953-8984/23/5/053201 

[5] Hartke, B.J. 1993. Global geometry optimization of clusters 
using genetic algorithms. J. Phys. Chem. 97, 39, 9973−9976. 
DOI=10.1021/j100141a013 

[6] Lohn, J. D., Hornby, G. S., and Linden, D. D. 2005, An 
evolved antenna for deployment on NASA’s Space 
Technology 5 Mission. In Genetic Programming Theory and 
Practice II. Genetic Programming, Vol 8. U. M. O’Reilly, T. 
Yu, R. Riolo, and B. Worzel Eds. Springer, Boston, MA. 

[7] Jørgensen, M. S., Groves, M. N., and Hammer, B. 2017, 
Combining Evolutionary Algorithms with Clustering toward 
Rational Global Structure Optimization at the Atomic Scale, 
J. Chem. Theory Comput. 13, 3, 1486-1493. 
DOI=10.1021/acs.jctc.6b01119 

[8] Turing, A. M. 1950, Computing machinery and intelligence". 
Mind. 59, 236, 433–460. DOI=10.1093/mind/LIX.236.433 

[9] Rechenberg, I. 1973. Evolutionsstrategie. Holzmann-
Froboog, Stuttgart. 

[10] Fogel, D. B. (editor) 1998. Evolutionary Computation: The 
Fossil Record. IEEE Press., New York, NY  

[11] Holland, J. 1992. Adaptation in Natural and Artificial 
Systems. MIT Press. Cambridge, MA. 

[12] Aldawoodi, N. 2008. An Approach to Designing an 
Unmanned Helicopter Autopilot Using Genetic Algorithms 
and Simulated Annealing. Doctoral Thesis. University of 
South Florida 

[13] Evolver: Sophisticated Optimization for Spreadsheets. 2019. 
Palisade. https://www.palisade.com/evolver/ 
 
 
 

[14] Lyakhov A.O., Oganov A.R., and Valle M. 2010. How to 
predict very large and complex crystal structures. Comp. 
Phys. Comm. 181, 9, 1623-1632. DOI= 
10.1016/j.cpc.2010.06.007 

[15] Vilhelmsen L. B., and Hammer, B. 2014. A genetic 
algorithm for first principles global structure optimization of 
supported nano structures. J. Chem. Phys. 141, 4, 044711. 
DOI= 10.1063/1.4886337. 

[16] Zhai, H., and Anastassia N. Alexandrova. 2017. Fluxionality 
of Catalytic Clusters: When It Matters and How to Address 
It. ACS Catal. 7, 3, 1905-1911. DOI= 
10.1021/acscatal.6b03243 

[17] Lones, M. A., and Tyrrell, A. M. 2007. Regulatory Motif 
Discovery Using a Population Clustering Evolutionary 
Algorithm. IEEE/ACM Transactions On Computational 
Biology And Bioinformatics. 4, 3, 403-414. DOI= 
10.1109/tcbb.2007.1044 

[18] Lipkowitz, K.B. and Boyd, D.B. 2003. Reviews in 
Computational Chemistry, Vol. 18. John Wiley & Sons, New 
York, NY.  

[19] Anderson E, Veith GD, Weininger D. 1987. SMILES: A line 
notation and computerized interpreter for chemical 
structures. U.S. EPA, Environmental Research Laboratory-
Duluth. Duluth, MN 

[20] Weininger, D. 1988. SMILES, a chemical language and 
information system. 1. Introduction to methodology and 
encoding rules, J. Chem. Inf. Comp. Sci. 28, 1, 31-36, DOI: 
10.1021/ci00057a005 

[21] Fletcher, R. 1987. Practical methods of optimization (2nd 
ed.), John Wiley & Sons, New York, NY  

[22] Elstner, M., Seifert, G. 2014, Density functional tight 
binding. Phil. Trans. R. Soc. London, Ser. A. 372. 20120483. 
DOI=10.1098/rsta.2012.0483 

[23] Aradi, B., Hourahine, B., and Frauenheim, 2007. Th. 
DFTB+, a sparse matrix-based implementation of the DFTB 
method, J. Phys. Chem. A. 111, 26, 5678-5684. 
DOI=10.1021/jp070186p 

[24] Larsen, A. H., Mortensen, J. J., Blomqvist, J., Castelli, I. E., 
Christensen, R., Dułak, M., Friis, J., Groves, M. N., 
Hammer, B., Hargus, C., Hermes, E. D., Jennings, P. C., 
Jensen, P. B., Kermode, J., Kitchin, J. R., Kolsbjerg, E. L., 
Kubal, J., Kaasbjerg, K., Lysgaard, S., Maronsson, J. B., 
Maxson, T., Olsen, T., Pastewka, L., Peterson, A., Rostgaard, 
C., Schiøtz, J., Schütt, O., Strange, M., Thygesen, K. S., 
Vegge, T., Vilhelmsen, L., Walter, M., Zeng, Z., Jacobsen, 
K. W. 2017. The Atomic Simulation Environment—A 
Python library for working with atoms, J. Phys.: Condens. 
Matter. 29, 27, 273002. DOI= 10.1088/1361-648x/aa680e 

 

Journal of Computational Science Education Volume 11, Issue 2

April 2020 ISSN 2153-4136 35




