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ABSTRACT 
Severe weather outbreaks come with many different hazards. One 
of the most commonly known and identifiable outbreaks are those 
with tornadoes involved. There has been some prior research on 
these events with respect to lead time, but shifts in model 
uncertainty by lead time has yet to be quantified formally. As such, 
in this study we assess tornado outbreak model uncertainty by lead 
time by assessing ensemble model precision for outbreak forecasts. 
This assessment was completed by first identifying five major 
tornado outbreak events and simulating the events using the 
Weather Research and Forecasting (WRF) model at 24, 48, 72, 96, 
and 120-hours lead time. A 10-member stochastically perturbed 
initial condition ensemble was generated for each lead time to 
quantify uncertainty associated with initialization errors at the 
varied lead times. Severe weather diagnostic variables derived from 
ensemble output were used to quantify ensemble uncertainty by 
lead time. After comparing moment statistics of several convective 
indices, the Energy Helicity Index (EHI), Significant Tornado 
Parameter (STP), and Supercell Composite Parameter (SCP) did 
the best job of characterizing the tornadic outbreaks at all lead 
times. There was good consistency between each case utilizing 
these three indices at all five lead times, suggesting outbreak model 
forecasting confidence may be able to extend up to 5 days for major 
outbreak events. These results will be useful for operational use by 
forecasters in forecast ability of tornadic events. 
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1. INTRODUCTION 
Tornado outbreaks are one of the premier atmospheric phenomena 
that cause substantial damage across the United States each year. 
While considerable research has been performed on these outbreaks 
[1, 2, 3], many questions remain regarding outbreak predictability 
and model uncertainty at increasing forecast lead time. 

 

 

Previous research defines a tornado outbreak as ten or more 
tornadoes associated with a single synoptic-scale system and 
confined to a specific geographic area [1]. Importantly, 73% of 
deaths associated with historic tornadoes were associated with 
tornadic outbreak events [1]. On average, over 1,000 tornadoes 
occur across the United States each year (NCDC), a majority of 
which are associated with outbreaks. Additionally, tornadoes have 
the highest ten-year average fatality rate among weather related 
hazards from 2008 to 2017 [5]. 

Given the hazardous nature of tornadic events, forecasting of these 
events several days in advance is vital. Frequently, convective and 
kinematic indices are utilized to quantify outbreak characteristics 
and predict outbreak mode at varying lead times [3]. Many previous 
studies have studied short and medium-term outbreak model 
uncertainty using these indices [3, 6, 7, 8, 9, 10]. Research has 
shown that there is a statistical drop off in forecast skill at lead times 
of 72 hours or longer [7], which is typical in most forecasting 
research. Keeping these limitations in mind, little research has been 
conducted looking beyond 72 hours in advance of tornadic 
outbreaks. 

Recently, improvements in numerical weather predication models 
such as the Weather Research and Forecasting model (WRF) have 
resulted in improved forecasts of tornado outbreaks [9]. Such 
improvements result from prior knowledge and pattern recognition, 
and the availability of the WRF to reproduce historic major events 
has helped forecasters identify important meteorological details in 
these events. Thompson and Edwards [11] recognized that large 
scale outbreaks may not be as evident through numerical model 
output as previously thought. Their work showed that forecasts 12 
to 24 hours in advance of the major 3 May 1999 tornado outbreak 
relied heavily on poor model output, which led to greater forecast 
uncertainty. An additional study, [12] relied on the WRF model to 
conduct similar case study research at varying lead times, noting 
forecast uncertainty increases with lead time. This suggests more 
work into model uncertainty is needed at both short and medium 
lead times. Clearly, a need for improved understanding of model 
uncertainty in tornado outbreak forecasts exists. 

The objective of this research is to quantify uncertainty in tornado 
outbreak convective indices by lead time, which in turn will allow 
forecasters to have greater confidence when forecasting major 
tornadic outbreaks. Uncertainty quantification via ensemble 
modeling is a primary way to assess predictability as increasing 
ensemble spread relates directly to reduced model precision. 
Following the methods of previous research [13], five major 
tornado outbreaks were selected and WRF simulations conducted 
at lead times of 24, 48, 72, 96, and 120-hours were completed. 
Previous work suggests that short-term forecast uncertainty will be 
significantly less than medium-term (96 to 120 hour) forecasts, 
which is the primary hypothesis of this study. 
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This student paper summarizes the purpose and results from 
research conducted through the Blue Waters Student Internship 
Program. Through this program, computational resources were 
utilized via the Blue Waters supercomputing facility. Section 2 will 
describe the data and methods utilized in this study as well as the 
computer and statistical modeling that aided in this research. 
Section 3 will discuss findings from this research at varying lead 
time intervals and the education impact related to this research. 
Additionally, this section will discuss the overall student goal and 
challenges associated with this study. The 4th section will refer to 
reflections and discussion about what the student learned through 
this research and the computing knowledge the student gained 
through this program. Section 5 will highlight the summaries and 
draw conclusions from this study and highlight the needs of future 
research. 

2. DATA AND METHODS 
2.1 Data 
As the primary goal of this research was to analyze the importance 
of lead time for tornadic severe weather outbreak forecasting, five 
major tornado outbreaks were selected from the Storm Event 
database [14] from the National Climatic Data Center. A major 
tornado outbreak was selected based on the number of tornadoes 
produced and overall damage extent of such tornadoes. Each of the 
five cases produced millions of dollars in damage, had several 
large, significant tornadoes, and frequently resulted in multiple 
deaths. Table 1 displays such statistics for each of the five outbreak 
cases [15-19]. 

 
Table 1. Displays of case date and statistical information for 

all five tornado outbreak cases utilized within this study 

 

A robust database of three-dimensional meteorological analyses 
was required to complete WRF simulations on the five outbreaks. 
Given the spatial scale of the outbreak events and the dates of the 
events, data was obtained from a mesoscale reanalysis analysis 
dataset, the North American Regional Reanalysis [20]. The NARR 
are provided on a 32-km Lambert conformal North American grid 
with 3-hourly temporal resolution and 29 vertical levels, spanning 
1979 to present. NARR fields were retained such that lead times of 
24, 48, 72, 96, and 120 hours could be simulated using the WRF. 

2.2 Model Configuration and Simulations 
In this study, the WRF model was used to formulate the outbreak 
forecasts at varying lead times. The WRF is highly configurable, 
and in this study the configuration was kept consistent with 
previous research [13]. In particular, the WRF was configured 
using the WRF Single-Moment six class microphysics scheme 
[21], the Grell-Freitas convective scheme [22], the Yonsei 
University boundary layer scheme [23], the Rapid Radiative 
Transfer Model radiation scheme for longwave [24], and the 
Dudhia scheme [25] for shortwave radiation. 

The WRF model (version 3.9) was utilized to run simulations of 
five tornadic outbreak events listed in Table 1. Since the primary 
goal of this research was to relate outbreak lead time intervals to 
forecast uncertainties as it relates to short and medium-term 
forecasting of tornadic outbreak events, each case was run at the 
five previously described lead time intervals. In this study, the 
simulation period was established by defining the end of the 
outbreak as 1200 UTC the day after the event. Lead times were then 
taken relative to this time, so that a 24-hour forecast started at 1200 
UTC the day of the event, and so forth. All outbreaks had a peak 
activity time between 2100 UTC and 0600 UTC, meaning this 
simulation period sufficiently captured the active tornadic activity 
during the event. 

Following the WRF simulations, severe weather diagnostics were 
computed on the simulation output, including Convective 
Available Potential Energy (CAPE), Significant Tornado 
Parameter (STP), Supercell Composite Parameter (SCP), Energy 
Helicity Index (EHI), and Storm Relative Helicity (SRH). CAPE 
and SRH are commonly utilized meteorological parameters for 
severe weather forecasting, where CAPE describes available 
thermodynamic potential energy (in J/kg) and SRH describes 
streamwise vorticity (in m2/s2) available to be tilted vertically and 
contribute to mesocyclone development. The remaining parameters 
were derived from a combination of SRH and CAPE. The three 
main equations discussed in further depth below are typically 
utilized with right-moving supercells, which is the predominant 
storm motion type within tornadic outbreaks utilized in this 
research. 

EHI combines CAPE and SRH into a single convective index: 
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Larger values of EHI are thought to be indicative of environments 
supporting large tornadoes and tornadic supercells. 

The STP is an index used to highlight the co-existence of 
ingredients favoring strong, damaging tornadoes [26]. This index 
was developed at the Storm Prediction Center to help identify 
meteorologically suitable regions for significant (EF2 or stronger) 
tornado activity [26]. The STP is given by: 
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Here, MLCAPE represents mixed-layer (ML) CAPE, a measure of 
CAPE derived from a parcel originating from a well-established 
mixed-layer. ESRH represents the SRH computed over the 
effective inflow layer [26]. EBWD represents the effective bulk 
wind difference (the wind vector difference between the top and 
bottom of the effective inflow layer). MLLCL represents the lifted 

Date Total # of 
Tornadoes 

EF/F 3+ 
Tornadoes Deaths Damage 

(millions) 

10 
April 
1979 

29 5 50 63 

28 
March 
1984 

24 12 57 600 

31 
May 
1985 

43 14 89 600 

3 May 
1999 75 9 46 1500 

17 
June 
2010 

74 8 4 100 
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condensation level of a parcel originating from the mixed layer. 
Smaller MLLCL values (ideally less than 1000 m) are typical in 
tornadic environments. Finally, MLCINH represents the mixed-
layer (ML) convective inhibition (CINH), which is needed to 
inhibit early-morning convection and create a buildup of boundary 
layer potential energy for afternoon explosive convective 
development. 

The SCP is also a commonly used parameter in forecasting tornadic 
outbreak events, as it was developed to highlight areas where 
supercell development is favorable [26]. SCP was developed at the 
Storm Prediction Center in Norman, Oklahoma as well. The 
equation is as follows: 
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Here, MUCAPE represents the most-unstable (MU) convective 
available potential energy (CAPE), based on the most unstable 
parcel in the lowest 300 mb of the atmosphere, and all other terms 
have been defined previously.  

2.3 Simulation Analysis 
To quantify forecast uncertainty, a spread in the forecast output was 
required. This spread was obtained by using the Stochastic Kinetic 
Energy Backscattering Scheme (SKEBS) [27] within the WRF 
configuration. The SKEBS provides initial condition perturbations 
to potential temperature and streamfunction values, essentially 
introducing random thermodynamic and kinematic noise into the 
model boundary conditions, which in turn creates model spread as 
the simulation progresses. Here, ten simulations for each case and 
lead time (a total of 250 simulations for all cases, perturbations, and 
lead times) were completed to assess WRF output uncertainty in 
the severe weather diagnostic fields. Uncertainty and distribution 
shape among the 10 perturbed simulations was identified through 
moment statistics (mean, variance, skewness, and kurtosis). The 
ten-member ensemble output was bootstrap-resampled 1000 times 
for each forecast timestep and moment statistics were formulated 
on the bootstrap replicates. The median bootstrap replicate for each 
moment statistic was then retained to assess ensemble member 
performance. The results are described below. 

3. DISCUSSION AND LESSONS LEARNED 
(EDUCATIONAL IMPACT) 
The primary goal of this study was to quantify uncertainty within 
tornado outbreak simulations with increasing lead time (24, 48, 72, 
96, and 120-hours). A multi-member stochastic perturbation initial 
condition ensemble was used to create simulation uncertainty, 
while outbreak characteristics were quantified using various severe 
weather indices. Overall, several indices stood out compared to 
other indices which aligned with previous research [7, 9]. SCP, 
STP, and EHI appear to be three of the convective indices that 
seemed to have the smallest uncertainty for on tornadic outbreak 
events at varying lead times, as indicated by the moment statistics 
calculated for the five test cases. Thermodynamic indices such as 
CAPE had a much larger spread of data as compared to these three 
indices. The ensembles and moment statists for these three 
variables appeared to be more consistent and uniform. While 
previous research [3, 6, 7, 8, 9, 10] has shown some variations in 
these indices as you increase lead time, this study seemed to show 
more consistent results at all five lead times. Figure 1 shows 
moment statistics from the May 3, 1999 tornado outbreak case 
utilizing the SCP guidance. For this case, peak outbreak time 
occurred at 00Z on May 4th (denoted by the vertical bar in the 

figures). At this time, all five lead time mean intervals peaked at 
nearly the same SCP value and provided minimal positive 
skewness and some leptokurtic behavior, suggesting a gamma-
distribution type shape to the ensemble members that was 
consistent among all lead times.  

 
Figure 1. The four moment statistics (mean, standard 

deviation, skewness, and kurtosis) for the May 3, 1999 case 
are shown. All four moment statistics show similar results 

across all five lead time intervals. The only outlier is the 24-
hour lead time in the skewness and kurtosis plots, which could 

be due to the small amount of time as compared to the 
remaining four lead time intervals. Peak outbreak time is 

represented by the vertical black line. 

 
These results suggest uncertainty remains consistent by lead time 
for these events, suggesting similar predictability at 120 hours 
exists at 24 hours. 
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Kinematic indices such as SCP, STP, and EHI appear to be more 
beneficial in medium-term forecasting of tornadic outbreak events. 
These three indices had similar distribution characteristics at all 
five lead times and had the smallest spread, suggesting high 
ensemble precision in the kinematic fields, as shown in Figure 2. 

 
Figure 2. Standard Deviation (SD) statistics for all five 

tornadic outbreak cases in order of: April 10, 1979, March 28, 
1984, May 31, 1985, May 3, 1999, and June 17, 2010 outbreak 
cases. Peak outbreak time is displayed by the vertical black 

line in each graph. 

 
These results are not surprising as kinematic fields within tornado 
outbreaks are typically governed by the highly predictable 
synoptic-scale background flow patterns. Interestingly, the only 
major differences were observed in the 24-hour ensemble forecasts, 
suggesting predictability above 24-hours lead time remains 
consistent for tornado outbreak events. Thermodynamic indices 

exhibited more variability, but the general trend of 48-hour lead 
times and beyond performing consistently remained intact. 

This research was conducted through the Blue Waters Student 
Internship Program which utilized the Blue Waters supercomputing 
center. Through this program, the student was exposed to high-
performance computing research in the atmospheric sciences and 
gained many valuable educational lessons. For example, the student 
learned that scientific research requires flexibility in the research 
timeline. On numerous occasions timelines were altered to allow 
for unforeseen complications, including compilation issues, big 
data issues, and data transfers that took longer than originally 
anticipated. 

Along with the computation and educational lessons learned, the 
student gained valuable experience in big data problems, which are 
becoming the standard in atmospheric science research, particularly 
research involving numerical weather prediction. In particular: 

1. The student learned that computational resources must be 
modified at times to meet the needs of the research that 
is trying to be done. Due to a compilation issue, the 
student had to transfer all simulation output between an 
in-house computer and the Blue Waters system for post-
processing. This required tedious organization to ensure 
all cases were stored and post-processed properly and 
required some cases to be redone. The in-house computer 
was also a shared resource, which further hindered 
progress and required the student to be fully apprised of 
time and resource issues. 

2. Time management played a huge role within this 
research, particularly accounting for run-times of some 
of the longer simulations. Many of the outbreak 
simulations took hours to run, so the student needed to 
set up distinct times for running these codes and a lot of 
time to transfer the data between an in-house computer 
and the Blue Waters computer. Additionally, transferring 
the cases for post-processing added an additional time 
component that was not foreseen at the beginning of this 
research. 

3. The student gained valuable knowledge into the 
difficulties and limitations with tornadic outbreak 
modeling, as well as some of the meteorological 
advantages and disadvantages of diagnostic fields in 
outbreak research. While there are many convective 
indices that are utilized, and data can be collected for, not 
all of these indices are good at predicting such outbreaks 
at varying lead-time intervals. 

Despite these computational challenges, this research would not 
have been able to have been completed without the computational 
power provide by the Blue Waters supercomputing center. Each 
simulation required roughly 16 GB of RAM, and each simulation 
produced roughly 20 GB of output after post-processing (leading to 
a final output size for all cases exceeding 2 TB). The project would 
not have scaled well to systems at the student’s university and 
would have required much longer than one year to complete, simply 
owing to the volume of simulations required. 

4. REFLECTIONS 
With any undergraduate research project, student inexperience with 
research and computing can increase the difficulty in a successful 
outcome. While the research done through this project was 
challenging at times, the student gained valuable experience with 
programming and high-performance computing, equipping the 
student for future research in big data and supercomputing, 
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currently among the highest priorities in meteorological research. 
In particular, supercomputing has become highly prevalent in 
multiple public and private disciplines of atmospheric sciences. 
This research opportunity helped set the student apart from their 
peers by providing critical experience in a High-Performance 
Computing environment which will have further benefits as the 
student continues their education. The lessons and processes 
learned through this research will aid in the student’s graduate 
studies beginning this fall. This research, in conjunction with the 
Blue Waters Student Internship Program and Summer Experience 
has given the student diligent training and preparedness for future 
graduate work and eventual career working with big data in 
atmospheric sciences. 

5. SUMMARY AND CONCLUSIONS 
It has been well established that tornadic outbreak events can be 
extremely difficult to forecast, especially several days in advance 
[1, 2, 3]. While efforts have been made to enhance such forecasts 
[3, 6, 7, 8, 9, 10], there is still room for growth within this field, 
particularly in medium-range outbreak forecasting. The primary 
goal of this research was to obtain an improved understanding of 
forecast uncertainty within tornado outbreaks at increasing lead 
times out to 5 days (considered medium-range forecasting). To 
accomplish this task, five major tornado outbreaks were simulated 
using stochastic perturbation ensembles at lead times out to 120 
hours. Each of the five tornado outbreak cases chosen produced 
many tornadoes (over 20 per case), with many of them being 
violent EF2 or greater intensity tornadoes. 

Once the test cases were chosen, utilizing input data from NARR, 
this data was run through ensemble simulations of WRF at 24, 48, 
72, 96, and 120-hour lead time intervals. Each case and lead time 
included a ten-member stochastically perturbed ensemble to help 
generate (and thereby quantify) uncertainty in the 250 simulations. 
Post-processing of the data collected from WRF output files 
allowed many convective indices to be assessed using moment 
statistics, including MLCAPE, MLCINH, 0-3 km SRH, 0-1 km 
EHI, SCP, and STP. 

Overall, thermodynamic convective indices seemed to show more 
variability across cases than index indices such as SCP, STP, and 
EHI. Moment statistics, such as standard deviation, show a much 
larger spread of data through thermodynamic convective indices 
like CAPE than with index indices like the three listed above. As 
shown in Figure 3, thermodynamic parameter such as CAPE show 
a bigger shift from the 24-hour forecast period to additional lead 
times, though the 48-hour to 120-hour lead times still behave 
similarly. This bigger shift from the 24-hour forecast to later lead 
times suggests outbreak predictability using CAPE alone is not 
sufficient, which has been well established in previous work [7]. 

The major finding in this study was that both thermodynamic and 
kinematic indices all behaved similarly at 48, 72, 96, and 120-hour 
lead times, regardless of the moment statistic selected. This was a 
surprising result given previous research, which typically noted a 
substantial increase in uncertainty after 72 hours lead time. This 
suggests outbreak predictability for these major events may not 
change significantly between 48 hours and 120 hours, which may 
give forecasters additional potential for predicting these events at 
longer lead times. 

Furthermore, these results can be utilized in the future to continue 
drawing conclusions about forecasting techniques at short-term and 
medium-term ranges for tornado outbreaks. Future research is 
needed to ascertain the generalization of these results to all major 
tornado outbreak events. Some future work would include utilizing 

more test cases and more ensemble WRF forecasts to have more 
data to compare across tornadic outbreak cases. Additionally, 
previous research [13] has been done assessing medium-term 
forecast uncertainty of non-tornadic outbreak cases, and those 
results could be compared with the results of this study to gain a 
broader understanding of outbreak predictability across the full 
spectrum of outbreak events. 

 
Figure 3. Average standard deviation (SD) statistics for one 
thermodynamic indices (MLCAPE) and for three kinematic 

indices (EHI, STP, and SCP). 
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