
Volume 11 Issue 1

January 2020

	

Volume 11, Issue 1 January 2020

Editor: Steven Gordon
Associate Editors: Thomas Hacker, Holly Hirst, David Joiner,

Ashok Krishnamurthy, Robert Panoff,
Helen Piontkivska, Susan Ragan, Shawn Sendlinger,
D.E. Stevenson, Mayya Tokman, Theresa Windus

CSERD Project Manager: Jennifer Houchins Managing Editor: Jennifer
Houchins. Web Development: Jennifer Houchins, Aaron Weeden, Joel Col-
dren. Graphics: Stephen Behun, Heather Marvin.

The Journal Of Computational Science Education (JOCSE), ISSN 2153-4136,
is published quarterly in online form, with more frequent releases if submission
quantity warrants, and is a supported publication of the Shodor Education
Foundation Incorporated. Materials accepted by JOCSE will be hosted on the
JOCSE website, and will be catalogued by the Computational Science Education
Reference Desk (CSERD) for inclusion in the National Science Digital Library
(NSDL).

Subscription: JOCSE is a freely available online peer-reviewed publication
which can be accessed at http://jocse.org.

Copyright c©JOCSE 2020 by the Journal Of Computational Science Education,
a supported publication of the Shodor Education Foundation Incorporated.

	

Contents
Introduction to Volume 11 Issue 1: Special Issue on HPC Training and
Education

1

Nitin Sukhija, Guest Editor

Lessons Learned from the NASA-UVA Summer School and Internship 3
Program
Katherine Holcomb, Jacalyn Huband, and Tsengdar Lee

Northeast Cyberteam Program - A Workforce Development Strategy for
Research Computing

8

John Goodhue, Julie Ma, Adrian Del Maestro, Sia Najafi, Bruce Segee,

Scott Valcourt, and Ralph Zottola

Incorporating Complexity in Computing Camps for High School Students -
A Report on the Summer Computing Camp at Texas A&M University

12

Dhruva K. Chakravorty, Marinus “Maikel” Pennings, Honggao Liu, Xien Thomas,

Dylan Rodriguez, and Lisa M. Perez

Expanding user communities with HPC Carpentry 21
Alan Ó Cais and Peter Steinbach

Blue Waters Workforce Development: Delivering National Scale HPC 26
Workforce Development
Jennifer Houchins, Scott Lathrop, Robert Panoff, and Aaron Weeden

One Year HPC Certification Forum in Retrospective 29
Julian Martin Kunkel, Kai Himstedt, Weronika Filinger, Jean-Thomas Acquaviva,

Anja Gerbes, and Lev Lafayette

Project-Based Research and Training in High-Performance Data Sciences,
Data Analytics, and Machine Learning

36

Kwai Wong, Stanimire Tomov, and Jack Dongarra

Computational Biology as a Compelling Pedagogical Tool in Computer 45
Science Education
Vijayalakshmi Saravanan, Anpalagan Alagan, and Kshirasagar Naik

FreeCompilerCamp.org: Training for OpenMP Compiler Development from
Cloud

53

Anjia Wang, Alok Mishra, Chunhua Liao, Yonghong Yan, and Barbara Chapman

Self-Paced Learning in HPC Lab Courses 61
Christian Terboven, Julian Miller, Sandra Wienke, and Matthias S. Müeller

Computational Mathematics, Science and Engineering (CMSE): 68
Establishing an Academic Department Dedicated to Scientific Computation
as a Discipline
Dirk Colbry, Michael S. Murillo, Adam Alessio, and Andrew Christlieb

The Supercomputing Institute: A Systems-Focused Approach to HPC 73
Training and Education
J. Lowell Wofford and Cory Lueninghoener

Creating a Relevant, Application-Based Curriculum for High Performance
Computing in High School

81

Vincent C. Betro and Mary E. Loveless

Introducing Novices to Scientific Parallel Computing 88
Stephen Lien Harrell, Betsy Hillery, and Xiao Zhu

Evaluating the Effectiveness of an Online Learning Platform in 92
Transitioning Users from High Performance Computing to a Commercial
Cloud Computing Environment
Dhruva Chakravorty and Minh Tri Pham

Teaching HPC Systems Administrators 100
Alex Younts and Stephen Lien Harrell

Contributing HPC Skills to the HPC Certification Forum 106
Julian Kunkel, Kai Himstedt, Weronika Filinger, Jean-Thomas Acquaviva,

Anja Gerbes, and Lev Lafayette

	

Introduction to Volume 11 Issue 1: Special Issue on HPC Training
and Education

Nitin Sukhija
Slippery Rock University of Pennsylvania

Slippery Rock, PA

FORWARD
High performance computing is becoming central for empowering
scientific progress in the most fundamental research in various
science and engineering, as well as societal domains. It is remark-
able to observe that the recent rapid advancement in the today?s
and future computing and software environments provide both
challenges and opportunities for cyberinfrastructure facilitators,
trainers, and educators to develop, deliver, support, and prepare a
diverse community of students and professionals for careers that
utilize high performance computing to advance discovery. This
special issue focuses on original research papers submitted to the
First Workshop on HPC Education and Training for Emerging Tech-
nologies (HETET19), which was held in conjunction with ISC19
conference in Frankfurt, Germany, June 20, 2019 the Second Work-
shop on Strategies for Enhancing HPC Education and Training
(SEHET19), which was held in conjunction with PEARC19 con-
ference in Chicago, Illinois, U.S.A., July 29, 2019, and the Sixth
SC Workshop on Best Practices for HPC Training and Education
(BPHTE19), which was held in conjunction with SC19 conference
in Denver, Colorado, U.S.A., November 17, 2019.

This special issue begins with an article by Holcomb et al that
presents the lessons learned from the summer school and the in-
ternship program operated by University of Virginia in partnership
with NASA from the year 2013 to 2018. The greatest challenge they
found was to provide a good program for students with widely
varying backgrounds, skills, and expectations. They accommodated
the diversity by increasing hands-on exercises interspersed with
lectures and by expanding their bank of programming exercises to
span a range of abilities.

The article by Goodhue describes the Northeast Cyberteam Pro-
gram, a 3-year National Science Foundation (NSF) funded initiative
to increase effective use of cyberinfrastructure by researchers and
educators at small and mid-sized institutions in Northern New Eng-
land (Maine, Massachusetts, NewHampshire, Vermont). The core of
their strategy is to build a regional pool of research computing facili-
tators (RCFs) and a process to share them across institutional bound-
aries, augmented by knowledge sharing and self-service learning
tools that increase the effectiveness of Research Computing Facili-
tators. They conclude by highlighting the program management
portal and the impact of the program on the smaller institutions
and its relevance to the potential facilitators.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education

The article by Chakravorty et al presents the Summer Comput-
ing Academy (SCA), a weeklong cybertraining program offered
to high school students by High Performance Research Comput-
ing (HPRC) at Texas A&M University (Texas A&M; TAMU). They
provide the best practices that have been adopted in the Summer
Computing Academy model and the recruitment strategies along
with the selection criteria for the participants. They conclude by
discussing the legal and administrative issues encountered while
hosting such efforts and the sustainability of the effort.

The article by Cais et al presents a training model of the carpen-
tries for the HPC space that provides a pathway to collaboratively
created training content which can be delivered in a scalable way
(serving everything from university or industrial HPC systems to
national facilities). They describe some of the training material de-
sign principles and how they influence the creation process. They
conclude by discussing two distinct evaluation processes, a review
process that happens during material creation and learner evalua-
tions that occur during/after training events.

The article by Lathrop et al describes the National science Foun-
dation funded Blue Waters project, which supports an Education,
Outreach and Training (EOT) program focused on preparing an
HPC-capable workforce with an emphasis on petascale computing
competencies. They discuss how the Blue Waters EOT team en-
gages undergraduate students in internships, graduate students in
fellowships, researchers as participants in training sessions, trainers
and educators as PIs of education allocations, and underrepresented
communities as PIs of broadening participation allocations. They
conclude by describing the impact and benefits of the project, in-
cluding directly reaching people located in many foreign countries,
as well as freely disseminatingmaterials that have been downloaded
and used by thousands of people world-wide.

The article by Kunkel et al presents the current status of the cer-
tification program curated by the HPC Certification Forum. They
describe the program that consists of three parts: the tree of defined
competencies, the examination of practitioners to prove they pos-
sess those skills, and finally the certification demonstrating their
knowledge. They conclude by discussing the benefits of the pro-
gram that not only allows the re-use of existing content but also
makes it possible to create a new ecosystem in which HPC centers,
research labs, academic institutions and commercial companies
could offer the best of their teaching material.

The article by Wong et al describes design and plan of a National
Science Foundation supported hands-on Research Experiences for
Computational Science, Engineering, and Mathematics (RECSEM)
program at the University of Tennessee (UTK) in high-performance
data sciences, data analytics, and machine learning on emerging

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 1

computer architectures. They discuss the experiences and resolu-
tions in managing and coordinating the program, delivering cohe-
sive tutorial materials, directing mentorship of individual projects,
lessons learned, and improvement over the course of the program,
particularly from the perspectives of the mentors. They conclude
by discussing the outcomes and the progress of the students and
overall impact of the REU program.

The article by Saravanan et al presents a novel course curriculum
to teach high performance, parallel and distributed computing to
senior graduate students (PhD) in a hands-on setup through exam-
ples drawn from a wealth of areas in computational biology. They
provide a sample course outline that details the HPC concepts that
can be covered in a one-semester course, along with the suggested
bioengineering applications to introduce them. They conclude by
discussing the assessment methods and the high evaluation ratings
received for this interdisciplinary course.

The article by Wang et al describes an ongoing effort, FreeCom-
pilerCamp.org, a free and open online learning platform aimed
to train researchers to quickly develop OpenMP compilers. They
explain the challenges faced in giving compilers training and the
solutions and present the implementation of the platform. They
provide an overview of the design of the web-based tutorials to take
advantage of FreeCompilerCamp. They conclude by the discussing
the feedback received on the design of FreeCC tutorial.

The article by Terboven et al presents a learning status survey,
a developer diary to track the student?s progress in achieving the
learning objectives, and an approach to enable the comparison of
different HPC cluster architectures or parallel programming models.
They report on the learning objectives of the labs along with their
experiences with using various stimuli in their labs to increase
the success rate of the learning objectives while fostering creative
solutions. For example they use a competition among students
to motivate them to optimize their codes for performance and
show the opinions that students have towards these concepts. They
conclude by discussing the feedback on the concept of self-paced
learning and the evolution of the software labs in terms of obtained
knowledge, training productivity and programming models, as well
as students? feedback based on teaching evaluations.

The article by Colbry et al shares the lessons learned during
the Computational Mathematics, Science and Engineering (CMSE)
department?s development at the Michigan State University (MSU)
and the initiatives it has taken on to support computational research
and education across the university. They describe how the depart-
ment has aided in establishing both traditional degree programs
and non-traditional options to build computational competency
in learners from across STEM. They conclude by discussing the
CMSE department as uniquely positioned at the ?triple junction? of
algorithm development and analysis, high performance computing,
and applications to scientific and engineering modeling and data
science.

The article by Wofford and Lueninghoener describes method-
ology followed at the Supercomputing Institute to teach cluster
computing to undergraduate and graduate students. They described
the redesigned boot camp curriculum and the two-fold approach of
the new curriculum, which are to extend the content of the lectures
to include more technical depth and more technical areas; and to
replace the labs with practica (staged guides that have a mix of free

exploration prescribed steps). They conclude by providing qualita-
tive and quantitative results indicating the positive impact of the
new curriculum on the program over recent years.

The article by Betro and Loveless describes the development of
a STEM ecosystem where both the science department and math
department of Baylor school have implemented an interdisciplinary
approach to introduce a spectrum of laboratory and computing re-
search skills. They outline the benefits of this ecosystem that has
been an effective tool in allowing several driven and interested stu-
dents to participate in collegiate-level and joint collegiate projects
involving virtual reality, robotics and systems controls, and model-
ing. They conclude by discussing various critical factors in readying
the next generation of computing leaders.

The article by Harrell et al presents the parallel computing por-
tion of the HPC seminar series which are used as a tool to introduce
students from many non-traditional disciplines to scientific, paral-
lel and high-performance computing. They describe the two-fold
approach to their curriculum: engaging students with hands-on
exercises using a real-world scientific application along with reg-
ularly lecturing on more general parallel computing topics in the
class. They conclude by discussing the student evaluations and the
lessons learned to give undergraduate students an opportunity to
explore the field of HPC and big data in a non-traditional computer
science course setting and build a basic foundation of computational
and data skills for their further education and research activities

The article by Chakravorty and Pham presents a review of ex-
periences of using Google?s Qwiklabs online platform for remote
and in-person training from the perspective of the HPC user. They
describe the scaffolded instruction methods supported by the Qwik-
labs training platform that support learners with varied skill sets.
They conclude by providing recommendations on how the large-
scale computing community can leverage these opportunities to
work with Cloud service providers to assist researchers nationally
and at their home institutions.

The article by Younts and Harrell describes the teaching methods
and hardware platforms used by Purdue Research Computing to
train undergraduates for HPC system roles. They present the sci-
entific computing track, which provides students with some basic
Linux skills but focuses on running and visualizing scientific codes
and the HPC Systems Track, which truly focus on important as-
pects of building systems. They conclude by discussing the system
they have designed and the failures and successes they have had
teaching HPC system administrators.

The article by Kunkel discusses the current state of the developed
Skill Tree in the HPC Certification Program and the process of
contributing to the skills to the program. They describe the skills,
organized in a tree structure from a coarse-grained to a fine-grained
representation, allowing users to browse the skill based on the
semantics. They conclude by reporting on the HPC certification
forumwhich plays a virtual central authority to curate andmaintain
the skill tree and certificates and how the contributions to the skill
definitions can be made.

Volume 11, Issue 1 Journal of Computational Science Education

2 ISSN 2153-4136 January 2020

Lessons Learned from the NASA-UVA Summer School
and Internship Program

Katherine Holcomb
Research Computing
University of Virginia

Charlottesville, Virginia
kah3f@virginia.edu

Jacalyn Huband
Research Computing
University of Virginia

Charlottesville, Virginia
jmh5ad@virginia.edu

Tsengdar Lee
High-End Computing Program

NASA
Washington, D.C.

tsengdar.lee@nasa.gov

ABSTRACT
From 2013 to 2018 the University of Virginia operated a summer
school and internship program in partnership with NASA. The goal
was to improve the software skills of students in environmental and
earth sciences and to introduce them to high-performance computing.
In this paper, we describe the program and discuss its evolution in
response to student needs and changes in the high-performance
computing landscape. The future direction for the summer school and
plans for the materials developed are also discussed.

Keywords
computer science education, scientific computing, curriculum
development, mentoring.

1. INTRODUCTION
The University of Virginia-NASA Summer School and Internship
Program was motivated by perceived gaps in basic software-
engineering and high-performance computing skills in students in
science programs, particularly environmental and earth sciences. As
science moves in an increasingly computational direction, the
preparation of students lags further behind the demands of their future
research careers. While most engineering undergraduates at the
majority of higher-education institutions are required to take some
form of introductory programming course, usually taught in a
Computer Science department, the same is not true of science students
in most cases. If they do take programming courses, they are often
taught by science faculty untrained in modern software principles. A
further omission is high-performance computing and parallel
computing; not only is this rarely taught even to computer-science
majors, but as an advanced topic it requires proficiency in basic
programming before students are able to assimilate it. Our program
was intended to explore ways to address these issues.

The program took place in two phases. In the first phase, which we
named the Intensive Summer School for Computing in Environmental
Sciences (ISSCENS), we accepted 20 students, with 10 of these
selected for subsequent 8-week internships at NASA centers. In the
second phase, Advanced Computing for Earth Sciences (ACES), we

accepted a minimum of 20 students, all of whom were placed in 8-
week internships. ISSCENS ran during the summers of 2013, 2014,
and 2015. ACES took place in 2016, 2017 and 2018. Through all
sessions of the Summer School we continuously modified the
curriculum and emphasis while retaining the basic structure
established for ISSCENS.

For both programs, applicants were required to be enrolled in or to
have just completed an academic degree program at a United States
institution of higher education. For undergraduate applicants, upper-
division students were preferred, but this was not a requirement.
During the ISSCENS phase, we accepted international students for the
10 slots that did not lead to NASA internships. For the other ISSCENS
students, and for all ACES students, United States citizenship was
required since this is necessary for regular NASA internships.
Students were housed in a dormitory on the campus of the University
of Virginia for the Summer School and were provided breakfasts and
lunches on weekdays.

No prior programming experience was required, but many attendees
had some minimal exposure, often through simple scripting in a
language like MATLAB™, while some, particularly the ACES
participants, had significant computing backgrounds. The attendees
came from 57 different US academic institutions. In both programs,
locally-residing students at the University of Virginia, most of whom
were graduate students in the Department of Environmental Sciences,
were invited to attend the full program, along with the out-of-town
students. Two to five UVA students attended each year. The
participants were almost equally divided between male (a total of 79)
and female (total 73). We did not formally track ethnicity but the
overwhelming majority would be described as white.

2. CONTENT
The program content was based on two courses taught through the
Department of Computer Science at the University of Virginia,
Computing as a Research Tool and Introduction to Parallel
Computing. Computing as a Research Tool was aimed at graduate
students who needed to apply computing to their research; basic
programming was taught in the student’s choice of language from the
selection offered, along with Unix command-line skills and using a
resource manager. Introduction to Parallel Computing teaches high-
throughput computing, threaded computing, and MPI programming
in a compiled language only (usually plain C). Computing as a
Research Tool was taught by staff of the Research Computing
support group, while Introduction to Parallel Computing is taught by
a Computer Science faculty member.
In recognition of the fact that formal coursework can never reach all
researchers who could potentially benefit, in 2008 the Department of
Computer Science developed a week-long, accelerated “High
Performance Computing Bootcamp” offered jointly with Virginia

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©JOCSE, a supported publication of the
Shodor Education Foundation Inc.

© 2019 Journal of Computational Science Education
DOI: https://doi.org/10.22369/issn.2153-4136/11/1/1

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 3

Tech. Taking place in early summer, it was open to all faculty, staff,
and students from institutions of higher education in the
Commonwealth of Virginia. For a few years this “Bootcamp”
alternated between the University of Virginia and Virginia Tech
venues, but in 2011 Virginia Tech developed a local version and
UVA continued on its own. Staff from Research Computing then
began to play an increasingly important role in teaching the
Bootcamp. When the ISSCENS program was developed, we
condensed our Computing as a Research Tool course into the
introductory 1.5 weeks and utilized the “Bootcamp” as the final
week. In 2016 Research Computing took full responsibility for the
Bootcamp and replaced some of the more theoretical material with an
introduction to data analytics for the high-performance platform.

The goal of ISSCENS and ACES was to reach students whose
universities do not offer coursework such as this at all, or who cannot
devote a semester to for-credit courses in computer-science topics.
The format was modeled after an accelerated traditional course, with
aspects of “flipped” classroom as much as possible. Each class day
consisted of a morning series of lectures, with short hands-on
exercises at regular intervals to the extent feasible. Afternoons
consisted of lab sessions with a set of “homework” problems. A
major adaptation over the length of the program was to differentiate
beginner, intermediate, and advanced programming projects for each
set of topics. This was particularly important for beginning students
and significantly increased their satisfaction with the program.
Evidence indicates that student comfort with their level of
understanding of an aspect of programming correlates best with
overall learning [1][2]; so, making sure students master at least the
basics of the beginning topics is critical for their success. Motivation
is another key factor in student learning [3] but our attendees
generally were highly motivated to enhance their career skills. In
fact, one student criticism of our program was that the assignments
were not based on “real” research problems.

3. STRATEGY
We settled on teaching Python as the common language. Python is
easy for most students to learn yet has sufficient power to serve as an
introduction to modern programming and basic software engineering.
Its popularity has grown substantially at high-ranked computer
science programs in the United States, passing Java recently as the
most popular language taught [4]. It is widespread in online
introductory courses from EdX, Udacity, Coursera, MIT Open
Courseware, etc. It has also exploded in popularity in many sciences.
In particular, it is displacing the commercial software IDL for areas
of interest to NASA, specifically Earth Sciences and
Astronomy/Astrophysics, particularly for data analysis. The ready
availability and ease-of-use of packages such as astropy (astronomy)
[5], Basemap [6], xarray [7], and many others for Earth sciences,
make it well suited for students in those fields. It is also free and
open source so that students are able to install it on their personally-
owned laptops without licensing expenses or concerns. Finally,
while the critical parts of data-mining and machine-learning systems
such as Theano [8] or Tensorflow [9] are generally written in a
compiled language such as C++, most users interact through these
packages’ Python bindings. On modern computing systems, the
general slowness of Python (and most other interpreted languages) is
usually not a significant issue.

Once Python was chosen, it was necessary to select a version and
then a distribution. We chose the older Python 2.7 simply because
some packages had not been ported to Python 3.3 and up at the time,
on at least one platform (e.g. Basemap was not ported to 3.N on
Windows). At all points at which differences are significant, we
taught both forms. By the time Python 2.7 reaches end-of-life in

2020 [10] we expect all packages to have been ported or replaced; for
instance, Cartopy [11] should have implemented all features of
Basemap. In 2018 we allowed students to choose but remained with
a base of Python 2.7, with an increase in discussion of maintaining
code for both versions [12].

Since our emphasis was on software development with an eye toward
more complex code projects, we focused on the Spyder IDE [13] rather
than the popular Jupyter notebook. Jupyter is oriented toward data
exploration and distribution of a “narrative” of code and analysis,
whereas Spyder is a lightweight but traditional IDE with many features
helpful for code development, including variable and object viewers
and direct access to the built-in debugger and profiler. Spyder also
marks syntax errors dynamically and can look up and show names and
documentation for functions in modules and packages on the fly. We
demonstrated use of Jupyter during exercises with the statistical
package Pandas, but mostly used Spyder. Students generally find
Spyder a comfortable working environment and often prefer it to
Jupyter.

For the Python language support, we quickly settled on the Anaconda
distribution from Continuum Analytics [14]. This distribution is
comprehensive, cross-platform, and usually very easy to install, even
for novices. Over the past six years Continuum has improved the
usability of their application and Anaconda now provides a graphical
interface for managing packages, a significant improvement over the
manual procedure using their Conda package manager from a
command line [15]. Conda is still functional for standalone
applications, with more powerful features such as conda environments
and “pinning” package versions in an environment. There is also the
pip installer for packages they do not support directly [16], but for
beginners a graphical package manager is very helpful.

Modern Fortran, taught in an accelerated fashion, was used as the class
compiled language for the first four sessions. Students who needed to
learn it would be motivated to continue, using resources we provided
as well as their own references, while students who would not need it
(or would need it only occasionally) gain some exposure without being
forced to spend too much time with it. Fortran is widely used in the
Environmental/Earth Sciences community. There are also many
legacy codes written in Fortran that students are likely to encounter if
they remain in their fields. However, it is rarely taught except to
advanced students majoring in atmospheric sciences or meteorology,
and even then it often is not taught particularly well. Modern Fortran
(the 2003 standard and up), includes many features of newer
programming languages, including arrays as a container data structure,
modules, subprogram interfaces, and more sophisticated data
structures, including classes. We particularly emphasized array
operations, which in our testing using recent compilers have proven to
be remarkably fast. Obsolete constructs were described so students
would recognize them, but we did not use them in examples or
exercises.

For the last two years we taught Fortran and C++ side by side, allowing
students to choose the one most useful to their research goals.

For the final week of each session, in which high-performance and
parallel computing were introduced, we supported C/C++, Fortran,
Python, and sometimes R.

4. CURRICULUM
The program started the Wednesday following Memorial Day and ran
for two and a half weeks. We began with three days of instruction in
a common scripting language (i.e., Python). The next Monday and
Tuesday were devoted to object-oriented programming concepts and
an introduction to software engineering. The next day was generally

Volume 11, Issue 1 Journal of Computational Science Education

4 ISSN 2153-4136 January 2020

focused on advanced visualization, with instruction in compiled-
language programming for the last two days of the week. The last
week was variable over the life of the project; but in the three ACES
sessions it consisted of Unix, bash scripting, and use of a queueing
system on Monday, either optimization and high-throughput
computing or data analytics on Tuesday, MPI usually on Wednesday
and Thursday, and programming using a multicore paradigm usually
on Friday.

The curriculum evolved significantly from the first session in 2013.
For the summers of 2013-2015 students applied directly to the
ISSCENS program, and we then recruited NASA mentors for 10 of
them. As a result, most of the applicants to ISSCENS had little to no
programming experience and we spent more time on basic skills. We
also included a session on scripting ESRI’s ArcGIS Desktop with
Python. We spent three days on a mixture of Fortran and Unix skills.
The final week, the “High-Performance Computing Bootcamp,”
focused on high-throughput computing, using a resource manager,
code optimization with an emphasis on compiled languages, OpenMP,
and MPI.

For the second phase (ACES), students applied directly to NASA
centers through the One-Stop Shopping Initiative. The mentors were
recruited by NASA education officers, and the students were selected
by the mentors. This changed the typical background of the students,
since mentors usually wanted students who were more prepared to
work on computational projects. Consequently, we reorganized the
ISSCENS curriculum. We continued to teach three days of
introductory Python and one day of object-oriented Python, but we
increased the material for the “software engineering” day, and upped
the sophistication of the “advanced visualization” day. Fortran was
consolidated into two days, with Unix and bash moved to the first day
of the “HPC Bootcamp.” Coinciding with the first ACES session in
2016, Research Computing took over full responsibility for the
“Bootcamp” from the Computer Science Department and drastically
reduced the amount of theory in the instructional materials,
substituting more practical and hands-on content in its place. The
Unix/bash/SLURM session enabled students to use larger systems at
NASA immediately upon arrival at their internship, if appropriate to
their projects. Most ACES students, even those with computational
experience, arrived never having used anything other than personal
laptops or institutional desktops, so this was also essential preparation
for the rest of the week. In 2017, in recognition of the growing
importance of “big data” analytics and machine learning, we devoted
the second day of the “Bootcamp” to this topic, including some
exercises in applying Tensorflow to remote-sensing images. We
discussed how cloud resources, such as Amazon Web Services, could
be used for implementations of Spark Machine Learning.

In 2017 we also combined serial optimization with
OpenMP/multiprocessing (the latter for Python users). Serial
optimization is especially important for Python programmers; so we
increased the content in that area beyond the original Computer
Science material. We reduced the MPI introduction to a minimum and
provided information about accelerators such as the Intel Knight’s
Landing and NVIDIA GPGPUs, although we had no KNL nodes and
only two NVIDIA-equipped nodes at the time, which made direct
experience difficult. In any case, the students’ general lack of
computer-science background and, often, C/C++ programming skills,
as well as the short time available to devote to accelerators, prohibited
any attempt to teach CUDA programming for GPUs. Therefore, our
focus was on introducing OpenACC [17] instead

For 2018 we “packaged” different portions of the curriculum into
workshops that we offered to the larger University of Virginia
community. The only session we did not open to University attendees

at that time was the “software engineering” session. It is important to
note that we taught little modern software engineering. Our emphasis
is on readable code, careful consideration of code data and algorithmic
structures, team development, and testing and debugging skills.

The HPC “Bootcamp” for 2018 was broken into three logical portions,
each of which was accessible to all UVA students and faculty as well
as to ACES students. By that time we also had accelerator hardware
available for hands-on access, and so had the opportunity to restructure
appropriate sections to take more advantage of these devices, including
KNL. We also acquired more GPUs on our HPC system so that we
demonstrated Tensorflow in its most usual environment (in 2017 we
used a core-only version). The “big data on HPC” day was also a
workshop available to UVA affiliates. The final segment was a three-
day block; the first day covered serial optimization, OpenMP, and
OpenACC. The two following days introduced MPI, including
mpi4py [19]; the introduction to the Intel Knight’s Landing MIC
occurred on the final day, along with PGAS concepts such as co-array
Fortran [20][21] and UPC++ [22]

5. OUTCOMES
Our effectiveness was variable and depended very much on the
background of individual students. The biggest challenge we faced
throughout the program was that the participants’ experience, interests,
and aptitudes ranged from complete beginners who had never
programmed in any language to students finishing a master’s degree in
computer science. The intention of the program was to train students
in HPC, but students who have not mastered basic serial programming
have very little ability to absorb parallel computing, particularly in an
intensive setting with a short timeframe.

Assessments administered to the students showed that the majority felt
that the pace was reasonable; it was fast, but they felt they could go
back later to pick up more details. In aggregate, approximately 10%
thought the pace was too fast, and 5% thought it too slow.

In the 2017 session we forced students to work in small teams on a
programming project for the “software engineering” session.
Somewhat to our surprise, most of the students had never worked
collaboratively on programming, where one programmer must code to
an API that other programmers established. Many of the students felt
that this was one of the most valuable learning experiences of the entire
program.

The most important assessment is their performance in their later
research and internships. For the first three summers only 10 students
went to NASA internships sponsored by us, but many went to
internships with other organizations. Others returned to their research.
For the final summers all but one non-UVA attendee went to NASA
internships. Student assessments were quite positive of their
internships with one exception. Assessments were anonymous but
several alumni contacted us personally to state that their internships
would have been much more difficult without the training program.

Example quotes:
“I was able to make more progress than my mentor had expected.”
 “I know that I would have been woefully unprepared for this summer
if not for the lessons and guidance provided to us through ACES.”

Several NASA mentors also requested students who had participated
in our program in previous years. In at least one case, a mentor also
sent an intern from the previous summer to ACES before the student’s
second summer internship.

In a few cases, our program was career-altering. During the first
ISSCENS session, an attendee who had never programmed before

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 5

discovered she had aptitude in that area, and reoriented her area of
interest in her field of hydrology toward computational modeling.

Another outcome of this project was a professionally-produced video
series on introductory Python, aimed specifically at scientists and
engineers and therefore emphasizing NumPy, SciPy, Pandas, and other
packages and techniques used heavily by scientific applications.
Seven students in an advanced chemistry course at the University of
Virginia were recruited as a focus group to use this series to learn to
program using these videos. Even those who had no programming
experience were able to contribute to a final group programming
project for the course.

6. FUTURE OF THE PROGRAM
Once we opened the “packaged” sessions to University of Virginia
affiliates, we found that they were extremely popular, so we have
continued the program as the Research Computing Summer Education
Series (SES). For 2019, with no ACES students attending, we
condensed the Python sessions to 3 days, largely by eliminating some
topics that are primarily of interest to environmental-science students
as well as a few more advanced topics. Response was so enthusiastic
that we had to find a larger auditorium. The C++/Fortran short course
also proved popular. Inspired by our success with Python, we added
short courses in R and MATLAB™. We opened the “software design”
short course and it attracted considerable interest as well. We
augmented the last week’s HPC training with more data analytics,
including machine learning, and added short courses in image
processing and bioinformatics, the latter emphasizing HPC
applications.

A major difference between the Summer School students and the
UVA-only attendees was the level of motivation and distraction.
Summer School attendees expected to devote their entire day to the
material, were motivated to learn in order to do well at their
internships, and maintained focus. Summer Education Series
attendees were not as reliable at returning for lab sessions. Lab
attendance was very good for Python and R, less so for compiled
languages and advanced topics, and highly variable for HPC-specific
topics. SES students also tended to be low skill. We will adjust our
material to reflect that, by incorporating some of our “beginner” level
material as exercises within the lecture/hands-on sessions.

We currently have all Summer Education Series course materials
online but not in a polished or readily accessible form. Our plan for
the next year is to convert the lectures and hands-on materials into a
combination of Markdown and, where appropriate, Jupyter notebooks.
These will be posted to a public site which will also host our Python
video series; this site currently is https://learning.arcs.virginia.edu but
this will be consolidated in the near future with other education sites
managed by UVA Research Computing. This will make self-guided
learning possible. It will also allow us to disseminate the coursework
to any institution that would be interested in replicating our series.
Only the “Introduction to HPC” session is particularly site-specific,
and even that could be easily modified for other sites and resource
managers.

7. SUMMARY AND LESSIONS LEARNED
For six sessions over five years we operated a successful summer
program to train students, primarily in Earth and environmental
sciences, in programming skills, scientific visualization, software
design, and high-performance computing. The greatest challenge was
to provide a good program for students with widely varying
backgrounds, skills, and expectations. We accommodated the
diversity by increasing hands-on exercises interspersed with lectures
and by expanding our bank of programming exercises to span a range

of abilities. We also encouraged students to work more in small groups
rather than individually.

The most important conclusion we have drawn is that it is possible to
provide students a “crash course” in programming that enables even
beginners to handle research-level scientific programming tasks, and
for more advanced students to produce near professional-quality
software. From our experience, a one- to three-day targeted course
seems to well serve the needs of researchers and research students.
They rarely have the time or opportunity to take for-credit courses in
programming, yet self-teaching or the very short (less than a day)
workshops frequently offered often do not adequately prepare them for
real-world programming. Many of our students have also expressed
dissatisfaction with well-known online courses and found they
achieved more when assistance was available, even if they were
responsible for most of the material on their own. Over the course of
the programs we also moved to include more team-based programming
projects, more basic to intermediate projects so that beginners can
progress more smoothly without too large a jump in difficulty, and
greater integration of hands-on exercises and projects within the
“lectures” rather than having dedicated lecture sessions each day.
These changes considerably enhanced student satisfaction and
assimilation. One clear pattern emerged, however, and that is the
importance of the programming exercises, ideally including the more
complex “homework” problems. For those, the availability of expert
assistance is extremely helpful, and we would advise other groups
wishing to undertake a similar experiment to prioritize face-to-face
assistance.

8. ACKNOWLEDGMENTS
We thank the education officers and intern coordinators at the NASA
centers that have hosted our students, especially Blanche Meeson and
Mablelene Burrell of Goddard Space Flight Center in Greenbelt,
Maryland, who worked to recruit mentors for our students and to make
sure they had an enriching internship experience. We are grateful to
the many NASA scientists who mentored our students. We also thank
Professors Andrew Grimshaw and Aaron Bloomfield for developing
and delivering the original material for the “HPC Bootcamp.” This
work was supported by NASA grants NNX16AB18G and
NNX12AP99G.

9. REFERENCES
[1] Bergin, Susan, and Reilly, Ronan 2005. Programming: factors that

influence success. ACM SIGCSE Bull. 37, 1, 411-415.
DOI=http://dx.doi.org/10.1145/1047124.1047480.

[2] Wilson, Brenda 2002. A study of factors promoting success in computer
science including gender differences. Computer Science Education 12,1-
2 , 141-164.
DOI=http://dx.doi.org/10.1076/csed.12.1.141.8211

[3] Liu, Ou Lydia, Bridgeman, Brent, and Adler, Rachel M. 2002. Measuring
learning outcomes in higher education: motivation matters. Educational
Researcher 41, 9, 352-362.
DOI=https://doi.org/10.3102/0013189X12459679

[4] Guo, Philip 2014. Python is now the most popular introductory teaching
language at top US universities. [Online] Available:
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-
popular-introductory-teaching-language-at-top-u-s-universities/fulltext.
[Accessed 26 July 2019]

[5] The Astropy Project. 2016. [Online] Available: http://www.astropy.org/
[Accessed 26 July 2019]

[6] Whitaker, Jeffrey. 2011. Basemap. [Online] Available:
https://matplotlib.org/basemap [Accessed 26 July 2019]

[7] Hoyer, Stephan, and Hamman, Joe 2017. “xarray: N-D labeled arrays and
datasets in Python.” Software Sustainability Institute: Journal of Open
Research Software 5, 1, 10, 2017. DOI: http://doi.org/10.5334/jors.148

Volume 11, Issue 1 Journal of Computational Science Education

6 ISSN 2153-4136 January 2020

[8] Theano Development Team. 2017. [Online] Available:
http://deeplearning.net/software/theano/ [Accessed 26 July 2019]

[9] Abadi, Martin et al. 2015. Tensorflow: large-scale machine learning on
heterogeneous distributed systems. Preliminary White Paper. Google
Research. [Online] Available:
https://static.googleusercontent.com/media/research.google.com/en//pub
s/archive/45166.pdf [Accessed 26 July 2019]

[10] Python Software Foundation 2008. PEP 373 – Python 2.7 release
schedule. [Online] Available: https://www.python.org/dev/peps/pep-
0373/ [Accessed 26 July 2019]

[11] Met Office (UK). 2017. Cartopy. [Online] Available
https://scitools.org.uk/cartopy/docs/latest [Accessed 26 July 2019]

[12] Python Software Foundation. 2017. [Online] Available
https://docs.python.org/3/howto/pyporting.html [Accessed 26 July 2019]

[13] Pierre Raybaut. 2017. Spyder: The Scientific Python Development
Environment [Online] Available: https://spyder-ide.org [Accessed 26
July 2019]

[14] Anaconda, Inc. , 2019. The Anaconda Distribution [Online] Available:
https://docs.anaconda.com/anaconda [Accessed 16-Aug-2017]

[15] Anaconda, Inc. 2017. “Conda.” [Online] Available:
https://docs.conda.io/projects/conda/en/latest/ [Accessed 26 July 2019]

[16] Anaconda, Inc. 2017. “Managing Packages.” [Online] Available:.
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-
pkgs.html [Accessed 26 July 2019]

[17] OpenACC-standard.org. 2015. “OpenACC programming and best
practices guide.” [Online] Available:
https://www.openacc.org/sites/default/files/inlinefiles/OpenACC_Progra
mming_Guide_0.pdf [Accessed 26 July 2019]

[18] Lu, Xiaoyi, Shankar, Dipti, Gugnami, Shashank, and Panda, Dhabaleswar
K 2016. High-performance design of Apache Spark with RDMA and its
benefits on various workloads. IEEE International Conference on Big
Data (Big Data), 253-262. DOI=10.1109/BigData.2016.7840611.

[19] Dalcin, Lisandro. 2019. “MPI for Python.” [Online] Available:
http://mpi4py.readthedocs.io/en/stable/ [Accessed 26 July 2019]

[20] Reid, John, and Numrich, Robert W. 2007. Co-arrays in the Next Fortran
Standard. Scientific Programming, 15, 1, 9-26.
DOI=10.1155/2007/954503

[21] Fanfarillo, Alessandro, Burnus, Tobias, Cardellini, Valeria, Filippone,
Salvatore, Nagle, Dan, and Rouson, Damian 2014. OpenCoarrays: Open-
source Transport Layers Supporting Coarray Fortran Compilers. In
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models (PGAS '14). ACM, New York, NY,
USA, Article 4 , 11 pages.
DOI=http://dx.doi.org/10.1145/2676870.2676876

[22] Zhen, Yili, Kamil, Amir, Driscoll, Michael B., Shan, Hongzhang, and
Yelick, Katherine 2014. UPC++: A PGAS extension for C++, IEEE 28th
International Parallel and Distributed Processing Symposium, pp. 1105-
1114.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 7

Northeast Cyberteam Program – A Workforce
Development Strategy for Research Computing

John Goodhue
MGHPCC

Holyoke, MA
jtgoodhue@mghpcc.org

Sia Najafi

Worcester Polytechnic Institute
Worcester, MA

snajafi@wpi.edu

Julie Ma
MGHPCC

Holyoke, MA
jma@mghpcc.org

Bruce Segee

University of Maine
Orono, ME

segee@maine.edu

Ralph Zottola
University of Alabama

Tuscaloosa, AL
rzottola@uab.edu

Adrian Del Maestro
University of Vermont

Burlington, VT
adrian.delmaestro@uvm.e

du

Scott Valcourt
University of New Hampshire

Durham,NH
scott.valcourt@unh.edu

ABSTRACT
Cyberinfrastructure is as important for research in the 21st century
as test tubes and microscopes were in the 20th century.
Familiarity with and effective use of cyberinfrastructure at small
and mid-sized institutions is essential if their faculty and students
are to remain competitive.
The Northeast Cyberteam Program is a 3-year NSF-funded
regional initiative to increase effective use of cyberinfrastructure
by researchers and educators at small and mid-sized institutions in
northern New England by making it easier to obtain support from
Research Computing Facilitators.
Research Computing Facilitators combine technical knowledge
and strong interpersonal skills with a service mindset, and use
their connections with cyberinfrastructure providers to ensure that
researchers and educators have access to the best available
resources. It is widely recognized that Research Computing
Facilitators are critical to successful utilization of
cyberinfrastructure, but in very short supply. The Northeast
Cyberteam aims to build a pool of Research Computing
Facilitators in the region and a process to share them across
institutional boundaries. Concurrently, we are providing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

© 2019 Journal of Computational Science Education
DOI: https://doi.org/10.22369/issn.2153-4136/11/1/2

experiential learning opportunities for students interested in
becoming Research Computing Facilitators, and developing
a self-service learning toolkit to provide timely access to
information when it is needed.

Keywords

workforce development, research computing facilitator,
project portal, Ask.CI, MGHPCC, Northeast Cyberteam

1. INTRODUCTION
The Northeast Cyberteam Program is a National Science
Foundation (NSF)-funded initiative to increase effective use of
cyberinfrastructure by researchers and educators at small and mid-
sized institutions in Northern New England (Maine,
Massachusetts, New Hampshire, Vermont). The program
combines direct assistance to computationally-intensive research
projects; experiential learning opportunities that pair experienced
mentors with students interested in research computing
facilitation; sharing of resources and knowledge across large and
small institutions; and tools that enable efficient oversight and
possible replication of these ideas in other regions.

2. STRATEGY AND METHODS
The core of our strategy is to build a regional pool of research
computing facilitators (RCFs) and a process to share them across
institutional boundaries, augmented by knowledge sharing and
self-service learning tools that increase the effectiveness of
Research Computing Facilitators. To encourage the face-to-face
communication necessary for effective mentoring and cross

Volume 11, Issue 1 Journal of Computational Science Education

8 ISSN 2153-4136 January 2020

institution resource sharing, we have maintained a regional focus,
with oversight from anchor institutions in each participating state.
For efficiency, and to open the possibility of replicating these
ideas in other regions, we have developed a portal for
management of project workflows.

2.1 Building a Regional Pool of Research
Computing Facilitators
Research Computing Facilitators combine technical knowledge
and strong interpersonal skills with a service mindset, and use
their connections with cyberinfrastructure providers to ensure that
researchers and educators have access to the best available
resources. It is widely recognized that Research Computing
Facilitators (RCF) are critical to successful utilization of
cyberinfrastructure, but in very short supply1.
Since most small and mid-sized institutions cannot individually
support a research computing department, the Northeast
Cyberteam aims to develop a sustainable pool of facilitators who
can work across institutions in the region.
The project gains further leverage by partnering with the large
research universities in the Massachusetts Green High
Performance Computing Center (MGHPCC) consortium, and with
national programs such as the Campus Champions.

To deliver direct assistance to research and education projects
while giving students experiential learning opportunities, we
developed a model where researchers are paired with student
facilitators, typically individuals with an affinity for
computationally intensive research, but often with little or no
domain expertise relevant to the project. Mentors provide subject
matter expertise, and guide the project in a direction that will yield
results over a 3-6 month period. This gives the student an
opportunity to practice facilitation skills, gain some hands on
experience with advanced computing resources, and learn a new
domain.

This method of exposing a student to a new scientific domain,
with a mentor who provides a safety net of subject matter
expertise while modeling how facilitation should be provided,
expands the student’s domain knowledge and ability to apply
computing skills in new situations (a common modus operandi for
Research Computing Facilitators).

By matching students, mentors, and projects across institutional
boundaries, the program expands the skill sets available to all
participants in the pool, and provides ’bench depth’ that makes it
easier to manage turnover, handle bursts of activity, and foster
communication among peers to accelerate professional growth.

2.2 Knowledge Sharing and Self-Service
Learning Tools
Providing peer-validated tools to enable self-service learning is a
key to our strategy of developing facilitators through experiential
learning. We recognize that one of the most fundamental skills of
successful facilitators is their ability to quickly learn enough about
new domains and applications to then be able to draw parallels

[1] 1 Gregory E. Monaco, Gwendolyn Huntoon, David Swanson,

Donald F. McMullen, Henry Neeman, Jennifer Leasure, Joni
Blake, Kate Adams. The Role of Regional Organizations in
Improving Access to the National Computational
Infrastructure. National Science Foundation, June 2016.

with their existing knowledge and help to solve the problem at
hand. There is usually not enough time to enroll in a traditional
training course or attend a seminar when a new domain or
application is encountered. This is especially true of researchers
who may face a particular computational roadblock in their
pursuit of a result.

The Cyberteam Portal is used to access the self-service learning
resources developed to provide just in time information delivery
to participants as they embark on projects in unfamiliar domains.
The goal of these learning resources is to reduce the need for
direct assistance, and reduce duplication of effort, by adapting and
building awareness of available documentation, training,
application software, and software utilities, and by supplementing
these resources where there are high impact opportunities.

Using a common tagging infrastructure and voting capabilities
modeled after crowd-sourced repositories such as StackExchange,
we are building a uniform underlying structure. This allows a user
to click on a tag from any part of the portal and obtain a listing of
all content, including mentor profiles, project profiles, frequently
asked questions, and training resources.

The self-service learning section of the portal is designed to
accommodate three types of information commonly needed by
research computing facilitators:

1. Frequently-asked questions whose answers evolve over time
as technology advances. We partnered with the Campus
Champions and research computing groups at large and small
institutions to develop Ask.CI (https://ask.ci), a collaborative,
crowd-sourced Q&A site specifically curated for the research
computing community. Principal goals for the site are to: 1)
reduce RCF workload at institutions of all sizes by pooling
questions and answers on an open, searchable, archived site, and
2) make Q&A content available to smaller institutions that do not
have the resources to maintain their own internal repositories. We
address the evolution of answers over time by including a voting
mechanism that allows users to indicate the “best” answer to a
question, which might change as new information emerges.

2. Relatively static information such as introductory training
modules on Linux clusters, programming languages and
schedulers. We are developing a resource repository designed to
help facilitators come up to speed on particular topics when
needed by providing pointers to publicly available, relevant, and
vetted training resources. The modules that we are collecting are
self-paced, and clearly defined, requiring varying levels of
expertise.

3. Dynamic, situation specific information needed to solve an
immediate problem, typically handled by a Help Desk at
larger institutions. We are piloting a Regional Help Desk that is
accessible via the portal. Any user in the region can submit a
ticket that is then handled by Northeast Cyberteam participants.

2.3 Regional Focus
National scale initiatives are an important starting point, but
cannot efficiently reach thousands of smaller institutions. On the
other hand, expecting every small and mid-sized institution to
develop advanced computing capacity on its own invites
unsustainable cost and duplication of effort. The Northeast
Cyberteam strategy is based on the premise that larger institutions

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 9

with robust advanced computing resources and experienced
facilitators can anchor regional efforts to increase the use of
cyberinfrastructure and advance science throughout the area.

2.4 Oversight
Program direction is set by a Steering Committee that includes
leaders from each of the larger institutions that serve as “anchors”
for the Northeast Cyberteam Program, in this case, University of
Maine, University of New Hampshire, University of Vermont,
and MGHPCC. The steering committee also includes a program
manager who coordinates day to day activity, and key personnel
from other institutions that have provided students and mentors.
The Steering Committee as a whole approves all projects
undertaken. For selection of projects, the Steering Committee
relies less on competitive applications (though merit will naturally
play a role), and more on outreach to faculty at smaller institutions
who can benefit from access to cyberinfrastructure but are either
unaware of available resources or have given up after a poor
experience. Care has been taken in sourcing and monitoring
projects to ensure that they lead to results that might not otherwise
have been achieved, and blaze trails that others can follow.

2.5 Program Management Portal
The program relies heavily on the Northeast Cyberteam Portal for
management of project workflows, recruitment of mentors and
student facilitators, and recording results. The management
section of the portal also encapsulates the experience that we are
gaining, with the goal of making it possible to replicate the
methodology in other regions.

The process for managing a project through its life cycle follows a
standard set of steps, all of which are managed via the portal.

1) A Steering Committee member introduces the project, usually
planned to be 3-6 months in duration, for approval.

2) If approved, the project is posted on the portal and Steering
Committee members collaborate to recruit a mentor and a student
RCF. The student and mentor both register on the Portal and
become members of the Northeast Cyberteam. Individuals can
also register on the portal in advance of a project assignment and
become part of the Cyberteam pool that are considered first when
new projects are recruiting.

3) The student RCF executes the project with support from the
mentor, reporting on progress at monthly Cyberteam
videoconference meetings.

4) At the end of the project, the Cyberteam Program Leader
conducts exit interviews and the Steering Committee reviews
lessons learned.

3. RESULTS/LESSONS LEARNED
We have launched 28 projects over the past two years, most of
them lasting 3-6 months, and many of them supporting generation
of publishable results. We are also beginning to see impact
beyond the individual project level, with some smaller institutions
starting to treat research computing as an ordinary part of the
research and education toolkit instead of a distant luxury item.
Although there is still much to do, we have enough experience to
draw some preliminary conclusions.

1. Value of Research Computing Facilitators to research and
education at small and mid-sized institutions: Consistent with
the findings of the report that inspired the Northeast Cyberteam
Program1, the number of research projects that can benefit from
Research Computing Facilitators is limited only by our ability to
find and recruit them, which is improving over time.
Based on feedback from exit interviews, we are starting to think
more systematically about how to assess project readiness. We
have seen a spectrum of readiness levels - at one end there are
faculty who have a clear idea about what they need to get to a new
level of sophistication, while at the other end there are faculty
who need help but are unable to engage productively. Over time,
we expect to develop an explicit set of readiness criteria, and will
gain more experience on how to respond when a project is not yet
ready.

2. Ability of finite-length student projects to fill the need:
Overall, we have been impressed by the quality and
responsiveness of the students who have participated in the
program. Interestingly, we have had success with grade levels
ranging from sophomore to post-doctoral. We have almost always
been able to structure an assignment that moves the project from
one reasonably well-defined state to another. Examples include
(1) moving from a workstation to a cluster for greater throughput;
(2) improving the performance or throughput of a workflow in
order to generate results with faster turnaround or in greater
volume; and (3) adopting a new computing tool such as Jupyter
notebooks.

3. Willingness of mentors to participate: Experience over the
past two years has validated our hypothesis that experienced
Research Computing Facilitators would be willing to serve as
mentors as part of their regular jobs. The opportunity to evaluate
potential new hires is a practical motivator, but it also helps that
people who become RCFs generally enjoy teaching others, and
that teaching is central to the culture of academic institutions.

4. Ability to apply students and mentors across institutional
boundaries: This aspect of the program has been critical to
success. We are pleased that two initial concerns have not been
significant impediments. Our first concern was distance – while
occasional face-to-face meetings are possible (and necessary),
most work must be done remotely, even if the student is separated
from a project by just a few miles. We have found that tools for
collaboration, such as high quality desktop videoconferencing,
shared document repositories, and flexible source control systems,
are sufficient to maintain communication and trust when
combined with face-to-face contact. The second concern was
administrative, as grant administrators understandably lean toward
applying funds in ways that benefit students and faculty at their
home institutions. While every co-PI has needed to spend some
extra effort explaining the purpose and benefits of the program,
this has not delayed or prevented cross-institution assignments.

5. Willingness of larger institutions to share information: The
Ask.CI project has received considerable support from Research
Computing groups at larger institutions, both for the initial idea of
building a shared Q&A list, and the more recent idea of
“sandboxes” that expose internal Q&A lists outside their home
institutions. In a similar vein, the regional help desk and the

Volume 11, Issue 1 Journal of Computational Science Education

10 ISSN 2153-4136 January 2020

training information repository have benefitted from contributions
by research computing groups at larger institutions.

6. Importance of active program management: The second
largest expense category for the project (after student support) is
support for a project lead at each Anchor Institution and the
Program Manager who manages the overall program. While the
value of program management is often overlooked, this
investment has been critical to success. It has enabled several
important outcomes, including: (1) efficient recruiting of projects,
students and mentors; (2) development of process, tools, and
strategy; (3) effective communication across the anchor
institutions; and (4) the ability to explain the purpose and benefits
of the program to grant administrators who have expressed initial
skepticism about supporting this kind of collaboration across
institutions. We have gained some recruiting momentum, and
developed processes and tools that will reduce the need for active
management and coordination. However, it seems likely that at
least some active management will be required for ongoing
success.

4. REPRODUCIBILITY
The Northeast Cyberteam Program has been underway for just
over two years. It took some time for our steering committee to
get into a regular rhythm of meeting times, project submissions
and approvals, but we now have a reasonably well-established
system that is delivering on the goals of moving science forward
while giving potential student facilitators real world experiential
training in the field of research computing.
All of the tools that we have developed, including the Portal,
Ask.CI Q&A site, Regional Help Desk, and Training Resources
Wiki, have been designed with an eye towards

reproducibility/expansion. Even the logo was designed to be
easily adapted to other geographic regions or domains.

5. Northeast Cyberteam and SEHET
Our goal in participating in the SEHET19 workshop is to find
opportunities to collaborate with other groups focused on
workforce development for the Research Computing community.
Collaboration can take many forms, beginning with small steps
such as posting a topic on Ask.CI or adding links to our Training
Resources Wiki. A more ambitious collaboration would involve
launching cyberteams in other areas of the country, anchored by a
large institution (or group of institutions) where advanced
research computing is a priority, and outreach to the surrounding
institutions is encouraged. Leveraging the Northeast Cyberteam
model and tools will allow researchers at surrounding smaller
institutions to take advantage of cyberinfrastructure when their
work requires it. Simultaneously, it will expose a new generation
of potential facilitators to this exciting and dynamic field earlier in
their careers, significantly expanding the available pool of
candidates.

6. ACKNOWLEDGEMENTS
This work was partially supported by the National Science
Foundation under grant award ACI-1659377. The authors thank
the many Cyberteam mentors and student facilitators for their
participation in this effort, the Ask.CI moderators whose tireless
efforts to build and maintain the site are beginning to yield
significant results, and the hundreds of contributors who have
generously shared knowledge and experience on Ask.CI.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 11

Incorporating Complexity in Computing Camps for High School
Students – A Report on the Summer Computing Academy

Program at Texas A&M University

Dhruva K. Chakravorty
High Performance Research

Computing
Texas A&M University

College Station, TX, 77843
chakravorty@tamu.edu

Xien Thomas

High Performance Research
Computing

Texas A&M University
College Station, TX 77843

xien.thomas@tamu.edu

Marinus “Maikel” Pennings
High Performance Research

Computing
Texas A&M University

College Station, TX 77843
pennings@tamu.edu

Dylan Rodriguez

High Performance Research
Computing

Texas A&M University
College Station, TX 77843

dylan@tamu.edu

Honggao Liu
High Performance Research

Computing
Texas A&M University

College Station, TX 77843
honggao@tamu.edu

Lisa M. Perez

High Performance Research
Computing

Texas A&M University
College Station, TX 77843

perez@tamu.edu

ABSTRACT
Summer computing camps for high school students are
rapidly becoming a staple at High Performance Computing
(HPC) centers and Computer Science departments around
the country. Developing complexity in education in these
camps remains a challenge. Here, we present a report about
the implementation of such a program. The Summer
Computing Academy (SCA) at is a weeklong cybertraining1
program offered to high school students by High
Performance Research Computing (HPRC) at Texas A&M
University (Texas A&M; TAMU). The Summer Computing
Academy effectively uses cloud computing paradigms,
artificial intelligence technologies coupled with Raspberry
Pi micro-controllers and sensors to demonstrate
“computational thinking”. The program is steeped in well-
reviewed pedagogy; the refinement of the educational
methods based on constant assessment is a critical factor that
has contributed to its success. The hands-on exercises

included in the program have received rave reviews from
parents and students alike. The camp program is financially
self-sufficient and has successfully broadened participation
of underrepresented groups in computing by including
diverse groups of students. Modules from the SCA program
may be implemented at other institutions with relative ease
and promote cybertraining efforts nationwide.

CCS CONCEPTS
•CS→Computer Science; •Cybertraining→training on
using cyberinfrastructure; •HPC→high performance
computing

Keywords
HPC training, summer camps, broadening participation,
assessment strategies, best practices. diversity, high school
students, computational thinking, artificial intelligence

1. INTRODUCTION
The prevalence of computing in everyday life has led to an
extensive interest in computing in general and high
performance computing in particular. While several efforts
cater to the needs of graduate students and professionals,
there is a significant drop-off in computing training at the
high school level. Despite the Computer Science for All
initiative, GenCyber, and CyberPatriot, issues such as
insufficient access to computing resources and a lack of
proficient trainers have resulted in low computer science
adoption at the high school level.[1] Indeed, a recent report
on the state of K-12 CS curricula in Texas, entitled
“Building the Texas Computer Science Pipeline” discussed

	
Permission	to	make	digital	or	hard	copies	of	all	or	part	of	this	work	for		
personal	or	classroom	use	is	granted	without	fee	provided	that	copies	
are	not	made	or	distributed	for	profit	or	commercial	advantage	and	that	
copies	bear	this	notice	and	the	full	citation	on	the	first	page.	To	copy	
otherwise,	or	republish,	to	post	on	servers	or	to	redistribute	to	lists,	
requires	prior	specific	permission	and/or	a	fee.	Copyright	©JOCSE,	a	
supported	publication	of	the	Shodor	Education	Foundation	Inc.	
	
©	2018	Journal	of	Computational	Science	Education	
DOI:	https://doi.org/10.22369/issn.2153-4136/11/1/3	
	

Volume 11, Issue 1 Journal of Computational Science Education

12 ISSN 2153-4136 January 2020

the effects of the CS Advanced Placement exam and the
state educational guidelines for CS course [2]. The report
found significant deficiencies in CS education and made a
series of recommendations to prepare students for future
careers in computer science (CS) related fields.
Recommendations included developing parent demand for
CS courses, and the advanced placement CS course, by
including additional engaging, project-based courses.
Finally, the report emphasized the need to inform students,
teachers, and administrators to careers in CS by connecting
them to CS experts and practitioners. In addition, the
prevalent threats to personal information, prevalence of
cyber-bullying, the increasing need for confidentiality also
make it essential that students learn aspects of the internet,
digital citizenship, and cybersecurity at an early age.

The availability of inexpensive devices like the Raspberry
Pi significantly lower the entry price point for computing-
based education. Use of accessible physical assets, such as
cloud computing resources, easy availability of artificial
intelligence technologies, and Raspberry Pi clusters
coupled with robotics and visualization technologies give
educators opportunities to engage learners in complex or
problematic scenarios. In this paper, we report on
advancements made by the TAMU HPRC Summer
Computing Academy program. This paper is presented with
a view to help HPC units and departments of Computer
Science and Engineering that are either currently hosting
similar programs or are interested in developing similar
programs. This paper is organized into the following
sections. We first describe the SCA program. followed by
best practices that have been adopted in the Summer
Computing Academy model. We next describe our
recruitment strategies and selection criteria for participants
followed by our cybertraining model. The following
sections provide an overview of how to adopt emerging
technologies and a description of our assessment model.
The paper next describes legal and administrative issues
encountered while hosting such efforts and concludes with
a discussion of the sustainability of the effort.

2. HISTORY OF THE SCA
The SCA seeks to enable aspiring computer scientists,
developers, and engineers in their pursuit of computing
fields by offering weeklong cybertraining programs. The
goal of this effort is to help usher the next generation of
cyber-practitioners in the country. The SCA introduces
high school students to various aspects of computational
thinking by employing hands-on exercises and active
learning activities using Raspberry Pi microcontrollers and
sensors [3-10]. The camps are further designed to introduce
high school students to concepts in cyber security and
promote safe cyber behavior as well. The program is
steeped in well-reviewed pedagogy; the refinement of the
educational methods based on constant assessment is a
critical factor that has contributed to its success. The camp

format and has received rave reviews from parents and
students alike. In its recent evaluation, Campus programs
for Minors (CPM) for the Texas A&M System has
designated the SCA program as a “Model Camp”. Since its
inception in 2017, the SCA has offered an introductory
camp that is geared for beginners who have not benefited
from an opportunity to learn about computing. Beginning
in 2018, the SCA also offered an intermediate camp that is
geared toward students who have had some exposure to
programming in school and are keen to learn about how
computing integrates with STEM disciplines. In 2019, the
SCA offered camps in Cybersecurity and Artificial
Intelligence that were funded by the GenCyber and
Governor’s Summer Merit Program of the Texas
Workforce Commission. In 2019, on completion of these
camps, high students will be able to demonstrate the use of
algorithms and loops to a class and explain fundamental
principles of cybersecurity and artificial intelligence. They
will be able to write code in Scratch or Python that uses
variables within algorithmic thinking and loops. As such,
the objectives of the SCA program are to:

- Use research-based methods to develop a high-impact,
high-immersion opportunity that introduces students to
concepts in computing including software, hardware,
networking, cybersecurity and data-management practices.
- Engage students in cybertraining skills using hands-on
approaches utilizing high-technology and low-technology
avenues.
- Reinforce and develop further knowledge of cyber skill
sets through hands-on exercises.
- Introduce concepts of cybersecurity and artificial
intelligence
- Retain student interest after the camp by offering access
to series of free in-person and online cybertraining-themed
short courses and seminars organized by Texas A&M
HPRC.

Diversity is a core tenet of the SCA program. The 2017
SCA cohort had an even distribution of male and female
participants and included a significant number of students
from groups that are traditionally underrepresented in
computing. In 2018, a total of 55 high-school students are
targeted for participation in this high-immersion program.
In 2019, a total of 145 high school students will participate
in this program. A significant proportion of these attendees
will be females and other underrepresented minorities in
computing.
3. BEST PRACTICES
Working with minors presents a unique set of
administrative and educational challenges. This is
particularly challenging while working with often
overlooked groups such as Foster and home-schooled
children. Planning a schedule that includes presentations,
capstone assessments, and evaluations, a process involving

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 13

	

numerous faculty, staff, and classroom instructional
materials, while maintaining the legal and administrative
requirements of the university is a difficult challenge. Here
we present a list of best-practices that were adopted by the
SCA program.

3.1 Pedagogy
Proficiency in computer science widely differs across
students. One goal of the registration form is to identify
high-achieving or highly knowledgeable students who
might need additional frameworks or scaffolds of
instruction to be available. To ensure that the learning
outcomes of the SCA program are met, we use the
information from the student’s registration packets and pre-
camp package to ensure that each camp has students who
are at a similar level of computing proficiency. In addition
to asking students to self-evaluate themselves, in 2019, the
SCA requested letters of recommendation from teachers.
Owing to sponsor requirements, the SCA also collected
transcripts (or year-end report cards) and birth-certificates
for the first time.

The conceptual framework implemented for training
incorporates elements of active learning, such as
exploratory learning via research projects, where mentors
provide guidance to help focus mentees activities in
productive directions and group discussions in research
seminars. Active learning has been shown among high-
ability trainees to produce significantly higher levels of
metacognitive activity than procedural training, leading to
the development of higher adaptive transfer. In addition,
the training

provided through the introductory camp incorporates
several elements of the experiential learning cycle in
which:

A. Students are introduced to several aspects of cyber
security. (New experiences)

B. Exercises encourage students to integrate and apply
previously developed to specific problems. (Critical
thinking)

C. Students must select and apply skills from their
repertoire to problems by developing hypotheses and
validating them. (Hands-on experimentation)

3.2 Advancing Knowledge and Understanding
in Computing [3-10]
Computing is a constantly evolving landscape. Disruptive
computing technologies result in new threats that appear on
extremely short timescales. Therefore, computing
education must prepare learners to stay abreast of both
current and emerging technologies along with effective
responses. To develop desired capabilities, the SCA
program focuses on the described attributes:

(a) Defining desired capabilities – Effective CS education
begins with iteratively refining desired learning outcomes
at the Analyzing, Evaluating, and Creating levels of the
Revised Bloom’s Taxonomy. The SCA defined learning
outcomes will provide the foundation for the next three
phases.

(b) Operationalizing learning outcomes – While SCA
learning outcomes articulate expectations for learner
achievement, we also develop assessment activities to
provide opportunities for learners to demonstrate
achievement.

(c) Evaluating learner development – Once learners have
completed an assessment activity, their learning must be
evaluated both formatively and summatively. Consistent
and detailed evaluation information is facilitated through
development of scoring schemes, also known as rubrics.
Explicit descriptions of levels of achievement will help
learners understand expectations for their performance as
well as help SCA team members provide helpful feedback
to the students.

(d) Facilitating learning – With the foundation of learning
outcomes, assessment activities, and scoring schemes, the
project team can develop learning activities using research-
based instructional approaches. An emphasis on
cooperative teamwork and active engagement will be the
basis of the camp’s learning activities

3.3 Security and Child Protection Measures
The SCA program is guided by TAMU CPM guidelines.
These include providing camp counselors at a ratio of 1
counselor per 12 campers. All counselors and instructors
will complete Child Protection training and undergo
Background Checks. Campers will be monitored and
accompanied by counselors while on campus at all times.
There will also be personnel trained in first-aid and CPR.
Campers and counselors wear identifiable SCA camp
specific T-shirts and badges. These badges include
information about the camp’s location, emergency camp
contact and the student participant’s emergency contact. As
part of the camp’s accreditation process at TAMU, the
camp makes accommodations for students with disabilities,
and all camp locations are accessible to students with
disabilities.

3.4 Administrative Best Practices
TAMU staff and faculty form the SCA team are charged
with delivery of the camps. In compliance with TAMU
Campus Programs for Minors guidelines, there will be a
minimum of three instructors present at any time for the
twenty-five children. At all times, at least one male and one
female camp supervisor will be present. All instructors
have previously been K-12 instructors and/or have
previously instructed K-12 summer camps. Preparation for
the SCA begins three months prior to the event. All faculty

Volume 11, Issue 1 Journal of Computational Science Education

14 ISSN 2153-4136 January 2020

and volunteers meet on a bi-weekly basis to plan the
curriculum, schedule, and the materials for the program.
Based on program assessments and participant reviews, a
significant number of materials were adopted from the
2017 SCA offering. These meetings help all parties review
compliance and regulatory issues as well. All SCA
teaching material and requisite forms, are posted online and
will be available to camp participants a week prior to the
camp. Typical days begin at 8:00 AM and end at 4:30 PM.
Each day will end with a de-brief so that instructors may
reflect about the day’s activities and coordinate events for
the next day. The program provides a final session on each
day will end with a brief recap. On Friday, the cohort is
dismissed at 3:30 PM following an informal reception
during which certificates are awarded. Parents and
guardians are invited to the reception and get to talk with
the instructors.

4. RECRUITMENT AND SELECTION
Student recruitment is a critical aspect of a program’s
success. In order to effectively recruit youths who have not
been exposed to computing but yield high promise, we
developed a novel recruitment strategy. Rather than
focusing on students working with computer science
teachers and computing clubs, we found participants from
language clubs, food clubs, dance groups, and online
gaming communities. A high degree of academic
performance and intrinsic motivation were, however, a
must. The diverse participant body at our camp, and long
waitlists amply demonstrate the effectiveness of our
recruiting program. The SCA program is advertised online
and interested attendees fill out an online application,
which includes a statement of interest and a letter of
recommendation. Outreach efforts are made through
existing contacts with a number of Independent School
Districts in the Houston, Dallas, Waco, Austin and San
Antonio regions. The effectiveness of our recruiting system
is best demonstrated by applications coming in from across
the Southern seaboard (Florida to California). In 2018,
both SCA camps are significantly oversubscribed. We
started pre-registering for the 2019 Summer Computing
Academy in 2018 and are now on track to offer 145
scholarship positions spread out over 4 camps. For our
merit camps, the following criteria are currently used to
evaluate applications:
● The participant’s academic achievement (Target: high)
● Impact statement describing the student’s interest in

computing. (Target: high enthusiasm)
● Program participant desired ratio (Target: high)
● Ratio of students belonging to an underrepresented

group in computing (Target: high)
● Ratio of male to female participants (Target: balanced)

2019 represents a departure from our merit-based approach.
As such, the criteria used to evaluate applications were:

● The participant’s academic achievement (Target:
adequate)

● Impact statement describing the student’s interest in
computing. (Target: curious about computing)

● Ratio of students belonging to an underrepresented
group in computing (Target: high)

● Ratio of male to female participants (Target: balanced)

Information about the applicant’s previous exposure to
computing is collected during the camp application process
via the application form and mentor’s recommendation
letters. This information is used to judge the best possible
camp for every participant.

The SCA program is particularly successful at addressing
challenges in broadening access and adoption of
cybersecurity skills to the nation’s scientific and
engineering workforce by (a) Producing course material
that utilizes established pedagogical methods such as
research project-based learning to prepare a community of
students; (b) Developing and disseminating online modules
for continuing and remote education; (c) Leveraging
existing collaborations to recruit participants from groups
that are traditionally underrepresented in the STEM and
computing fields. As a measure of success in this capacity,
the 2017 SCA boasted of incredible diversity in terms of
socioeconomic classes of camp participants, female: male
ratio of participants (11:11) and instructors (5:5) and
richness of computing experience. These students self-
identified as being Hispanic, African American, Asian,
Mixed-race and/or Caucasian.

5. CYBERTRAINING FOR FUTURE STEM
PROFESSIONALS
The SCA program is designed on the principles of
engagement, training, retention, and sustainability to
promote the CI professional career path. The SCA is unique
as it adopts a novel instructional approach that was
developed to provide a holistic view of the computing
landscape in STEM rather than merely impart
programming skills. With a view toward broadening the
learning and understanding of students through further
diversification of learning approaches, we designed the
educational process using the backward design approach.
We first identified the learning objectives and
competencies that participants were expected to learn and
built each exercise around them. Modules are developed
using a philosophy of “deliberate practice”, i.e. practice
with essential feedback. We employ a hybrid method of
instruction that relied on the principles of guided discovery
via observation and hands-on based laboratory-type
learning. The students will develop new skill-sets through
this high-impact learning community experience. Students
will be taught a grounds-up approach towards cybersecurity
on Raspberry Pi computers using sensors and LED devices.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 15

	

During in-class lectures, students are introduced to the First
Principles via lectures, programming, and games. An
emphasis is placed on data hygiene, safe cyber behavior,
protection from cyber pornography and cyber bullying; and
perhaps most importantly cyber ethics. The idea that cyber
activities could have deleterious consequences are
reinforced. Since students are likely to gravitate towards
exercises that are attached to something that they can see or
touch, computing exercises are based on sensors that they
were able to see, hear, and otherwise interact with. We
encourage students to debug by introducing features in
activities that would cause them to fail. Over the course of
the program, these exercises introduced students to various
aspects of computing while simultaneously encouraging
computational thought. To encourage student participation
while ensuring that we successfully covered the material,
we include structured and unstructured components to each
session. Instruction sessions begin with a three to five-
minute topic introduction that employs real-world issues to
begin discussions. Connections between the real-world
issue and the class topic are pointed out during this time.
Students perform activities with brief pauses to answer
questions on the topic. After the first half of the session,
students will be allowed to work on activities at their own
pace, allowing students with advanced skills to move to
more challenging exercises. The instructor and assistants
are available to help students as they worked through these
exercises. To foster networking and build a student
community, participants who successfully completed an
exercise are encouraged to help others. Students are taught
to use the Github repository for code. The instructor will
facilitate progress but do not lecture or direct progress.
Finally, the instructor, emphasizing the relationship
between the key concepts and the relevant real-world
examples, would lead a brief recap discussion that was
followed by a capstone exercise. To ensure that students
receive a different view of topics, review sessions will be
taught by a different instructor. Moreover, the review
sessions also integrate concepts covered in previous
sessions. Each session is guided by how the students
participated in previous review sessions. Concepts covered
in the classroom will be reinforced by demonstrations at
facilities that underscore the importance of the taught
material in real-world scenarios.

In-class exercises and instruction are backed up by visits to
on-campus facilities such as the “Teague Super Computing
Data Center” that houses the Ada and Terra compute
clusters and the state-of-the-art “Engineering and
Innovation Center” fabrication laboratory. These site visits
to facilities allow students to experience cybersecurity
principles applied to various aspects of day-to-day
computing.

6. OPTING EMERGING TECHNOLOGIES
The rapidly changing nature of the cybersecurity landscape
underscores the need for young adults to be prepared to
identify and mitigate new threats in their daily lives. The
SCA program offers a blend of cybersecurity and
visualization technologies to students in an innovative
learning environment. Modeling and visualization are
participatory technologies that provide the means to
achieve engagement while legitimizing the role of
computing in scientific discovery and research.
Participating students will use our newly developed NSF-
funded CiSE-ProS learning modules and virtual reality
interfaces. Students will learn about multiple aspects of
cybersecurity in both of our camps. Of particular note are
the exercises on the last day of the Introductory SCA camp.
Students play the well-reviewed “capture the flag” exercise
on a Raspberry Pi equipped with a LED display board,
called a pi-hat. In this exercise, each student is assigned a
specific color that is displayed on their pi-hat. Students can
then choose to “defend” their Raspberry Pi and ensure that
the pi-hat keeps the same color. Else, they could “capture”
someone else’s Pi by changing the captured Pi hat’s colors
to show their color. This exercise allows students to
experiment with defensive strategies, probe others for
vulnerabilities in their defensive structure and puts all that
they learned during the camp to test. Students can form
groups to capture a pi and change the color on the raspberry
pi-hat display to display their color. Previously, students
have worked as a group, by running a password guessing
program in parallel on each other’s machines, while others
have employed similar maneuvers to constantly change
their network settings. This exercise is much enjoyed; it is
followed by a reminder about ethical behavior and a how to
be a good cyber citizen. In 2018, we we particularly
excited about introducing students to exercises using AI,
cryptography and the TAMU virtual reality simulator that
emphasizes cybersecurity principles from a hardware
perspective. Students had the opportunity to freely explore
a data center in a virtual reality environment with haptic
controls. Students are free to “walk” in the VR data center
and understand the various aspects of data center security
as well. The exercise directs to replace a compromised
node for a new node. This exercise was followed by a
programmatic evaluation survey that showed that students
were comfortable with the use of VR technologies,
understood key concepts of cybersecurity and appreciated
the physical interactions in the data center room. A
prototype of the CiSE-ProS VR simulator was
demonstrated at the TAMU HPRC booth SuperComputing
17 Conference in Denver, CO, and again at the TAMU
HPRC booth SuperComputing 18 Conference in Dallas,
TX.

Volume 11, Issue 1 Journal of Computational Science Education

16 ISSN 2153-4136 January 2020

7. ASSESSMENTS AND EVALUATIONS
The SCA has received highly positive reviews from
students and parents alike. Post-camp surveys and
assessments reported 100% improved attitudes to
computing and STEM and computing. After attending the
SCA, 30% of female (Hispanic and African American)
participants said that they were more likely to major in
Computer Sciences! A number of students from the 2017
SCA have gone on to apply to the Computer Science
program at TAMU and STEM programs at other
universities. As further evidence of success, a significant
number of students from the 2017 SCA cohort who have
yet to graduate from high school will be attending the 2018
SCA Intermediate camp.

Prior to engagement with the academy, potential
participants complete an application which is designed to
acquire a sense of each applicant’s predilection towards
computer science topics. The application along with
accompanying letters of reference from teachers help guide
the staff’s understanding of each participant’s interest and
experience with microcomputers and programming. The
following questions are examples of the types of questions
used for the pre-camp evaluation.

(i) How familiar are you with the Raspberry Pi?
(ii) How familiar are you with Python programming?
(iii) Rate your prior level of coding experience.
(iv) Please describe how this program will help achieve
your personal and academic goals.
After the conclusion of the camp, participants are given the
opportunity to evaluate their experience. This evaluation is
conducted in the form of several questions which aim to
convey the participant’s expectations as well as whether or
not the computing academy met said expectations. The
following questions are a select few of the more than
twenty questions used in the evaluation.
(i) Are you planning to pursue a degree in a STEM field? If
you answered yes, did attending the camp have any
influence on that decision?
(ii) Did you use any of the skills gained from the
computing academy (for example started programming as a
hobby, experimenting with your Raspberry Pi, used it in
school projects etc.?
(iii) Did you take any computer related courses in school
before the summer camp and did you take any extra
computer related courses after attending the camp and if so,
did attending the camp have any influence on it?
(iv) Did you participate in any other STEM-related
extracurriculars? (e.g other camps) Are you still using your
Raspberry Pi?

Throughout this experience, we have found that teaching
students new computing concepts, such as navigating a
Linux environment, using a command line, and writing
code, is more productive when done through an interactive

format rather than using a lecture format that is interspersed
with a few activities. With an interactive format, students
are more motivated to follow along with the instructor and
other students by participating in the activities. This
promotes the practice of a new concept or technique and
allows for greater retention of the new information by the
student. Capstone exercises found that lectures which did
not follow this interactive format were much less successful
than their interactive counterparts. Non-interactive lectures
often left many students behind and afraid to ask questions.
This led to students becoming bored and inattentive,
causing them to retain little to no information from the
lecture. Those lectures that were interactive promoted
student engagement with the instructor and the rest of the
class. The students were more attentive and willing to ask
questions when they did not understand a topic. These
lectures also provided ample opportunity for the students to
practice the topics they were learning which promoted an
understanding of the application of their newfound
knowledge and greater retention thereof. While most
students were familiar with Google Drive, Git/GitHub
adoption in workflows remained a challenge. In a surprise
to us, participants were successfully able to perform basic
operations using Gedit in a matter of minutes. Students
(and parents) were more likely to participate in a
distributed (online) training session after an in-person
activity as compared to those without the face to face
interaction.
 In future iterations, we hope to assess student skills and
competencies both pre-and post-camp using a SLAG type
evaluation scheme. Representative samples of students and
their parents will be interviewed. Some of the topics will
include their experience in the camp, motivation to pursue
careers in STEM and cybersecurity and ways to refine the
offerings. These assessments will be used to inform future
iterations of camps. The administration of these instruments
is designed to be anonymous and the assessment will
demonstrate the knowledge acquisition from the camp.
Follow up will be through surveys such as the popular
STEM Semantics Survey and STEM Interest Survey, which
will be administered at the beginning and end of the camps
and again 6 months later. Open-ended questions allow
campers to explain their perceptions of how the camp
experience impacted their interest in cybersecurity and
STEM-related careers. In 2019, the SCA started a post-
camp survey that was common to the GenCyber program.
8. LEGAL AND ADMINISTRATIVE
ISSUES
The requirements for hosting the SCA stem from a shared
commitment to provide a safe environment and meaningful
experience for participants that not only meet the minimum
legal requirements but also reflect the Texas A&M
University’s core values of Excellence, Integrity,
Leadership, Loyalty, Respect, and Selfless Service. To

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 17

	

make sure these requirements are met, SCA staff works
together with the Campus Program for Minors and the
Internal Review Board at Texas A&M University [11]. In
2019, Texas A&M’s IRB exempted the SCA. The
requirements for compliance are outlined by the Texas
A&M University Rule for Campus Programs for Minors
[12]. These requirements can be classified into two
categories; Program logistics and Program Compliance. It
is important to have supervision ratios in place that help
ensure the safety of the participants and the quality of the
SCA. The American Camps Association [13] (ACA)
recommends having at least one qualified staff member for
every 12 SCA participants. The SCA typically maintains at
least one qualified staff member for every 10 participants
and ensures that there is always at least one female and one
male staff member present at all times. Lunch during the
SCA is provided by the nearest campus dining facility to
limit exposure to the Texas summer heat and to limit
traveling times. Furthermore, campus dining facilities meet
the requirements of the University catering policy, CPM
requirements, and ADA standards. The SCA will check
with participants before the beginning of the program to
determine whether there will be any specific dietary needs,
restrictions, or requests.

Table 2: Information, Consent, and Authorization
forms required by Campus Programs for Minors at
TAMU.

Liability
Waiver

informs participants and their
guardians about the potential risks
associated with the camp as well as
waives Texas A&M University of
liability in the event of an accident

Media Release informs participants about their
release of their likeness and image for
use in media to promote future
computing academies

Code of
Conduct

establishes an expectation of behavior
to be adhered to by the participants

Github
Account
Consent

informs participants of their use of
Github, obtains consent from their
guardians to allow their participant to
create a Github account for use with
version control exercises

Participant
Pick-up
Authorization

informs guardians about pick-up
procedure and establishes rules for
authorizing participant’s daily
departure from the academy

Medication
Disbursement

obtains information regarding the
disbursement of medication to
students

Online
Gaming

Permission to play online games

Research
information

Informs parents that the students may
be asked to participate in a research
program

Every staff member and volunteer is required to pass a
criminal background check performed by Texas A&M
Human Services. In addition, to comply with the Texas
Education Code, every staff member must successfully
complete a comprehensive child protection training. The
Texas A&M University System created an online training
course that meets the requirements of the Education Code
[14] and has been approved by the Texas Department of
State Health Services. SCA also needs to identify a
hospital/urgent care facility to refer participants to in the
event of an emergency. and SCA will send a letter to the
chosen medical facilities letting them know the dates of the
program, approximate number of participants, and the
policy information for the insurance coverage. the SCA
will purchase general liability and accident medical
coverage through System Risk Management as required by
Texas A&M University System regulations.

Instruction for the Student camp takes place at the state-of-
the-art Interdisciplinary Life Sciences Building teaching
facility and the state-of-the-art Zachry Engineering
Education Complex at Texas A&M University. This
training avenue is compliant with ADA standards and
ensures that we can support students with specific
individual requirements. This unique teaching space is
designed to accommodate the facilitation of hands-on
training and education providing a flexible workspace with
a modular group working environment layout. The room is
a flexible space that can seat over 300 students. This
facility supports not only classroom instruction, but is ideal
for supervised hands-on-exercises as well.
9. SUSTAINABILITY AND SCALABILITY
Every aspect of the SCA program was designed with
sustainability in mind. Student training in computing is a
critical area where demand currently outweighs supply. The
camp’s format was well received by the community and the
camps have been oversubscribed since 2017. Owing to the
demand from the community, these camps are inherently
sustainable. In 2019, we demonstrated this aspect via
funding from the GenCyber and Texas Workforce
Commission programs. Lennovo, Dell, Google, and
MarkIII were corporate sponsors of the event. In addition
to need, we have encouraged continuity by adopting camp
training materials in our HPRC training sessions and
describing these efforts in our proposals. Indeed,
knowledge repositories of training materials are made
available free-of-charge to future camp providers. These
camps also provide opportunities to work with Assistant
Professors who are preparing their portfolio for CAREER
or YIP awards. Finally, the key elements to sustaining the
educational, organizational and cyber aspects of the effort

Volume 11, Issue 1 Journal of Computational Science Education

18 ISSN 2153-4136 January 2020

include plans to seek external funding and commercializing
technologies. While the program remains oversubscribed in
2018 as well, it has a fee-based structure. Federal support
for these programs would help eliminate fees and help the
camps as well.

The proposed project can be scaled to reach a broader
audience in the future. In 2018, the SCA extended its
offering to include an Intermediate Camp as well. In 2019,
we are offering camps with a concentration on
Cybersecurity and Artificial Intelligence. We are currently
exploring possibilities of organizing an advanced camp in
2020 and teacher training camps as well.

Schools districts in Texas are currently implementing a
computing-based curriculum. [2-10] The improvements to
the curriculum are part of Texas’s education vision that
describes the path for teacher student success. Funds
budgeted by School Districts for teacher professional
development will support these training initiatives as well.

10. CONCLUSIONS
Texas A&M University SCA program currently offers two
merit-based summer camps designed to promote a hands-
on cyberlearning experience for high-school students. The
camps 1) enhance participant engagement 2) enhance
participant understanding of complex computing concepts
using observational experiences, and 3) provide
participants with a learning environment that utilizes state
of the art technology. In the future, we hope that the camps
will follow the spirit of the Stanford Transcription model,
where participating students will receive a letter confirming
participation, that can accompany their applications to
pursue a degree program at TAMU. Despite having
participants at different levels of computational
proficiency, this novel program maintained a retention rate
of 100% during the week. Currently, efforts are underway
to deploy scoring schemes and rubrics that were created by
the GenCyber program to accompany each assessment
activity. Identifying the skills of a registered participant and
incorporating them as a class remains a significant
challenge for such efforts. Toward this, we will offer a
registration quiz for advanced camps to accurately identify
the student’s proficiency before the start of the program. In
future iterations, the SCA program will offer research
opportunities to contribute during the product development
phase and the design of instructional activities. Finally, a
select number of SCA counselors have completed Internal
Review Board (IRB) training in order to study and report
on student learning outcomes.

All SCA materials are available free-of-charge to the
national CI training community at our website
hprc.tamu.edu. [15-17] Agendas, registrations forms,
sample announcements, templates to track participants,

Trello event boards and other such materials will be made
available by the authors on request.
11. ACKNOWLEDGMENTS
The authors would like to thank staff, student workers and
researchers at Texas A&M HPRC, Yang Liu, Michael
Dickens, the Laboratory for Molecular Simulation, Dr.
Steve Johnson, TAMU Engineering Innovation Center,
TAMU IT, TEES IT, TexGen, Division of Research, the
Texas Engineering Experiment Station IT, TAMU CPM
and TAMU Provost IT for supporting the HPRC SCA
program at Texas A&M. Portions of this research were
conducted on the Ada and Terra compute clusters provided
by TAMU HPRC. We gratefully acknowledge support
from the NSF Award OAC #1730695 “CyberTraining:
CIP: CiSE-ProS: Cyberinfrastructure Security Education
for Professionals and Students”, and NSF Award OAC #
1925764 “CC: Cybterteam: South West Expertise in
Training Education and Research”

12. REFERENCES
[1] Research on Learning in Formal and Informal Settings,

National Science Foundation, URL -
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id
=505359

[2] Texas Regional Collaboratives, “Building the Texas
Computer Science Pipeline Strategic
Recommendations for Success | theTRC.org,” 2014

[3] A. Yadav, N. Zhou, C. Mayfield, S. Hambrusch, and J.
T. Korb, “Introducing computational thinking in
education courses,” in Proceedings of the 42nd ACM
technical symposium on Computer science education,
pp. 465–470, ACM, 2011.

[4] J. J. Lu and G. H. Fletcher, “Thinking about
computational thinking,” in Proceedings of the 40th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’09, (New York, NY, USA), pp.
260–264, ACM, 2009.

[5] K. Brennan and M. Resnick, “New frameworks for
studying and assessing the development of
computational thinking,” in Annual American
Educational Research Association meeting,
(Vancouver, BC, Canada), 2012

[6] S. Y. Lye and J. H. L. Koh, “Review on teaching and
learning of computational thinking through
programming: What is next for K-12?,” Computers in
Human Behavior, vol. 41, pp. 51–61, 2014.

[7] J. M. Wing, “Computational thinking and thinking
about computing,” Philosophical transactions of the
royal society of London A: mathematical, physical and
engineering sciences, vol. 366, no. 1881, pp. 3717–
3725, 2008.

[8] M. Prince, “Does active learning work? a review of the
research,” Journal of engineering education, vol. 93,
no. 3, pp. 223–231, 2004.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 19

	

[9] H. Eshach, “Bridging in-school and out-of-school
learning: Formal, non-formal, and informal education,”
Journal of science education and technology, vol. 16,
no. 2, pp. 171–190, 2007.

[10] J. Parsons and L. Taylor, “Improving student
engagement,” Current issues in education, vol. 14, no.
1, 2011.

[11] Campus Program for Minors: https://cpm.tamu.edu
[12] Texas A&M Campus Programs for Minors Rules:

http://rules-saps.tamu.edu/PDFs/24.01.06.M1.pdf
[13] American Camp Association:

https://www.acacamps.org/
[14] Texas Education Code:

https://statutes.capitol.texas.gov/Docs/ED/htm/ED.51.h
tm#51.976

[15] D. K. Chakravorty, M. Pennings, H. Liu, Z. Wei, D.
M. Rodriguez, Levi T. Jordan, D. F. McMullen, N.
Ghaffari, and S. D. Le. “Effectively Extending

Computational Training Using Informal Means at
Larger Institutions,” Journal of Computational Science
Education 2018, 40-47 DOI 10.22369/issn.2153-
4136/10/1/7.

[16] D. K. Chakravorty, M. Pennings, H. Liu, Z. Wei, D.
M. Rodriguez, L. T. Jordan, D.F. McMullen, N.
Ghaffari, S. D. Le, D. Rodriquez, C. Buchanan, and N.
Gober. “Evaluating Active Learning Approaches for
Teaching Intermediate Programming at an Early
Undergraduate Level,” Journal of Computational
Science Education 2018, 61-66 DOI
10.22369/issn.2153-4136/10/1/10.

[17] D. K. Chakravorty, D. F. McMullen, N. Gober, J. H.
Seo, M. Bruner, and A. Payne. “Using Virtual Reality
to Enforce Principles of Cybersecurity,” Journal of
Computational Science Education 2018, 81-87 DOI
10.22369/issn.2153-4136/10/1/13.

Volume 11, Issue 1 Journal of Computational Science Education

20 ISSN 2153-4136 January 2020

Expanding user communities with HPC Carpentry
Alan Ó Cais∗

Jülich Supercomputing Centre
Jülich, Germany

a.ocais@fz-juelich.de

Peter Steinbach
Scionics Computer Innovation GmbH

Dresden, Germany
Max Planck Institute of Molecular Cell Biology and

Genetics
Dresden, Germany

steinbach@scionics.de

ABSTRACT
Adoption of HPC as a research tool and industrial resource is a
priority in many countries. The use of data analytics and machine
learning approaches in many areas also attracts non-traditional
HPC user communities to the hardware capabilities provided by
supercomputing facilities. As a result, HPC at all scales is experi-
encing rapid growth of the demand for training, with much of this
at the introductory level.

To address the growth in demand, we need both a scalable and
sustainable training model as well as a method to ensure the consis-
tency of the training being offered. Adopting the successful training
model of The Carpentries (https://carpentries.org/) for the HPC
space provides a pathway to collaboratively created training con-
tent which can be delivered in a scalable way (serving everything
from university or industrial HPC systems to national facilities).

We describe the ongoing efforts of HPC Carpentry to create
training material to address this need and form the collaborative
network required to sustain it. We outline the history of the effort
and the practices adopted from The Carpentries that enable it. The
lessons being created as a result are under active development and
being evaluated in practice at sites in Europe, the US and Canada.

KEYWORDS
Carpentries, Software Carpentry, Education, Training, HPC

1 INTRODUCTION
Many countries are now spending substantial budgets on high
performance computing (HPC) related research initiatives 1. These
initiatives are creating computational laboratories of unprecedented
scale. At the same time, big data analytics, cloud computing and
∗Authors are listed alphabetically
1See for example,

• The Exascale Computing Project, https://www.exascaleproject.org/;
• The EuroHPC Joint Undertaking, https://eurohpc-ju.europa.eu/;
• The Collaboration of Oak Ridge, Argonne, and Liv-

ermore (CORAL), https://www.energy.gov/downloads/
fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral/;

but also comparable initiatives in China, Taiwan, Japan and India (see https://en.
wikipedia.org/wiki/Exascale_computing).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/4

deep neural networks are influencing the development of HPC to
the extent that the possible future convergence of HPC and big data
applications is being discussed [10]. Cross-domain interest in Deep
Learning alone is driving new sets of users to seek out access to the
latest hardware, and in many cases this hardware is to be found in
the national and regional supercomputing facilities. The explosion
of interest in all of these fields brings with it many challenges, not
least of these is providing researchers with adequate training so
they can effectively and efficiently leverage these computational
laboratories for their research.

To highlight a specific example of this growth, we consider Eu-
roHPC (https://eurohpc-ju.europa.eu) which contains 25 participat-
ing EU states. In EuroHPC, each of the participant states is expected
to have an HPC Competence Centre which will provide HPC ser-
vices to industry, academia and public administrations. These HPC
Competence Centres will be a gateway into the European HPC
landscape and, in many cases, the first landing point for HPC in-
terest in those countries. Since it is a European initiative one must
strive for consistent levels of service across all states, despite greatly
varying experience of the HPC domain. From a training perspective,
how does one achieve this? Addressing this challenge is of critical
importance to the long-tail impact of the investment in EuroHPC.

In this paper we will address the initial training requirements
of a new user who is freshly exposed to HPC resources. Within
academic research there is always a constant flow of early career
researchers entering the field and accessing resources at all levels
of the hardware pyramid. For this reason, we see the "HPC novice"
profile as something that is relevant across the spectrum of HPC
facilities, from institutional resources all the way up to national
and international facilities.

A scalable, collaborative training model is an effective and sus-
tainable way to tackle large increases in demand for "HPC novice"
training. We propose to adopt and adapt the model developed by
the Software Carpentry initiative [11] and apply it to the novice
HPC learner. In Section 2, we introduce aspects of that model and
why it has the potential to map well to the HPC space. In Section 3,
we outline some of the training material design principles and how
they influence the creation process. In Section 4, we look at two
distinct evaluation processes, a review process that happens during
material creation and learner evaluations that occur during/after
training events. Finally, in Section 5, we consider future develop-
ment efforts in light of progress and outcomes that have occurred
to date.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 21

https://carpentries.org/
https://www.exascaleproject.org/
https://eurohpc-ju.europa.eu/
https://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral/
https://www.energy.gov/downloads/fact-sheet-collaboration-oak-ridge-argonne-and-livermore-coral/
https://en.wikipedia.org/wiki/Exascale_computing
https://en.wikipedia.org/wiki/Exascale_computing
https://doi.org/10.22369/issn.2153-4136/11/1/4
https://eurohpc-ju.europa.eu

2 SOFTWARE CARPENTRY AND HPC
CARPENTRY

In the lessons-learned review of Software Carpentry initiative [12],
the author draws a distinction between the "minority who do high-
performance computing" and other scientists who use computing
as a research tool. However, many who have been involved with
training of novice HPC users will recognise that the philosophy of
Software Carpentry to teach "researchers the computing skills they
need to get more done in less time and with less pain" is just as
relevant to the HPC novice, but that the scope of necessary skills is
wider. The goal of HPC Carpentry is to target the skills gap as well
as the technical and conceptual barriers faced by the HPC novice as
they transition from desktop/server computation to HPC resources.

At it’s core, Software Carpentry is a volunteer project dedicated
to teaching basic computing skills to researchers. This is done by
treating lessons the same way you would an open source software
project: collaboratively created and free to access or use. This ap-
proach is inherently scalable as the lesson itself is a shared resource.
Most importantly, Software Carpentry provides training on modern
research in education, and associated evidence-based teaching prac-
tices [3]. In short, the instructor is taught how to deliver training
material effectively and the community provides themwith the high
quality training content that they will teach. Just as importantly
though, a shared lesson and a shared approach to teaching opens
up the possibility to create a community around that material. Such
a community is a resource in and of itself, and provides a platform
for further collaboration on more complex training topics.

HPC Carpentry seeks to crystallise such a community in the HPC
domain. This approach resembles the same process that has already
been undertaken with the Data Carpentry and Library Carpentry
initiatives2.

2.1 The Importance of Collaboration
For some time, there has been significant interest among the HPC
training community in the Software Carpentry approach to gener-
ating and delivering training content. There have already been two
distinct efforts to develop the type of HPC novice material that is
being considered here:

• HPC in a day (https://psteinb.github.io/hpc-in-a-day/),
• Introduction toHigh-Performance Computing (https://github.
com/hpc-carpentry/hpc-intro/releases/tag/v9.1.2).

Further interest has included a Birds of a Feather session at SC17
[9].

HPC Carpentry is not, currently, a formal part of the Carpen-
tries but the current development drive is being carried with the
knowledge and participation of the Carpentries. At CarpentryCon
2018, HPC Carpentry had 2 sessions [4, 7] (each with ~40 partici-
pants), where much of the discussion centred around how to merge
existing efforts and form a single group of collaborators to drive
the lesson development forward. The creators and maintainers of
the previously listed novice material were central to this discus-
sion and have agreed to engage in a unification effort under the
HPC Carpentry umbrella. This has resulted in the creation of a

2Software Carptentry, Data Carpentry and Library Carpentry are now collectively
termed The Carpentries, https://carpentries.org/

Figure 1: Collaborative open lesson development (repro-
duced from [6]).

maintainers-hpc mailing list under the Carpentries umbrella3 to
coordinate the activities of HPC Carpentry, and contributions to
the lessons.

The importance of this step is perhaps best represented if we
consider [6], where the authors succinctly capture collaborative
lesson development in one of their figures (which we reproduce in
Fig. 1). Fig. 1 emphasises the crucial step of recruiting a community
to

• define the target audience
• assist in material development
• provide feedback and continuous quality control
• link to other projects or resources

among other aspects. Without a community, the continuous im-
provement, practicability and sustainability of the lesson is in jeop-
ardy (since the maintenance burden falls on a single set of shoul-
ders). Defragmenting previous initiatives within a single collab-
orative group was an important first step, and a signal to other
interested parties that it would form a cohesive effort.

3 LESSON DESIGN
The "rules" that govern lesson integration and development are
reproduced from [6] in Fig. 2.

One of the first things the interested parties did was to clarify our
audience by outlining a set of Learner Profiles that are representative
of the intended audience (Rule 1)4. Furthermore, we restricted the
training window to be a single day since this is what many sites
already do in practice for the targeted level of this material. In
addition, there was lengthy discussion about what should, and
should not, be included in the lesson. In particular, there is the issue
of what should be considered as required prerequisite knowledge.

The most significant potential prerequisite is the UNIX shell,
whether it should be incorporated or not was intensely discussed.

3https://carpentries.topicbox.com/groups/maintainers-hpc
4https://github.com/hpc-carpentry/hpc-carpentry.github.io/blob/master/
why-hpc-carpentry.md#learner-profiles

Volume 11, Issue 1 Journal of Computational Science Education

22 ISSN 2153-4136 January 2020

https://psteinb.github.io/hpc-in-a-day/
https://github.com/hpc-carpentry/hpc-intro/releases/tag/v9.1.2
https://github.com/hpc-carpentry/hpc-intro/releases/tag/v9.1.2
https://carpentries.org/
https://carpentries.topicbox.com/groups/maintainers-hpc
https://github.com/hpc-carpentry/hpc-carpentry.github.io/blob/master/why-hpc-carpentry.md#learner-profiles
https://github.com/hpc-carpentry/hpc-carpentry.github.io/blob/master/why-hpc-carpentry.md#learner-profiles

Figure 2: 10 rules for collaborative lesson development (reproduced from [6]).

Teaching UNIX shell fundamentals is already core material within
Software Carpentry [2] but there are some additional topics (such
as ssh sessions, for example) that are specific to remote computing.
Having introduced the restriction that there be only one full day to
address all the material, the decision was made to split the lesson in
two equal parts: the first part dealing with the shell (in the context
of remote computing)5 and the second part with the introduction
to working with an HPC resource6. Our decision aligns with Rule
2 about modularity of lessons, it provides the instructor with an
opportunity to omit the first part if the prerequisite knowledge
exists among the participants. In addition, every lesson is structured
into chapters. For example:

(1) Why use HPC?
(2) Logging in to a cluster with ssh
(3) Submitting jobs
(4) Environment modules
(5) Transferring data

By virtue of creating chapters with high independence and low to
no overlap, an instructor is free to skip or remove portions of the
content without loss of material coherence.

To respect Rule 3 as regards best practices, we take the Carpen-
tries Instructor Training [1] as our standard7. We begin from the
end: what do we want our learners to be able to do by the end of
the lesson? We work backwards from this to create a concept map
and give the lesson structure. The map also helps us decide where
to introduce formative assessments to help learners commit each
concept to memory. Formative assessment ties into Rule 7 of Fig.
2 to infer the lesson audience knowledge intake for a given topic.
Furthermore, the HPC Carpentry community strives to implement
continuous feedback loops during a workshop, as has become a
standard with the Carpentries. In practice this is done through
the use of an Etherpad8 to create collaborative notes and collect
questions within the group without interrupting the teaching flow.
Anonymous feedback on sticky notes at the end of every half-day
session is also collected.

5https://hpc-carpentry.github.io/hpc-shell/
6https://hpc-carpentry.github.io/hpc-intro/
7In particular, please see https://carpentries.github.io/instructor-training/05-memory/
8https://etherpad.org/

Lesson design is also influenced by the instructional approach
of Carpentries’ instructors, who use guided practice as the instruc-
tional tool by means of participatory live coding9: each lesson is a
set of prepared/faded examples that is done together with the user.

During the lesson design and the enabling collaborative work-
shops [4, 7], it was repeatedly made evident, by the vigorous dis-
cussions on what to include into an introduction to HPC, that the
HPC community is very heterogeneous. Expectations by traditional
HPC users with a Fortran/C/C++ background and experience in
shared or distributed memory parallelism were confronted at equal
measure with expectations from a high-throughput community
with a map-reduce based understanding of parallelism. This evi-
dence of the convergence or divergence of HPC and big data is
mapped directly into a community like HPC Carpentry. This can
be considered as evidence for Rule 10, but also emphasises the chal-
lenge within HPC Carpentry to implement Rule 1 to 9 in such a
environment. It is an ongoing effort to dissect clearly the central
topics that HPC carpentry wants to focus on and what motivates
them.

3.1 Lesson Portability
A key technical issue for lesson portability is the fact that the
learner environment can vary significantly between HPC sites. For
example, a truly portable lesson should be possible to be configured
for different resource managers, scheduler queue configurations,
MPI launchers, . . .

Since the Carpentries lessons are delivered via GitHub pages
using Jekyll10, we leverage liquid templates11 to enable portability.
For example, in the YAML configuration file for the Jekyll website,
we can set a variable with:
scheduler: "slurm"
which can then be referenced throughout the lesson material with:
{{ site.scheduler }}
Lesson portability then means adding a YAML configuration file
appropriate for the target site. This approach is based on that origi-
nally taken in [8].

9see https://carpentries.github.io/instructor-training/14-live/
10see https://help.github.com/en/articles/about-github-pages-and-jekyll
11https://jekyllrb.com/docs/liquid/

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 23

https://hpc-carpentry.github.io/hpc-shell/
https://hpc-carpentry.github.io/hpc-intro/
https://carpentries.github.io/instructor-training/05-memory/
https://etherpad.org/
https://carpentries.github.io/instructor-training/14-live/
https://help.github.com/en/articles/about-github-pages-and-jekyll
https://jekyllrb.com/docs/liquid/

It should be noted that this also influences lesson design since
we must make an additional effort to avoid referencing specific
features of tools that may not be available in all of the expected
configurations. While this increases the burden for contribution
and makes the lesson source code harder to read, we choose to
embrace the heterogeneity of HPC as it exists and thus enlarge the
number of possible lesson users.

4 EVALUATION
There are two different types of evaluation of the lesson mate-
rial: the evaluation of contributions to the lessons themselves and
the evaluation from learners in workshops where the lessons are
delivered.

In the case of evaluation of contributions, the contributions
themselves are made via Pull Requests12 to the lesson repositories.
These contributions are reviewed by lesson maintainers and by any
interested parties whowish to engage in discussing the contribution.
The intention is that this process is not only open (anyone can
make a Pull Request) but also provides a platform for exposing new
contributors to the design principles used in the lessons. It also
gives us a mechanism by which we can follow Rule 4 of Fig. 2: we
can actively encourage new contributors and incorporate them into
the community.

From the learners, there are three methods of gathering feed-
back13:

(1) pre- and post-workshop surveys;
(2) minute cards - anonymous notes gathered at lunch time and

the end of the day which have one positive and one negative
comment;

(3) the "one up, one down" technique - the instructor asks the
learners to alternately give one positive and one negative
point about the day, without repeating anything that has
already been said.

Summaries of these evaluations are communicated during the
meetings of the lesson collaborators. The surveys help us to assess
whether the learning goals have been achieved, while the minute
cards and the "one up, one down" technique are usually an evalua-
tion of the instructor as much as the lesson content. Where appro-
priate, matters arising from the evaluations are raised as issues in
the relevant repository.

5 CONCLUSIONS
The "HPC novice" lessons https://hpc-carpentry.github.io/hpc-shell
and https://hpc-carpentry.github.io/hpc-intro are both undergoing
significant development currently. These lessons have been deliv-
ered by a number of people within the HPC Carpentry community
and initial feedback has been largely positive. There has not, as yet,
been a more objective evaluation of the lessons as the lessons are
still (in software terms) in an "alpha" state. The immediate goal is to
continue the development process and stress-test the lessons with
new learners, instructors and teaching environments to be found
in Canada, the US and Europe (home to many of the collaborators).

While doing so, a community of contributors is being created,
nourished and expanded. It is the development of this community,
12https://help.github.com/en/articles/about-pull-requests
13https://carpentries.github.io/instructor-training/06-feedback

based on open and transparent governance structures (motivated
by [5]), that is key to generating the capacity and energy to sus-
tainably develop HPC training material based on modern teaching
methods and flexible enough to be adopted by the heterogeneous
HPC community of the 21st century. This community effort is, how-
ever, unfunded volunteer effort which restricts the possibility of
providing concrete timelines for achieving lesson maturity. The
lesson repositories on GitHub are the best place to keep track of
recent developments and contributions14.

Much in the same way that Software Carpentry developed, there
is a desire from collaborators to ultimately move beyond novice
lessons to more advanced topics. Priority has been given to novice
content because it is common ground before we approach the
branching of learner profiles expected when we consider more
advanced topics (software users, software developers, hardware-
specific training, domain-specific training,. . .).

ACKNOWLEDGMENTS
Alan Ó Cais acknowledges support from the European Union’s
Horizon 2020 research and innovation program, under grant agree-
ment No. 676531 (project E-CAM) and grant agreement No. 823964
(project FocusCoE).

REFERENCES
[1] Aron Ahmadia, James Allen, Piotr Banaszkiewicz, Erin Becker, Trevor Bekolay,

John Blischak, Andy Boughton, Erik Bray, Abigail Cabunoc Mayes, Steve Crouch,
Neal Davis, Matt Davis, Jonah Duckles, Rémi Emonet, FÃľlix-Antoine Fortin, Ivan
Gonzalez, Chris Hamm, Michael Hansen, Rayna Harris, Felix Henninger, Konrad
Hinsen, Amy Hodge, Mike Jackson, W. Trevor King, Justin Kitzes, Christina
Koch, Tom Liversidge, FranÃğois Michonneau, Bill Mills, Lex Nederbragt, Aaron
O’Leary, Elizabeth Patitsas, Aleksandra Pawlik, Fernando Perez, Jon Pipitone,
Timothée Poisot, Ariel Rokem, Raniere Silva, Tracy Teal, Tim TrÃűndle, Fiona
Tweedie, Jill-Jênn Vie, Jordan Walker, Alistair Walsh, Belinda Weaver, Ethan
White, Chandler Wilkerson, Jason Williams, Greg Wilson, and Anelda van der
Walt. 2016. Software Carpentry: Instructor Training. (June 2016). https://doi.org/
10.5281/zenodo.57571

[2] Inigo Aldazabal Mensa, Harriet Alexander, James Allen, Areej Alsheikh-Hussain,
Daniel Baird, Piotr Banaszkiewicz, Pauline Barmby, Rob Beagrie, Trevor Bekolay,
Evgenij Belikov, Jason Bell, Kai Blin, John Blischak, Simon Boardman, Maxime
Boissoneault, Jessica Bonnie, Andy Boughton, Ry4an Brase, Amy Brown, Dana
Brunson, Orion Buske, Abigail Cabunoc Mayes, Daniel Chen, Kathy Chung,
Gabriel A. Devenyi, Emily Dolson, Jonah Duckles, Rémi Emonet, David Eyers,
Filipe Fernandes, Hugues Fontenelle, Francis Gacenga, Matthew Gidden, Ivan
Gonzalez, Norman Gray, Varda F. Hagh, Michael Hansen, Emelie Harstad, Adina
Howe, Fatma Imamoglu, Damien Irving, Mike Jackson, Emily Jane McTavish,
Michael Jennings, Dan Jones, Alix Keener, Kristopher Keipert, Tom Kelly, Jan T.
Kim, W. Trevor King, Christina Koch, Bernhard Konrad, Sherry Lake, Doug La-
tornell, Philip Lijnzaad, Eric Ma, Joshua Madin, Camille Marini, Kunal Marwaha,
Sergey Mashchenko, FranÃğois Michonneau, Ryan Middleson, Jackie Milhans,
Bill Mills, Amanda Miotto, Sarah Mount, Lex Nederbragt, Daiva Nielsen, Aaron
O’Leary, Randy Olson, Adam Orr, Nina Therkildsen, Kirill Palamartchouk, Adam
Perry, Jon Pipitone, Timothée Poisot, Hossein Pourreza, Timothy Povall, Adam
Richie-Halford, Scott Ritchie, Noam Ross, Halfdan Rydbeck, Mahdi Sadjadi, Pat
Schloss, Bertie Seyffert, Genevieve Shattow, Raniere Silva, Sarah Simpkin, John
Simpson, Byron Smith, Nicola Soranzo, Ashwin Srinath, Daniel Standage,Meg Sta-
ton, Peter Steinbach, Marcel Stimberg, Bartosz Telenczuk, Florian Thoele, Tiffany
Timbers, Stephen Turner, Jay van Schyndel, Anelda van der Walt, David Vollmer,
Jens von der Linden, Andrew Walker, Josh Waterfall, Ethan White, Carol Willing,
Greg Wilson, Donny Winston, Lynn Young, and Lee Zamparo. 2016. Software
Carpentry: The Unix Shell. (June 2016). https://doi.org/10.5281/zenodo.57544

[3] Susan A. Ambrose, Michael W. Bridges, Michele DiPietro, Marsha C. Lovett,
and Marie K. Norman. 2010. How Learning Works: Seven Research-Based
Principles for Smart Teaching. Jossey-Bass. https://www.amazon.com/
How-Learning-Works-Research-Based-Principles/dp/0470484101

14https://hpc-carpentry.github.io/hpc-shell and https://hpc-carpentry.github.io/
hpc-intro

Volume 11, Issue 1 Journal of Computational Science Education

24 ISSN 2153-4136 January 2020

https://hpc-carpentry.github.io/hpc-shell
https://hpc-carpentry.github.io/hpc-intro
https://help.github.com/en/articles/about-pull-requests
https://carpentries.github.io/instructor-training/06-feedback
https://doi.org/10.5281/zenodo.57571
https://doi.org/10.5281/zenodo.57571
https://doi.org/10.5281/zenodo.57544
https://www.amazon.com/How-Learning-Works-Research-Based-Principles/dp/0470484101
https://www.amazon.com/How-Learning-Works-Research-Based-Principles/dp/0470484101
https://hpc-carpentry.github.io/hpc-shell
https://hpc-carpentry.github.io/hpc-intro
https://hpc-carpentry.github.io/hpc-intro

[4] Alan Ó Cais and Daniel Smith. 2018. Breakout 8: HPC Carpentry.
https://github.com/carpentries/carpentrycon/tree/master/CarpentryCon-2018/
Sessions/2018-05-31/05-Breakout-8-HPC-Carpentry. (2018). Breakout session
at CarpentryCon 2018.

[5] The Carpentries. 2019. Governance. https://carpentries.org/governance/. (2019).
[6] Gabriel A. Devenyi, Rémi Emonet, Rayna M. Harris, Kate L. Hertweck, Damien

Irving, Ian Milligan, and Greg Wilson. 2017. Ten simple rules for collaborative
lesson development. CoRR abs/1707.02662 (2017). arXiv:1707.02662 http://arxiv.
org/abs/1707.02662

[7] Christina Koch and Peter Steinbach. 2018. Workshop 5: HPC Carpentry.
https://github.com/carpentries/carpentrycon/tree/master/CarpentryCon-2018/
Sessions/2018-06-01/05-Workshop-5-HPC-Carpentry. (2018). Workshop at
CarpentryCon 2018.

[8] Peter Steinbach, Aaron O’Leary, Abigail Cabunoc, Andy Boughton, Ashwin
Srinath, Bill Mills, Francois Michonneau, GregWilson, James Allen, John Blischak,
Jon Pipitone, Michael Hansen, Olav Vahtras, Piotr Banaszkiewicz, Raniere Silva,
RÃľmi Emonet, Stephan Janosch, TimothÃľe Poisot, TobyHodges, Trevor Bekolay,
and W. Trevor King. 2019. HPC in a day. (March 2019). https://doi.org/10.5281/
zenodo.2612065

[9] Andrew Turner, Christina Koch, Tracy Teal, Robert Freeman Jr, Chris Bording,
and Martin Callaghan. 2017. HPC Carpentry - Practical, Hands-On HPC Train-
ing. https://sc17.supercomputing.org/index.html%3Fpost_type=page&p=5407&
id=bof125&sess=sess359.html. (2017). BoF session at SC17.

[10] Theo Ungerer and Paul Carpenter. 2018. Eurolab-4-HPC Long-Term Vision on
High-Performance Computing. CoRR abs/1807.04521 (2018). arXiv:1807.04521
http://arxiv.org/abs/1807.04521

[11] Greg Wilson. 2010. Software Carpentry web site. http://software-carpentry.org.
(2010). Main web site for Software Carpentry, replacing http://swc.scipy.org.

[12] G Wilson. 2016. Software Carpentry: lessons learned [version 2; peer review: 3
approved]. F1000Research 3, 62 (2016). https://doi.org/10.12688/f1000research.
3-62.v2

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 25

https://github.com/carpentries/carpentrycon/tree/master/CarpentryCon-2018/Sessions/2018-05-31/05-Breakout-8-HPC-Carpentry
https://github.com/carpentries/carpentrycon/tree/master/CarpentryCon-2018/Sessions/2018-05-31/05-Breakout-8-HPC-Carpentry
https://carpentries.org/governance/
http://arxiv.org/abs/1707.02662
http://arxiv.org/abs/1707.02662
http://arxiv.org/abs/1707.02662
https://github.com/carpentries/carpentrycon/tree/master/CarpentryCon-2018/Sessions/2018-06-01/05-Workshop-5-HPC-Carpentry
https://github.com/carpentries/carpentrycon/tree/master/CarpentryCon-2018/Sessions/2018-06-01/05-Workshop-5-HPC-Carpentry
https://doi.org/10.5281/zenodo.2612065
https://doi.org/10.5281/zenodo.2612065
https://sc17.supercomputing.org/index.html%3Fpost_type=page&p=5407&id=bof125&sess=sess359.html
https://sc17.supercomputing.org/index.html%3Fpost_type=page&p=5407&id=bof125&sess=sess359.html
http://arxiv.org/abs/1807.04521
http://arxiv.org/abs/1807.04521
https://doi.org/10.12688/f1000research.3-62.v2
https://doi.org/10.12688/f1000research.3-62.v2

Blue Waters Workforce Development
Delivering National Scale HPC Workforce Development

Jennifer Houchins
Shodor Education Foundation, Inc.

Durham, NC
jhouchins@shodor.org

Scott Lathrop
Shodor Education Foundation, Inc.

National Center for Supercomputing Applications (NCSA)
University of Illinois
Urbana-Champaign, IL
lathrop@illinois.edu

Robert Panoff
Shodor Education Foundation, Inc.

Durham, NC
rpanoff@shodor.org

Aaron Weeden
Shodor Education Foundation, Inc.

Durham, NC
aweeden@shodor.org

ABSTRACT
There are numerous reports documenting the critical need for high
performance computing infrastructure to advance discovery in all
fields of study. The Blue Waters project was funded by the National
Science Foundation to address this need and provide leading edge
petascale computing resources to advance research and scholar-
ship. There are also numerous reports that identify the lack of an
adequate workforce capable of utilizing and advancing petascale
class computing infrastructure well into the future. From the out-
set, the Blue Waters project has responded to this critical need
by conducting national scale workforce development activities to
prepare a larger and more diverse workforce. This paper describes
those activities as exemplars for adoption and replication by the
community.

KEYWORDS
HPC, education, training, computational science education, petas-
cale computing, broadening participation

1 INTRODUCTION
The National Science Foundation funds the Blue Waters project,
which supports an Education, Outreach and Training (EOT) pro-
gram focused on preparing an HPC-capable workforce with an
emphasis on petascale computing competencies. The Blue Waters
EOT team engages undergraduate students in internships, gradu-
ate students in fellowships, researchers as participants in training
sessions, trainers and educators as PIs of education allocations, and
underrepresented communities as PIs of broadening participation
allocations. All of these communities benefit from access to on
one of the most advanced computing environments available to
the open science research community. Educators, researchers and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/5

students are asked to present their research via conference presen-
tations (e.g. the annual Blue Waters Symposium) and publications
(e.g. the Journal of Computational Science Education).

2 EDUCATION ALLOCATIONS
The initial proposal for the Blue Waters project requested that 1%
of the available computing resources be devoted to educational
activities to prepare a larger and more diverse, computationally
literate workforce [12]. At that time, 1% of the system was a sub-
stantial commitment - providing more computational resources
than were available to researchers via all of the other NSF funded
HPC systems. This portion of the system is allotted through an edu-
cation allocation application process that is available to faculty and
staff at any US institution. Applications may be made to support
undergraduate and graduate courses, training sessions, workshops,
webinars, institutes, and Research Experiences for Undergradu-
ates (REUs). We encourage innovative approaches to educating the
community. Requests range from one day training events to a full
year program of structured learning, such as through internships
and fellowships. Allocation requests typically range from 5,000 to
25,000 node hours, although allocations of larger amounts have
been granted for programs serving large numbers of participants
or for conducting more complex semester course requirements.

3 BROADENING PARTICIPATION
ALLOCATIONS

In order to engage a more diverse community of researchers, the
Blue Waters project created a new allocations category for Broad-
ening Participation [11]. The purpose was to encourage princi-
pal investigators who were women, minorities, individuals at NSF
designated EPSCoR institutions [2], andor individuals at Minority
Serving Institutions (MSIs) to apply for an allocation of time on the
Blue Waters system. These allocations were intended as start-up
allocations of up to 200,000 node-hours to allow each research team
to scale up their codes to Blue Waters. Twenty-one teams from
across the United States were selected in the first year. Included
among the Principal Investigators [1] (PIs) were ten females and
two underrepresented minorities. In addition, there were four fe-
male co-PIs and eight underrepresented minority co-PIs. Among

Volume 11, Issue 1 Journal of Computational Science Education

26 ISSN 2153-4136 January 2020

https://doi.org/10.22369/issn.2153-4136/11/1/5

the lead institutions, five were Minority Serving Institutions and
ten were within EPSCoR jurisdictions. After working on the Blue
Waters system for nearly a year, one of the teams received a PRAC
allocation [3] from NSF, which will allow the team to significantly
advance their computational research in the future.

4 STUDENT ENGAGEMENT
The BlueWaters project directly engaged students through the Blue
Waters Graduate Fellowship Program and the Blue Waters Student
Internship Program. Both programs provide these students with a
full year of financial support and access to the Blue Waters system
to conduct computational research. Information about each of these
student programs follows.

4.1 Graduate Fellowships
The Blue Waters project offers a unique, federally supported pro-
gram that provides PhD students with a full year of computational
science and engineering research support. Each fellow receives
an allocation of 50,000 node-hours to pursue their computational
and/or data-enabled research on the Blue Waters system [13]. The
fellows also receive a $38,000 stipend. Each fellow is able to request
up to $12,000 in tuition allowance to help offset their educational
expenses. Each fellow is invited to attend the annual Blue Waters
Symposium to make a formal presentation and display a poster to
share their research progress with the other attendees. They are
also encouraged to give a presentation of their Blue Waters sup-
ported research at a domain conference of their choosing. There are
between four and 10 fellows selected each year through a competi-
tive application process that is open to students in all US academic
institutions. After their fellowship year ends, the fellows are en-
couraged to continue using the Blue Waters system to pursue their
research while completing their PhD. They are also encouraged to
continue using the system during a subsequent postdoctoral ap-
pointment. Many of the fellows have gone on to faculty positions,
postdoctoral positions, and professional positions in academia, gov-
ernment agencies and academic institutions. We continue to track
the progress of each fellow to facilitate a longitudinal analysis of
the impact of the fellowship program.

4.2 Undergraduate Internships
The Blue Waters Student Internship Program is designed to moti-
vate and prepare the next generation of computational researchers
by engaging them in year-long research projects. The Internship
Program [14] supports about 20 students each year, with a $5,000
stipend spread out over the full year of their appointment. The
program welcomes applications from undergraduates at all degree
granting US institutions. Each year, the program kicks off with a
two-week intensive petascale institute at NCSA that also engages
the interns in learning to make effective use of the Blue Waters
system. The students are matched with faculty who mentor them
through their year-long research projects. Towards the end of their
year-long research endeavors, the students apply to present a poster
on their research project at the annual Blue Waters Symposium in
the May/June timeframe. The faculty report that the combination of
a two-week institute and support for a full year have proven to be
very effective for the students? learning outcomes and the projects

the students pursue. To date, the internship program has benefitted
120 undergraduate students and resulted in numerous papers being
published by the students in the Journal of Computational Science
Education (JOCSE) [8] as described in the next section.

5 JOURNAL OF COMPUTATIONAL SCIENCE
EDUCATION

All of the interns are encouraged to publish their research in the
peer-reviewed Journal of Computational Science Education (JOCSE)
[8]. In this publication, the students are encouraged to describe
their experiences and the impacts of the program on their aca-
demic pursuits and career goals. JOCSE accepts articles from the
international community that address the teaching and learning
of computational science and engineering, the development and
applications of instructional materials, projects, and innovative
approaches for conducting workforce development. The editors
welcome articles that address the assessment of materials or pro-
grams, methods for achieving improved learning outcomes, and
innovative computational science programs. The journal articles
and instructions for submissions are available at http://jocse.org/.

6 EDUCATION AND TRAINING
The Blue Waters EOT team [15] has brought together experts to
offer a variety of education and training sessions throughout the
year to assist researchers and educators with incorporating state-
of-the-art resources, tools, and methods within their research and
education endeavors.

The Blue Waters project conducts a variety of training events
throughout the year to assist participants in learning computational
and data-enabled science and engineering methods, tools, and re-
sources. The training is designed to prepare participants to make
effective use of computing resources, with an emphasis on petascale
computing. The training events include webinars, workshops, sym-
posia, tutorials, hackathons, and other related activities. These are
delivered as in-person events, webcasts, and as self-paced tutorials.

The Virtual School of Computational Science and Engineering
(VSCSE) [5] delivered graduate level computational science and
HPC workshops and courses to students at colleges and universities
across the United States, and to students at international locations.
The VSCSE workshops were delivered using high-definition video
conferencing to as many as 7 remote sites simultaneously. In total,
the 20 VSCSE [5] workshops served over 5,000 people at 54 insti-
tutions. The semester courses were led delivered by HPC experts
in the field and were conducted in collaboration with faculty at
participating institutions in order to provide students with access
to course content and mentoring that would otherwise not have
been available to them. A total of 7 semester courses were delivered
to over 600 graduate students at 29 institutions.

6.1 HPC University Repository
The HPC University portal [7] was established to provide a mech-
anism for disseminating HPC training and education material. It
is built on the foundation and principles established by the Com-
putational Science Education Reference Desk (CSERD) [6], which
is among the collections funded by the National Science Digital
Library (NSDL) [4] funded by NSF. The Blue Waters EOT team

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 27

http://jocse.org/

recruited faculty and staff from across the United States to de-
velop and classroom-test 30 “Undergraduate Petascale modules"
[9] appropriate for teaching parallel computational modeling to
undergraduate or graduate students in STEM disciplines. Training
materials that were developed by Blue Waters were also posted to
the repository. Education and training materials developed by the
community have also been made accessible via the repository.

In addition to adding substantial education and training content
to the HPC University repository, Blue Waters committed staff
time to improving the infrastructure and promoting this resource.
The repository has proven to be an effective tool for facilitating
broad dissemination of the materials. The materials have been
downloaded and used to support workforce development at the
high school, undergraduate and graduate levels.

6.2 Undergraduate Petascale Curriculum
Modules

To facilitate inclusion of petascale computing in undergraduate
education, the Blue Waters project funded the development of a
set of curricular materials that include classroom-ready, domain-
specific examples of HPC applications in science and engineering
[9]. These materials were developed by faculty with experience
teaching HPC and designed to enable the teaching and use of HPC
in undergraduate science and engineering classrooms. The materi-
als are presented in self-contained modules that include instructor
materials for domain-specific applications, starter source codes, and
sample problem solutions. The modules range in topic (or content
area) from parallel simulation of n-body problems to dynamic pro-
gramming with CUDA. All of the modules have been catalogued in
the HPC University repository [7] and are freely available for use
in the classroom.

7 THE BLUEWATERS SYMPOSIUM
The Blue Waters Symposium [10] is an annual gathering of Blue
Waters staff, researchers, students, and professionals from the com-
putational science and engineering community. The Symposia par-
ticipants share successes and challenges in utilizing large-scale
heterogeneous computing systems. Each of the scientific teams
using the Blue Waters system are asked to provide updates on
how the petascale system has helped to advance their research.
Nationally and internationally recognized leaders are invited as
keynote speakers to present innovative, impactful, and at times
controversial ideas that advance knowledge and provoke interac-
tions among the attendees. There are numerous opportunities for
the participants to discuss challenges, opportunities, and the future
of scientific computing. The discussions often times result in new
collaborations and cooperative ventures.

8 SUMMARY
The Blue Waters project actively recruits students, faculty, pro-
fessionals, and mentors in these activities from across the United
States, with an emphasis on engaging women, minorities, and peo-
ple with disabilities. Since going into full-service operations in 2013,
over 200 education and training allocations have been utilized for
activities ranging from one-day workshops to two-week institutes.
The Blue Waters project has engaged more than 3,700 people in

learning to make effective use of computational and data-enabled
science and engineering tools, resources, and methods. The par-
ticipants in the activities came from 219 academic institutions, of
which 65 are within EPSCoR jurisdictions. The impact and benefits
have been widespread, including directly reaching people located
in many foreign countries, as well as freely disseminating materi-
als that have been downloaded and used by thousands of people
world-wide.

The Blue Waters project places a high importance on sharing
what we have learned to help others to be even more successful in
their own endeavors. We look forward to sharing our experiences
with the community and fostering an ongoing exchange of lessons
learned and good practices.

REFERENCES
[1] National Center for Supercomputing Applications. 2019. Blue Waters Broadening

Participation Awards. Retrieved May 31, 2019 from http://www.ncsa.illinois.
edu/news/story/blue_waters_awards_21_broadening_participation_allocations

[2] National Science Foundation. 2019. EPSCoR Program. Retrieved May 31, 2019
from https://www.nsf.gov/od/oia/programs/epscor/

[3] National Science Foundation. 2019. PRAC Allocations. Retrieved May 31, 2019
from https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503224

[4] NSDL. 2019. The National Science Digital Library. Retrieved May 31, 2019 from
https://nsdl.oercommons.org/

[5] The University of Michigan. 2019. Virtual School of Computational Science and
Engineering. Retrieved May 31, 2019 from http://www.vscse.org

[6] Inc. Shodor Education Foundation. 2019. Computational Science Education
Reference Desk. Retrieved May 31, 2019 from http://www.shodor.org/refdesk/

[7] Inc. Shodor Education Foundation. 2019. HPC University. Retrieved May 31,
2019 from http://hpcuniversity.org

[8] Inc. Shodor Education Foundation. 2019. Journal of Computational Science
Education. Retrieved May 31, 2019 from http://jocse.org

[9] Inc. Shodor Education Foundation. 2019. Undergraduate Petascale Curricu-
lum Modules. Retrieved May 31, 2019 from http://www.shodor.org/petascale/
materials/modules/

[10] Blue Waters. 2019. Blue Waters Symposium. Retrieved May 31, 2019 from
https://bluewaters.ncsa.illinois.edu/blue-waters-symposium

[11] BlueWaters. 2019. Broadening Participations Allocations. RetrievedMay 31, 2019
from https://bluewaters.ncsa.illinois.edu/broadening-participation-allocations

[12] Blue Waters. 2019. Education Allocations. Retrieved May 31, 2019 from
https://bluewaters.ncsa.illinois.edu/education-allocations

[13] Blue Waters. 2019. Graduate Fellowships. Retrieved May 31, 2019 from https:
//bluewaters.ncsa.illinois.edu/fellowships

[14] Blue Waters. 2019. Student Internship Program. Retrieved May 31, 2019 from
https://bluewaters.ncsa.illinois.edu/internships

[15] Blue Waters. 2019. Training Offerings. Retrieved May 31, 2019 from https:
//bluewaters.ncsa.illinois.edu/training

Volume 11, Issue 1 Journal of Computational Science Education

28 ISSN 2153-4136 January 2020

http://www.ncsa.illinois.edu/news/story/blue_waters_awards_21_broadening_participation_allocations
http://www.ncsa.illinois.edu/news/story/blue_waters_awards_21_broadening_participation_allocations
https://www.nsf.gov/od/oia/programs/epscor/
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503224
https://nsdl.oercommons.org/
http://www.vscse.org
http://www.shodor.org/refdesk/
http://hpcuniversity.org
http://jocse.org
http://www.shodor.org/petascale/materials/modules/
http://www.shodor.org/petascale/materials/modules/
https://bluewaters.ncsa.illinois.edu/blue-waters-symposium
https://bluewaters.ncsa.illinois.edu/broadening-participation-allocations
https://bluewaters.ncsa.illinois.edu/education-allocations
https://bluewaters.ncsa.illinois.edu/fellowships
https://bluewaters.ncsa.illinois.edu/fellowships
https://bluewaters.ncsa.illinois.edu/internships
https://bluewaters.ncsa.illinois.edu/training
https://bluewaters.ncsa.illinois.edu/training

One Year HPC Certification Forum in Retrospective
Julian Kunkel

University of Reading
Reading, United Kingdom
j.m.kunkel@reading.ac.uk

Kai Himstedt
Universität Hamburg
Hamburg, Germany

Weronika Filinger
EPCC, The University of Edinburgh

Edinburgh, United Kingdom

Jean-Thomas Acquaviva
DDN

Paris, France

Anja Gerbes
Goethe-Universität

Frankfurt am Main, Germany

Lev Lafayette
University of Melbourne
Melburne, Australia

ABSTRACT
The ever-changing nature of HPC has always compelled the HPC
community to focus a lot of effort into training of new and existing
practitioners. Historically, these efforts were tailored around a typi-
cal group of users possessing, due to their background, a certain
set of programming skills. However, as HPC has become more di-
verse in terms of hardware, software and the user background, the
traditional training approaches became insufficient in addressing
training needs of our community. This increasingly complicated
HPC landscape makes development and delivery of new training
materials challenging. How should we develop training for users,
often coming from non-traditionally HPC disciplines, and only in-
terested in learning a particular set of skills? How can we satisfy
their training needs if we don’t really understand what these are?
It’s clear that HPC centres struggle to identify and overcome the
gaps in users’ knowledge, while users struggle to identify skills
required to perform their tasks.

With the HPC Certification Forum, we aim to clearly categorise,
define, and examine competencies expected from proficient HPC
practitioners. In this article, we report the status and progress this
independent body has made during the first year of its existence.
The drafted processes and prototypes are expected to mature into a
holistic ecosystem beneficial for all stakeholders in HPC education.

1 INTRODUCTION
There is a generally accepted set of skills and competencies nec-
essary to efficiently use HPC resources. This skill set depends on
the role and domain of the practitioner but also on the available
infrastructure of the centre providing the computing resources. For
example, a scientist needing to run an application on a specific
machine may need basic skills in Linux, MPI, environment mod-
ules, and knowledge about the batch scheduler, e.g., Slurm. Now
rather than providing that scientists with a list of instructions to
be followed in a copy and paste fashion or a never-ending list of
things they should know, we want them to understand each of
the required steps without having to learn everything about it, but
at the same time understand how it fits into the bigger picture of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/6

using an HPC system. For instance, understanding Slurm is a good
example of a very fine-grained skill that fits under a more generic
skill defined as "resource management", illustrating concepts across
the rich variety of available resource managers.

Most data centers operating HPC systems offer regular train-
ing events focusing on general aspects of their supercomputer’s
hardware architecture, software stack, application development en-
vironment and various tuning and debugging tools. It is understand-
able why the materials they offer are geared towards the special
demands of the specific HPC environment and the institutions they
support. The problem is that teaching content typically covers only
a fraction of the HPC skills necessary to use another HPC system.
This approach of teaching only specific implementations, tools or
workflows—instead of concepts behind them—makes a move to
a different system or tool unnecessary complicated. Narrowing
the scope of training events make sense from the HPC provider
perspective, but is not very conducive to development of a more
comprehensive learning environment that provides assessment and
certifies the newly acquired skills. Although certificates are used
widely in IT industry to verify certain knowledge, until now there
was no similar approach for HPC training. It is, however, clear that
a mapping of competences and certification scheme could address
some of the challenges stemming from the constantly growing
training needs of our community,

This article describes the current status of the certification pro-
gram curated by the HPC Certification Forum. Our previous work
provided a brief overview of the evolution from the project that
sparked the HPC Certification Forum [2] while this article provides
details on adopted mechanisms and design decisions.

The article is structured as follows: First, in Section 2 we intro-
duce the HPC Certification Forum and the certification program.
Then, an overview of the status is given in Section 3, followed by
the organisation of competencies discussed in Section 4. This leads
to the proposal for the certification process in Section 5. In Sec-
tion 6 the whole learning ecosystem is described. Related work is
presented in Section 7. Finally, the article is concluded in Section 8.

2 THE HPC CERTIFICATION FORUM
The HPC Certification Forum (HPCCF) has the role of a (virtual)
central authority to curate and maintain the proposed certification
program. The program consists of three parts: the tree of defined
competencies, the examination of practitioners to prove they posses
those skills, and finally the certification demonstrating their knowl-
edge. Although, the forum is not involved in development of any

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 29

https://doi.org/10.22369/issn.2153-4136/11/1/6

training materials or tools, it supports the ecosystem around the
competencies.

The HPCCF aims to support existing activities and complements
them by providing a unified and clear way of mapping out the
relevant HPC competencies. Thus, the HPCCF does not regulate the
content of training material; we purposely separate the definition of
skills, the examination and the certification from content delivery.
Similarly, the program does not prescribe a curriculum or any fixed
order by which skills need to be obtained. It eases the navigation
between different competencies without being overly restrictive.

The forum is organised around a Webpage1, a GitHub reposi-
tory2, and a team collaboration tool (Slack) for communication and
monthly meetings. The membership is divided into three categories:
associate, full and steering board. Anyone can become an associate
member free of charge, allowing a passive involvement – e.g., ob-
serving the status, being listed on the webpage. Full members must
actively contribute to the program and, in return, gain voting rights
for the roles of the steering board. The steering board directs the
overall activities and is organised in different responsibilities, i.e.,
into topic-specific chairs. At the moment the steering board has 9
members.

3 OVERVIEW OF THE HPCCF ACTIVITIES
The first year of the HPCCF forum was rich in discussions, both
internally and with external partners, resulting in a number of pro-
cesses and prototype tools being put in place. These are described
briefly below, and in more details in the subsequent sections.

Management. The first steering board has been elected at ISC-
HPC 2018. We established communication channels via webpage,
email and Slack for regular discussion. Slack is also used to conduct
our monthly open meetings between members and the steering
board. At beginning, video conferencing tools have been used but
the geographical diversity of the attendees influenced the decision
to move towards chat-based tools. The asynchronous nature and
automatic message retention proved to be more productive, and pro-
vided a more open and inclusive platform for discussion. Meeting
notes with action items are extracted from Slack and documented
using Google Doc (an online word processor allowing real-time
and multiple-user collaboration).

The ongoing conversation with various stakeholders involved in
HPC education and training, keeps producing more engagement in
the forum’s activities. The member’s contributions are voluntarily
and follow the schedule agreed between the contributor and the
HPCCF board. The prospective contributions are managed in Trello
(a web-based list-making collaborative application), in which each
member can manage their own card.

Technical tasks. The tasks we set out to accomplish are: 1) the
definition of competencies; 2) the examination of practitioners; 3)
the creation of certificates; and 4) the reinforcement of an ecosystem
of tools supporting them.

For all these sub-goals we made substantial progress. While the
definition and organisation of competencies was the main focus,

1http://hpc-certification.org
2https://github.com/HPC-certification-forum

we prototyped various tools and processes that embed the compe-
tencies into the wider education ecosystem.

Firstly, considering the pedagogic literature from higher edu-
cation we finalised the templates for the skills description. The
effort to map out all of the relevant competencies is still on-going,
but the feedback received during a number of events organised by
the HPCCF and other members of the HPC education community
resulted in the addition of new topics to the first version of the
certification program.

The definitions of the competencies are version controlled with
Git, and are publicly available in XML and Markdown format. A
Wiki3 is being used to edit the skills’ descriptions, and a navigable
and widely customisable JavaScript4 makes the skill tree easily
accessible to the forum members and the end-users alike.

Preliminary processes and tools have been developed and de-
ployed for curation of the examination questions and for conducting
an online multiple-choice examination.

4 SKILLS
A skill is defined as a set of learning outcomes and relevant meta-
data. Within a single skill, there can also be multiple levels (basic,
intermediate and expert level) building upon each other and further
distinguishing the expertise. We expect the practitioners to acquire
the lower levels before progressing to more complex levels.

The basic level should cover the most relevant aspect of the skill
(needed by anyone that uses the skill), whereas the intermediate
(used for common exceptional cases) and expert levels (used in spe-
cial circumstances) are needed only for a subset of users. Typically,
an institution has only few experts, if any at all.

This model can be compared to the classification of school knowl-
edge, for example, a skill with the name “basic arithmetic opera-
tions” would include the math skills of addition (being able to add
numbers) and subtraction (being able to subtract numbers), multi-
plication (being able to multiply numbers) and division (being able
to divide numbers). Operating on two numbers with ± would be a
basic level of the skill, whereas including multiplication/division
and mentally operating on hundreds of numbers would be an expert
level. Another example could be a skill called "technical drawing",
in which being able to draw simple geometric figures would be
counted as a basic level, and an ability to draw a complicated me-
chanical objects would be an expert level.

The skills are organised in a tree structure from a coarse-grained
to a fine-grained representation, allowing users to browse the skill
based on the semantics. The root level of our current5 skill tree
is shown in Figure 1. The basic idea is that the skills from the
root level simplify the navigation by providing an indication about
their scope, e.g., core knowledge, usage of HPC environments, or
about programming. This should allow the user to rapidly drill into
the skill representation. The closer a skill is to the root, the more
abstractly it is defined, while leaf nodes cover the knowledge for a
specific skill.

As the tree serves the purpose of organising the skills, the refer-
ences from one branch to a skill in another branch are allowed. This

3https://www.hpc-certification.org/wiki/
4https://www.hpc-certification.org/skills/map/
5The goal is to finalise the tree this year.

Volume 11, Issue 1 Journal of Computational Science Education

30 ISSN 2153-4136 January 2020

important feature makes the reuse of the skill definitions possible,
at the same time allowing users to navigate the tree according to
the semantics.

4.1 Description of a skill
Each skill on the tree, including the inner nodes, is described in
more detail as follows:

• ID: Identifier according to its position in the skill tree. The
last character indicates the level of the skill (Basic, Interme-
diate, or Advanced).

• Name: A name capturing the essence of the skill.
• Background: Provides brief information motivating the
need for the skill and how it fits into the bigger picture
with other skills.

• Aims6: Describe the purpose of the skills, but doesn’t really
include a list of what a practitioner will learn or do. Explain-
ing what a skill is trying to achieve is not the same as saying
how it should be done.

• Learning outcomes (LOs): Defines briefly what practition-
ers will learn. The objectives are statements what prospective
learners are able to do. They should clearly describe or define
an action bringing about a measurable/quantifiable increase
in understanding of that skill.

On the leaf level, a skill is fine-grained and orthogonal to other
skills – their narrowed scope means they can be taught in sessions
ranging from a 1.5 hour lecture up to a 4 hour workshop. We believe
this granularity allows practitioners to cherry-pick the skills rele-
vant to their circumstances, and lecturers and examiners to prepare
small lectures with well-defined content. For technology-dependent
skills on the leaf level (e.g., a specific file system or workload man-
ager) the introductory skills are often provided, as they contribute
to the foundation of many specialised skills representing a specific
hardware or software technology.

The aggregation within the tree is similar to that found in the
education circles. Hussey et al.[1] categorised the aggregation of
skills into the following levels: individual teaching events, specified
for modules or short courses, and those specified for whole degree
programmes. Hussey et al. conclude that LOs on the coarse grained
level are not useful for high-level education because they “would
state little more than an annotated list of contents” and relevant
for those familiar with the subject. To overcome these issues, we
provide a relaxed level of granularity and lower level of abstraction
of the learning outcomes on inner nodes.

4.2 Skill Examples
This subsection presents an example of an inner-node skill called
"Executing parallel applications", as well as its two leaf skills -
"Workload manager introduction" and "Slurm workload manager".

• ID: USE4.2-B
• Name: Executing parallel applications
• Background: Parallel computers are operated differently
than a normal PC – all users share the system. To ensure

6The definition of aims and outcomes follows literature for higher education [5] and
https://www.heacademy.ac.uk/system/files/assessment-learning-outcomes.pdf.

a fair and efficient use of shared resources, various oper-
ative procedures are put in place. Users must understand
these concepts and procedures to be able to run a parallel
application on the resources available to them. Moreover,
different HPC systems adopt different solution to manage
their resources.

• Aim: To enable practitioners to comprehend the concepts
and procedures for running parallel applications in HPC
environments; to run and monitor the execution of parallel
applications on HPC systems.

• Learning outcomes:
– explain the concepts and procedures related to resource
allocation and job execution in an HPC environment;

– run interactive jobs and batch jobs;
– understand and describe the content and expected be-
haviour of job scripts;

– change provided job scripts and embed them into shell
scripts to run a variety of parallel applications;

– analyse the output generated from a job scheduler and
understand the cause of typically generated errors.

The next leaf-level skill describes how workload management
works in general, regardless of the specific software implementing
it. The aim and outcomes defined by the parent skill (described
above) are expected to be covered to a certain extend and refined
by this leaf skill.

• ID: USE4.2.1-B
• Name: Workload manager introduction
• Background: There is a wide range of different workload
managers in use. This skill on a conceptual level explains
how to use them.

• Aim: To enable practitioners to comprehend and describe
the basic architecture and concepts of resource allocation on
an HPC system.

• Learning outcomes:
– comprehend the exclusive and shared usage model in HPC;
– explain the generic steps required to run and monitor a
single job;

– differentiate between the batch and interactive job sub-
mission;

– comprehend the generic concepts and structure of re-
source manager, scheduler, job and job script;

– explain the role of environment variables as a mean to
communicate certain settings of your job;

– comprehend job budgeting and accounting principles.

The following skill describes a leaf-level skill for the usage of
Slurm at the basic level. While there is no formal dependency to
the introduction (skill USE4.2.2-B), it is expected that practitioners
have obtained the other skill before learning this one.

• ID: USE4.2.2-B
• Name: Slurm Workload manager
• Background: Slurm is a widely used open-source workload
manager, which also provides various advanced features.

• Aims:
– To enable practitioners to use relevant tools to run and
monitor parallel applications using Slurm.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 31

https://www.heacademy.ac.uk/system/files/assessment-learning-outcomes.pdf

Figure 1: Skill tree: top level competencies with the PE4 branch expanded.

– To enable practitioners to comprehend and describe the
basic structure of Slurm and the related suite of tools.

• Learning outcomes:
– run interactive jobs with salloc, a batch job with sbatch;
– explain the architecture of Slurm, i.e., the role of Slurmd,
srun and the injection of environment variables;

– explain the function of the tools: sacct, sbatch, salloc, srun,
scancel, squeue and sinfo;

– explain time limits and the benefit of a backfill scheduler;
– comprehend that environment variables are set when run-
ning a job;

– comprehend and describe the expected behaviour of a
simple job script;

– comprehend how variables are prioritised when using
command line and a script;

– change a provided job template and embed them into shell
scripts to run a variety of parallel applications;

– analyse the output generated from submitting to the job
scheduler and typically generated errors.

The learning outcomes of this skill, marked with B to indicate
its basic level, are focusing on the most fundamental knowledge
required to use Slurm effectively. An intermediate version of the
skill could, for example, cover how to create reservations or special
queues.

5 CERTIFICATION
A certificate shall serve as a confirmation that a user obtained the
expertise in the relevant skills. Special considerations needs to be
given to the certification integrity. Wemust ensure that the learning
outcomes of the covered skills are examined to a satisfactory degree,
and prevent self-cheating or dishonesty. Students can always cheat
during an examination – the susceptibility to cheating depends on
many factors, including but not limited to the type of exam,methods
used for assessment, motivation for taking it, consequences of
failing or scoring poorly, and the possibility and frequency of resits.

We want to enable a cost-effective assessment (free for the prac-
titioner), so we chose an online examination. This increases the
opportunity for cheating [3] but we plan to deploy a several strate-
gies to minimise the risk of cheating, such as raising the awareness
of the examinees, using a pool of questions, time limits for each

question and a delay between registering for and taking the exami-
nation.

Since knowledge can age, each certificate needs to indicated
when (month and year) the qualifying examination took place.
Also, because the examination of a single fine-grained leaf-level
skill would be too easy for short-termmemorisation andmore prone
to self-cheating, the certificates bundle multiple skills together. We
believe the incentive to deliberately fake the assessment, e.g., by
having the exam filled by someone else, and thus, being awarded a
certificate, is low. Therefore, we address this issue in a lightweight
fashion only.

A process has also been created for prospective contributors of
the examination questions. The questions are the only proprietary
component for the HPCCF – using restrictive license terms for
authors while giving them credit. This is considered necessary for
managing the database containing solutions to the examination
questions.

In the next section, we discuss the process proposed for conduct-
ing the examination.

5.1 Examination Process
The examination process can be started at any time but a delay
is employed before the examination actually starts. Firstly, a user
has to register using their name, email address and optionally an
affiliation. This process is explained, together with privacy policies,
on the examination website. Next, they need to read a paragraph
on the integrity policy defining cheating and encouraging honesty.
Practitioners are asked to opt-in for the policy statement. Upon
receiving this registration, we generate an encrypted token on the
server that is returned to the user by email. Up to this stage, we do
not store any information about the user on the server.

The email contains a link that will start the examination, and the
user chooses to start the examination by clicking on it. Only then,
the information about the user and the examination start time is
stored in a temporary database.

The summative assessment itself is conducted using multiple
choice questions. Therefore, for each skill, we will develop a pool
of questions and answers, and accept external contributions. Each
question has a pool of possible answers (e.g., 10). An examination

Volume 11, Issue 1 Journal of Computational Science Education

32 ISSN 2153-4136 January 2020

consists of randomly selected questions with five of their answers,
and the practitioner has to decide if each statement is true or false.

Once the user submits the completed exam, the selection of
answers is stored on the server for validation. At the moment,
we envision the validation process includes a final manual step to
trigger the certificate generation once provided with all information.
If the user meets the pass criteria (typically 70% of correct answers)
the earned certificate is issued and sent to the user by email. All
personal information about the user is then deleted from the server,
but the affiliation and raw responses are preserved. The affiliation
is used for promotional purposes, while the raw responses will be
analysed to optimise the questions. For example, if we identify that
most users make the same mistake it may be an indication that
either that question or its answer is too ambiguous and should be
improved.

If the user didn’t meet the pass criteria, they will be informed
about their score. The user can then retry to obtain the certificate
after a cool-down period (typically one week), but not immedi-
ately afterwards to prevent success via brute force methods. To
enforce this, the information about when the exam was undertaken
is linked to the user’s name and email. As the sole purpose of the
multiple choice questions is the examination, the incorrectly an-
swered questions will not be revealed. We assume that high quality
training materials available within the HPC community, and cov-
ering the individual skills being part of this certification program,
offer constructive feedback and other ways of consolidating the
newly acquired knowledge. Therefore, the Forum’s only concern is
to provide the mechanism of certifying whether the learners posses
that knowledge or not; As opposed to pointing out gaps in their
understanding.

5.2 Certificates
The examinees that pass the examination are awarded a correspond-
ing certificate. Such certificate consists of two parts: a PDF and a
text file. The PDF contains the key information making the certifi-
cate meaningful. An example of how it may look like is presented
in Figure 2. The name and identifier of the certificate is found in
the centre, on our example these are "HPC Driving License" and
ID 1, respectively. Similar to a driving license, this particular cer-
tificate could provide the minimum set of knowledge required to
understand and use a typical supercomputer.

The text file contains the same information, as well as a ver-
ification URL that can be given to a third-party to confirm the
certificate’s credibility. It is also PGP signed using the private key
of the HPC Certification Forum to allow verification with the public
key. An example file looks as follows:

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA512
HPC Certification Forum Certificate
This text confirms that "Julian M. Kunkel" has
successfully obtained the certificate
"HPC driving license" (id: 1) at 02/2019.
Verification URL: https://hpc-certification.org/[...]
-----BEGIN PGP SIGNATURE-----
[...]
-----END PGP SIGNATURE-----

Certificate

HPC
Board

HPC Certification Forum

1.0C
issued by the

Certificate
This Certificate is awarded to

Exam Date

H
P
C

C
er

ti
fi

ca
ti

o
n

 F
o

ru
m

H
P
C

C
er

ti
fi

ca
ti

o
n

 F
o

ru
m

F
Julian M Kunkel

02/20191

HPC Driving License
https://hpc-certification.org

Figure 2: Draft for an awarded certificate

Together both documents should be able to provide enough
credibility for the certification to be fully functional within the
HPC academic and professional domains. Further improvements
will be adopted as required.

6 ECOSYSTEM
The Forum encourages the development of an ecosystem around
the HPC classification by supporting training and tool development.
Many of its members are involved in those activities in a profes-
sional capacity, so the development of training materials and tools,
and the development of the certification program have elements of
co-design in them.

6.1 Training Delivery
The HPC Certification Forum is not developing training material
directly or competing with providers of training material. However,
we support individuals and institutions by endorsing and promoting
their training materials and courses in two ways.

Firstly, an author is allowed to indicate on the training material
itself or a related promotional material which skills are covered
either fully or partially. We provide a seal that can be used for that
purpose (see Figure 3). The reference to the HPCCF and the seal can
be used free of charge under the condition that the developer of the
training material registers a link to the material (or course) on our
webpage using an online form. That way, the HPCCF is informed
about the usage of the seal.

Secondly, we will link from our webpage the endorsed training
material covering the individual skills and certificates. By using
JavaScript and dynamic webpages, we will provide various views
of the skills – with and without links to suitable training materials.

Note that we are not intending to verify the correct usage of
the seal explicitly. However, in case the training material or course
doesn’t deliver the expected material practitioners may complain
and we will remove the link to that training material from our
webpage.

We expect that this strategy will make a good range of free train-
ing material available for most skills, while various institutions

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 33

This training covers (partially)

- K1.1 System architectures

- K1.2 Hardware architectures

See https//hpc-certification.org/c/1.0

Endorsed
Training
Endorsed
Training

1.0

Figure 3: Draft for the seal for teaching material

and individuals can still charge for effective training courses. Ul-
timately, the catalogued training materials will complement each
other, leading to a rich variety of content suitable for each individual
practitioner, e.g., addressing different learning styles and languages.
This becomes increasingly important as more in-time personalised
training in needed by our ever-growing HPC community.

6.2 Navigation
Thanks to the contributions of the PeCoH project7, a JavaScript
prototype embeds a navigable skill tree into a webpage. The script
can be used by different stakeholders to adjust and present the skill
tree in the most suitable for them view. By view we mean the selec-
tion and organisation of the skills, and the additional information
provided when looking at the tree. For instance, you could have a
tree for a specific scientific domain, for a specific data centre, or
even for the role of the tester of a specific application. This feature
could be used to indicate which skills are mandatory or beneficial
for these use cases, providing links to training material or adding
further supplementary information.

7 RELATEDWORK
Relevantwork can be divided into two categories: efforts to establish
an HPC curriculum, and systematic efforts to design, develop and
deliver HPC teaching and training materials.

In academia, many universities offer their own curriculum around
scientific computing and HPC, as part of their undergraduate pro-
grammes, covering a range of theoretical and practical aspects
relevant to the students field of study, e.g., software development of
numerical domain-specific applications. Such courses rarely cover
the efficient and effective use of HPC systems. The number of taught
modules focusing on HPC is small, and the number of the whole
programmes dedicated to HPC is even smaller. We are aware such
7https://www.hhcc.uni-hamburg.de/pecoh.html

programmes are run by: EPCC at the University of Edinburgh8, the
University of Liverpool9, the International School for Advanced
Studies (SISSA) and ICTP in Italy10, the Trinity Collage Dublin11
in Ireland, the Polytechnic University of Catalonia12 and BSC in
Spain and the University of Cote d’Azur13 in France. These 1-2
year master programmes are fully accredited by the universities
that run them, but that also makes them fairly expensive and their
comprehensiveness is not suitable for the majority of HPC users.

Data centres offer their own teaching materials and run a num-
ber of training courses to support their own users. Although, these
are becoming more varied in content and more accessible through
the adoption of online, remote and asynchronous delivery methods,
they are still not enough to fulfil the training needs of our commu-
nity. Due to a variety of reasons some training opportunities are
still only available at a specific time or place, or simply do not scale
well enough to satisfy the demand.

Several projects, organisations and initiatives continue to put
their efforts into developing and sharing of teaching HPC resources.
The EuroLab-4-HPC project establishes training in form of online
courses14. The Barcelona Supercomputing Centre (BSC) aims to
develop a professional training curriculum [4]. Both XSEDE15 (The
Extreme Science and Engineering Discovery Environment) and
PRACE16 (Partnership for Advanced Computing in Europa), serv-
ing similar purpose in US and Europe, provide a variety of training
opportunities and resources to make HPC more accessible to re-
searchers across many scientific domains. The SciNet Certificate
Program17 provides course material for three major Computer Sci-
ence topics: Scientific Computing, High Performance Computing,
and Data Science each with several subcategories. Whereas the
initiatives such as the HPC University18, the Carpentries (the HPC
Carpentry especially)19 and ACM SIGHPC Education Chapter20
strive to make sharing of teaching resources and practices simpler,
and more accessible to trainers and practitioners alike.

Finally, many companies offer training courses making their
products and services easier to use by their end-users, e.g. NVIDIA
offering courses in deep learning21 or Arm offering courses on
various arm technologies22.

8 CONCLUSION
The HPC Certification Program allows the re-use of existing con-
tent but also makes it possible to create a new ecosystem in which
HPC centres, research labs, academic institutions and commercial
companies could offer the best of their teaching material. According
8https://www.epcc.ed.ac.uk/msc
9https://www.liverpool.ac.uk/study/postgraduate-taught/taught/big-data-msc/
overview/
10https://www.mhpc.it/
11https://www.maths.tcd.ie/hpcmsc/
12https://masters.fib.upc.edu/masters/miri-high-performance-computing
13http://univ-cotedazur.fr/education/training?AIHPC18&lang=en
14https://www.eurolab4hpc.eu/
15https://portal.xsede.org/web/xup/training/overview
16http://www.training.prace-ri.eu/
17https://www.scinethpc.ca/scinet-certificate-program/
18http://hpcuniversity.org
19https://hpc-carpentry.github.io/
20https://sighpceducation.acm.org/
21https://www.nvidia.com/de-de/deep-learning-ai/education/
22https://www.arm.com/support/training

Volume 11, Issue 1 Journal of Computational Science Education

34 ISSN 2153-4136 January 2020

https://www.hhcc.uni-hamburg.de/pecoh.html
https://www.epcc.ed.ac.uk/msc
https://www.liverpool.ac.uk/study/postgraduate-taught/taught/big-data-msc/overview/
https://www.liverpool.ac.uk/study/postgraduate-taught/taught/big-data-msc/overview/
https://www.mhpc.it/
https://www.maths.tcd.ie/hpcmsc/
https://masters.fib.upc.edu/masters/miri-high-performance-computing
http://univ-cotedazur.fr/education/training?AIHPC18&lang=en
https://www.eurolab4hpc.eu/
https://portal.xsede.org/web/xup/training/overview
http://www.training.prace-ri.eu/
https://www.scinethpc.ca/scinet-certificate-program/
http://hpcuniversity.org
https://hpc-carpentry.github.io/
https://sighpceducation.acm.org/
https://www.nvidia.com/de-de/deep-learning-ai/education/
https://www.arm.com/support/training

to our proposal, the existing and newly created teaching resources
should be marked accordingly to indicated which skills they cover.
In the future, the program may provide means to register and refer-
ence existing content of third-parties allowing users to browse the
skills and navigate to teaching material.

8.1 Benefits
The program brings multiple benefits to everyone involved in HPC
teaching and training. It’s obvious that making clear what skills
are required or recommended for a competent HPC user would be
helpful to both the HPC service providers and practitioners. Train-
ing providers could bundle together skills that are most beneficial
for specific user roles and scientific domains, which would allow
practitioners to browse through skills to quickly identify and learn
the skills required to perform their tasks. The variety of training
offered within our community makes finding the right resources
more complicated than it should be – the certification program
will provide useful information where the desired skills could be
learned. The examination confirming that a certain set of competen-
cies has been acquired makes the learning process more complete
and meaningful.

By participating in the program the HPC training providers can
increase the visibility of their teaching opportunities and share
their resources more effectively. The mapping of the skills defined
by the program onto the existing training materials should also
help to identify any potential gaps and improve the integrity of
offered training. Finally, the certificates recognised by the whole
HPC community simplify inter-comparison of independently of-
fered courses and provide additional incentive for participation.
Overall, the flexibility of the program allows to construct more
personalised and just-in-time pathways to learning about HPC.

ACKNOWLEDGMENTS
We are thankful for the contributions and discussions with the members of
the HPCCF and for the contributionsmade by the PeCoH project particularly
Nathanael Hübbe for developing tools. PeCoHwas supported by the German
Research Foundation (DFG) under grants LU 1353/12-1, OL 241/2-1, and RI
1068/7-1.

REFERENCES
[1] Trevor Hussey and Patrick Smith. 2008. Learning outcomes: a conceptual analysis.

Teaching in higher education 13, 1 (2008), 107–115.
[2] Julian Kunkel, Kai Himstedt, Nathanael Hübbe, Hinnerk Stüben, Sandra Schröder,

Michael Kuhn, Matthias Riebisch, Stephan Olbrich, Thomas Ludwig, Weronika
Filinger, Jean-Thomas Acquaviva, Anja Gerbes, and Lev Lafayette. 2019. Towards
an HPC Certification Program. Journal of Computational Science Education (01
2019), 88–89. https://doi.org/10.22369/issn.2153-4136/10/1/14

[3] Neil C Rowe. 2004. Cheating in online student assessment: Beyond plagiarism.
(2004).

[4] Maria-Ribera Sancho. 2016. BSC best practices in professional training and teach-
ing for the HPC ecosystem. Journal of Computational Science 14 (2016), 74–77.

[5] DM Williamson. 2011. Good Practice Guide on Writing Aims and Learning
Outcomes. Queen Mary, University of London, Pub 7282 (2011).

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 35

https://doi.org/10.22369/issn.2153-4136/10/1/14

Project-Based Research and Training in High Performance
Data Sciences, Data Analytics, and Machine Learning

Kwai Wong
University of Tennessee

Knoxville, TN
kwong@utk.edu

Stanimire Tomov
University of Tennessee

Knoxville, TN
tomov@icl.utk.edu

Jack Dongarra
University of Tennessee

Knoxville, TN
dongarra@icl.utk.edu

ABSTRACT
This paper describes a hands-on project-based Research Experi-
ences for Computational Science, Engineering, and Mathematics
(RECSEM) program in high-performance data sciences, data ana-
lytics, and machine learning on emerging computer architectures.
RECSEM is a Research Experiences for Undergraduates (REU) site
program supported by the USA National Science Foundation. This
site program at the University of Tennessee (UTK) directs a group
of ten undergraduate students to explore, as well as contribute to
the emergent interdisciplinary computational science models and
state-of-the-art HPC techniques via a number of cohesive compute
and data intensive applications in which numerical linear algebra
is the fundamental building block.

The RECSEM program complements the growing importance
of computational sciences in many advanced degree programs and
provides scientific understanding and discovery to undergraduates
with an intellectual focus on research projects using HPC and aims
to deliver a real-world research experience to the students by part-
nering with teams of scientists who are in the forefront of scientific
computing research at the Innovative Computing Laboratory (ICL),
and the Joint Institute for Computational Sciences (JICS) at UTK
and Oak Ridge National Laboratory (ORNL). The program also re-
ceives collaborative support from universities in Hong Kong and
Changsha, China.

The program focuses on scientific domains in engineering appli-
cations, image processing, machine learning, and numerical parallel
solvers on supercomputers and emergent accelerator platforms, par-
ticularly their implementation on GPUs. The programs also enjoy
close affiliations with researchers at ORNL. Because of these diverse
topics of research areas and backgrounds of this project, in this
paper we discuss the experiences and resolutions in managing and
coordinating the program, delivering cohesive tutorial materials,
directing mentorship of individual projects, lessons learned, and
improvement over the course of the program, particularly from the
perspectives of the mentors. 1

1This paper describes in detail the work presented at the ISC’19 Workshop on HPC
Education and Training for Emerging Technologies [17].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/7

KEYWORDS
Computational Science, Educational Outreach, Research Experi-
ences for Undergraduates, Data Analytics, Machine Learning (ML),
Hands-on Experiences and Education, HPC

1 INTRODUCTION
Computational science is an emerging field of study that is truly
interdisciplinary, involving researchers from mathematics, com-
puter/information science, and many domain science areas. Com-
putational modeling and simulation have become indispensable
tools in nearly every field of science and engineering. The RECSEM
predecessor, called CRUSE (2013-2016), and the current RECSEM
(2017-2019) programs give students a synergetic set of knowledge
and skills that are useful for them to perform scientific research
in HPC. These programs aim to deliver a synergetic hands-on re-
search experience to the students by combining the expertise at
the Joint Institute for Computational Sciences (JICS) [12] and the
Innovative Computing Laboratory (ICL) [4] at the University of
Tennessee, focusing at HPC simulation in engineering applications,
emergent schemes of numerical mathematics, and state-of-the-art
numerical linear algebra software, and data intensive computing.
ICL is leader in enabling technologies and software for scientific
computing, developing and disseminating high-quality numerical
libraries like LAPACK, ScaLAPACK, PLASMA, and MAGMA [15].

The RECSEM program focuses on scientific domains in engineer-
ing applications, images processing, machine learning, and parallel
numerical solvers on HPC and emergent platforms. Figure 1 shows
the principle idea of the REU program. In general, the program
starts with a two-week training session, introducing the students
to the supercomputing environment and the common computa-
tional methods and tools to be used later. Each student is assigned
a project complemented to his/her academics background and com-
puting skill level and solves a computational modeling problem
under the supervision of a team of mentors and advisors.

From 2013 to 2018, these programs have admitted a total of 92
students. Forty of them are international students from our four
collaborating institutes from Hong Kong and three local students
are supported under a separate REU grant from other colleges at
UTK. The CRUSE and RECSEM programs have attracted students
from 28 different colleges across the nation. Out of the 52 domestic
students, 15 are women and 11 are African Americans (3 females).
The students worked on a total of 55 different research projects with
a total of 23 different lead advisors and 18 mentoring research staff
and student associates at JICS and ICL. The program also enjoys
tight collaborations with researchers at the Oak Ridge National Lab-
oratory (ORNL). Given the scope of activities and size of students

Volume 11, Issue 1 Journal of Computational Science Education

36 ISSN 2153-4136 January 2020

https://doi.org/10.22369/issn.2153-4136/11/1/7

and staff in making this program a fruitful experience for the par-
ticipants, we discuss the experiences and resolutions in managing
and coordinating the program, directing mentorship of individual
projects, and lessons learned via exemplary data science projects
building on native linear algebra from ICL.

Figure 1: Design of the RECSEMComputational Science pro-
gram.

2 PROGRAM DESIGN AND PLAN
The CSURE program started in 2013 and lasted for four years. The
revised RECSEM program streamlines the operation and begins in
2107. These programs draw from the computational sciences expe-
riences of JICS staff and the expertise of numerical linear algebra
building on the HPC platform from ICL.

The principle goal was to promote the ability of undergraduate
students to succeed in a research-oriented program in computa-
tional sciences. Hence the REU programs seek to mimic the pace
and intensity of graduate-level or industrial-level projects with well-
defined deliverable deadlines. The intention is to provide the partic-
ipants a good knowledge of how a graduate project is organized
and executed. In addition, its intellectual focus is not only to push
for publishable research outcomes, but also to expose the students
to research experiences through appropriate levels of motivations
and accomplishments. These are major reasons we choose to do a
ten-week long research program, giving students enough time to
master the skills in accomplishing their research goals.

While the primary goal of these programs is to develop students’
interest in pursuing research careers in computational sciences,
we also provide strong professional development, post-program
development opportunities, and social networking for the REU par-
ticipants among themselves. Students are encouraged to continue
their research activities at their home institutions afterward. There
are several major tasks that the students are asked to follow. These
tasks start with an informal in-class presentation, a midterm lecture
presentation, an open poster presentation, and conclude with a final
presentations and a final report in the last week. These tasks aim
to gradually assist the students towards finishing their research

goals in time. A detailed listing of the program is available at the
program’s webpage, www.jics.utk.edu/recsem-reu.

Figure 2: Software stack for high-performance data sciences
in RECSEM using linear algebra, data analytics and ML

2.1 Schedule of the REU program
To deliver such a diverse program, a well-planned step-by-step
schedule for the entire summer is desirable to be in place by early
December. Event items for the preparation period include logisti-
cal arrangements, program announcement and recruitment, selec-
tion of students, payroll registration, social activities, preparation
of training materials, evaluation instrumentation, mentor selec-
tion and training, and most importantly identification of research
projects and mentoring teams. Following that will be the ten-week
summer program starting the first week of June and ending the first
week of August. A typical daily schedule for the last three years
can be found on the RECSEM webpage [10]. A typical timeline of
the program is listed in Table 1.

The last week of the program is reserved for reporting, presentations,
surveys, and meetings with students. It is important to have a detailed
check-out list for each student and a cordial discussion session with
each student. The discussion session involves soliciting general
impressions from each student, including upsides and downsides
of the program, ideas for improvement, and future opportunities
for project work and graduate school. These discussion sessions
provide valuable insights to the advancement and improvement of
the program.

2.2 Recruitment and student selection
The NSF Computer and Information Science Engineering (CISE)
directorate has a joint recruitment program for REU students [11]
but the program opts to do additional recruitment because of the
diverse, interdisciplinary nature of the program. We rely on recruit-
ment through emails and contacts with collaborative institutes of
JICS and ORNL, particularly with an established outreach partner,
Morehouse College in Atlanta, and the campus champions of the
XSEDE program. Many of the applicants are highly recommended
students through the contacts of our collaborators.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 37

Table 1: Timeline of the REU program

Jan.-March Student recruitment and research project identification
March Student selection and research project selection
April-May Prepare training materials, setup research plan, post detailed schedule
May Mentor training, prepare reference materials, coordinate travel & logistics
First day Goal statement, projects assignment, schedule, survey, social issues, Q&A
1st week Training and hands-on workshop, meeting mentor, define and formulate research goals and plan of projects
2nd week Students finalize research plan with mentors, 1st social gathering
2–4th week Preliminary study, in-class presentation
5th week Mid-term presentation, 2nd social
6–8th week Research and HPC implementation, final poster
9th week Prepare for final presentation, extending work
10th week Final presentation, project report, concluding
Last day Survey, Q&A, retrospective movie, summary
August Summarize results, follow up with students for possible extended work
September Survey report, final report, project continuation
October Final NSF yearly report submission

Candidates considered for the program fill out an application
form and write a short essay describing their background, interests
in science, and their goal statements. This information is used to
select students and then to assign them to work on the proposed
core science domains, to ensure that the specific proposed projects
are beneficial to the students and matched to their interests, back-
ground knowledge, and skills.

Student selection is not always a straightforward process because
of the diverse, multidisciplinary nature of this program and the
challenge in finding participants that match for the various research
topics. A group of mentors and the PI team meets to iterate over the
applicants, ranking the students for their suitability to the program
and the research topics. The deadline for applications is in the late
February but generally moved back depending on the need for more
applicants interested in specific research topics.

Participants are selected based on three major factors: the nature
of their home colleges, their interests and background, and their
letters of intent and references. Students from smaller schools with
fewer research opportunities are preferred in order to expand the
national research community. Rising senior students are preferred.
GPA is a deciding factor only if two candidates have comparable
qualifications. Over the course of CSURE and RECSEM, we have not
seen that GPA is necessarily predictive of success with the program.

Two students are usually assigned to work on one research
subject. Each pair starts off together but often splits up to work
towards separate research aspects of the same topic at the midpoint
of the program.

Acceptance letters will be sent out as soon as the first deadline is
passed. Getting a written commitment from each accepted student
is important. A second set of acceptances is always needed as there
are always students declining to attend. Declination letters also
need to be sent out in a timelymanner; however, itâĂŹswise to keep
in contact with a few applicants in case of unexpected availability.
There are cases that students withdraw late in April for sundry
reasons.

2.3 International students
Having a group of foreign students is an enlightening element to
this program. The goal is to bring together students from different
backgrounds in cultural thinking and education pathways, hop-
ing to broaden the perspectives and understandings of ways of
approaching solving problems. Hong Kong students have partici-
pated in the UTK summer research program under the direction
of Dr. Kwai Wong over a decade. The international students are
funded by their universities. Unlike the selection of the domestic
students, these students are selected competitively primarily based
on their academic achievements. The students are usually highly
academically motivated and look for attending graduate school in
the US, a fact confirmed by tracking their options after graduation.
Pairing the domestic and the foreign students is done whenever a
project permits. We had six pairs of students, so far and all of them
worked out wonderfully, complementing each other in research
efforts. Foreign students generally have better methodical skills
while domestic students are more resourceful and investigative.
Overall the domestic students are impressed by the mathematics
and algorithmic training of others, while the foreign students gain
tremendously in open minded ideas and team efforts. As the pro-
gram goes by, the students mix extremely well and enjoy sharing
thoughts as well as social activities beyond the academic ones, such
as cooking, music, and playing video games together.

2.4 Logistic support and social activities
There are complicating issues for the summer program. The pro-
gram includes students from a foreign country. It has mentors from
UTK and ORNL. The students will have access to supercomputers
at NICS and XSEDE [16]. Conference and meeting rooms have to be
arranged. Visitor badges to ORNL must be processed. The students
each have separate travel plans. Housing must be arranged. Reser-
vation of venues for the planned activities such as group photo
sessions, lecture presentations, poster presentations, and social
gatherings are done early to ensure availability. All of these issues

Volume 11, Issue 1 Journal of Computational Science Education

38 ISSN 2153-4136 January 2020

require timely efforts, coordination, patience, and most importantly,
a good supporting team for a successful program.

It is hard to foresee some of the logistic issues for a new program
and usually takes two to three years to find good solutions for
them. We recognize that getting the support from the school and
the involvement of the research office do help tremendously.

Housing for students is the most urging logistical issue to be
resolved and must be prepared early. The entire group should stay
together in the arranged housing to help them to blend together
socially. It helps to grow a solid bond among the students by orga-
nizing group activities and encouraging the students to create their
own activities. We determine the housing in early February and
proceed to place the students as soon as we have finalized the list.

Over the years, we have tried many options to minimize the
cost but eventually settled in on-campus housing at a reduced rate
negotiatedwith the help of our research office. In addition, a number
of offices and meeting rooms are arranged to host the students in
close proximity. Co-locating the entire group and student helpers
in one or two rooms strongly enhances the cohesiveness of the
program. There are also meeting rooms available nearby for private
discussions. JICS and ICL have reserved three large offices and two
conference rooms for the REU students. These rooms are located
side by side in the same hallway where Kwai Wong’s office is,
making him readily available for any questions anytime.

JICS and ICL have research staff, students, and administrative
staff. The JICS mentors include UT faculty, staff members in ORNL
research groups, and joint faculty with appointments at both UTK
and ORNL. The REU program has benefited tremendously from
this infrastructure and staff support.

The program starts off with a campus walk and a group lunch on
the first day. There are also two organized gatherings in the apart-
ment complex. The students also participate in activities organized
for undergraduate summer interns by the UTK office of research.
Such activities include a tour of the Neyland football stadium and
a few luncheon talks about graduate school application and schol-
arship information. Some highlight activities include a trip to the
Great Smoky Mountain National Park or the Fall Creek Falls State
Park, the Knoxville zoo and a tour to the Spallation Neutron Source
facility at ORNL. These social activities help to bring the group
together and improve morale.

Importantly, we have arranged a local student to serve as the
lead of the group, helping the group to resolve some of the logistic
issues in town.

2.5 Computing resources
The JICS facility represents an investment by the state of Tennessee
and features a state-of-the art auditorium, conference rooms, and
suites for students and visiting staff. It also provides the access
to different parallel computing platforms available at NICS and
XSEDE [16]. The ICL has expertise in the fundamental building
block of numerical libraries on HPC systems, with emphasis on
GPUs. In particular, RECSEM uses the MAGMA libraries to build
new data analytics and ML capabilities, e.g., MagmaDNN [1–3, 6–
9, 13], as well as computational support for applications in various
fields, as illustrated on Figure 2.

Table 2: Timeline of the program

Stage Week Project targets
Training 1.5 Lectures, exercises, research skills
Science Study 1.5 Overview and set research plan
Formulation 1.0 Objectives and algorithm, short talk
Prototyping 2.0 Description, midterm presentation
Implementation 2.0 Results, poster presentation
Concluding 1.0 Final presentation and report

In the RECSEM program, we turn to XSEDE to support the com-
puting need for the research projects. An educational allocation
is obtained to access resources in PSC, SDSC, and TACC. Such ar-
rangement has huge impact to the multi-discipline nature of the
program that we organize, not just the variety of hardware plat-
forms ranging from traditional core-based component to various
types of accelerators, but also the availability of software and the
interactive access for development and testing purposes. Matlab is
openly available on XSEDE’s bridges system, which helps tremen-
dously. The GPU platform available on XSEDE’s comet and bridges
platforms provide excellent computing platforms for data science
projects. In addition, we have also arranged individual multicore
workstations fitted with a low end P100 compatible GPU card used
for code development. These workstations provide a good alterna-
tive to accessing supercomputing remotely.

3 RESEARCHWORK AND MENTORSHIP
This REU program addresses the growing importance of compu-
tational sciences in many advanced degree programs. The agenda
of the program is organized around a synergistic set of ideas and
practices that are common to many scientific domains. The focus
of the projects leverages the multidisciplinary expertise of the staff
in JICS, UTK, and ORNL.

In order to provide students with the most valuable and realistic
experience in computational sciences we have identified several
different areas of significant interest and expertise within our orga-
nization. A participant will select a scientific area in which he/she
would like to be involved. Students are paired to work as a team
together with their assigned scientific mentors and advisors.

One of the major theme in the RECSEM program is to deliver
the fundamental concepts of numerical linear library which is the
major building block of computational intensive and data driven
sciences. We will provide exemplary data science projects using the
home grown numerical libraries, LAPACK and Magma. The other
major theme is to deliver a set of software tool and workflow frame
that can facilitate the development and launching different simula-
tion applications on scalable HPC platforms. These projects breed
cross interactions among team of students as well as promoting
computation performance of simulating programs.

3.1 Stages of the research plan and mentor
experiences

The schedule of the research program is organized into six pro-
gressing stages shown in Table 2.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 39

The program begins with a kick-off meeting to highlight the
agenda of the program and introduce the team of researchers and
staff working in the project. A set of tutorials containing a series
of lecture materials and a clear calendar of schedule of work and
activities is listed on the program website [10] and is available to
the participants at start.

The first day is reserved for payroll paperwork, initial survey,
introduction of students, exchanging email addresses, Q&A, intro-
ducing a local student team leader, and a campus walk. A list of
safety reminders, health concerns, complaints, and emergency con-
tact information is discussed in detail. During the program sessions,
occasional health issues arise and absence and sick policy will be
given.

The first stage of the program includes an in-depth introduction
to the use of supercomputers, including programming languages
and compiling procedures, batch queuing systems, and I/O tools.
Training activities include classroom instruction, hands-on exer-
cises, research and modeling design, and computational studies.
Tutorials come with hands-on exercises that put them to work as
teams. Recognizing there is an uneven level of expertise in comput-
ing, we always pair the team up to compensate for their knowledge
in computer and domain sciences. The introductory sessions inter-
sperse lectures with discussion questions, emphasis on group effort
on problem solving, and hands-on exercises.

Research topics are assigned to students ahead of time; however,
should they change their mind, they may do so in the first week.
An important task of the first week is to give specific assignments
to students to help them begin making progress on their research
topic.

The second week of work includes an introduction to the domain
science areas and the specific project content assigned to each team
of students. This involves hour-long talks by the subject mentors.
We avoid asking students to spend time on learning materials that
they will not use. The rest of the week moves to scientific study
with literature review, reading and discussing relevant articles, and
hands-on practice with relevant computational methods and tools.
The first two weeks are crucial to set the right path for each project
of the program. The PI team will discuss with each project mentors
and determine if the set of goals of a project is not clearly defined or
too difficult for the students to achieve in ten weeks. The discussion
and meeting with mentors will also help the students to draw their
research plan.

In later stages, students start to identify their research plans
under the direction of their mentors. Every student will conclude
the research plan and project goal in three weeks. Student progress
toward their planned goals is evaluated frequently during the pro-
gram. Mathematical formulation and algorithmic prototyping and
testing are then followed. The last week will be reserved for con-
cluding the project, presenting the final results, and finishing the
final report.

3.2 Progress oversight and deliverables
The program has five deliverables. These are designed to steer the
students to finish their projects on time. The timeline of these
deliverables is listed clearly on the webpage and emphasized in

the first week of the program. The first deliverable is a short in-
class summary talk of the research topic and the approach. The
second deliverable is an open presentation of their research work and
initial results. It is aimed to orient the students to focus on their
works, help crystallize the approach, and make students aware of
the project timeline.

The third deliverable is a public poster presentation, organized
with other groups of REU students. The posters help students to
organize their results. Students also have the opportunity to review
other projects and potentially seek ideas to improve theirs.

The last two weeks of the program have the students working
toward concluding their projects with a final presentation. Each pre-
sentation lasts for 40 minutes and usually receiving a number of
questions from their peers and attendants. Final presentations are
great experiences for the participants and represent a concluding
milestone for their research endeavors.

The last piece of work is a report. This is, in fact, a continuous
process from the beginning, with students organizing their weekly
summaries and articulating their results in detailed reports. Each
student is encouraged to keep a weekly summary report. The final
report will be a combined work that documents the studentâĂŹs
progress and findings. Yet in fact, this turns out to be the most de-
manding part of the 10-week program. Hence, it is very important to
keep reminding students throughout the program to work on docu-
menting their efforts and results. Every presentation and report of the
projects in the REU program can be found on www.jics.utk.edu/recsem-
reu.

3.3 Research projects
The research topics available for the participants span a wide range
of scientific and engineering domains yet follow a synergistic theme
of numerical computation or data analytics. Each of the areas cor-
responds to significant capabilities at UTK or ORNL with active
researchers and projects. All projects include hands-on experience
and use of parallel computing in the various scientific and engi-
neering domains of the program.

Research projects are selected based on the expertise of the core
team of mentors and the backgrounds of applicants. Descriptions
of previous research projects, from traditional domain sciences
to cross-disciplinary data computation are listed in the following
sections.

Overall, the projects selected in the RECSEM program circle
around a synergistic theme of simulation and implementation on
the HPC platforms. They involve many cross team collaboration
and effort. Although a team of students concentrates on their own
project, they are exposed to research elements that help them to
explore helpful ideas and seek suggestions from other teams to
expand or advance their research scope.

3.3.1 Data Analytics and Machine Learning. A common theme
for all projects is the use of high-performance numerical libraries,
data analytics, and machine learning. Several projects are specifi-
cally targeting the development of such capabilities. Examples are
the development of MagmaDNN [1–3, 6–9, 13], a high-performance
data analytics and deep neural networks (DNN) framework for

Volume 11, Issue 1 Journal of Computational Science Education

40 ISSN 2153-4136 January 2020

manycore GPUs and CPUs. Students learn state-of-the-art algo-
rithms and performance optimizations techniques for data analyt-
ics and machine learning, implement them in open source library,
and also help other students use these capabilities for data-driven
science projects. Projects have included the development of the
MagmaDNN DNN framework [7], extensions with convolution al-
gorithms [2], including Winograd [6], mixed-precision FFTs using
the new FP16 Tensor Cores units on Nvidia GPUs [3, 13], paralleliza-
tion and addition of new features [9], hyper-parameter optimiza-
tion framework [1], and scalability improvements [8]. A number
of applications using DNN in general start off with using Keras [5]
and TensorFlow [14] for algorithmic development and move to
using MagmaDNN to enhance programming efficiency on HPC
platforms. Such cross team interaction among students encourage
exchanges of ideas and inject values of research collaborations.
Students with strong CS and Mathematics background are assigned
to these projects.

3.3.2 Computational Engineering and Sciences Applications. En-
gineers have been using supercomputers to analyze and resolve
many challenging problems for many years. Nowadays, computer
simulation has become a mandatory step in the process of design
and development for many industrial applications. Projects com-
pleted by the participants include climate and pollution transport
simulations, biomechanics modeling, traffic flow computation, and
power system evaluation.

Computational chemistry, physics, and geography have big foot-
prints on large scale supercomputers. Participants have completed
a number of projects in quantum mechanics, molecular dynamics,
neutron image reconstruction, and GIS modeling.

In general, these projects fall in the category of solving systems
of ordinary or partial differential equation of the conservation laws
systems. A variety of open source community or commercial codes
are used. The goals are primarily to analyze the response of specific
modeling systems and enhancement of the simulation methodol-
ogy on the HPC systems. Although students will not involve in
developing the code, they are required to understand the models,
the mathematical equations and the numerical implementation of
the project. As the simulation is carried out on HPC platforms,
the usage and understanding of various numerical libraries will
determine the performance of the simulations. These projects will
work well for students in engineering and applied mathematics.

3.3.3 Numerical Mathematics and data science projects. Numeri-
cal mathematics is the building block of computer simulation of ev-
ery scientific application. A science problem can usually be modeled
by a set of mathematical equations and then numerically solved on
computers. The effectiveness of these solvers is often determined by
the combination of the specific choice of numerical schemes and im-
plementations, which is particularly true on HPC platform. A theme
of the research projects is to develop efficient numerical schemes
for equation-based and data-based applications, generally needed
in a lot large-scale engineering simulations. Projects completed by
the participants include implementation and comparison of con-
tinuous and discontinuous discretization formulations, machine
learning algorithms for images and signal processing problems,
topological analysis of high-dimensional data, variational inequity
problems, and functional MRI, electroencephalogram (EEG) and

traffic statistical data analytics. Students with strong computing
or mathematics and background will be good candidates for these
type of projects.

3.3.4 Software Tuning and Implementations. Linear algebra is
the backbone of HPC. These are the core computing functions used
in almost every project of the REU program. Projects completed
by the participants include mixed precision parallel dense solve
implementation on GPU and multi/many-core CPU processors, ran-
domized SVD calculations, Fast Fourier Transform implementation
on the newNvidia Tensor Core architecture. Large scale simulations
in engineering and sciences applications are mostly composed of a
sequence of functional steps that can be done either serially or con-
currently. These steps or programming modules often involve I/O
tuning, optimization of numerical libraries, piping the output for
data analysis or visualization, and re-submission of jobs that consti-
tute a cohesive workflow procedure. One of the core projects of the
REU program is the construction of an efficient parallel workflow
framework that is suitable to launch both computational and data
intensive types of job on HPC platforms. These projects will require
students with senior level of programming skill. These projects al-
ways involve the transfer knowledge of other applications to design
and showcase their implementation.

3.4 Mentorship
The lead mentors are designated persons committed to the program.
Mentors are selected based on their availability and commitment.
They are leading researchers in their domain science working at
UTK and/or ORNL. The team of mentors defines the major element
of success of the program. They are chosen early and are involved
in the selection of students. The student research projects vary
every year but fall in the scope of the major program subject areas.
In general mentors meet with their students at least twice a week
and are available for questions. Graduate students of the mentoring
team are in general also available to provide constant guidance and
direction to the students. Given the reality that travel for confer-
ences, reviews, or other purposes makes it likely that mentors will
be occasionally absent, having additional advisors is important to
ensure steady progress. General oversight of the research progress
by the program director is also recommended. Regular discussions
between the program director and the mentoring team are also
helpful.

RECSEM enjoys a large pool of mentors with suitable discipline
of expertise aswell as new project ideas fromUTK andORNL. As the
nature of computational sciences slowly migrate to other emerging
topics, one or two newmentors are solicited to enhance the diversify
of the research scope. The PI team bears the responsibility to explain
in details the nature of the program. The scope of the RECSEM
program involves element of computing that an undergraduate
student has the ability to understand and expand, which is a primary
criterion to be judged by the PI team. Overall, the PIs will determine
if they or another mentor is available to help out in case the primary
mentor is out for unforeseeable reason.

Mentors or their graduate students usually meets at least once a
week, likely more often at the beginning of the project. The PI team
will also be present in the first fewmeetings to give general guidance

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 41

and make suggestions particularly in computing requirement and
resources.

4 ACCOMPLISHMENTS, CHALLENGES, AND
LESSONS LEARNED

4.1 Survey
Evaluation of the program is centered on the toolkit distributed by
the NSF CISE REU program as published by the University of North
Carolina, Charlotte [11]. The evaluation provides the mentoring
team with regular feedback for ongoing assessment of the program
via in-person meetings along with formal mid-program and annual
reports. Reports include evidence-based recommendations for pro-
gram improvements in the form of clear actions items that program
directors can apply directly to further program improvement. A
final summary report examines and determines to what extent the
program succeeded in meeting its stated goals.

Surveys for the students are performed at the start of the program
and at the end of the program. We use the standalone A La Carte
student survey from the CISE REU toolkit [11]. In order to evalu-
ate the project’s impact on participants, students are given pre-
and post-evaluation surveys that assess their attitudes toward and
interests in computational science, as well as their knowledge of
computational science and its use in the domain focus area. The
results of these surveys each year guide modifications to the project
for future years. Surveys and summative evaluations are indepen-
dently instrumented either professionally by a contract agency or a
person that is familiar with the process. The REU program engaged
Dr. Christian Halloy, a retired computational science leader to con-
duct the summative program evaluations. Dr. Halloy conducted
pre- and post-participant surveys, a personal discussion with each
participant, and provided a detailed final report. He also attended
and critiqued the progress of the students’ final lecture and poster
presentations.

In summary, U.S. students’ scores for survey constructs of self-
efficacy, graduate school intentions, computing attitudes, help-
seeking and coping, scientific leadership, and scientific identity
were favorable at the start and end of the program (means above
4.00 on a 1 to 5-point scale for pre- and post-surveys). The largest
improvement gain for REU participants after the 10-week period
was found for the research skills and knowledge scale with a mean
increase from 3.9 to 4.4. Overall, participants were satisfied with
the program with M = 4.25, and their mentor M = 4.12.

Participants rated their mentors quite highly for all the indicators,
the highest average score being for "approachable" (M = 4.89), while
the lowest average score is seen for "accessible" (M = 4.56) which is
nevertheless quite high per se.

In general, the following recommendations were provided as
examples of practices the REU may consider to include or maintain
to ensure continued and future success of the program.

(1) Expand the evaluation to include feedback from additional
stakeholder groups (i.e., faculty advisors/mentors and pro-
gram administrators) in order to gain an additional under-
standing of the REU program.

(2) If possible, create a system to follow the student participants
over time to assess additional project impacts on a long-
term basis. (e.g., graduate school attendance, career choice,
presentation and publications, awards and honors, etc.).

(3) Continue to integrate strategies that will enhance the experi-
ence across diverse backgrounds, considering that students
in the program possess differing academic backgrounds and
research preparation.

(4) Carefully recruit faculty and graduate students who will be
available throughout the duration of the program. Consider
a back-up strategy to support students if a volunteering
mentor is unavailable during parts of the program.

(5) Continue to include and potentially increase hands-on in-
struction at the beginning of the program to engage and
motivate participants.

(6) Continue to provide opportunities for students and mentors
to network at the start of the summer and throughout the
research experience.

4.2 Challenges and lessons
The success of the program builds on the foundation of many el-
ements. The most important one rests on the cohesiveness of the
program and the mentorship.

The program lasts for ten weeks, a good plan before the start of
the program is essential for every project to set up a solid research
path by the end of the third week. The selection of topics and
mentors for the students with the right background will be an
important factor.

Although The RECSEM program enjoys the variety and a diverse
pool of mentors, the expertise and directorship of the PI team is
important to thread the projects together under a synergistic theme
of idea. Being said, the selection of projects and matching projects
to a diverse background of students requires efforts of thoughtful
examination and discussion with mentors. The following list gives
some helpful insights to a typical REU program.

(1) Each year program and projects could vary but would work
out best to set a common goal to unite the idea;

(2) The PI team has basic level of knowledge to give advice to
every single project throughout the program;

(3) Targets of work has to set in place after three weeks of the
program to get research work finish on time. Do not hesitate
to work with the mentors to ensure its timeline if problems
arise;

(4) Pair students with comparable skills, not GPA, that can com-
plement each other. Often REU program enjoys the pool of
large amount of students that could be matched;

(5) Listen to what students suggest and comment early, and
make adjustment as needed, switching or adding student
partners when needed;

(6) Avoid selecting project without a specific goal, unachievable
goal, nor too many tasks;

(7) Prepare to spend extra time with the students to sort out
problems and question. The PI of the RECSEM program
meets with the entire group of students every morning at
9:00am;

Volume 11, Issue 1 Journal of Computational Science Education

42 ISSN 2153-4136 January 2020

(8) Complement skills set from other team to augment the defi-
ciency of some teams. Identify a list of students that could
help out in programming, software tools, mathematics, or
some common topics. After all, it is a group activity, more
interactions are better. If possible, prepare a group of local
undergraduate students to help out in programming.

4.3 Program outcomes and impacts
The success of the program counts on dedications and efforts of our
mentors.We have instituted a total of 73 different projects. Selection
and availability of mentors are constant subjects of concern even
we enjoy having a large pool of volunteer scientists. As this REU
program continues, we learn to streamline the dimension of projects
and maintain the core subject areas the team of resident mentors
and PIs are familiar with. Often the program director has to be
prepare to spend over half of his time a day answering questions
for the entire group.

Parallel computing to many participants has a steep learning
curve, pairing students in their comfort knowledge backgrounds
is essential to get a project done in time. In addition, to avoid
duplication effort within a team, we often design a team project
with multiple themes allowing every student has his/her research
own contribution.

Human dynamics, emotion, frustration, and conflicts among stu-
dents, however rare, are unavoidable issues. Listening, patience,
caring, and professionalism are appropriate answers to most. After
all, we put research experiences as the primary theme of the pro-
gram. Having international students gives a good mix of cultural
interaction, in fact, improves overall group dynamics.

Over the last seven years, we have instituted a multidisciplinary
computational sciences REU program that encompasses 73 different
projects, including a total of 124 students from 39 colleges. This pro-
gram has established a continued relationship with undergraduate
institutions such as Morehouse College in Atlanta, Maryville Col-
lege in Knoxville, NewMexico State University in NM, and Slippery
Rock University in PA. This is important in sustaining long-term
viability of the REU program, which can continue to evolve and im-
prove from listening the feedback and suggestions from our partner
colleges. The outcomes of the studentsâĂŹ research work included
six sponsored conference presentations, three conference papers
and a number of conference and journal papers to be submitted. A
list of their reports is posted in the RECSEM website [12]. Close
to 75% of the students have gone to or are applying for graduate
schools. The program director has maintained yearly contacts with
the participants. This is important to our sponsor. It helps to track
the progress of the students and overall impact to the REU program.

5 CONCLUSIONS
This REU program intends to provide participants with an experi-
ence with a similar level of effort as in graduate school. The program
provides students an exposure to research with high performance
computing applied to a variety of scientific applications. In three
summers, we have resolvedmany problems andmet evenmore chal-
lenges. In particular, the following items summarize the highlights
of the program:

(1) A well-defined step-by-step timeline leading to the end of
the program is in place in early December.

(2) The participants are selected based on three major factors:
the nature of their home college, their interests and back-
ground, and their letters of intent and references.

(3) The project assignments are sent to students ahead of time.
(4) Getting a written commitment from each enrollee is impor-

tant.
(5) A midterm preliminary presentation of the research topic

and the approaches of the research, is very important.
(6) Housing for students must be prepared in the early stage of

the program. The entire group stays together in the arranged
housing to get them to blend together socially.

(7) A program director is important, with regular availability to
the participants.

(8) Co-locating all students and helpers in a multi-purpose lec-
turing room enhances the cohesiveness of the program.

(9) A list of safety reminders, health concerns, and emergency
contact information is discussed in detail in the first day.

(10) An effective team of mentors represents a major element of
success of the program. They are chosen early and are also
involved in the selection of their students.

(11) We have arranged a local student to serve as the site lead to
the group, particularly for social activities.

(12) The most demanding part of the 10-week experience is the
final report. The program director should keep reminding
participants and constantly check for progress.

(13) A detailed checkout list for each student and a meeting with
each student before the program ends are needed.

(14) Surveys for the students are performed at the start of the
program and at the end of the program.

ACKNOWLEDGMENTS
This work was conducted at the Joint Institute for Computational
Sciences (JICS), sponsored by the National Science Foundation
(NSF), through NSF REU Award #1262937 and #1659502, with addi-
tional Support from the University of Tennessee, Knoxville (UTK),
and the National Institute for Computational Sciences (NICS). This
work used the Extreme Science and Engineering Discovery Environ-
ment (XSEDE), which is supported by National Science Foundation
grant number ACI-1548562. Computational Resources are available
through a XSEDE education allocation award TG-ASC170031.

REFERENCES
[1] Frank Betancourt, Kwai Wong, Efosa Asemota, Quindell Marshall, Daniel Nichols,

and Stanimire Tomov. 2019. OpenDIEL: A Parallel Workflow Engine and DataAn-
alytics Framework. In Practice and Experience in Advanced Research Computing
(PEARC ’19). ACM, ACM, Chicago, IL.

[2] S. Chen, A. Gessinger, and S. Tomov. 2018. Design and Acceleration of Convolu-
tional Neural Networks on Modern Architectures. Technical Report. Joint Institute
for Computational Sciences (JICS), UTK. 2018 Summer Research Experiences
for Undergraduate (REU), Knoxville, TN, 2018.

[3] Xaiohe Cheng, Anumeena Sorna, Eduardo D’Azevedo, Kwai Wong, and Stanimire
Tomov. 2018. Accelerating 2D FFT: Exploit GPU Tensor Cores through Mixed-
Precision. (11-2018 2018).

[4] ICL [n. d.]. Innovative Computing Laboratory (ICL). http://icl.cs.utk.edu.
[5] Keras [n. d.]. Keras: The Python Deep Learning library. https://www.keras.io.
[6] Lucien Ng, S. Chen, A. Gessinger, D. Nichols, X. Cheng, A. Sorna, Kwai Wong,

Stanimire Tomov, Azzam Haidar, Ed DâĂŹAzevedo, and Jack Dongarra. January,
2019. MagmaDNN 0.2: High-performance data analytics for manycore GPUs

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 43

http://icl.cs.utk.edu
https://www.keras.io

and CPUs. In MagmaDNN, 2018 Summer Research Experiences for Undergraduate
(REU).

[7] Lucien Ng, Kwai Wong, Azzam Haidar, Stanimire Tomov, and Jack Dongarra.
2017. MagmaDNN – High-performance data analytics for manycore GPUs and
CPUs. In MagmaDNN, 2017 Summer Research Experiences for Undergraduate
(REU).

[8] Daniel Nichols, Natalie-Sofia Tomov, Frank Betancourt, Stanimire Tomov, Kwai
Wong, and Jack Dongarra. 2019. MagmaDNN: Towards High-Performance Data
Analytics and Machine Learning for Data-Driven Scientific Computing. In ISC
High Performance. Springer International Publishing, Springer International Pub-
lishing, Frankfurt, Germany.

[9] Daniel Nichols, Kwai Wong, Stanimire Tomov, Lucien Ng, Sihan Chen, and Alex
Gessinger. 2019. MagmaDNN: Accelerated Deep Learning Using MAGMA. In
Practice and Experience in Advanced Research Computing (PEARC ’19). ACM, ACM,
Chicago, IL.

[10] RECSEM [n. d.]. RECSEM REU Program at UTK. http://www.jics.utk.edu/
recsem-reu.

[11] REU [n. d.]. Research Experience for Undergraduates (REU): Socially Relevant
Computing. https://reu.uncc.edu/cise-reu-toolkit/results-cise-reu-toolkit.

[12] REUReports [n. d.]. Computational Science for Undergraduate Research Ex-
perience, 2013-17 internal reports. http://www.jics.utk.edu/csure-reu/csure13/
projects,

http://www.jics.utk.edu/cure-reu/csure-14/projects,
http://www.jics.utk.edu/csure-reu/csure15/projects,
http://www.jics.utk.edu/csure-reu/csure16/projects,
http://www.jics.utk.edu/recsem-reu/recsem17/projects.

[13] A. Sorna, X. Cheng, E. D’Azevedo, K. Wong, and S. Tomov. 2018. Optimizing the
Fast Fourier Transform Using Mixed Precision on Tensor Core Hardware. In 2018
IEEE 25th International Conference on High Performance Computing Workshops
(HiPCW). 3–7. https://doi.org/10.1109/HiPCW.2018.8634417

[14] TensorFlow [n. d.]. TensorFlow: An end-to-end open source machine learning
platform. https://www.tensorflow.org/.

[15] S. Tomov, J. Dongarra, and M. Baboulin. 2010. Towards Dense Linear Algebra
for Hybrid GPU Accelerated Manycore Systems. Parellel Comput. Syst. Appl. 36,
5-6 (2010), 232–240. DOI: 10.1016/j.parco.2009.12.005.

[16] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood,
S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies, J. R. Scott, and N. Wilkins-Diehr.
2014. XSEDE: Accelerating Scientific Discovery. Computing in Science Engineering
16, 5 (Sep. 2014), 62–74. https://doi.org/10.1109/MCSE.2014.80

[17] Kwai Wong, Stanimire Tomov, and Jack Dongarra. 2019. Hands-on Research
and Training in High Performance Data Sciences, Data Analytics, and Machine
Learning for Emerging Environment. In ISC High Performance, Workshop on
HPC Education and Training for Emerging Technologies. Springer International
Publishing, Springer International Publishing, Frankfurt, Germany.

Volume 11, Issue 1 Journal of Computational Science Education

44 ISSN 2153-4136 January 2020

http://www.jics.utk.edu/recsem-reu
http://www.jics.utk.edu/recsem-reu
https://reu.uncc.edu/cise-reu-toolkit/results-cise-reu-toolkit
http://www.jics.utk.edu/csure-reu/csure13/projects
http://www.jics.utk.edu/csure-reu/csure13/projects
http://www.jics.utk.edu/cure-reu/csure-14/projects
http://www.jics.utk.edu/csure-reu/csure15/projects
http://www.jics.utk.edu/csure-reu/csure16/projects
http://www.jics.utk.edu/recsem-reu/recsem17/projects
https://doi.org/10.1109/HiPCW.2018.8634417
https://www.tensorflow.org/
http://dx.doi.org/10.1016/j.parco.2009.12.005
https://doi.org/10.1109/MCSE.2014.80

Computational Biology as a Compelling Pedagogical Tool
in Computer Science Education

Vijayalakshmi Saravanani
Rochester Institute of Technology

Rochester, USA
vsavse@rit.edu

Anpalagan Alagan
Ryerson University
Toronto, Canada

alagan@ee.ryerson.ca

Kshirasagar Naik
University of Waterloo

Waterloo, Canada
snaik@uwaterloo.edu

ABSTRACT
High-performance computing (HPC), and parallel and distributed
computing (PDC) are widely discussed topics in computer science
(CS) and computer engineering (CE) education. In the past decade,
high-performance computing has also contributed significantly to
addressing complex problems in bio-engineering, healthcare and
systems biology. Therefore, computational biology applications
provide several compelling examples that can be potent
pedagogical tools in teaching high-performance computing. In this
paper, we introduce a novel course curriculum to teach high-
performance, parallel and distributed computing to senior graduate
students (PhD) in a hands-on setup through examples drawn from
a wealth of areas in computational biology. We introduce the
concepts of parallel programming, algorithms and architectures and
implementations via carefully chosen examples from
computational biology. We believe that this course curriculum will
provide students an engaging and refreshing introduction to this
well-established domain.

Keywords
Pedagogical Tools · High-Performance Computing (HPC) ·
Parallel and Distributed Computing (PDC) · Computational
Biology.

1. INTRODUCTION
Over the last few years, computational biology has revolutionized
medical research, bringing in novel analysis tools that accelerate
diagnosis and drug discovery. The enormous amount of
experimental data generated by the human genome project,
proteomics, and clinical research has fostered this revolution by
enabling extremely accurate, albeit complex models for various
biological phenomena. The analysis of these models requires high
processing power and time to find accurate solutions, making them
attractive candidates for parallelization. For example, high-
performance parallel computing has successfully contributed to the
understanding of protein dynamics [1], ion channels and cellular
reaction kinetics [2], resulting in several specialized high-

throughput tools such as GROMACS, a parallelized molecular
simulation toolkit [3]. Further, novel projects such as

Folding@home [4] have enabled the pooling of distributed
computing resources from around the world to analyze proteins.
Recently, bioengineers have begun focusing on reverse engineering
biological systems, by reconstructing gene and metabolic networks
that describe the interactions between various genes and protein
from experimental data. This relatively new area of research
requires novel computational tools due to the vastly heterogeneous
nature of the data involved [5]. While computer scientists have been
able to contribute to improving the performance and accuracy of
biological analysis, the striking applications found in the domain
can also serve to provide a wealth of motivation for computer
scientists. In addition, there are several different methods of
implementing these applications, some more easily parallelized
than others did (and the best implementation can depend on the
application). Therefore, they provide an excellent opportunity for
computer science students to gain insight into issues faced by
programmers of parallel algorithms. For this reason, we believe that
biomedical applications can be a powerful tool in teaching parallel
and distributed computing. In this paper, we propose a novel course
curriculum that introduces parallel and distributed computing to
senior graduate students in a hands-on manner through a set of
carefully chosen computational biology applications. We also
propose several sample research term projects that can be carried
out as a direct extension of the learning outcomes of this course.

1.1 Contribution and Related Work
The ACM and NSF/TCPP guidelines recommend that parallel
computing is introduced in CS and CE courses from early stages
[28][29]. As parallelism and multi-core computing becomes more
accessible, academic institutions in India are exploring the
introduction of interdisciplinary concepts in CS and CE education.
In this context, several courses have been developed to teach the
parallel computing programming concepts with real-world
examples [30] [31] [32] [33]. The first author has also introduced a
course teaching parallelism with hands-on experimental learning
activities as a member of the Board of Studies (BoS)/Curriculum
Design Committee at Amrita/VIT University, India in 2005-2009.
In this course, the author piloted a new course introducing certain
concepts in HPC and PDC using real-world applications, including
those in computational biology. Drawing upon this experience, the
key contribution of this paper is the design of an interdisciplinary
course curriculum that uses problems in computational biology as
educational tools in computer science education. Currently, several
courses designed for biology majors focusing on the fundamentals
of parallel and distributed computing [6] [7]. Recently, courses
incorporating high-performance computing for medical
applications have also been developed [8]. Advanced courses in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Copyright ©JOCSE, a
supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
DOI: https://doi.org/10.22369/issn.2153-4136/11/1/8

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 45

computational biology have also been targeted towards CS
graduate students specializing in biological computation [9].
However, there has been little attention to the pedagogical value
that computer scientists can draw from the biological application
domain. The curriculum proposed in this paper fills this gap, while
bringing in several advantages. First, it serves to provide students
with an insight on programming choices regarding how much
parallelization is required, based on the application. Second, it
promotes interdisciplinary thinking among computer science
graduate students and will be particularly valuable to computer
scientists who wish to make a career transition into the
computational biology domain. Finally, this course does not require
expensive parallel computing resources, and can easily be taught
using FPGAs and commonly available desktop/laptop GPUs.
Further, the use of biological problems such as protein folding as
examples to teach parallel computing enables the use of a wealth of
tools that pool worldwide distributed computing resources such as
the Folding@home project [4].

2. HPC IN COMPUTATIONAL BIOLOGY
While several fields can be used to supply examples for the
application of HPC and PDC, computational biology provides a
large variety of problems that are both complex and challenging
even at a research level. This diversity in the availability of HPC
and PDC applications in computational biology is the primary
reason for choosing this domain. In addition, since the course is
taught to senior graduate students, we hope that the large number
of open problems in this emerging area will inspire students to
explore this interdisciplinary area for their research.
Over the last two decades, there have been significant advances in
biomedical sciences, computational biology, drug discovery and
systems biology with the introduction of high-performance
computing technologies. The tremendous increase in
computational power of the desktop to high-end computing devices
such as supercomputers, clusters, and grids due to the end of
Dennard scaling and Moore’s law has opened up great
opportunities in the simulation of relevant biological systems for
applications in bioinformatics and computational biology. In this
section, we introduce the applications of high-performance systems
in computational biology. Among them, we introduce relevant
biomedical problems such as heterogeneous computing, GPU
architecture and large-scale distributed computing has been
successfully applied [11]. We also point out the pedagogical value
associated with these problems for computer science students. We
will later draw upon these areas to construct specific application
examples to teach high-performance computing.

2.1 Big Data Analytics
Owing to advances in genome projects, proteomics, high-resolution
imaging and the rapid digitization of patient clinical records, there
has been an explosion in the volume of biological and medical data
sets. The optimal use of this data is a major challenge in biomedical
research, requiring the development of more sophisticated
architectures and tools. A key question that remains in
computational biology research is how to extract information,
construct models and reverse-engineer biological networks from
the massive amount of vastly heterogeneous data [5]. However,
dealing with biological networks, while extremely effective, is also
computationally intensive. Here, the integration of big data tools
with high-performance and parallel processing techniques have
been proposed [10]. From a pedagogical perspective, biomedical
big data applications can be effective in teaching efficient
parallelization and introducing massively parallel processing
(MPP) tools.

2.2 GPU Computing
The recent explosion in the availability of cheap graphical
processing units (GPU) from PCs to heterogeneous computing
platforms where they perform massively parallel have introduced a
new facet of high-performance computing. This fact has attracted
many researchers to use GPU computing platforms for wider
applications, in particular, biomedical engineering. Similarly, bio-
inspired algorithms such as the genetic algorithm and ANT Colony
optimization [12] [13] [14] have been effectively implemented on
GPUs which drastically reduce the communication overhead
between the CPU and GPU. Problems like the analysis of biological
DNA sequences can be effective in teaching CUDA [15] [16] [17]
as well as a good source for discussion of the concerns involved in
GPU programming and parallel programming in general. They can
also be used to motivate a framework for easily parallelizing
genetic algorithms. CUDA makes it simple for programmers with
only a basic understanding of genetic algorithms to code their own
genetic algorithms to run on NVIDIA GPUs.

2.3 Distributed Computing
Distributed computing allows for the utilization of vast amounts of
computational power to tackle challenges in medical and
computational biology. In particular, the biggest challenge in
computational biology is simulating proteins due to their great
complexity. Analysis of the folding of complex proteins requires
the fastest CPUs and supercomputers. Recently, idle computing
resources worldwide have been pooled to carry out this analysis,
creating a massively distributed computing setup [4]. The key
challenge in this distributed computing setup is to exploit
parallelism, where it is often difficult to subdivide jobs and extract
work from all jobs. Similarly, another challenge is to have efficient
algorithms to exploit the available computing power. We believe
that the protein-folding problem can help introduce concepts such
as large-scale distributed computing architectures and algorithms,
as well as network security, novel simulation methods and client-
server architectures.

3. COURSE DESCRIPTION
In this section, we outline the proposed course curriculum, ”High
Performance Computing through Computational
Biology”(HPCCB), where students will be introduced to various
concepts in high-performance computing in a hands-on manner
using examples from computational biology. This course will allow
students to learn high-performance computing through direct
application as well as carry out design projects from concept to
realization. First, we provide an outline of the learning objectives,
teaching methodology and a brief description of the biological
applications chosen, with particular emphasis on their value in
illustrating specific HPC concepts. Second, we provide criteria for
course evaluation, including laboratory work and research term
projects. Finally, we outline the process of evaluating the success
of the course via direct feedback from students.

3.1 Prerequisites
This course is mainly designed for senior graduate students at the
PhD level. Postgraduate students pursuing Master degrees may also
register for this course if they have an individual study plan where
this particular course is relevant. This course will require basic
Linux competence and advanced programming skills. Basic
knowledge and/or exposure to biological, high data-intensive and
computationally intensive applications will be useful.

Volume 11, Issue 1 Journal of Computational Science Education

46 ISSN 2153-4136 January 2020

3.2 Course Development and Learning
Outcomes
Figure 1 shows the design and development cycle of the HPCCB
course. This course can be taught at the senior graduate (PhD) level
as well as at the Masters level, with slightly different approaches.
We begin by analyzing the preparedness of the

Figure 1 HPC through computational biology: course design
cycle class, in terms of prior course work in CS as well as
exposure to interdisciplinary domains. For graduate classes with
a strong fundamental background in CS, the course can be
tailored to be predominantly application-inspired (focusing on
interdisciplinary research problems) to provide a different flavor
to traditional concepts. For classes that are composed primarily
of students at the Masters level, bridging material needs to be
provided to supplement the application-based teaching of
concepts with traditional CS problems and examples. Based on
the above assessment, we define the learning outcomes of the
course. While specific learning outcomes may vary, a general
baseline can be as follows:
Students should be able to:

– Define different kinds of parallel architectures, like processor
arrays, shared and distributed memory multiprocessors,
reconfigurable computing processors and supercomputer
architecture,

– Analyze an application for parallelization potential,
– Design/select algorithms for the high-performance

computing requirements of the application,
– Assess the scale of bio-specific tools and libraries for parallel

and distributed computing,
– Implement commonly used HPC platforms and parallel

programming models using appropriate programming
languages,

– Measure, assess and analyze the performance of the designed
HPC solution and optimize HPC codes, and,

– Perceive the larger role of HPC in computational biology,
through examples and detailed term research projects.

Other learning outcomes for application-oriented classes may
include:
Students should be able to:

– Effectively utilize the visualization techniques to present the
results,

– Provide experience in technical communication (both oral
and written),

– Design prototype for computational biology software or
bioengineering devices,

– Evaluate the economic considerations related to HPC-based
bioengineering designs, such as market analysis and
budgeting,

– Apply the regulatory rules important in biomedical devices
such as FDA regulations etc., and,

– Value the ethical considerations of biological research,
devices, and treatments on individuals, industries and society,
as well as ethical considerations involved in collecting and
processing big data.

At this stage, interdisciplinary programs may choose to provide
an increased weightage to biological applications, while
traditional CS programs may want to balance out the application
examples with core CS examples. As a baseline, we recommend
that at least 60% of the examples chosen in the course be based
on biological applications, to exploit the full pedagogical value of
application-based teaching. We also recommend that
interdisciplinary HPC and CS instructors are trained in the
pedagogical perspectives as shown in Fig. 2. In particular,
instructors must be exposed to laboratory-based hands-on
teaching techniques, which they must employ to guide students
towards developing parallel thinking by working on specific
application studies in the laboratory. Further, the instructors must
obtain exposure to the state-of-the-art computational techniques
used in biological applications prior to teaching the course. Once
HPC is introduced to the class through the suggested
computational biology applications, research areas that can be
extended into term projects are selected. In the final stage, the
proposed curriculum is implemented with regular feedback to
evaluate learning outcomes to further fine-tune the course.

3.3 Infrastructure
An important aspect of course development involves assessing
the computational infrastructure necessary to conduct the course
laboratory and research term projects. With the widespread
availability of desktop and laptop GPUs, the infrastructure
requirements for this course are minimal. The following are the
minimum infrastructure requirements for the course.

– LAM/MPI, OpenMP, OpenCL, and CUDA
– 16 dual 450Mhz Pentium II Linux PCs

We recommend that computers/clusters with higher
specifications be made available when possible.

4. SAMPLE COURSE OUTLINE AND
DESCRIPTION
We now provide a sample course outline that details the HPC
concepts that can be covered in a one-semester course, along with
the suggested bioengineering applications to introduce them.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 47

Figure 2. Teaching perspectives for HPC and Computational
Biology course

4.1 Parallel Computation in Biological
Applications
This section will comprise of a literature review on the basics of
high-performance and PDC applications. Here we will introduce
the real-world applications of HPC, with specific focus on
computational biology and bioengineering, with surveys and
extracts from texts like [18]. We will also introduce the basic
concepts and terminology in HPC and parallel processing.

Section Summary
– High-performance computing and biological networks
– HPC architecture and Parallel processing

4.2 Parallel Implementation
In this section, we will introduce the problem of analyzing DNA
sequences collected from large genome projects. One problem in
the analysis of biological DNA sequences is the alignment of long
sequences to identify regions that are matched and mismatched
[19] [20]. This is accomplished by implementing a dynamic
programming problem that provides a pair-wise comparison of
sequences. The major problem when processing a long sequence
of the whole genome is to meet the requirements of computer
memory and execution time i.e. memory and CPU intensive
application. Therefore, parallel implementations of this dynamic
programming algorithm are necessary, as described in [19].
Through this problem, we introduce the concepts of parallel
architectures and programming, along with data parallelization
like SIMD and MIMD.

Section Summary

– Biological sequence analysis algorithm
– Parallel sequencing analysis methods: SIMD, MIMD
– Parallel biological tools
– References: [19], [20]

4.3 Massively/Embarrassingly Parallel
Solutions to Computational Biology Problems
In this section, we use the problem of molecular sequence
analysis to introduce the concept of hybrid SIMD-MIMD
architectures. We attempt to provide insight into the process by

which a programmer must determine the extent and scale of
parallelization required for an application. We also introduce
several mapping techniques to reduce the complexity of the
sequence alignment. Through this example, we also briefly
introduce the concept of performance evaluation.

Section Summary
– Hybrid SIMD-MIMD architecture
– Levels of parallelization fine and coarse-grained, and

implementation choices
– Mapping techniques,
– Reference paper: [21]

4.4 Multithreaded/Multi-core Parallel
Implementation
In this section, we return to [19] motivate the idea of
multithreaded parallel programming implementations. We
further use the problem in [22], where a protein threading
problem is formulated as a Mixed Integer Program (MIP) to
describe the advantages of multithreading. In this example,
students will learn multithreading by decomposing the MIP into
sub-tasks and implementing them in a multi-core parallelized
setting. Further, this MIP can also be viewed as the shortest path
problem. Through this problem, students will gain an in-depth
insight into parallel multithreading/multi-core parallel
implementations as well as a flavor for optimization problems
such as linear programming (LP), MIP and shortest path
problems.

Section Summary

– A multithreaded parallel implementation, parallel execution
model

– Solving protein threading problem in parallel [22]
– Reference paper: [19], [22]

4.5 Performance Improvement using
Distributed Computing Environments
In this segment, we introduce performance optimization for
parallel codes by considering the example of the Clustal W
algorithm for multiple sequence alignment. This algorithm
involves a pairwise comparison stage followed by the
construction of a guided tree, which is then used for progressive
alignment. Each stage of this algorithm needs to be optimized to
reduce computational complexity. Through this example,
students will learn to measure the performance of their parallel
implementations and optimize the code to improve performance.
Further, parallel clustering algorithms will also be introduced.
This problem will also use OpenMP, OpenCL and CUDA
programming, thereby providing a succinct overview of these
techniques.
Section Summary

– Measure and assess the performance of parallel
implementations

– Parallel code optimization, parallel clustering
– OpenMP, OpenCL, and CUDA programming techniques
– Reference paper: [23]

Volume 11, Issue 1 Journal of Computational Science Education

48 ISSN 2153-4136 January 2020

4.6 Big Data and Parallel Computing using
Genomics and Computational Biology
In this section, a large-scale search problem involving big-data
will be introduced with the help of genomics data sets. Various
search algorithms like GeneWise and GeneMatcher [24] will be
introduced, with emphasis on performance analysis for parallel
big-data implementations.
Section Summary

– Genomics introduction
– Various genome algorithms
– Performance analysis
– Reference paper: [24]

4.7 High-performance algorithms in
Computational Biology
The examples suggested in the above segments will be revisited
to understand SMP and CMP deployments and introduce
advanced concepts in algorithm complexity analysis.
Section Summary

– SMP and CMP machine deployment
– Complexity algorithm analysis

4.8 Parallel and Distributed Memory
Architecture
In this section, we use the problem of gene linkage analysis to
introduce the concept of distributed memory architectures.
Linkage analysis software like Genehunter [25] efficiently
distribute both computation and memory. Students will learn
these parallelization approaches, including assessment of
memory requirements and memory architectures through this
problem.

Section Summary

– Memory architecture for parallel bioengineering
– Memory requirements
– Parallelization approach and methods
– Reference paper: [25]

5. RESEARCH PROJECT
This advanced elective course focuses on interdisciplinary
teaching approach similar to other existing courses. Our unique
approach is to satisfy the current computing demand and train our
students in the research and scientific-orientation. In this context,
we provide the final project based on the research problems with
the perspectives of computational biology. The references
provided in each of the above sections can be extended into
excellent implementation projects in HPC as well as
computational biology. The design project component is
intentionally kept open-ended, with no predefined solution.
Project outcomes can be hardware, software or review-based.

For example, Fig. 3 represents the basic flow of genetic
information and how it gets manifested at the population level in
bacteria. At each stage we need high-throughput computational
programs to simulate various processes involved.

Figure 3. Basic flow of genetic information in bacteria [34]

One of the main challenges in implementing biological high-
performance computing is to develop platforms for efficient
analysis by choosing the right architectures and implementations.
The implementation project will provide students with hands-on
experience in applying the learning outcomes of this course to
real-world computational biology problems. Students may, in
consultation with the course instructor, choose research projects
related to various topics in course outline or topics that are of
interest to their doctoral research, in the case of students at the
PhD level. Depending on the size of the class, research projects
may be carried out in teams or individually. A research design
project typically includes collecting data/information, using tools
to analyze the data, using various methods and algorithms, and
quantifying the effectiveness of the proposed solution. Potential
research topics will be listed during first two weeks of a term,
considering the preparedness and specific research interests of the
graduate students taking the course. This research project will
help students in the following activities:

– Apply theoretical knowledge to identify, formulate and solve
real-world biological problems,

– Design devices, software, or experimental apparatus related
to biomedical applications or research,

– Experience the end-to-end design process in real-world
applications,

– Test solutions by designing suitable experiments,
– Plan and manage a research project, including building

teamwork strategies,
– Gain experience in working independently or as part of

interdisciplinary teams, and
– Effectively communicate and document research progress

and outcomes.

6. ASSESSMENT METHODOLOGY
Students are evaluated on their progress towards the course
learning outcomes based on the following criteria:

– Demonstration of a computational biology software, device-
prototype or study as part of a term research project,

– Submission of assignments and laboratory reports,
– Submission of a final project report that includes theoretical

modelling and related observations,

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 49

– Short oral presentation of the outcomes of the term project,
and

– Final examination.

In Table 1, we summarize the weightage assigned to different
facets of the course in the evaluation process.

Table 1. Grading Breakdown

Item Weightage

Assignments 10%

Research Project 40%

Laboratory Modules 20%

Final Exam 30%

Table 2. Laboratories and Assignments

Topic No. of
Hours

Assignments/Labs

Parallel architecture and
system models

2 Reference [27]

Introduction to HPC in
Biological applications

5 Paper review

Teaching parallel
programmingtechniques
MPI, Pthreads and OpenMP,
Biotools/libraries

6 Lab 1-Lab 4

Analyze data intensive and
computationally intensive
applications

3 Lab 5

Data visualization 3 Lab 6

Big Data Infrastructure 4 Hadoop Eco
 system,
HDFS

HPC in Big Data 4 Lab 7

Statistical modeling for data 2 Linear, logical
regression,
Bayesian models

Research project 40 Chosen by student
in consultation
with
instructor

In Table 2, we list various laboratory modules along with the
number of hours assigned to them. Note that students are expected
to spend at least 40 hours over the semester working on their chosen
research project. We also provide the rubrics for assessment of the
course research project in Appendix A.

7. REFERENCE MATERIAL
To accomplish the learning outcomes in Section 3.2, we choose a
set of examples, drawn primarily from current literature in
computational biology, and supplemented from traditional
textbooks like [26], to cover the essentials of parallel and
distributed high-performance computing. We note that specific
references pertaining to the chosen biological applications and
their HPC implementations have been provided under each
subsection of the course outline in Section 4. This material can be
replaced or augmented with current literature relevant to the
research interests of the students taking the course. Considering
the practical and demonstrative nature of the course, the use of
online interactive books is worth mentioning. While we do not
recommend any specific online textbooks, some interactive
programming books can be used as a good source of practice
material [27]. With several iterations of this course, we will work
towards the design of an interactive online book where we will
introduce parallel and distributed computing through examples
and exercises from biological applications. Students will then be
able to access this material both on-campus as well as remotely
and will be able to work on the exercises and projects designed
for them online.

8. FEEDBACK MODEL
The level of student engagement and satisfaction with the
learning outcomes of the course can be analyzed by conducting
two surveys during the term, and one survey after the end of the
term. The first survey can be conducted in one month of the
course and the second survey in three months of the course. The
first two surveys may be replaced by a single survey for
universities following the quarter system with shorter terms.
Students can be asked to rate the course on a scale of 0 to10 on a
variety of topics, including but not limited to, their satisfaction
with the course instructor, laboratories, assignments, choice of
research projects, amount of time invested into the course,
difficulty level of the course and usefulness of the assigned
textbooks and reference material. In addition, students may also
be asked to provide suggestions on how the course can be
improved both in the short term that is, during the same semester,
and in the long term, that is, in subsequent iterations. This
feedback will then be used as a pivot to improve the course
structure to cater the students’ needs in the particular term, as well
as to refine the course development process as laid out in Fig. 1
in the subsequent terms.

9. COURSE EXPERIENCES AND
EVALUATION
We now detail the experiences and evaluation results of the first
author in introducing a similar curriculum, and describe how
these experiences have contributed to the shaping of the
curriculum presented in this paper. The first author introduced an
interdisciplinary course on HPC and PDC when she was a faculty
and member of the Board of Studies (BoS)/curriculum design
committee at Amrita/VIT, India in 2005-2009. In this course,
senior undergraduate engineering students in their final year were
introduced to HPC and PDC concepts through real-world
examples drawn from multiple domains, including computational
biology. As the course involves learning HPC and PDC concepts
directly via implementation of problems at the research-level, the

Volume 11, Issue 1 Journal of Computational Science Education

50 ISSN 2153-4136 January 2020

feedback received indicated that this course was too involved at
the undergraduate level. Therefore, the author reintroduced this
curriculum in 2010 as an advanced elective for graduate students
(PhD) who have taken prior courses on the foundations of HPC,
and could draw value from the interdisciplinary flavor of this
course. This course, comprising of 9 students, was well-received
with an average rating of 95%. Several students attending the
course also chose to pursue interdisciplinary HPC-based term and
thesis projects supervised by the first author. Initially, the author
faced various difficulties such as getting proper training in HPC,
lack of proper textbooks and lack of HPC tools to support the
computational needs at the university. However, now the author’s
institute has received the funding from Intel to support the
infrastructure needs and the management streamlined the other
issues as well. We also taught the project based proposed course,
which is mentioned in Section.5, was well received by Ph.D.
students with an average rating of 90%.

10. CONCLUSION
In this paper, we present a novel course designed to teach high
performance parallel and distributed computing to graduate
students directly via hands-on applications drawn from
computational biology. While HPC successfully contributed to
solving several biological problems, we believe that computer
scientists can conversely draw enormous pedagogical value from
biological examples and problems. Motivated by this, we
presented a course curriculum where HPC is introduced almost
entirely via hands-on application examples. We first summarize
the main trends in HPC applied to biomedical engineering and
computational biology. We demonstrate several successful
stories and application fields, in which relevant biological
problems have been solved (or are being targeted) using the
computational power available in current processors. We then
provide a detailed description of the course and suggested
examples to be used in the course. We would also like to point
out some potential implementation challenges in terms of the high
learning curve in emerging programming models. We believe that
this course can inspire students to undertake investigations into
improving the performance on HPC systems motivated by
computational biology problems. This will be of high technical
interest in the computer science community as biological
applications have novel computational patterns that can lead the
next generation of high-performance heterogeneous computing
systems.

11. References
[1] Sanbonmatsu, K. Y., and C-S. Tung. High performance

computing in biology: multimillionatom simulations of
nanoscale systems. Journal of structural biology 157.3
(2007): 470-480.

[2] Stevens, R. (2002, September). Biology and High-
Performance Computing. In UK-HPCUsers Meeting.
http://www.cels.anl.gov/about/people/files/UK-BIO-HPC-
final1.pdf

[3] Pronk, Sander, et al. GROMACS 4.5: a high-throughput and
highly parallel open sourcemolecular simulation toolkit.
Bioinformatics (2013).

[4] Pande, Vijay S., et al. (2003). Atomistic protein folding
simulations on the submillisecondtime scale using
worldwide distributed computing. Biopolymers 68.1 91-
109.

[5] Lee, W.P., Tzou, W.S. (2009). Computational methods for
discovering gene networks from expression data. Briefings
in Bioinformatics 10 (4):408-423.

[6] http://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-047computational-biology-fall-2015/.

[7] https://biology.ufl.edu/files/ZOO4926-6927-CompBio-
Basic-Res-Comp-Skills.pdf.

[8] Fundamentals of High-Performance Computing for Public
Health. Columbia University School of Public Health.
https://www.mailman.columbia.edu/public-
healthnow/news/big-data-academy-public-health-
supercomputing.

[9] CMSC 838T: Advanced Topics in Programming Languages
- Systems Software for High-performance Computing,
Emphasis on Bioinformatics Applications. University of
Maryland.
http://www.cs.umd.edu/class/spring2003/cmsc838t/.

[10] Marx, Vivien. Biology: The big challenges of big data.
Nature 498.7453 (2013): 255-260.

[11] Garland, M., Kirk, D.B.: Understanding throughput-oriented
Architectures. Communications of the ACM 53, 5866
(2010)

[12] Wong, M. L., Wong, T. T., and Fok, K. L. (2005,
September). Parallel evolutionary algorithms on graphics
processing unit. In 2005 IEEE Congress on Evolutionary
Computation (Vol. 3, pp. 2286-2293). IEEE.

[13] Manfrin, M., Birattari, M., Stutzle, T., Dorigo, M.: Parallel
ant colony optimization forthe traveling salesman problem.
In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli,
A., Poli, R., Stutzle, T. (eds.) ANTS 2006. LNCS, vol. 4150,
pp. 224234. Springer, Heidelberg (2006)

[14] Cecilia, J.M., Garcia, J.M., Ujaldon, M., Nisbet, A., Amos,
M.: Parallelization strategiesfor ant colony optimization on
GPUs. In: NIDISC 2011: 14th International Workshop on
Nature Inspired Distributed Computing. Proc. 25th
International Parallel and Distributed Processing
Symposium (IPDPS 2011), Anchorage, Alaska, USA (May
2011)

[15] Wong, M. L., and Wong, T. T. (2009). Implementation of
parallel genetic algorithms ongraphics processing units. In
Intelligent and Evolutionary Systems (pp. 197-216).
Springer Berlin Heidelberg.

[16] Pospichal, P., Jaros, J., and Schwarz, J. (2010, April).
Parallel genetic algorithm on thecuda architecture. In
European Conference on the Applications of Evolutionary
Computation (pp. 442-451). Springer Berlin Heidelberg.

[17] Garland, M., Le Grand, S., Nickolls, J., Anderson, J.,
Hardwick, J., Morton, S., Phillips, E., Zhang, Y., Volkov,
V.: Parallel Computing Experiences with CUDA. IEEE
Micro 28, 1327 (2008)

[18] Aluru, Srinivas, ed. Handbook of computational molecular
biology. CRC Press, 2005.

[19] Martins, Wellington S., et al. ”Whole genome alignment
using a multithreaded parallel implementation.” Symposium
on Computer Architecture and High Performance
Computing. 2001.

[20] Yap, Tieng K., Ophir Frieder, and Robert L. Martino.
”Parallel computation in biologicalsequence analysis.”
IEEE Transactions on Parallel and Distributed Systems 9.3
(1998): 283-294.

[21] Schmidt, Bertil, Heiko Schrder, and Manfred Schimmler.
”Massively Parallel Solutions forMolecular Sequence
Analysis.” ipdps. 2002.

[22] Yanev, Nicola, and Rumen Andonov. ”Solving the protein
threading problem in parallel.”Parallel and Distributed

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 51

Processing Symposium, 2003. Proceedings. International.
IEEE, 2003.

[23] Mikhailov, Dmitri, Haruna Cofer, and Roberto Gomperts.
”Performance optimization ofclustal w: Parallel clustal w, ht
clustal, and multiclustal.” SGI ChemBio (2001).

[24] Mo, Yi, Moira Regelson, and Mike Sievers. ”A Study of
GeneWise with the DrosophilaAdh Region.” 13th Annual
Genome Sequencing and Analysis Conference. 2001.

[25] Conant, Gavin C., et al. ”Parallel genehunter:
Implementation of a linkage analysis packagefor distributed-
memory architectures.” Journal of Parallel and Distributed
Computing 63.7 (2003): 674-682.

[26] Jeffers, Jim, and James Reinders. High Performance
Parallelism Pearls Volume Two: Multicore and Many-core
Programming Approaches. Morgan Kaufmann, 2015.

[27] K. Hwang, G. C. Fox, and J. J. Dongarra, Distributed and
Cloud Computing: From ParallelProcessing to the Internet
of Things, Elsevier, 2012.

[28] Joint Task Force on Computing Curricula, Association for
Computing Machinery (ACM) and IEEE Computer Society,
Computer Science Curricula 2013: Curriculum Guidelines
for Undergraduate Degree Programs in Computer Science.
New York, NY, USA: ACM,

2013.
[29] S. K. Prasad, A. Chtchelkanova, S. Das, F. Dehne, M.

Gouda, A. Gupta, J. Jaja, K. Kant,
A. La Salle, R. LeBlanc, M. Lumsdaine, D. Padua, M.
Parashar, V. Prasanna, Y. Robert, A. Rosenberg, S. Sahni, B.
Shirazi, A. Sussman, C. Weems, and J. Wu, NSF/IEEE-
TCPP curriculum initiative on parallel and distributed
computing: Core topics for undergraduates, in Proceedings
of the 42Nd ACM Technical Symposium on Computer
Science Education, ser. SIGCSE 11. New York, NY, USA:
ACM, 2011, pp. 617618.

[30] R. Brown, E. Shoop, J. Adams, C. Clifton, M. Gardner, M.
Haupt, and P. Hinsbeeck, Strategies for preparing computer
science students for the multicore world, in Proceedings of
the 2010 ITiCSE Working Group Reports, ser. ITiCSE-
WGR 10. New York, NY, USA: ACM, 2010, pp. 97115.

[31] A. Fitz Gibbon, D. A. Joiner, H. Neeman, C. Peck, and S.
Thompson, Teaching high performance computing to
undergraduate faculty and undergraduate students, in
Proceedings of the 2010 TeraGrid Conference, ser. TG 10.
New York, NY, USA: ACM, 2010, pp. 7:17:7.

[32] J. Adams, R. Brown, and E. Shoop, Patterns and exemplars:
Compelling strategies for teaching parallel and distributed
computing to CS undergraduates, in IEEE International
Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), May 2013, pp. 12441251.

[33] Eduardo Csar, Ana Corts, Antonio Espinosa, Toms
Margalef, Juan Carlos Moure, AnnaSikora, Remo Suppi,
“Introducing computational thinking, parallel programming
and performance engineering in interdisciplinary studies,” J.
Parallel Distrib. Comput. 105, 2017, pp. 116-126.

[34] Rick Stevens, Biology and High-Performance computing
https://pdfs.semanticscholar.org/presentation/cd70/536ba60
11018539eda74dddaede95cca893b.pdf

Appendix A: Rubric for Research Project Evaluation

Criteria Poor Average Excellent

i Corresponding/First Author: Vijayalakshmi Saravanan, Rochester Institute
of Technology, NY. Email:vsavse@rit.edu

Abstract Not precise or
succinct, one
or more
elements
missing

Contains the
topic under
investigation,
but does not
clearly
summarize
the
conclusion
and/or
methodology
of
investigation.

Clearly states
the topic of
investigation,
how the
investigation
was undertaken
and the
conclusions.

Introduction
and
relevance of
application,
device,
prototype or
study

Little or no
description,
little or no
attempt to
explain the
significance
of the
application,
device,
prototype or
study

Some
description
of device,
some attempt
to explain the
significance
of the
application,
device,
prototype or
study

application,
device,
prototype or
study is clearly
described,
clearly explains
the significance
and application
of developed
application,
device,
prototype or
study, places
the problem in
the context of
relevant
literature

Blue prints
 and
Block
Diagrams

Unreasonably
sized and
spaced, either
incorrectly
captioned or
not captioned
at all

Most are
appropriately
sized and
spaced, most
are properly
captioned

All block
diagrams have
a specific
purpose, all
appropriately
sized and
spaced, all
properly
captioned

Proced
ure

Method not
described
clearly, omits
crucial
details

Method
described
fairly clearly,
some
important
details
omitted

Provides a
detailed and
comprehensive
description of
the
implementation

Demonstrati
on

Unclear
 demon-
stration/quest
ions not
answered

Better
description/s
ome
questions
answered

Excellent and
clear
demonstration/
most questions
answered

Volume 11, Issue 1 Journal of Computational Science Education

52 ISSN 2153-4136 January 2020

FreeCompilerCamp.org: Training for OpenMP Compiler
Development from Cloud

Anjia Wang
Lawrence Livermore National Laboratory

Livermore, California, USA
University of North Carolina at Charlotte

Charlotte, North Carolina, USA
awang15@uncc.edu

Alok Mishra
Lawrence Livermore National Laboratory

Livermore, California, USA
Stony Brook University

Stony Brook, New York, USA
alok.mishra@stonybrook.edu

Chunhua Liao
Lawrence Livermore National Laboratory

Livermore, California, USA
liao6@llnl.gov

Yonghong Yan
University of North Carolina at Charlotte

Charlotte, North Carolina, USA
yyan7@uncc.edu

Barbara Chapman
Stony Brook University

Stony Brook, New York, USA
Brookhaven National Laboratory

Upton, New York, USA
barbara.chapman@stonybrook.edu

ABSTRACT
OpenMP is one of the most popular programming models to exploit
node-level parallelism of supercomputers. Many researchers are
interested in developing OpenMP compilers or extending existing
standard for new capabilities. However, there is a lack of training
resources for researchers who are involved in the compiler and
language development around OpenMP, making learning curve in
this area steep.

In this paper, we introduce an ongoing effort, FreeCompiler-
Camp.org, a free and open online learning platform aimed to train
researchers to quickly develop OpenMP compilers. The platform is
built on top of Play-With-Docker, a docker playground for users to
conduct experiments in an online terminal sandbox. It provides a
live training website that is set up on cloud, so anyone with internet
access and a web browser will be able to take the training. It also
enables developers with relevant skills to contribute new tutorials.
The entire training system is open-source and can be deployed on a
private server, workstation or even laptop for personal use. We have
created some initial tutorials to train users to learn how to extend
the Clang/LLVM and ROSE compiler to support new OpenMP fea-
tures. We welcome anyone to try out our system, give us feedback,
contribute new training courses, or enhance the training platform
to make it an effective learning resource for the HPC community.

1 INTRODUCTION
Due to the increasing complexity of supercomputer node archi-
tectures for high performance computing (HPC), high level pro-
gramming models are used to improve the productivity of using
supercomputers. OpenMP is considered by many as the de-facto
portable programming model for exploiting node-level parallelism
for supercomputers. Compiler support for OpenMP has been added

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/9

in many open source compilers, such as GNU compiler collection,
Clang/LLVM, and ROSE source-to-source compiler frameworks,
as well as vendor compilers from Intel, Cray, NVIDIA and AMD.
More and more researchers are interested in conducting research
using OpenMP as a vehicle in the area of parallel programming
models, compiler technologies and computer systems. However,
one of the major challenges in developing an OpenMP compiler and
to extend OpenMP language is the steep learning curve of compiler
implementation and the development efforts of adding compiler
support for language extensions.

Fundamentally, compiler development is a complex and time
consuming task. Although many cloud-based, online learning plat-
forms [3, 21, 25, 30, 31] have been created for computer science
education, focusing on entry-level programming courses, there is a
clear lack of such resources to teach compiler development. Even
with the developer manuals of a compiler framework, it is difficult
for beginners to teach themselves how to modify compilers which
contains millions of lines of code. Training beginners by proficient
compiler developers consumes lots of time, human efforts and cost,
which is not scalable in the long term.

In this paper, we introduce an ongoing effort, FreeCompiler-
Camp.org, a free and open online learning platform aimed to train
researchers to quickly develop OpenMP compilers and help them
learn the skills of compiler development. FreeCompilerCamp.org
has several distinct features: 1) It allows anyone who is interested
in developing OpenMP compilers to learn the necessary skills for
free; 2) A live training website is set up so a web browser and an
Internet connection are the only requirements for anyone to take
the training; 3) It enables those who have the relevant skills to
contribute new tutorials; and 4) The entire training system is open-
source so it can be be deployed on a private server, workstation or
even personal laptop.

The remainder of the paper is divided as follows: Section 2 gives
background information for our work. Section 3 explains the chal-
lenges faced in giving compilers training and our solutions. Section
4 presents the implementation of the framework. Section 5 gives an
overview of the design of the tutorials with a few examples. Section

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 53

https://doi.org/10.22369/issn.2153-4136/11/1/9

6 covers work related to this paper. Finally Section 7 consists of the
conclusion and our future plans.

2 BACKGROUND
The goal of this work is to improve the effectiveness and scalability
of compiler development training for researchers, developers and
graduate students.We choose two OpenMP compilers, Clang/LLVM
and ROSE as examples. This section gives a brief introduction of
background information.

2.1 Compilers
Compilers are essential for HPC. As opposed to interpreted lan-
guages, programs written in compiled languages gives a better
performance and are more favorable towards high performance
computing. A compiler takes high-level human readable programs
written in programming languages, such as C/C++ or Fortran, and
converts them into low-level binary machine codes for a specific ar-
chitecture. The entire process of this transformation is complicated.
A compiler need to parse the code, check for syntax correctness,
gather necessary semantic information (like type checking or vari-
able declaration before use and so forth), then convert the source
from high level language to intermediate representation and before
transforming them into machine codes [10].

Today a compiler can do much more than converting a program
into machine instructions. As HPC hardware designs are evolving,
machines are becoming more and more complex, and issues which
need to be address by the programmers are also getting convoluted.
This raises the question about what more can a compiler do for the
programmers. Compilers have very complex designs so that the
work of an application developer becomes simpler. Owing to the
complexity of design, extending a compiler to add a new feature is a
very time consuming job. The development cycle of a compiler is at
least 3-5 years. Training programmers to do compiler development
is challenging to both the trainer and the trainee.

2.2 Clang/LLVM
LLVM [18] is the prime environment for developing new compilers
and language-processing tools. HPC programmers rely on compil-
ers and analysis tools. LLVM is the environment of choice for the
development of such tools, and thus should be of interest to many
HPC programmers. LLVM makes it easier to not only create new
languages, but to enhance the development of existing ones. Its
primary C/C++ compiler frontend is Clang. Today most supercom-
puting clusters deploy LLVM as one of their compilers due to the
following reasons:

(1) It provides a high-performance and up-to-date C/C++ com-
piler frontend Clang.

(2) Many researchers in HPC community enjoy Clang’s diag-
nostic abilities and static-analysis framework.

(3) It allows for tapping other languages that have an LLVM
back-end like Intel’s ISPC [27] and different scripting lan-
guages.

(4) It makes for compelling compiler research, as evident by the
plethora of projects built using LLVM [22].

Ever since its first release in 2003, LLVM has gone through a
plethora of changes and updates. With every release new features

are added and older features are deleted or updated. Owing to these
diverse set of features and many more, using Clang/LLVM for de-
veloping a tool or a plugin is a very complex task. There are lots of
tutorials which are available for Clang/LLVM, but they are all just
text based tutorials and come with their own set of challenges.

2.3 ROSE
ROSE is an open source compiler infrastructure developed at Law-
erence Livermore National Laboratory (LLNL). It is designed to
build source-to-source program transformation and analysis tools
for Fortran, C, C++, OpenMP, and UPC applications[28]. Internally,
ROSE generates a uniform abstract syntax tree (AST) as its inter-
mediate representation (IR) for input codes. Sophisticated compiler
analyses, transformations and optimizations are developed on top
of the AST and encapsulated as simple function calls, which can
be readily leveraged by tool developers. The ROSE AST can be
optionally unparsed to human readable and compilable source files,
which in turn can be compiled into final executable by a traditional
compiler such as GCC or Intel compiler.

However, for users who are not familiar with the ROSE compiler,
it’s not easy to customize the framework because of the complexity
of ROSE. ROSE has more than two millions lines of code, includ-
ing tests, built-in projects and tutorial examples. Creating a new
transformation module could involve multiple functions, which are
located in different files that far away from each other. Like any
other compiler frameworks, ROSE compiler exposes its own API
functions for developers to traverse, analyze, andmodify its abstract
syntax tree. Users not only need to learn the general knowledge
of compilers but also have to understand how ROSE API functions
work.

2.4 OpenMP
In HPC, OpenMP is the de-facto portable programming interface
for exploiting node-level parallelism [13]. OpenMP uses C/C++ di-
rectives and Fortran comments to annotate base language programs
written in C/C++ and Fortran, respectively. These annotations ex-
press additional semantics related to parallelism, worksharing, syn-
chronization, tasking, and so on. A compiler supporting OpenMP
can recognize OpenMP annotations and transform the annotated
input code into multi-threaded code calling some OpenMP runtime
functions.

There are multiple compilers implementing OpenMP, such as
GCC[4], Intel[5], Cray[12], IBM XL[7], Clang/LLVM and ROSE[20].
Most of the parallel constructs in OpenMP are realized through
compiler directives. This allows a serial program to be very easily
converted into a parallel one by just adding the necessary pre-
processor directives.

Figure. 1 is an OpenMP program to calculate PI in parallel. User
inserted an OpenMP parallel for directive at line 14-15 right
above the loop (Fig. 1a). An OpenMP compiler transforms (or low-
ers) the program into multi-threaded code with calls to runtime
library functions (Fig. 1b). In the lowered code, at line 11-23 the loop
block is outlined as a function containing the original statements
in the loop. At line 15, a runtime function call is used to split loop
iterations among several threads. At line 5 the main function passes

Volume 11, Issue 1 Journal of Computational Science Education

54 ISSN 2153-4136 January 2020

1 #include <omp.h>
2 #include <stdio.h>
3
4 int num_steps = 10000;
5
6 int main() {
7 double x = 0;
8 double sum = 0.0;
9 double pi;
10 int i;
11 double step = 1.0/(double) num_steps;
12
13 // Run the code in parallel
14 #pragma omp parallel for private(i,x) \
15 reduction(+:sum) schedule(static)
16 for (i=0; i<num_steps; i=i+1) {
17 x = (i+0.5)*step;
18 sum = sum + 4.0/(1.0+x*x);
19 }
20
21 pi=step*sum;
22 printf("%f\n", pi);
23 }

(a) OpenMP program to calculate PI

1 ... // omitted headers and a data structure declaration storing variable addresses
2 static void OUT__1__2189__(void *__out_argv);
3 int main(int argc, char **argv) {
4 ... // omitted variable declarations
5 XOMP_parallel_start(OUT__1__2189__,&__out_argv1__2189__,1,0,"demo.c",10);
6 XOMP_parallel_end("demo.c",15);
7 pi = step * sum;
8 printf("%f\n",pi);
9 XOMP_terminate(status);
10 }
11 static void OUT__1__2189__(void *__out_argv) {
12 ... // omitted variable declarations
13 double *sum = (double *)(((struct OUT__1__2189___data *)__out_argv) -> sum_p);
14 double *step = (double *)(((struct OUT__1__2189___data *)__out_argv) -> step_p);
15 XOMP_loop_default(0,num_steps - 1,1,&p_lower_,&p_upper_);
16 for (p_index_ = p_lower_; p_index_ <= p_upper_; p_index_ = p_index_ + 1) {
17 _p_x = (p_index_ + 0.5) * *step;
18 _p_sum = _p_sum + 4.0 / (1.0 + _p_x * _p_x);
19 }
20 XOMP_atomic_start();
21 *sum = *sum + _p_sum;
22 XOMP_atomic_end(); XOMP_barrier();
23 }

(b) Transformed (or Lowered) code

Figure 1: PI calculation using OpenMP and its corresponding multi-threaded code generated by ROSE

the outlined function’s pointer to another runtime function which
will spawn multiple threads to execute the outlined function.

The initial OpenMP standard in 1997 only specified a handful of
directives. Since then, substantial amount of new constructs have
been introduced and most existing APIs have been enhanced in
each revision [14]. The latest version of OpenMP 5.0, released in
2018, has more than 60 directives. Compiler support thus requires
more efforts than before [19]. A full compiler implementation of the
latest OpenMP standard for both C/C++ and Fortran would involve
a large amount of development efforts spanning multiple years.
Furthermore, more and more researchers and developers are inter-
ested in designing various extensions to OpenMP in order to tame
the increasing complexity of heterogeneous node designs in high
performance computing. Such extensions could be used to enhance

the expressiveness, performance or productivity of OpenMP. Sup-
port for those extensions requires significant amount of compiler
development.

3 CHALLENGES AND SOLUTIONS
Table 1 summarizes the main pain points for compiler training.
For example, one of the first problems for developers is getting
hands on a machine which is suitable for compiler development.
Getting access to a supercomputing cluster could be a challenge
and a potential deterrent for many. The second, and the most frus-
trating challenge for beginners is making sure that all the software
packages necessary for developing a compiler are met on the said
machine. Sometimes user might not have suitable access to install
certain dependencies. Or sometimes the dependencies are just too
complex to resolve on a particular machines. One solution to these

Pain Points Description Proposed Solution

Accessibility Paperwork to get accounts on suitable machines Online sandbox terminal open to anyone

Installation Many software packages are needed Docker images

Effectiveness Traditional text tutorials are not effective Learning by doing, testing, certification

Content No single person/group knows all details of OpenMP
compiler development

Self-made tutorials + crowd-sourcing to accept external
contributions

Design trade-offs One compiler cannot demonstrate all options Hosting tutorials for multiple compilers

Costs Hosting websites with containers costs money Open-source, self-deployable framework

Security Online websites have inherent risks Containers + Cloud machines
Table 1: Pain points and solutions for training OpenMP compiler developers

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 55

two problems is to provide a free online sandbox terminal which
will already have an environment setup for compiler development.

Based on our experiences, traditional text tutorials are not as
effective for compilers development, as hands-on tutorials. If a
framework is provided which gives its users an option to learn by
hand-on practice, freedom to dig deep and perform self experiments,
then such a framework will be most efficacious way of teaching
compilers.

Another problem of creating the content of compiler develop-
ment, especially for OpenMP, is that no one person or group knows
all the details of OpenMP implementations since they involve many
compilation and runtime stages including parsing, AST, transfor-
mation, as well as runtime support. No one implementation demon-
strate all the options of OpenMP. This generally results in incom-
plete or unproductive tutorials. Having an open source environment
where multiple users can submit tutorials for multiple compilers
can resolve such complications.

Finally hosting tutorials on website costs money. Having con-
tainers can result in larger disk space which means more expenses.
Having an open sourced, self-deployable framework can help users
host their tutorials for free.

FreeCompilerCamp.org is aimed to build a free and open cloud-
based training platform integrating the solutions mentioned above.
This platform aims to facilitate the training of researchers to quickly
develop compilers for OpenMP and help them learn the skills of
compiler development. We will elaborate the design and implemen-
tation of this platform in the next sections.

4 FREECOMPILERCAMP.ORG PLATFORM
FreeCompilerCamp.org is a learning system with several distinct
design principals:

• It aims to allow any developer, who is interested in understanding
the internal working of OpenMP compilers, to learn the necessary
skills for free.

• It provides a pre-configured compiler development environments
in an online sandbox, which eliminates the burden of beginners’
tedious and error-prone software installation processes.

• A live training website based on the system is set up, so a web
browser and an Internet connection are the only requirements
for anyone to get the training.

• The entire training system is open-source, so it can also be de-
ployed by anyone on a private server, workstation or even per-
sonal laptop.

• It enables anyone who has the relevant skills to contribute new
tutorials as well.

There are two components in the FreeCompilerCamp.org plat-
form (or FreeCC as an abbreviation) as displayed in Figure 2 – a
web-based framework with all tutorials and a Play-With-Compiler
(PWC) engine for the sandbox environment. The website provides a
browser-based interactive interface with two panels: the left panel
contains the training instructions in text, and the the right panel
connects with the PWC engine, which creates a live terminal sand-
box for real-time practice.

Figure 2: Two components of FreeComplierCamp.org

4.1 Tutorial Website
The tutorial website is created as the major interface of FreeCC.
It provides easy-to-understand document in multiple tutorials or-
ganized by categories. Users can choose any entry on demands or
learn in order.

4.2 Play-With-Compiler Engine
The Play-With-Compiler engine is based on Play-With-Docker
(PWD) [26], which is an online sandbox platform for visitors to
learn basics about container techniques using Docker [23]. Docker
uses OS-level virtualization to deliver software, libraries and con-
figuration files in packages called containers, which are isolated
from one another though there are defined channels to enable their
communication. Containers on a same machine shares a single
operating-system kernel and are thus more lightweight than virtual
machines.

Play-With-Docker uses a so-called Docker-in-Docker technique.
While the host service is running in an outer docker, the component
of this service runs in an isolated inner docker so that multiple
components won’t affect each other[16, 33]. In the case of PWD,
each user has their own sandbox and won’t get interrupted by
others’ activities. PWD uses Apline Linux, which is widely used in
docker images due to its lightweight and security.

4.3 Customization
We encountered several technical issues during the development
of FreeCompilerCamp.org and subsequently resolved them. Most
of these issues may not be new in web development, but our target
audience is mostly people with a HPC background, who may not
have a flair for web development. Also these issues are common and
will be faced by anyone who would like to deploy our framework.
Hence mentioning these issues here is vital.

4.3.1 Same-Origin Policy. The same-origin policy [29] re-
stricts resources loaded from one origin to interact with resources
from another origin. This prohibits training website and PWC to
be deployed on different servers. We had to apply Cross-Origin
Resource Sharing [32] mechanism that uses additional HTTP head-
ers to enable resources on PWC server to be accessed by training
website.

4.3.2 Port Conflict. Later to simplify management and lower
the cost, we decided to deploy both the training website and PWC

Volume 11, Issue 1 Journal of Computational Science Education

56 ISSN 2153-4136 January 2020

on the same server. This caused port conflict since they both use
port 80 by default. We set up an HTTP server using Apache and
non-default ports redirection to resolve this conflict.

4.3.3 Alpine Linux. The PWD sandbox had dockers built
from Alpine Linux, which was unfit for compiler training. Compil-
ers are sensitive to the host system environment. Alpine Linux is
not supported for the development of either ROSE or LLVM. There-
fore, we created new docker images based on Ubuntu for better
compatibility with both ROSE and LLVM. Ubuntu has a much wider
application support, hence if future even more compilers can be
added in the tutorial.

4.3.4 Security. The PWD sandbox by default gives users root
access inside the terminal. This is a security risk since a malicious
user may hack into web hosting directories where they are not sup-
posed to access. As a solution we create a user/group (freecc/freecc)
in our sandbox and let all process run in that user account instead
of root. This way we have more control over what access we want
to provide the users.

5 TUTORIAL DESIGN
Wehave created several initial tutorials to take advantage of FreeCom-
pilerCamp. The goal is to have a good mix of text and commands
for users to read and practice essential compiler skills.

5.1 Concepts
Tutorials of FreeCC are designed based on the principle of experi-
mental learning or learning-by-doing. Learning-by-doing was in-
troduced by John Dewey and it promotes the idea that students
should learn by actively interacting with environments[15]. Kolb
reviewed the major experimental learning models and created his
own comprehensive structural model[17]. He also explored the ap-
plication of experimental learning in higher education. Students not
only read static texts but also apply the theoretical knowledge into

practical cases. They learn the skills by solving problems, working
on small projects, and so on.

Under the guidance of this theory, FreeCC hosts the tutorials to
let users start from any point they like with a ready environment,
with the following major features:

• We make users practice as much as possible with detailed
instructions, by providing an easy-to-use sandbox for users
to test given code or conduct their own experiments.

• FreeCC covers different topics in compiler development, in-
cluding parsing, AST generation, OpenMP programming,
compiler extension, and so on.

• We split larger learning tasks into smaller ones to fit each
tutorial into a 10-15 minutes session. The goal is to ensure
that we can grab sufficient attention from visitors.

• The tutorial not only lists the steps but also explain why
each step should be conducted and how it works.

• FreeCC supports clickable code snippets, which can be tested
in the sandbox right away by clicking.

• Video instructions are not included currently because more
students prefer static tutorials to video tutorials[24]. Using
static tutorial is easier to seek and pick different sections of
tutorial and learn at a comfortable pace for themselves.

5.2 Example Tutorials
FreeCompilerCamp.org provides a flexible learning experience based
on the concepts mentioned above. In particular, we split the train-
ing content into several tutorials with incremental complexity so
visitors can jump into the right levels they are comfortable with.
We start with simple ones to let visitors play with input and output
of compilers and get familiar with compilers’ internal representa-
tions for input programs. After that, we let them try out how to
traverse the tree representations and finally how to change the tree
for writing transformations.

5.2.1 Tutorial for Learning AST. Taking ROSE as an exam-
ple, we designed the following tutorials:

Figure 3: The tutorial for teaching AST modification

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 57

• AST/IR Generation. For a given input source file, an AST
will be generated and represented visually in a graph. This
tutorial shows how information is retrieved from source
code and organized internally inside ROSE for future use.

• AST/IR Traversal. After AST generation, this tutorial shows
how to traverse the tree to search for certain information of
interests, such as loops or functions.

• AST/IR Modification. This tutorial demonstrates the method
to add function call nodes into AST. Unparsing the AST will
result in an output source file with the inserted function
calls.

For example, the AST modification tutorial teaches users how to
insert a functional call node into AST and check the updated AST
by looking into the corresponding unparsed source code (Fig. 3).
User can click the corresponding code snippets to download those
files without leaving the page. All necessary source files can be
downloaded in the sandbox on demand. In the sample input, there’s
no function calls in the main function. The tutorial explains how
a function call subtree is constructed in the compiler and showed
all steps to create the subtree and attach it to the AST to complete
the task. The input and expected output are both provided in the
tutorial so that users can compare their results with the correct
solution.

5.2.2 Tutorial of Fixing a Compiler Bug. Developers often
learn many things by fixing real bugs. Figure 4 is an example tuto-
rial to fix a user-reported bug in ROSE. A PI calculation program
in OpenMP compiled by ROSE generated some wrong value. Upon
debugging it was found that during ROSE’s transformation of the
loop body of ‘omp parallel for’, the loop stride was miscalcu-
lated due to incorrect operand nodes were retrieved in the AST.
The tutorial first highlights the bug and describes the steps to re-
produce it. It then explains how compiler transformation and a
runtime library function collaborate to schedule loop iterations

among multiple threads. After that, it gives specific instructions on
which source files should be modified to fix the bug. At last, with
a few simple clicks, the modified ROSE is re-built to compile the
test program and correct execution output is generated. Thus in a
wholesome way this tutorial gives an example of a real OpenMP
implementation bug and explains how to reproduce, debug and
resolve it.

5.2.3 Tutorial for Writing a Clang Plugin. We take Clang
as another example to show our tutorials. This is a self-contained
tutorial about how to write a short plugin in Clang which modify
the source code as required.

Let’s say that we want to analyze a simple C file as shown in
Listing 1. Suppose we want to do some simple fixes on this C file.
We would like to change the name of func1 to add and func2 to
multiply. Then we would also like to change the function calls
of func1 and func2 to add and multiply respectively. This will
result in a code as shown in Listing 2. We can write a plugin which
will parse through the AST and make the above changes to the file.

Listing 1: Example input code
int func1(int x, int y) { return x+y; }
int func2(int x, int y) { return x*y; }
int saxpy(int a, int x, int y) {

return func1(func2(a,x),y);
}

Listing 2: Expected output code
int add(int x, int y) { return x+y; }
int multiply(int x, int y) { return x*y; }
int saxpy(int a, int x, int y) {

return add(multiply(a,x),y);
}

Figure 4: The tutorial for fixing an OpenMP translation bug in ROSE

Volume 11, Issue 1 Journal of Computational Science Education

58 ISSN 2153-4136 January 2020

Figure 5: The tutorial for writing a Clang Plugin

This tutorial explains in details the steps that need to be taken
to write this plugin. It starts with giving an overview of what is a
clang plugin. Then it goes to explain what this plugin intends to
do. Then it explains how to setup the source code structure of the
plugin and which files need to be written or modified in order to
write this plugin. The tutorial also provides an option to the user to
download a reference plugin or to write the plugin by themselves.
In the end it helps the user to build and test out the plugin. Figure
5 is a screenshot of this tutorial where the user tests the plugin.

5.3 Trial and Feedback
We have asked a group of students who major in Computer Science
but with only basic compiler knowledge to take a trial of FreeCC. To
assure the most accurate feedback, no pre-training ahead of the trial
was provided. Students picked one tutorial based on their interests
and completed it all by themselves without any other guidance.
Then they filled a survey form about their experiences of using
FreeCC. The feedback from the survey is summarized as follows:

• They feel comfortable with the length of each tutorial with
10-15 minutes.

• All steps of tutorial are completed without any issue.
• Students prefer to use clickable code snippets rather than
type they manually.

• Providing a choice from multiple code editors will be helpful.
• Additional video instructions are not needed.
• The sandbox and clickable code snippets attracted the most
attention. They make FreeCC unique comparing to conven-
tional tutorials.

• Some students tried to conduct their own experiments in
PWC as we expected.

• The overall appearance of FreeCC could be improved.
• They want to retrieve files from the sandbox (ssh or git might
help).

• Support for X11 forwarding might be needed to display
graphics.

• The tutorials can use some links to external courses for fun-
damentals about OpenMP and compilers.

• GPU support is needed for extending tutorials running on
GPU.

Based on the feedback, we conclude that the current design of
FreeCC tutorial is a very good start point. All testers are satisfied
with the features of FreeCC. The sandbox, PWC, is highly rated
since students don’t need to configure any complicated environ-
ment but a modern browser on any system. Criticism mostly came
from the website appearance, customization and cloud-machine
resources for GPUs, which can be addressed in the future.

6 RELATEDWORK
Existing Compiler Tutorials. Both ROSE [9] and Clang [1] already

have abundant documentation on their official websites, including
user guides, tutorials, and Doxygen generated API webpages, etc.
There is also a ROSE wikibook which is open for anyone to con-
tribute. Clang’s official page provides documentation ranging from
how to obtain and build clang, to how to write plugins and create
tools, etc. Along with that there are several free and open source
tutorial blogs which are available for Clang. OpenMP’s official page
provides links [8] to several open tutorials available on the internet.
However, all the existing documentation is written in the tradi-
tional text format. It is still up to the readers to find a machine to
install and configuration the development environment. The entire
preparation phase may take hours to finish. Many learners simply
give up due to the tedious steps or the lack of access to a suitable
machine.

Online Education systems. There is a large amount of online
learning systems [21], including Khan Academy [31], Coursera [2],
edX [3] and so on. These learning systems mostly are aimed for

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 59

general education and training purposes. They are not specially tar-
geting compiler development. A closely related website is freeCode-
Camp [6], which is an online training platform for training web
developers. Play-with-Docker is an online sandbox for people to
learn docker. Our work builds on top of this framework with cus-
tomization for compiler training.

Although several cloud-based tools have been leveraged for com-
puter science education, there is a clear lack of such tools to teach
compiler development. Ngo et. al [25] use CloudLab, a national
experimentation platform for advanced computing research, to
teach cluster computing to students. Bisbal [11] provides an out-
line of what topics need to be taught to computational scientists
in a logical order to train them in open-source software. Shin et.
al. [30] developed a web-based MOOC system related to computa-
tional science education which could hold various resources and
efficient programming practices. Many such tools and resources
are available across several domains of computation, but compiler
development is still devoid of such online tools.

7 CONCLUSION AND FUTUREWORK
In this paper, we have introduced an ongoing effort, FreeCompiler-
Camp.org, a free and open online learning platform aimed to train
researchers to quickly develop OpenMP compilers. FreeCompil-
erCamp.org is built on the Play-with-Docker platform to relieve
learners’ burden of finding suitable machines and installing soft-
ware. The tutorials of FreeCompilerCamp are entirely web-based
with both text content and a live embedded sandbox terminal in
which learners can immediately practice compiler development
skills. Instructors or students can customize this platform easily
and deploy it on any local server, workstation or even personal
laptop.

In the future, wewill includemore tutorials about how to develop
OpenMP compilers for HPC. We will also design online examina-
tions to help learners evaluate the effectiveness of their learning
process.Wewelcome anyone to try out our system, give us feedback,
contribute new training courses, or enhance the training platform
to make it an effective learning resource for the HPC community.

ACKNOWLEDGEMENT
This work was performed under the auspices of the U.S. Depart-
ment of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344, and partially supported by the U.S.
Dept. of Energy, Office of Science, ASCR SC-21), under contract DE-
AC02-06CH11357. IM Release Number: LLNL-CONF-791339. This
material is also based upon work supported by the National Science
Foundation under Grant No. 1833332 and 1652732. This research
was also supported by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration.

REFERENCES
[1] 2019. Clang Documentation. Retrieved Sep 26, 2019 from https://clang.llvm.org/

docs/
[2] 2019. Coursera. Retrieved Sep 26, 2019 from https://www.coursera.org/
[3] 2019. edX. Retrieved Sep 26, 2019 from https://www.edx.org/
[4] 2019. GCC Support for the OpenMP language. Retrieved Jul 22, 2019 from

https://gcc.gnu.org/wiki/openmp

[5] 2019. Intel C++ Compiler Code Samples. Retrieved Jul 22, 2019 from https:
//software.intel.com/en-us/code-samples/intel-c-compiler

[6] 2019. Learn to codewith free online courses, programming projects, and interview
preparation for developer jobs. Retrieved Sep 26, 2019 from https://www.
freecodecamp.org/

[7] 2019. OpenMP support in IBM XL compilers. Retrieved Jul 22, 2019 from
https://www.ibm.com/developerworks/library/l-openmp-support/index.html

[8] 2019. OpenMP Tutorials & Articles. Retrieved Sep 26, 2019 from https://www.
openmp.org/resources/tutorials-articles/

[9] 2019. Rose Documentation. Retrieved Sep 26, 2019 from http://rosecompiler.
org/ROSE_HTML_Reference/index.html

[10] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. 1986. Compilers, principles,
techniques. Addison wesley 7, 8 (1986), 9.

[11] Prentice Bisbal. 2019. Training Computational Scientists to Build and Package
Open-Source Software. Journal of Computational Science Education 10, 1 (Jan.
2019), 74–80. https://doi.org/10.22369/issn.2153-4136/10/1/12

[12] C Cray. 2019. C++ Reference Manual, S-2179 (8.7). Cray Research. Re-
trieved Jul 22, 2019 from https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c+
+-reference-manual/openmp-overview

[13] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An industry-standard API
for shared-memory programming. Computing in Science & Engineering 1 (1998),
46–55.

[14] Bronis R. de Supinski, Thomas R. W. Scogland, Alejandro Duran, Michael Klemm,
Sergi Mateo Bellido, Stephen L. Olivier, Christian Terboven, and Timothy G.
Mattson. 2018. The Ongoing Evolution of OpenMP. Proc. IEEE 106, 11 (2018),
2004–2019.

[15] John Dewey. 1938. Experience and Education. Kappa Delta Pi.
[16] Tom Goethals, Dwight Kerkhove, Laurens Van Hoye, Merlijn Sebrechts, Filip

De Turck, and Bruno Volckaert. 2019. FUSE : a microservice approach to cross-
domain federation using docker containers. In Proceedings of the 9th International
Conference on Cloud Computing and Services Science. Scitepress, 90–99. http:
//dx.doi.org/10.5220/0007706000900099

[17] David A. Kolb. 2014. Experiential Learning: Experience as the source of learning
and development. Pearson FT Press.

[18] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and runtime
optimization. IEEE Computer Society, 75.

[19] Ilias Leontiadis and George Tzoumas. 2001. OpenMP C Parser.
[20] Chunhua Liao, Daniel J Quinlan, Thomas Panas, and Bronis R De Supinski.

2010. A ROSE-based OpenMP 3.0 research compiler supporting multiple runtime
libraries. In International Workshop on OpenMP. Springer, 15–28.

[21] Tharindu Rekha Liyanagunawardena, Andrew Alexandar Adams, and
Shirley Ann Williams. 2013. MOOCs: A systematic study of the published liter-
ature 2008-2012. The International Review of Research in Open and Distributed
Learning 14, 3 (2013), 202–227.

[22] LLVM. 2019. Projects Built with LLVM. Retrieved Aug 31, 2019 from https:
//llvm.org/ProjectsWithLLVM/

[23] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal 2014, 239 (2014), 2.

[24] Lori S. Mestre. 2012. Student preference for tutorial design: a usability study.
Reference Services Review 40, 2 (2012), 258–276.

[25] Linh B. Ngo and Jeff Denton. 2019. Using CloudLab as a Scalable Platform for
Teaching Cluster Computing. Journal of Computational Science Education 10, 1
(Jan. 2019), 100–106. https://doi.org/10.22369/issn.2153-4136/10/1/17

[26] Marcos Nils and Jonathan Leibiusky. 2019. Play with Docker. Retrieved Jun 18,
2019 from https://training.play-with-docker.com

[27] Matt Pharr and William R Mark. 2012. ispc: A SPMD compiler for high-
performance CPU programming. In 2012 Innovative Parallel Computing (InPar).
IEEE, 1–13.

[28] Dan Quinlan and Chunhua Liao. 2011. The ROSE source-to-source compiler
infrastructure. In Cetus users and compiler infrastructure workshop, in conjunction
with PACT, Vol. 2011. Citeseer, 1.

[29] Jörg Schwenk, Marcus Niemietz, and Christian Mainka. 2017. Same-origin pol-
icy: Evaluation in modern browsers. In 26th {USENIX} Security Symposium
({USENIX} Security 17). 713–727.

[30] Junghun Shin, Jason Cholhoon Jang, Huiseung Chae, Gimyeong Rvu, Jaejun Yu,
and Jongsuk Ruth Lee. 2018. AWeb-BasedMOOCAuthoring and Learning System
for Computational Science Education. In 2018 IEEE International Conference on
Teaching, Assessment, and Learning for Engineering (TALE). IEEE, 1028–1032.

[31] Clive Thompson. 2011. How Khan Academy is changing the rules of education.
Wired Magazine 126 (2011), 1–5.

[32] Anne Van Kesteren and et al. 2014. Cross-origin resource sharing. W3C REC-
cors-20140116, latest version available at< https://www.w3.org/TR/cors/ (2014).

[33] Chanho Yong, Ga-Won Lee, and Huh Eui-Nam. 2018. Proposal of container-based
HPC structures and performance analysis. Journal of Information Processing
Systems 14, 6 (2018), 1398–1404.

Volume 11, Issue 1 Journal of Computational Science Education

60 ISSN 2153-4136 January 2020

https://clang.llvm.org/docs/
https://clang.llvm.org/docs/
https://www.coursera.org/
https://www.edx.org/
https://gcc.gnu.org/wiki/openmp
https://software.intel.com/en-us/code-samples/intel-c-compiler
https://software.intel.com/en-us/code-samples/intel-c-compiler
https://www.freecodecamp.org/
https://www.freecodecamp.org/
https://www.ibm.com/developerworks/library/l-openmp-support/index.html
https://www.openmp.org/resources/tutorials-articles/
https://www.openmp.org/resources/tutorials-articles/
http://rosecompiler.org/ROSE_HTML_Reference/index.html
http://rosecompiler.org/ROSE_HTML_Reference/index.html
https://doi.org/10.22369/issn.2153-4136/10/1/12
https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-manual/openmp-overview
https://pubs.cray.com/content/S-2179/8.7/cray-c-and-c++-reference-manual/openmp-overview
http://dx.doi.org/10.5220/0007706000900099
http://dx.doi.org/10.5220/0007706000900099
https://llvm.org/ProjectsWithLLVM/
https://llvm.org/ProjectsWithLLVM/
https://doi.org/10.22369/issn.2153-4136/10/1/17
https://training.play-with-docker.com

Self-paced Learning in HPC Lab Courses
Christian Terboven

Chair for High-Performance Computing
RWTH Aachen University, Germany

terboven@itc.rwth-aachen.de

Julian Miller
Chair for High-Performance Computing
RWTH Aachen University, Germany

miller@itc.rwth-aachen.de

Sandra Wienke
Chair for High-Performance Computing
RWTH Aachen University, Germany

wienke@itc.rwth-aachen.de

Matthias S. Müller
Chair for High-Performance Computing
RWTH Aachen University, Germany

mueller@itc.rwth-aachen.de

ABSTRACT
In a software lab, groups of students develop parallel code using
modern tools, document the results and present their solutions. The
learning objectives include the foundations of High-Performance
Computing (HPC), such as the understanding of modern architec-
tures, the development of parallel programming skills, and course-
specific topics, like accelerator programming or cluster set-up.

In order to execute the labs successfully with limited personnel
resources and still provide students with access to world-class HPC
architectures, we developed a set of concepts to motivate students
and to track their progress. This includes the learning status survey
and the developer diary, which are presented in this work. We
also report on our experiences with using innovative teaching
concepts to incentivize students to optimize their codes, such as
using competition among the groups. Our concepts enable us to
track the effectiveness of our labs and to steer them for increasing
sizes of diverse students.

We conclude that software labs are effective in adding practical
experiences to HPC education. Our approach to hand out open tasks
and to leave creative freedom in implementing the solutions enables
the students to self-pace their learning process and to vary their
investment of effort during the semester. Our effort and progress
tracking ensures the achieving of the extensive learning objectives
and enables our research on HPC programming productivity.

KEYWORDS
HPC education, software lab, parallel programming, programming
effort, training productivity

1 MOTIVATION
With the intent to make the dedication of our chair–the High-
Performance Computing (HPC)–popular among students, to attract
the best and highly-motivated students, and in general to engage
with students early on and to foster their skills, we have created a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/10

series of HPC software labs. These support a diverse group of stu-
dents in self-paced learning and are meant to accompany theoretical
education in the field of HPC with a practical component.

As a requirement to execute the labs successfully, we have to
be able to stem the course with very limited personnel resources.
Nevertheless, we want to give students the opportunity to work
on world-class HPC architectures. To support the students to reach
the given learning objectives, we developed a set of concepts to
motivate students and to track their progress. This also enabled our
research on HPC development productivity.

This paper presents our learning status survey and the developer
diary to track the student’s progress in achieving the learning
objectives, and our approach to enable the comparison of different
HPC cluster architectures or parallel programming models. We also
report on our experiences with using innovative teaching concepts
such as using a competition among students to motivate them to
optimize their codes for performance and show the opinions that
students have towards these concepts.

Thus, the paper is structured as follows: In Section 2, we de-
scribe the structure and content of three different kinds of software
labs that we have conducted at the HPC chair of RWTH Aachen
University. Section 3 summarizes the learning objectives of our
labs–classified into general and course-specific goals. To motivate
our students and increase the success rate, we have created var-
ious stimuli that are presented in Section 4. Section 5 covers the
methodology on how we track development effort and progress.
In Sections 6 and 7, we evaluate the software labs in terms of ob-
tained knowledge, training productivity and programming models,
as well as students’ feedback based teaching evaluations. Finally,
we conclude in Section 8.

2 HPC SOFTWARE LABS
Within the Computer Science curriculum at RWTH Aachen Uni-
versity, a software lab is a mandatory part of Bachelor studies and
expected to be completed in the 4th or 5th semester. It teaches
practical skills. As part of the actual work within a software lab,
students have to come up with a precise outline of the task at hand,
develop code using modern tools, document the results and prepare
a final presentation. Special emphasis is put on the experience to
work in a group, including the challenging tasks to self-organize the
development project throughout the semester. At RWTH, students
have the opportunity to select from 10 to 15 different software labs
that are offered each semester. These span a wide range of topics,

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 61

https://doi.org/10.22369/issn.2153-4136/11/1/10

covering the whole computer science domain at RWTH. While the
students are not expected to have prior knowledge in the particular
topic of a given software lab, they might have obtained knowl-
edge based on their individual selection of optional courses. This
diversity requires a flexible and self-paced approach towards HPC
education. The following provides our concepts and experiences of
the three different labs regularly carried out at our institute.

The first lab is called Parallel Programming Models for Applica-
tions in the Area of High-Performance Computation (PModels lab).
Each group has to parallelize a serial code given as skeleton of
a Conjugate Gradient (CG) solver for sparse matrices with three
different parallel programming models on different hardware archi-
tectures. In the past, these were OpenMP for CPUs, and CUDA and
OpenACC for GPUs. The different student groups start each with
another programming model so that (amongst others) the chance
to copy performance tuning steps from others is minimized. Before
starting the course, the students get a basic introduction to these
programming models. Then, they will work independently usually
starting with a performance analysis (using corresponding tools)
and investigating the hotspot of the application. It is key to effi-
ciently parallelize this hotspot, i.e. the sparse matrix-vector product,
to achieve good performance. For grading, basic parallel versions
with reasonable performance are sufficient. However, as part of the
competition, students are strongly encouraged to continue their
performance tuning and apply tools and performance engineer-
ing of their codes until the end of the semester. This also includes
thinking about (and implementing) performance models, new data
structures for sparse matrices, minimization of data transfers, or
other solutions to improve convergence of the solver. The final
results are evaluated with respect to overall solving time for a given
matrix.

The second lab is titled Parallel Programming for Many-Core ar-
chitectures with OpenMP (OpenMP lab) that is offered every summer
term. Each group has to solve three tasks and provide implementa-
tions with the parallel programming model OpenMP. In all tasks,
the students are encouraged to use performance and correctness
tools to analyze their intermediate and final solution. Task one is the
parallelization of a sparse-matrix-vector-multiplication. The identifi-
cation of the loop that has to be parallelized and the implementation
of a first-parallel version is rather simple, but the main challenge is
to achieve a load balance among the participating threads since the
non-zero entries are irregularly distributed among the matrix. Thus,
the students have to identify that the number of nonzero elements
has to be the same for each thread, not the number of rows in the
matrix. Further improvements of the execution performance have
to be achieved by enabling SIMD vectorization and aligned alloca-
tion of the data. Task two is a merge-sort code, for which tasking
has to be employed due to the recursive nature of the algorithm.
Again, a first-parallel version can be implemented with little effort,
but the challenge is to find a cut-off strategy to limit the overhead
induced by the recursion. Both tasks have to be implemented for a
many-core architecture with two different kinds of memory, namely
regular DDR memory and high-bandwidth memory, and the stu-
dents have to decide where the data elements have to be placed.
Furthermore, both kinds of memory exhibit NUMA characteristics
that have to be respected appropriately. In task three, a k-means
code has to be ported to an accelerator (GPU) architecture. In this

task, the effort to implement an initial-parallel version is higher,
because the offloading requires more programming work and is
more error-prone than the constructs that have to be used in the
first two tasks. The key performance optimization challenge is to
minimize the data transfer between host and GPU. Furthermore, the
students have to understand which type of kernel and data volumes
are profitable when offloaded to a GPU and deliver a performance
improvement over the parallel execution on the host. In summary,
the solution of the three tasks teaches students the key skills to
program for contemporary HPC architectures and to perform per-
formance analysis and optimization on these architectures.

The third lab is titled HPC Cluster Challenge (Cluster lab) and is
offered every winter term. Each group receives a box of hardware
with the task to construct a cluster from its contents. Afterwards,
they have to parallelize and optimizing a Jacobian solver code aim-
ing towards fully utilizing their respective cluster. The four sets of
hardware for the four different groups are very different, so that
the groups’ experiences can be compared at the end of the soft-
ware lab. All groups receive the same network equipment, which
is pre-configured to allow connections to the university network
and, thus, enabling remote work. We provide an overview lecture
about what constitutes a cluster and provide general hints (not step-
by-step instructions) on how to configure the network, a shared
filesystem, etc. The first group receives a set of Intel-based desk-
top PCs with NVIDIA GPU cards. In consequence, the code has
to exploit message-passing, multi-core and many-core parallelism.
Although this is the most standard hardware, we found the groups
are challenged to choose from the different configuration options
and descriptions found online. The second group receives a set of
NVIDIA Jetson boards, and again message-passing, multi-core, and
many-core parallelism has to be exploited and there are different
possible software configurations. The third group receives a set of
Huawei Kirin boards. These are limited to message-passing and
multi-core parallelism because the programming options for the
so-called AI engine is not well-documented. The fourth group re-
ceives a set of 64-bit Banana Pi board, and again these are limited
to message-passing and multi-core parallelism, this time because
of limited capabilities of the graphics processor. In summary, the
hardware ranges from low-power ARM-based SoCs to desktops
equipped with GPUs. In all cases, the hybrid parallelization has to
employ message-passing between the nodes, threading with each
node and partly offloading to exploit accelerator units. The results
are compared with respect to effort and price-performance.

Table 1 provides an overview of the three labs discussed in this
work with the number of participating students, the group size and
their average semester. It is noteworthy that we have improved
our material and methodology (cf. Section 5) over time by taking
feedback and new insights into account. To this end, we (still)
used manual developer diaries in summer 2015 instead of the more
advanced electronic approach introduced in Section 5. Furthermore,
we focused on oral attestations and final grades to evaluate the
students’ gained knowledge in summer 2015. In later semesters, we
added knowledge surveys (cf. Section 5) to extend and improve this
concept.

Volume 11, Issue 1 Journal of Computational Science Education

62 ISSN 2153-4136 January 2020

Table 1: Overviewof the three software labswith thenumber
of participating students, the group size and their average
semester.

Term Lab # Students # Groups Semester

Summer 2015 PModels 14 7 4.5
Summer 2016 PModels 12 6 4.1
Summer 2017 OpenMP 18 6 5.4
Winter 2017 Cluster 15 4 5.5
Summer 2018 OpenMP 17 5 4.4
Winter 2018 Cluster 15 4 6.4
Summer 2019 OpenMP 16 4 4.8

3 LEARNING OBJECTIVES
The learning objectives of our labs can be classified into a gen-
eral and a course-specific set of goals. The generic foundation of
our HPC education lies in a thorough understanding of modern
multi- and many-core processor architectures including CPUs (with
various instruction set architectures) and accelerators. This foun-
dation is paired with theoretical knowledge including parallelism,
scalability and performance modeling to form analytical and assess-
ment skills for a wide range of hardware architectures. We build
upon this foundation by teaching software engineering skills and
best practices geared towards developing parallel software. These
include generic skills such as software requirements and design,
documentation, version control and development diaries (cf. Sec-
tion 5) as well as more specific tasks such as the correctness of
parallel programs, debugging and performance analysis. Further-
more, we foster self-organization and collaboration through team
work. Presentations of the results teach the students the visualiza-
tion and description of software solutions, performance results and
algorithms.

After completing the PModels lab, the students have a general
understanding of shared-memory and GPU programming using
different parallel programming models, i.e., OpenMP, CUDA and
OpenACC. They know about methodologies to leverage the avail-
able parallelism and can clearly identify differences between low-
level and high-level programming approaches. Moreover, students
have an idea how to treat sparsity and how to apply optimization
techniques to typical numerical solver such as the CG.

The goals of the OpenMP lab are similar: The students have a
broad understanding of shared-memory and accelerator program-
ming with OpenMP and its various techniques to map parallelism
to hardware such as the concepts fork-join, tasking and accelerator
offloading. Furthermore, the students are able to make profound
decisions on how to parallelize scientific tasks for specific hardware
architectures and optimize its hardware utilization.

The HPCCluster Challenge lab focuses on a broad understanding
of HPC clusters including the structure of clusters, networks, shared
storage and the cluster management. A key goal is the understand-
ing and analysis of power demands and energy efficiency of clusters.
On the software side, the objective is to port and parallelize scien-
tific tasks to a target cluster and the design and implementation of

the task with suitable programming models (mainly OpenMP, MPI,
CUDA-C/C++, OpenCL).

4 STIMULI
We use various stimuli in our labs to increase the success rate
of the learning objectives while fostering creative solutions. We
found that some of the tasks are especially challenging to derive
from the objectives without providing a step-by-step guide which
would hinder self-pacing, creativity and planning aspects. Thus,
we define generic tasks based on the expected outcome such as
‘implementing, parallelizing and optimizing a specific algorithm for
a target architecture’ and combine these with stimuli to increase
the achievement of the learning objectives while fostering creative
solutions.

The main stimulus we use is competition through group work in
which prices (HPC-related books) are awarded to the team which
achieves the fastest solution for all three tasks of the OpenMP lab,
or all three parallel CG code versions in the PModels lab. As was
outlined above, each lab partitions the students into three to five
groups. Each group has to solve the same tasks in the same order,
but the competition successfully ensures that solutions are not
freely exchanged between the groups. In all three software labs,
the solution of a task results in a parallel program for which in
the execution on the target architecture the time can be measured.
Each tasks offers a certain degree of freedom in the solution and
the execution parameters so that the performance results differ
between the groups. The winning group is determined via the
formula-1 system: for each task, the fastest solution is awarded 25
points, the second fastest is 18 points, then 15 and 12 points. This
ensures a fair and thrilling competition even in the presence of one
group delivering a much better or worse solution than the rest in
one particular task. In no instance of the software labs we have
observed a single group clearly dominating the competition.

Figure 1 represents a typical result of the competition. It shows
the result of all three tasks from the competition in summer term
2019. For each of the four groups, the resulting runtime of 23 repeti-
tions is plotted. All four groups have delivered a working solution,
applied the correct techniques to achieve reproducible performance
with little variation, and achieved results in the same performance
class. The third group won the competition since they achieved the
highest throughput for task 1, the second-lowest runtime for task 2
and the lowest runtime for task 3.

Furthermore, we award creative solutions through presentation
time during the oral attestations and the final presentations with all
students. In order to expose the work of the HPC Cluster Challenge
software lab to the IT Center, which also operates national HPC
infrastructure, we selected a public and frequently visited space
in between two building parts for the setup the clusters. In conse-
quence, the clusters are on public displays and interested visitors
can see the systems in operation, include power measurements,
and the students at work. While this is certainly not comparable to
the public display of the Cluster Challenge activities at ISC or SC
conferences, the students reported that they like that atmosphere
after a certain time of getting used to it.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 63

Large Problem Size

1 2 3 4

12000

16000

20000

Group

P
er

fo
rm

an
ce

 (
M

flo
p/

s)

95% CIs for the Mean Performance over 23 Executions of Task spmxv

(a) Task 1

Large Problem Size

1 2 3 4
0.25

0.50

0.75

1.00

1.25

Group

R
un

tim
e

 (
s)

95% CIs for the Mean Runtime over 23 Executions of Task merge-sort

(b) Task 2

Large Problem Size

1 2 3 4

0.500

0.525

0.550

0.575

0.600

Group

R
un

tim
e

 (
s)

95% CIs for the Mean Runtime over 23 Executions of Task kmeans

(c) Task 3

Figure 1: Competition results of the OpenMP lab in summer 2019.

5 EFFORT AND PROGRESS TRACKING
One of our main learning objectives is the ability to document and
present software projects in an especially performance-oriented
context. These goals are coupled with our own motivation of inves-
tigating the progress of the students and the effectiveness of our
labs. Therefore, we established a thorough data collection method-
ology which is used throughout the labs. While we do not grade
the quality of said data, we regularly collect the data and provide
students with feedback on how to improve their documentation
skills.

We use the collected data to steer the lab for increasing sizes
of divers groups of students as well as to develop and assess inno-
vations in teaching techniques. The main output of our teaching
curses is knowledge obtained as measured by the degree of achieved
learning objectives while the input (cost) is the effort invested by
the students in completing the course. Thus, the overall training
productivity TP is quantified by Degree of achieved learning objectives

Training effort .
Furthermore, the data supports research into programming pro-
ductivity on a increasingly heterogeneous set of computing hard-
ware and programming models. The main output is hereby the
achieved performance of the implemented parallel software: pro-
gramming productivity PP =

Achieved performance
Training effort . For better com-

parison among a cohort, we typically normalize the obtained data.
The following provides our methodology for collecting the three

main productivity metrics knowledge, performance and training
effort. The learning objectives include propositional knowledge
obtained through preparational and supplemental materials such
as programming courses, lectures1, literature, best practice guides,
etc. and procedural knowledge obtained through completion of
design, implementation, programming etc. tasks. We use knowl-
edge surveys (KS) [4, 7] where students rate their confidence in
solving tasks on a three-point scale to quantify the changes in
knowledge. This allows for a much higher assessment through-
put than in traditional tests and KS provide a comprehensive self-
assessment to the students. We assess our set of learning objectives
with 40–50 tasks (approx. 30 minutes to answer) which has shown
to be preferable regarding the overhead for the students and their
participation rates. The KS are combined with oral attestation to
capture additional learning objectives such as team-oriented skills,

1See the list of courses and lectures of the HPC group of the RWTH Aachen University:
https://www.i12.rwth-aachen.de

software-engineering methods and decision processes. The result-
ing confidence ratings of the KS are combined with average grades
from all oral attestations (typically 2–3 over the course of the lab).

The performance of the software is typically captured by run-
time or throughput on a specific system. Hereby, the system con-
sists of pre-defined types of HPC cluster nodes for the OpenMP
and PModels lab or the self-built cluster for the Cluster lab. The
students may use all available resources of the system towards
their performance goals. To increase the reliability of the collected
performance data, we use multiple benchmark repetitions coupled
with mean and standard deviations. To simplify the data collec-
tion, we provided run scripts, makefile targets and data collection
spreadsheets.

The cost of the training is the effort in person-hours which con-
sists mainly of the time attending the lab and the development ef-
fort for completing the task(s). While the attendance time is clearly
defined, lots of the development is carried out outside the lab’s
presence hours. Thus, we use development diaries to record the
quantity and type of effort carried out by the students. To maxi-
mize the accuracy and comparability of the data while minimizing
the intrusion of the data collection, we develope the electronic de-
velopment diary EffortLog2 [6]. It uses strict input forms, precise
questionnaires and fixed intervals (60-minutes has proven well)
to achieve highly accurate data. Large efforts were recently put
into increasing the usability of the tool which include a simplified
layout, auto-completion, notifications to further improve data qual-
ity and summaries of the current project including performance
results. Moreover, experience has shown that an operating system
agnostic implementation with a minimal set of dependencies is
key for the usability of the tool. The recorded effort data is related
to the achieved performance by reminding the students to collect
performance data and append it to the development activities. The
resulting data contains the development of the achieved perfor-
mance over the development effort as shown in the evaluation in
Chapter 6. The main challenge of the tool is that it is currently
not well-integrated into the typical development tool chain of the
students. Harrell et al. [1] target this challenge by integrating data
collection into git hooks. While this method promises high adaption
through commonly used tooling, the accuracy of this method needs
to be investigated further especially for student setups where we
have observed that version control is often used sparsely and with
low commit frequency. We intend to investigate the integration of
2The sources are publicly available on Github: https://github.com/RWTH-HPC/effort-
log

Volume 11, Issue 1 Journal of Computational Science Education

64 ISSN 2153-4136 January 2020

Table 2: Overview of the collected knowledge data during
the OpenMP lab in summer 2018 and 2019. A KS rating of 3
means the ability to answer the question for grading pur-
poses and 1 means not answerable by the trainee.

2018 2019

pre-KS post-KS pre-KS post-KS

Mean 1.97 ± 0.22 2.40 ± 0.30 1.32 ± 0.27 2.35 ± 0.33
Median 1.95 2.40 1.20 2.40

such tools or the combination of both kind of tools into a future
version of our labs.

6 EVALUATION OF THE LABS
This section provides an overview of the results obtained with the
data collected during the labs including investigations into the ob-
tained knowledge and training productivity, as well as, differences
in parallel programming models. The obtained knowledge is mainly
captured by knowledge surveys carried out before and after the lab
as described in Section 5. The participation is voluntarily and does
not contribute to the grading of the labs. This protects the privacy
of the students but often leads to incomplete data sets. Therefore,
only the meaningful data is discussed which was obtained from
the OpenMP labs in summer 2018 and 2019. We collected 19 valid
surveys (6 people finished both pre- and post-KS) in summer 2018
and 12 valid surveys (4 people finished both pre- and post-KS) in
summer 2019. The observed mean, median and standard deviations
are provided in Table 2. The labs show to be very effective in achiev-
ing the learning objectives by a large increase in the confidence
rating of the post-KS over the pre-KS for both labs. To investigate
statistical significance of this data, we applied one-sided Wilcoxon
signed rank tests to the collected data of people completing both
pre- and post-KS. It shows statistically significant increases in the
knowledge of the students with p-values of 0.00014 and 0.01046 for
the OpenMP labs 2018 and 2019 respectively.

The collected productivity data of the students opens up wide
areas of research into HPC programming productivity such as the
estimation of software costs of HPC projects. While most of this re-
search is ongoing and will require more data, some early results can
be found in [2, 3, 6]. Figure 2 provides an example for the analyses
carried out on the productivity data collected during the OpenMP
lab in summer 2019. It shows the normalized performance (in rela-
tion to the best-effort solution) over the normalized development
effort (in relation to each group’s total effort). The anonymized data
is provided by four groups of students for three tasks. It shows two
distinct developments of the performance over the effort: A linear
increase and a step-wise increase in performance. Linear increases
are typical for groups working on small, incremental changes or
only parts of the code which can lead to missed tuning opportuni-
ties. The collected data aids in identifying these groups early-on
and supporting them in identifying the main performance limiters.
Step-wise increases are often observed in groups who radically
change parts of their code, algorithm or their launch configuration.
A few of these changes (1–2 for these small projects) often lead to

0.0 0.2 0.4 0.6 0.8 1.0
Relative Development Effort

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Pe
rfo

rm
an

ce

Figure 2: Achieved performance over the development effort
of n = 12 solutions during the OpenMP lab.

OpenMP OpenACC CUDA
OpenMP 0.6812 0.0737
OpenACC 0.0737 0.0210
CUDA 0.0161 0.2598

runtime

effort

Figure 3: p-values of one-sidedWilcoxon rank sum test with
respect to students’ development effort (upper triangle) and
runtime (lower triangle) [5]. Significant differences (on a 5%
significance level) are marked in grey. Results are based on
(valid) data, i.e. 11 student teams, from the PModels labs.

large performance increases while most of the changes do not pro-
vide performance benefits. Our research focuses on modeling these
functions, the understanding of the triggers for a sharp change and
estimation methods.

To this end, it is important to also investigate different impact
factors on development time and runtime. For example, results from
the PModels labs show that the choice of the parallel programming
model may affect the productivity [5]. Figure 3 illustrates the signif-
icant differences between OpenMP, OpenACC and CUDA in terms
of development effort (upper triangle) and runtime (lower triangle).
It expresses corresponding p-values in the way that the row item is
significantly lower than the column item (on a 5 % significance level)
where results are based on the one-sided signedWilcoxon rank sum
method. We find that the effort to use OpenACC is significantly
lower than the one needed for CUDA programming. In contrast,
the runtime achieved when using CUDA is significantly lower than
with OpenACC. For the comparison of other programming models,
we cannot draw any conclusions with this data. Nevertheless, this
kind of evaluation of software lab data supports the hypothesis that
parallel programming models affect productivity results so that this
factor should be kept fixed for future investigations of other impact
factors.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 65

Table 3: Teaching evaluation results averaged over all our
software labs (except winter 2017 and summer 2019). BG =
necessary background knowledge available, SOL = able to
solve exercises alone or contribute to solutions in a group,
MOT = exercises motivate student to solve them. Results
given as percentage of students answering the questionwith
1 = strongly agree, ..., 5 = strongly disagree.

scale BG [%] SOL [%] MOT [%]

n 69 71 69

1 37.7 67.6 47.8
2 34.8 23.9 33.3
3 15.9 7.0 14.5
4 5.8 1.4 2.9
5 5.8 0 1.4

average 2.09 1.45 1.82

7 STUDENT FEEDBACK (BASED ON
TEACHING EVALUATIONS)

To investigate whether our teaching concepts appeal to the stu-
dents, we take students’ feedback into account. For that, we use
the results of the official teaching evaluations that RWTH Aachen
University implements for each course at the end of a semester.
These teaching evaluations consist of three main parts: statistical
information, questions on a Likert scale (mostly ranging from 1 =
strongly agree to 5 = strongly disagree), and free-form fields where
students have the chance to mention anything that they liked and
disliked about the course. Since the questions in all lab teaching
evaluations are (mostly) the same, we can easily average or aggre-
gate the results over all our software labs. The only exceptions are
the evaluations in winter 2017 and summer 2019 where some of
the questions did not appear. Thus, these questions have a reduced
population (cf. the corresponding values of n). During our software
labs, the students get a dedicated time slot to fill out the correspond-
ing questionnaires. Nevertheless, participation is voluntary so that
the number of responses n may differ for each question. For this
evaluation, we focus on questions that may reflect the effective-
ness of our teaching concepts (instead of presenting the complete
results).

In our seven labs, we supervised 107 students from which 103
took part in the teaching evaluation. These students are mostly,
i.e. 87 %, in their second or third year of the Bachelor program in
computer science. Furthermore, 72.5 % of the voting students, i.e.,
students who rated the question with one and two, denoted that
they have the necessary background knowledge to complete this
course where the average scoring is at 2.09 (cf. BG in Table 3). Thus,
we assume that the students’ feedback stems mainly from their
experiences gained throughout our software labs—instead to their
(missing) pre-knowledge.

First, we evaluate the overall concept of our software labs. Here,
the students have rated the PModels lab on average with 1.8 and
1.5 in summer 2015 and summer 2016, respectively. The OpenMP

Table 4: Teaching evaluation results aggregated aver all our
software labs. Answers to the questions what students par-
ticularly liked or disliked, respectively, about the lab (in
free-text form). Top three answers are presented if they have
more than one vote.

like dislike

topic # topic #

independent working/flexibility 11 unclear goal 14
concept of tasks 7 little instructions 11
competition 6

lab was scored on average with 1.4 in summer 2017, with 1.2 in
summer 2018, and 1.6 in summer 2019. The Cluster lab has been
rated with 1.7 in winter 2017 and 1.9 in winter 2018. For comparison,
we (only) have the average scores across all courses within the
computer science department at RWTH Aachen University (for
2016 and 2017) available. In summer 2016, this overall average was
at 1.8, in summer 2017 at 2.0, and, in winter 2017 at 1.9. To this end,
our corresponding software labs are better rated than the average.
Nevertheless, this interpretations should be taken with care since
the computer science average also includes (compulsory) lectures
that usually score worse than labs or seminars.

Getting more specific, we look at the feedback for our concept of
tasks. 81.2 % of the voting students state that the exercises motivate
them to solve the tasks. The corresponding question is rated with
an average score of 1.82—as given by MOT in Table 3. Moreover,
seven students particularly praise this concept in the free-form
comments of the questionnaire (cf. Table 4). The competition as part
of the exercises concept is explicitly mentioned positively six times.
Contrarily, the fourteen comments that the goals of the software
labs are not clearly given (cf. Table 4) is thought-provoking. Thus,
we are continuously improving our corresponding material and
goal statements without limiting the student’s creative freedom in
solving the tasks.

Finally, we investigate the concept of independent working and
self-paced learning. From the free-text comments in Table 4, we see
that it is received with mixed feelings. Eleven students particularly
mention that they like the independent working and the flexibility
that comes with self-paced learning. On the other hand, eleven
students state that they do not like working without detailed in-
structions and developing (performance tuning) steps themselves.
Assuming different learning types and the fact that students are not
very familiar with this way of working through other courses, we
still find these results a balanced relationship. This is especially true
considering that 91.5 % of the voting students rated that they were
(still) able to solve the exercises alone or contribute to solutions in a
group (cf. SOL in Table 3) with an extremely good average score of
1.45. Correspondingly, 94.4 % of the voting students find the degree
of difficulty appropriate (cf. Table 6).

Overall, students workmostly between one and five hours for the
software lab outside of the classroom sessions. Taking the respective
median from the different time intervals in Table 5, this comes to
an average of 4.1 hours. As comparison, this is more than double

Volume 11, Issue 1 Journal of Computational Science Education

66 ISSN 2153-4136 January 2020

Table 5: Teaching eval-
uation results averaged
over all our software
labs. Time for prepara-
tion and follow upwork
given as percentage of
students answering the
question (n = 99).

time [%]

< 1 hr 0
1 to 3 hrs 26.3
3 to 5 hrs 49.5
5 to 7 hrs 18.2
7 to 9 hrs 3.0
> 9 hrs 3.0

Table 6: Teaching evalu-
ation results averaged
over all our software
labs (except winter
2017 and summer 2019).
Degree of difficulty
reported, given as per-
centage of students
answering the question
(n = 71).

degree [%]

appropriate 94.4
too difficult 5.6
too easy 0

the time that students spend for exercises attached to regular HPC
lectures taking place in the same semesters as the labs. Since grading
does not require the best performing code version, these results
indicate that students make use of the provided flexibility and are
motivated to spend extra time for scoring well in the competition.

Given the students’ feedback from the official teaching evalu-
ations, we conclude to continue with our concept of self-paced
learning while improving our material, e.g., with respect to elabo-
rating on the goals of the software labs.

8 CONCLUSION
Software labs are effective in adding practical experiences to the
HPC education and in enabling access to and hands-on experiences
on world-class HPC systems. Our approach to hand out open tasks
and to leave creative freedom in implementing the solutions en-
ables the students to self-pace their learning process and to vary
their investment of effort during the semester. These conclusions
are also supported by students’ feedback given through teaching
evaluations. Our effort and progress tracking ensures the achieving
of the extensive learning objectives and enables our research on
HPC programming productivity.

REFERENCES
[1] Stephen Lien Harrell, Joy Kitson, Robert Bird, Simon John Pennycook, Jason Sewall,

Douglas Jacobsen, David Neill Asanza, Abaigail Hsu, Hector Carrillo Carrillo,
Hessoo Kim, et al. 2018. Effective performance portability. In 2018 IEEE/ACM
InternationalWorkshop on Performance, Portability and Productivity in HPC (P3HPC).
IEEE, 24–36.

[2] Julian Miller, Sandra Wienke, Michael Schlottke-Lakemper, Matthias Meinke, and
Matthias S Müller. 2018. Applicability of the software cost model COCOMO II to
HPC projects. International Journal of Computational Science and Engineering 17,
3 (2018), 283–296.

[3] Marco Nicolini, Julian Miller, Sandra Wienke, Michael Schlottke-Lakemper,
Matthias Meinke, and Matthias S Müller. 2016. Software cost analysis of GPU-
accelerated aeroacoustics simulations in C++ with OpenACC. In International
Conference on High Performance Computing. Springer, 524–543.

[4] Edward Nuhfer and Delores Knipp. 2003. 4: The knowledge survey: A tool for all
reasons. To improve the academy 21, 1 (2003), 59–78.

[5] Sandra Wienke. 2017. Productivity and Software Development Effort Estimation in
High-Performance Computing; 1. Edition. Dissertation. RWTH Aachen University,
Aachen. https://doi.org/10.18154/RWTH-2017-10649 Apprimus Verlag, Published
on the publication server of RWTH Aachen University 2018.

[6] Sandra Wienke, Julian Miller, Martin Schulz, and Matthias S Müller. 2016. Develop-
ment effort estimation in HPC. In SC’16: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis. IEEE, 107–118.
[7] Karl R Wirth and Dexter Perkins. 2005. Knowledge surveys: An indispensable

course design and assessment tool. Innovations in the Scholarship of Teaching and
Learning (2005), 1–12.

A ARTIFACT DESCRIPTION: SELF-PACED
LEARNING IN HPC LAB COURSES

A.1 Abstract
This paper does not contain or rely on any computational results.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 67

https://doi.org/10.18154/RWTH-2017-10649

Computational Mathematics, Science and Engineering
(CMSE): Establishing an Academic Department Dedicated

to Scientific Computation as a Discipline

Dirk Colbry
Michigan State

University
East Lansing, MI

colbrydi@msu.edu

Michael Murillo
Michigan State

University
East Lansing, MI

murillom@msu.edu

Adam Alessio
Michigan State

University
East Lansing, MI

aalessio@msu.edu

Andrew Christlieb
Michigan State

University
East Lansing, MI
christli@msu.edu

1. ABSTRACT
The Computational Mathematics, Science and Engineering
(CMSE) department is one of the newest units at Michigan State
University (MSU). Founded in 2015, CMSE recognizes
computation as the “triple junction” of algorithm development and
analysis, high performance computing, and applications to
scientific and engineering modeling and data science (as illustrated
in Figure 1). This approach is designed to engage with computation
as a new integrated discipline, rather than a series of decentralized,
isolated sub-specialties. In the four years since its inception, the
department has grown and flourished; however, the pathway was
sometimes arduous. This paper shares lessons learned during the
department’s development and the initiatives it has taken on to
support computational research and education across the university.
By sharing these lessons, we hope to encourage and support the
establishment of similar departments at other universities and grow
this integrated approach to scientific computation as a discipline.

Keywords
Computational science; academic department administration.

2. INTRODUCTION
Establishing an entirely new department is no trivial task. One
immediate hurdle is finances: the traditional university funding
model would require that existing departments give up a portion of
their budget in order to free up funds to create a new unit. At
Michigan State University (MSU), the concept of Computational
Mathematics, Science and Engineering (CMSE) was discussed at
length and many faculty and administrators could see the potential
for positive impact – but no one wanted to lose their existing
funding. As part of these discussions, many alternatives to creating
a new department were considered. For example, CMSE could
have developed as a new focus area within an existing department
(such as Computer Science & Engineering) or could have been the
central theme for a new cross-disciplinary center or institute within

the University’s research unit. These solutions do not provide the
same long-term foundation and commitment that results from the
formation of a new department, however.

Fortunately, in the early 2010s MSU announced its Global Impact
Initiative (GII) [2], which offered new resources to bring more than
100 additional faculty to the university to pursue solutions to
“Grand Challenges.” One of these grand challenges was the
continued advancement of computation in science, and the proposal
to create a new CMSE department was an obvious fit for the MSU
GII. Almost all faculty in the new department have joint
appointments with other units, which created opportunities to
leverage the GII funding to simultaneously create CMSE and grow
the faculty in programs across campus.

The idea of “jointness” has been ingrained into the culture of CMSE
from the beginning. The department is shared between the College
of Natural Science and the College of Engineering. Faculty wear
multiple “hats,” typically in CMSE and in another STEM (science,
technology, engineering, math) unit on campus. The department
was designed from the start to encourage faculty to speak from two
valued perspectives: the common language we are developing in
CMSE, and the traditional language of their STEM departments.

Figure 1: Triple Junction of algorithm development and

analysis, high performance computing, and applications to
scientific and engineering modeling and data science

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

© 2018 Journal of Computational Science Education
DOI: https://doi.org/10.22369/issn.2153-4136/11/1/11

Volume 11, Issue 1 Journal of Computational Science Education

68 ISSN 2153-4136 January 2020

The CMSE department is home to computational thinkers from
many fields and actively fosters discussion and collaboration across
disciplines. 10 existing MSU faculty transferred (part of) their
appointments into CMSE and the department conducted numerous
searches to bring in 25 new, external hires. These faculty members
have expertise in a range of science and engineering areas, as
illustrated in Figure 2, as well as a variety of experience. Of the 35
faculty members of CMSE in Summer 2019, 22 were Assistant
Professors, 3 were Associate Professors, 7 were Full Professors,
and 3 were Academic Specialists (faculty not on a tenure track). In
Fall 2019, 3 new hires are slated to join the faculty and the plan is
to grow CMSE to 50 faculty members over the next few years.

Figure 3: Figure 3: Growth rate of the CMSE community.

Measured by tracking faculty, staff, researchers
and full-time students within the department email list.

The rapid growth within CMSE (see Error! Reference source not
found.) has not always been easy. Early on, senior faculty were
burdened with abnormally high service requirements, in part
because the many junior faculty needed to focus on earning tenure.
The joint-appointment standard within CMSE meant that the
department had to overcome many bureaucratic hurdles to ensure
that tenure processes were aligned for faculty whose appointments

spanned multiple colleges and/or departments. The diverse
backgrounds of our faculty brought the benefit of different
perspectives, but also meant that we had to work hard to establish
effective communications across disciplines and research efforts.
Several years in, however, the department seems to have hit its
stride. While these problems have not gone away entirely, we have
strong leaders and effective plans in place to help ensure the
continued growth and success of the department and its academic
and research programs.

3. UNDERGRADUATE EDUCATION
At MSU, all STEM undergraduates are expected to take some
combination of common “gateway” courses (e.g., calculus,
chemistry, physics, biology). CMSE has developed two scientific
modeling courses: Introduction to Scientific Modeling (CMSE
201) and Tools for Scientific Modeling (CMSE 202). These courses
focus on learning to program in the context of solving scientific and
engineering problems and contribute to a parallel effort across
MSU to add “computational competency” to the “gateway”
learning goals for all STEM majors. Ideally, all STEM students will
learn basic programming concepts within their first two years at
MSU, which will enable instructors in higher level courses to use
programming as a tool to more effectively teach other STEM
concepts. For example, computational competency is now a
requirement for all Physics majors and is a prerequisite in courses
such as Linear Algebra (Math/CMSE 314), which uses real world
examples and computational methods to teach Linear Algebra

The CMSE 201/202 course use a Flipped Classroom style of
teaching that focuses on hands on learning inside of the classroom,
with accompanying lectures provided in videos watched outside of
class (see Figure 5). This course pedagogy is grounded in learning
sciences [1] and is growing rapidly (see Figure 5).

Students who are excited by what they learn in CMSE 201/202 now
have the option of earning an undergraduate minor in
Computational Modeling and Data Science. This minor is targeted
primarily at STEM students but is open to undergraduates from
across the university. This minor gives students a solid background
in programming and computational science through a 2-3 semester
introductory course sequence; additional exposure to a breadth of
methods in computational and data science, including a
disciplinary-specific computational course; and options for a
research experience or project-focused “capstone” course.

Figure 2: The new department is shared between two colleges and almost all faculty

have joint appointments between CMSE and another department.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 69

Starting in Fall of 2019, MSU is offering a new undergraduate
major in Data Science. This program is a collaboration between
multiple departments (CMSE, Statistics, Computer Science), and
MSU is working with other institutions to develop a common set of
competencies for data science programs [3], We are very cognizant
of the current hype surrounding data science and machine learning,
and the explosion of “data science” programs across higher
education. Unfortunately, the term data science is not well defined
and there is not yet a standard understanding of the content of a
“data science” degree. As part of its overarching mission to help
establish data science as a discipline, CMSE is working across
disciplines within MSU – and across institutions more broadly – to
help define the disciplinary standards for data science programs.

4. GRADUATE EDUCATION
In 2016, CMSE launched three program options for graduate
students: the Master’s of Science, the Doctor of Philosophy, and a
dual-major PhD program that allows students to combine CMSE
with another doctoral major at MSU. These graduate programs are
designed to help students develop broad skills for solving problems
through computational modeling, data exploration, and high-
performance computing techniques. Our graduate alumni will have
acquired a broad range of computational skills, as well as
substantial expertise in solving mathematical and statistical
problems using scientific methods.

In Fall 2019, CMSE included 43 PhD students; 2 dual enrollment
BS+MS students; approximately 25 dual-major PhD students; and
15 postdoctoral researchers. The CMSE graduate curriculum
features a core set of courses in mathematical, numerical and
computational methods: numerical linear algebra; numerical
differential equations; parallel computing; and the mathematical
foundations of data science. With this foundation, students may
choose additional coursework that is tailored to their research

interests; common examples include graduate courses in physics,
applied mathematics, engineering and/or computer science. In
addition to completing coursework, PhD students must pass
qualifying exams in the four areas covered by the core curriculum
and must write and defend a dissertation research plan for their
comprehensive exam. The PhD is awarded upon completion and
successful defense of their research dissertation.

The dual-major PhD option is administered by the MSU Graduate
School and is open to all doctoral students at the University [4].
Students matriculate in one primary major, and then work with
advisors to develop a cross-disciplinary program of coursework and
research spanning an additional major area of study. Individual
program plans are developed for each student pursuing a dual-
major PhD and are generally put into place within the first 12-18
months of graduate studies. Upon successful completion of the
individualized program, students earn a single Doctor of
Philosophy diploma that reflects both majors.

CMSE has established a dual-major PhD pathway that allows
students to pursue a substantial, novel, computationally-focused
research program in consultation with at least one advisor
(committee member) in CMSE; other advisors (committee
members) may be drawn from any appropriate unit on campus [5].
CMSE already has the most dual-major PhD students of any
department in the College of Engineering (the department’s
administrative home), and we anticipate that this interdisciplinary
PhD option will be an advantage in recruiting new graduate
students with novel research paths. For example, a typical dual-
major PhD student in CMSE might be developing algorithms that
are more computationally in-depth than is typical in their home
discipline. By creating a dual-major PhD program, these students
can craft a set of course and research requirements specific to their
area of interest and gain access to the faculty and university
resources to support their success.

Figure 4: Growth of 201/202 Enrollment by year as the CMSE department grows to serve the MSU STEM community

Volume 11, Issue 1 Journal of Computational Science Education

70 ISSN 2153-4136 January 2020

Beyond the foundational graduate courses, the CMSE curriculum
is designed to be nimble and allow faculty and students to explore
new topics and research challenges as they arise. For example, in
Fall 2019, the department offered nine special-topics courses on the
following topics:

• Optimization
• Mathematical reasoning
• Foundations of computational science and engineering
• Applied machine learning
• Programming foundations for bioinformatics
• Statistical analysis and visualization of biological data
• Gaps and errors in statistical data analysis
• Applied linear algebra
• Applied calculus for bioinformatics

To illustrate the utility of this special-topics model, consider a
specific example from Fall 2018, when several faculty jointly
offered a course entitled “Algorithms for next-generation
architectures.” Students explored several different types of general-
purpose graphical processing units (GPGPUs) and field-
programmable gate arrays (FPGAs) and the software technologies
required to use this hardware efficiently. The course encouraged
students to think carefully about how to choose and develop
algorithms that efficiently use a specific type of hardware to solve
their problems. This course, like most graduate and undergraduate
courses in CMSE, was taught in a “flipped” manner: students did
substantial reading and other preparation prior to class, then during
class they discussed these assignments, solved mathematical
problems and proofs, wrote software, and analyzed data (see Figure
5). This teaching method has been shown to be very effective in a
range of undergraduate STEM courses and has also been well
received in our graduate courses.

Figure 5: Example of flipped classroom, where students use

classroom time to solve real world problems in groups.

5. COMPUTATIONAL EDUCATION
In addition to establishing traditional undergraduate and graduate
programs, CMSE seeks to support the development of
computational competency more broadly. For example, the
department has developed two graduate certificate programs, one
in Computational Modeling and another in High Performance
Computing [6]. These stand-alone certificates are earned by

completing at least three courses (9 credits) from a list of approved
options. Working professionals may enroll as lifelong learners
(non-degree students) and pursue a certificate program to enhance
their skills, or graduate students in other MSU programs may
choose to complete a CMSE certificate in addition to their Master’s
or Doctoral program requirements. In the longer term, we hope to
create a pathway that would allow non-traditional students to earn
a Master’s degree by completing several standalone certificates
over time along with a culminating capstone experience. This
could provide additional flexibility for working professionals who
are not interested or able to pursue a full-time graduate program.

CMSE has also created a Bioinformatics Program to offer short,
modular, introductory courses focusing on the development of
basic skills in computation and bioinformatics. This program
addresses the needs of MSU graduate students in biological
sciences, who often seek additional training in how to work with
the very large data sets now common in the life sciences. These
short courses are designed to help students gain skills that can be
immediately applied to their coursework and research, as well as
helping to build computational competency and skills that can be
leveraged if the students wish to pursue more advanced CMSE
coursework.

6. CONCLUDING DISCUSSION
CMSE is uniquely positioned at the “triple junction” of algorithm
development and analysis, high performance computing, and
applications to scientific and engineering modeling and data
science. In the four years since its inception the department has
grown and flourished, establishing both traditional degree
programs and non-traditional options to build computational
competency in learners from across STEM. As the department
continues to mature, we hope to support the formation of similar
units at other institutions and to help shape the emerging discipline
of scientific computation.

7. ACKNOWLEDGMENTS
CMSE would like to acknowledge the many people that were a part
of the process of building this department: Stephen Hsu and the
MSU GII Initiative of the MSU Office of the Vice President for
Research and Innovation; the MSU Institute for Cyber-Enabled
Research (iCER); members of the original CMSE Proposal
Committee (Titus Brown, Departments of Computer Science and
Microbiology & Molecular Genetics; Robin Buell, Department of
Plant Biology; Andrew Christlieb, Departments of Mathematics
and Electrical and Computer Engineering; Ian Dworkin,
Department of Zoology; Michael Feig, Department of
Biochemistry; Kathy Hunt, Department of Chemistry; Mark Iwen,
Departments of Mathematics and Electrical and Computer
Engineering; Ben Levine, Department of Chemistry; Vince Melfi,
Department of Statistics and Probability; Filomena Nunes, National
Superconducting Cyclotron Laboratory / FRIB; Brain O’Shea,
Lyman Briggs College and Department of Physics and Astronomy;
Charles Ofria, Department of Computer Science; Bill Punch,
Department of Computer Science; Shin-Han Shiu, Department of
Plant Biology; Yang Wang, Departments of Mathematics; GuoWei
Wei, Departments of Mathematics; John Verboncoeur, Department
of Electrical and Computer Engineering); and the CMSE faculty,
staff and students.

8. REFERENCES
[1] Brian Danielak, Brian O’Shea, and Dirk Colbry. 2016. Using

Principles from the Learning Sciences to Design a Data-
Driven Introduction to Computational Modeling. In Workshop
on Teaching Computational Science (WTCS).

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 71

[2] Global Impact Initiative | Research at Michigan State
University. https://research.msu.edu/global-impact/

[3] 2019 Data Science Leadership Summit, Nov 7-9, Santa Fe,
https://sites.google.com/msdse.org/datascienceleadership201
9/home

[4] Interdisciplinary Programs | MSU Graduate School.
https://grad.msu.edu/interdisciplinaryprograms

[5] Dual PhD in Computational Mathematics, Science and
Engineering. https://cmse.msu.edu/academics/graduate-
program/dual-phd-in-cmse/

[6] Graduate Certificates | Computational Mathematics, Science
and Engineering. https://cmse.msu.edu/academics/graduate-
program/grad-certificates/

Volume 11, Issue 1 Journal of Computational Science Education

72 ISSN 2153-4136 January 2020

The Supercomputer Institute: A Systems-Focused Approach to
HPC Training and Education

J. Lowell Wofford
Los Alamos National Laboratory

Los Alamos, NM
lowell@lanl.gov

Cory Lueninghoener
Los Alamos National Laboratory

Los Alamos, NM
cluening@lanl.gov

ABSTRACT
For the past thirteen years, Los Alamos National Laboratory HPC
Division has hosted the Computer System, Cluster and Networking
Summer Institute summer internship program (recently renamed
“The Supercomputer Institute”) to provide a basis is cluster comput-
ing for undergraduate and graduate students. The institute invites
12 students each year to participate in a 10-week internship pro-
gram. This program has been a strong educational experience for
many students through this time, and has been an important re-
cruitment tool for HPC Division. In this paper, we describe the
institute as a whole and dive into individual components that were
changed this year to keep the program up to date. We also provide
some qualitative and quantitative results that indicate that these
changes have improved the program over recent years.

KEYWORDS
training, education, recruiting, student programs, system manage-
ment

1 INTRODUCTION
For the past thirteen years, Los Alamos National Laboratory HPC
Division[10] has hosted the Computer System, Cluster and Net-
working Summer Institute (CSCNSI)[4]1 summer internship pro-
gram to provide a basis is cluster computing for undergraduate and
graduate students. The institute invites 12 students each year to
participate in a 10-week internship program. The program is aimed
at students interested in a broad range of HPC related fields, but
provides a systems design and management focused curriculum.
A number of recent articles have proposed training programs in
HPC[15, 18], but these programs have been focused on applications
and have only scratched the surface of lower–level HPC systems.
We believe that the inclusion of a systems focused program can
provide depth and perspective to many students, regardless of the
HPC related field they intend to enter.

The institute breaks the program into two parts: (1) a “boot camp”
running approximately two weeks covering fundamentals of cluster
computing; and, (2) an eight-week-long guided research project. At

1Since August 2019, the CSCNSI has been renamed “Supercomputer Institute.”

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/12

the end of the program, students present their research in both a
short talk and a poster.

The boot camp curriculum was significantly redesigned in the
last year around a new methodology. Whereas in previous years,
the boot camp largely consisted of guided projects to set up a small
compute cluster, this year took a more directed education approach
to teach the fundamentals of cluster computing before starting
research. The theory in these changes was: (1) a ground-up founda-
tion in cluster computing, starting with basic Linux skills, building
to how clusters are designed and built, and then building and run-
ning parallel applications on them will provide a strong basis for
any area of future HPC related research; (2) a curriculum based
on practical guides with occasional theory lectures will provide a
stronger foundation than self-guided projects; (3) frequent feedback
through anonymous as well as named survey evaluations allow for
day-by-day adjustments to the curriculum.

This approach has proven very successful based on comparative
analysis of survey results from both students and project men-
tors, as well as the quality and complexity of the research results
achieved in this institute. In this paper, we will layout the structure
of the institute, the motivations, and changes made to the boot
camp curriculum and qualitative and quantitative analysis of the
institute outcomes. Our focus will be the evaluation of the impact
this ground-up foundation in cluster computing has on subsequent
student research. Because the new curriculum has only been pro-
vided for one year, the sample size of students is relatively small,
however, the results suggest a strong positive impact on both stu-
dents’ assessment of the program and students’ productivity in the
research portion.

2 THE CSCNSI
2.1 Overview
The CSCNSI summer program is a 10-week paid summer internship
sponsored by the High Performance Computing Division at Los
Alamos National Laboratory (LANL). Each year’s program starts in
the fall with a recruitment and application process, from which 12
participants are selected based on qualities such as their existing
skills, their current progress in school, and interests they express in
their application materials. In parallel, HPC Division staff members
propose projects that they would like to have CSCNSI students
work on during the upcoming summer. Four projects are selected
each summer, and each project is assigned a team of three students.
When the participants arrive for the program, their teams and
their project/mentor matches are already defined and they are
immediately ready to start the program.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 73

https://doi.org/10.22369/issn.2153-4136/11/1/12

The first two weeks of the program consist of a “cluster boot
camp”. This portion of the program focuses strongly on building
base HPC systems knowledge, and includes work with bare metal
hardware; booting and provisioning systems; system configuration
and management; developing and running parallel applications;
and looking at current and future HPC technology. For this portion
of the program, each student team is given a 10-node HPC cluster
to work with. Each team starts with an uncabled cluster with blank
disks, and by the end of the two weeks they have built a fully-
functioning 10-node, Infiniband–connected cluster that is capable
of running real-life HPC applications.

During the remaining 8 weeks of the program, each team works
with their assignedmentors on the project that was selected for their
team. These projects normally make extensive use of the clusters
the teams have just built, and may involve building and benchmark-
ing parallel filesystems; writing and testing parallel applications;
writing system software related to monitoring, containers, schedul-
ing, or other operating system level topics; testing known security
flaws for exploitability and to find mitigations; evaluating new net-
working technology; or almost any other topic of interest to HPC
researchers. At the conclusion of this directed research period, each
team gives a 20-minute presentation on their work to the HPC
community at the Laboratory as part of the yearly HPC Division
Student Showcase. A catalog of past projects and posters can be
found at [5].

2.2 Process
The process of preparation for each year’s CSCNSI session con-
sists of three main sections: the student selection process, includ-
ing recruiting, interviewing, and selecting participants in the pro-
gram; the mentor and project proposal process, which results in
the projects that will be worked on in the program; and the project
matching process, in which selected students are matched with
mentors and projects that fit their interests and skills.

The student selection process begins with recruiting in the fall of
the year before a particular CSCNSI session. This recruiting occurs
in conjunction with HPC Division’s regular student recruitment ac-
tivities at conferences, including the Grace Hopper Celebration[6],
the Richard Tapia Celebration of Diversity in Computing[1], the In-
ternational Conference for High Performance Computing, Network-
ing, Storage, and Analysis[8], and at university site visits. These
recruiting trips include on-site interviews and the ability for HPC
Division staff to make spot offers to highly qualified candidates.

Meanwhile, the CSCNSI program is open to applications from
other students via its website[4]. Applications typically open at the
start of the fall semester, and application materials are typically
due by early December. At the close of this application period, a
selection committee from HPC Division reviews all applicants and
performs phone interviews with the strongest candidates. Offers are
made to selected candidates, and these participants are combined
with any spot offers made at recruiting trips to make that summer’s
12-member CSCNSI class.

In parallel with this process, potential mentors from HPC Divi-
sion’s technical staff propose projects for teams within the program.
This process begins with a call for proposals from across the Divi-
sion requesting the project title and a short abstract describing the

project’s goals and benefits, as well as the proposed mentors, any
extra hardware that would be required by the project, and skills
that are needed by students who would work on this project. These
proposals are evaluated based on their technical merit, their ability
to produce results by the end of the 10-week program, and their
ability to expose the students to new technology. They are also
evaluated alongside the applicant pool to ensure the skills needed
by each project can be met by the selected students each summer.
At the end of this process, four projects are selected to be worked
on that summer.

After the participants and projects have been selected, the final
step of the process is to build four three-person teams and assign
them to the selected projects. This is done by comparing knowledge
of students’ backgrounds and interests gathered from their inter-
views, resumes, and application materials with the project required
skills specified by the mentors, with the goal of matching students
with projects that will offer them an opportunity for growth and
an opportunity to be successful.

2.3 Technical
The CSCNSI is a multi-discipline program that starts with a two-
week “bootcamp” that focuses on HPC systems hardware and soft-
ware. Each team is supplied with a 10-node, Infiniband–connected
cluster, and over the course of the bootcamp they learn to build their
cluster from scratch. Their clusters start out as bare hardware: the
nodes are racked, but all of the network and power cables are in a
box in the rack. Starting with how to properly label and cable a rack
of computers, the students spend their bootcamp period installing
the operating system, installing scientific libraries, automating the
node build process, and finally running MPI applications across all
of their nodes. The process gives the students a strong understand-
ing of the underlying technology that makes an HPC system work.
The bootcamp curriculum is described in more detail in sections 3
and 4.

With their clusters built, the student teams are ready to work
on their main project. The technologies used in these projects vary
greatly depending on their focus. Recent projects include trans-
parently running user application containers; testing the overhead
incurred by compute node health checks; finding security anomalies
in network flows; and testing the overhead introduced by specula-
tive execution exploit fixes. Each of these projects digs deeply into
individual aspects of system hardware and software, building on
the base that the students learned during their bootcamp session.

3 THE CURRICULUM
3.1 History & motivation
The CSCNSI boot camp curriculum (“the curriculum”) has grown
organically during its long history, sometimes going for multiple
years with only small changes, while at other times receiving large
rewrites to update the material to better match updated technol-
ogy. The program’s instructor role has passed between multiple
people in recent years, resulting in a series of updates that weren’t
necessarily self consistent, and this year a decision was made to
do a major rewrite of the material. Using the existing material as a

Volume 11, Issue 1 Journal of Computational Science Education

74 ISSN 2153-4136 January 2020

topical guide, a new curriculum was built that included update tech-
nologies, removed outdated information, and more closely matched
the realities of today’s HPC environments.

Additionally, the previous approach to the boot camp left the
students to mostly explore the different topics informally on their
own, with little guidance. While this informal approach has some
strong learning benefits, student surveys and previous instructor
feedback indicated that this left some teams struggling to have
viable systems for their subsequent research. Additionally, given
the rapid pace of the boot camp, this approach severely limited the
depth to which certain topics could be explored. All of these factors
suggested that a new approach to the curriculum that merged both
formal an informal learning may be beneficial.

To achieve a more guided approach to the curriculum, a signifi-
cant amount of new material was required. For the 2019 curriculum,
over 200 pages of technical guides and roughly 300 lecture slides
were developed. These materials have been made public, and can
be found at [9].

3.2 Methodology
The objective of the new curriculum, aside general updates and
improvements, was to provide more formal learning components
than the previous curriculum. This would allow the students to
achieve the practical objectives of the boot camp—getting their
teams’ compute clusters deployed into a useable state—while also
allowing more depth to be explored in more topics. Meanwhile, we
did not wish to lose the learning benefits of the previous largely
informal learning approach.

The previous curriculum split the boot camp into lecture and lab
segments. The lecture segments were generally very short, with
one to two presented per day. The lab segments would consist of
an unguided list of tasks. Teams would go off to achieve these tasks
with as-needed assistance by the instructors.

The alterations in the approach of the new curriculum were
two fold: (1) to extend the content of the lectures to include more
technical depth and more technical areas; (2) to replace the labs
with “practica.” These practica take the form of staged guides that
have a mix of free exploration prescribed steps. These guides will
be explained in more detail below.

At a high level, the boot camp curriculum builds the students’
skills in stages. Since students come from diverse backgrounds
with varied experience, we start with basic skills in using and
installing the GNU/Linux operating system. By the end of the 12-
day curriculum, the students have fully functional Linux compute
clusters controlled through configuration management and using
industry-standard HPC tools for provisioning, monitoring, and
resource management. Students are introduced to a combination
of facilities, systems, programming and visualization concepts, and
tools.

Organizationally, the curriculum was divided into chapters. Each
chapter begins with a theory lecture, followed by practical written
guides, or practica. Most of the time is spent working through
these guides. The guides are further subdivided into steps. It is
expected that all of the students work through the guides and
synchronize at the end of each step. This helps ensure that the entire
class stays roughly on the same content throughout. Maintaining

synchronization of the students is important for both efficiency
in teaching and assistance, as well as making sure that students
are focused on the same kinds of tasks at the same time. Keeping
students in sync means that questions from other students remain
timely and relevant, and other students are actively working on
the same projects, and therefore are more prepared to assist fellow
students. During each step the instructor and assistants help teams
that had questions or were stuck with portions of the guide. At
the end of each step, the instructor summarizes the step, performs
the step on an example cluster, handles any high-level questions
related to that step, and briefly introduces the goals of the next
steps. For most guides, each step has an accompanying slide with
additional notes for that step.

To keep the more advanced students occupied as well as intro-
duce more advanced concepts such as advanced shell scripting,
for most guide steps a “challenge” problem was assigned. These
challenge problems leverages material from the section, as well as
requiring some outside information that the students must research.
Examples of challenge problems include: using the "find" command
to do a recursive find-and-replace operation and writing a shell
script to do a ping scan on a network. Teams that finished the chal-
lenge were asked to present their solutions to the group, along with
explanations, and group discussion of the different solutions was
encouraged.

4 CURRICULUM OVERVIEW
The curriculum for the boot camp is divided into 11 chapters. See
Table 1 for a syllabus of the curriculum. For the condensed two-week
boot camp, each chapter approximately represents the curriculum
content for one day. Each chapter is designed to both add relevant
HPC skills and further the process of bringing the teams’ 10-node
compute clusters into a usable and maintainable state for the later
research portion. Below we outline the curriculum by chapter, for
each chapter summarizing the structure, content and motivations
for that chapter. The chapters fall into logical groupings based on
their overarching objective. We have broken them out by these
groupings below.

4.1 Introducing HPC
The first two chapters of the curriculum provide a general intro-
duction to the course and some higher level concepts of high-
performance computing, systems, hardware, workflows, and fa-
cilities. These chapters provide a backdrop and motivation for the
remainder of the course, and the ideas introduced in these chapters
are designed to develop throughout the course. There is an empha-
sis on the kinds of problems that HPC helps to solve, how to design
systems to solve these problems, and the subsequent challenges of
these system designs.

4.1.1 Chapter 1: Introduction to HPC. This chapter provides
the motivation for the rest of the course. While the course works
by building up HPC systems knowledge from the ground up, the
introduction takes a top-down approach to understanding HPC. In
the introduction, we focus on the kinds of problems that scientists
may need to solve. We then lay out how cluster computing designs
provide an effective architecture for solving these problems. This
helps to motivate the course by starting with a focus on research

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 75

Title Purpose Practical
Chapter 1 Introduction to HPC Overview of HPC systems, hardware, workflows, and

facilities.
N/A

Chapter 2 HPC Facilities Space, power & cooling challenges for HPC. Cable and label cluster racks
Chapter 3 Exploring Linux Basic Linux system operating system concepts, in-

stall, use, and administration.
Master node is installed with Linux.

Chapter 4 Networks & Services Basics of netoworking and common Linux services. Master network, NAT, ssh configured.
Chapter 5 Netboot provisioning How to stateless netboot a node from scratch. Some nodes provisioned, 1st pass.
Chapter 6 HPC provisioning Using HPC provisionig tools to provision the whole

cluster.
All nodes provisioned, 2nd pass.

Chapter 7 HPC tools Overviews of common HPC tools for system man-
agement, scheduling & fabric management.

Clusters configured with workload man-
agement, high-speed network, power,
and console control. First jobs run.

Chapter 8 Version Control & Con-
fig Management

Learn version control and configurationmanagement
tools and motivations.

Clusters re-provisioned, configuredwith
version controlled configuration man-
agement.

Chapter 9 Monitoring & Bench-
marking

Overview of tools used for benchmarking and ac-
tive/passive monitoring clusters.

Monitoring and log analysis framework
installed. Baseline benchmarks taken,
system verified.

Chapter 10 Parallel & Cluster Pro-
gramming

Introduction to parallel programming concepts and
challenges. Introduction to cluster programmingwith
MPI. Visualization tools.

Job submissions and MPI functionality
tests. First parallel runs. Real scientific
application run & visualized.

Chapter 11 Future technology Discuss revolving topics of future interest to HPC. N/A
Table 1: Syllabus for boot camp curriculum. The title, purpose of the chapter are given, and practical lessons are given for each
chapter. Shading represents groupings used in section 4.

problems, motivating the general cluster architecture, discussing
some important particular details of that architecture, and then
working on the tools to practically build a system with a clustered
architecture.

The toy research problems that are used as motivation for the
Introduction to HPC chapter reappear in later chapters as job and
programming examples that can be practically run on the systems
that the teams deploy throughout the boot camp. This aims at
keeping the students focused on why the systems are being built
while constructing them in stages from the ground up.

4.1.2 Chapter 2: HPC facilities. The general discussion on HPC
system design in the previous chapter naturally segues into a discus-
sion of the kinds of physical, power, and cooling concerns surround-
ing large clusters of computers. The second chapter overviews the
HPC facilities topics.

The HPC facilities introduction also provides the first practical
lesson for the students. As part of the facilities introduction, the
students are introduced to particular racking, cabling, and data
center organization techniques.With this introduction, the students
are then guided through physically cabling and labeling their teams’
clusters2.

4.2 System Management
While we do require some Linux experience for admission to the
program, the level of Linux experience has varied widely among

2For our boot camp, due to time and safety concerns, the clusters are pre–racked but
un–cabled when the students arrive.

the students. To achieve a baseline of knowledge in Linux, the
chapters 3 and 4 cover some of the basic Linux skills required for
HPC, ranging from basic commandline skills to basic network and
system service configurations. Throughout the guides for these
chapters, “challenge” questions are offered to students who finish
early to start building shell scripting knowledge. Each question
pushes the students to find a new way to explore the Linux system
by writing a script.

4.2.1 Chapter 3: Exploring Linux. This chapter is longer than
other chapters and spanned two days. We begin with a lecture
on an overview of Linux. This lecture splits into three parts. The
first part covers some history of Linux as well as Linux and open
source community issues. It also touches on why we use Linux
for HPC. The second part of is focused on the Linux kernel and
operating system theory. The third part provides an overview of
Linux distributions.

Discussion of distributions in the lecture leads to a lab where
the students install CentOS Linux[3] on their cluster master nodes
following a basic install guide. Students perform the rest of the
work throughout the bootcamp on this system.

Following the install procedure, students work through two
guided practica on using Linux. Students are instructed in the use
of the tmux[13] tool to share terminal sessions across their individ-
ual workstations. The first guide covers a wide range of common
Linux tools with an emphasis on tools of particular use in HPC
environments. The second guide focuses on those tools dedicated
to inspecting the Linux system status and health.

Volume 11, Issue 1 Journal of Computational Science Education

76 ISSN 2153-4136 January 2020

4.2.2 Chapter 4: Networks & Services. Chapter 4 continues the
exploration of the Linux. A beginning lecture covers fundamen-
tals of networking and Linux networks, as well as Linux network
services.

The lecture is followed by a guide that explores setting up and
using various network settings and services in Linux. An emphasis
is put on verification steps as each configuration step is performed.
This guide also includes an exploration of systemd and service unit
files. At the end of this guide, the master nodes have a complete
network configuration and NTP, SSH and nginx services have been
configured.

4.3 Cluster Provisioning & HPC Tools
Chapters 5 through 8 center around cluster provisioning. This is
done in three stages. The theory is to start by provisioningmanually,
and add useful layers of abstraction in stages. First, the system is pro-
visioned by manually creating a stateless booting cluster using com-
mon services and a combination of provided and student-developed
scripts. Next, the system is re-provisioned using a common clus-
ter provisioning system (Warewulf[14]). In the third iteration, the
systems are re-provisioned again using configuration management
(Ansible[2]) in conjunction with cluster provisioning (Warewulf).
Chapter 7 is injected in the middle of this sequence to introduce
core HPC tools not related to provisioning, such as the workload
manager, before moving on to the final stage of provisioning. At the
end of Chapter 8 the teams should have fully-functional, useable
compute clusters.

4.3.1 Chapter 5: Netboot provisioning. Chapter 5 consists of one
long guide that steps the students through everything necessary
to perform a stateless (diskless) network boot of a compute node.
This follows directly on the discussion of network and services in
the previous chapter, and configures the core services (DHCP and
tftpd) required to perform a PXE boot. The students are also guided
through the process of manually constructing a node image to be
provided to the compute nodes. Finally, the students are given a
base initramfs image3 that they can use to construct the staged
boot required by most stateless compute clusters. This simplified
initramfs has been constructed with the intent of educating, so the
provided init stage scripts choose simplicity and readability over
features. By the end of this chapter, the teams’ clusters have two
nodes provisioned using this method, in addition to the manually
installed master node.

4.3.2 Chapter 6: HPC provisioning. Chapter 6 builds on Chap-
ter 5 by showing how HPC provisioning systems, in this case
Warewulf[14] can be used to dramatically simplify the process
that was worked through in Chapter 5. Because Warewulf simpli-
fies the netbooting process, this also affords the opportunity for
the teams’ to build more configuration complete and feature rich
images for their nodes. At the end of this section, the entire cluster
has been provisioned with Warewulf. In order to simplify access to
packages and HPC tools, the OpenHPC project[11, 17] is used for
additional HPC software repositories.

3The initramfs source can be found under the “Supplements” folder in the curriculum
materials repository at [9]

4.3.3 Chapter 7: HPC tools. Up until this point, the students
have not been introduced to some of the fundamental tools for
HPC. It is useful to pause to look at some of these tools before the
final provisioning step in order to make them available in the final
provisioning of the clusters.

Several tools are introduced in this section that provide console
and power access to the nodes and InfiniBand fabric management.
Particular attention is paid to workload management and sched-
uling. Using the existing Warewulf install, the Slurm workload
manager is installed, configured, and tested.

A final section of this chapter provides a short guide for working
with Slurm as a user. This includes various forms of job submission,
job inspection, and batch job scripting.

4.3.4 Chapter 8: Version Control & Config Management. The
final step the provisioning process involves moving all of the work
that has been done into a version controlled repository containing
a configuration management specification. Git is used for version
control and Ansible is used for configuration management.

The chapter begins with a short lecture covering Git concepts,
followed by a practical learning guide for basic Git usage. Next, a lec-
ture is given on general configuration management concepts with
an emphasis on Ansible. The Ansible practical guides are divided in
two. The first guide teaches basic practical Ansible examples. The
second of the Ansible guides takes the users through the process of
re-provisioning their clusters with Ansible and Git. A base Ansible
repository is provided to the teams, and they are left to integrate
their cluster-specific changes as well as the examples worked out
in the previous tutorial into this Ansible repository. Finally, the
students are instructed to completely re-install their master nodes,
and re-provision their entire clusters with this Ansible repository.
Any further changes to the system are affected through version
controlled Ansible. At this stage, the teams have fully functional
compute clusters managed using modern configuration manage-
ment techniques.

4.4 Monitoring & Benchmarking
Chapter 9 is focused on monitoring and benchmarking tools. These
are related but disparate topics. They are presented separately but
combined into the same chapter for brevity and to emphasize their
common use to verify the state of the cluster.

4.4.1 Chapter 9, Part 1: Monitoring. We first start with a short
lecture that covers the basic terminology used in HPC monitoring
such as active versus passive monitoring, out-of-band monitoring,
and a summary of HPC monitoring concerns.

The practical portion of the monitoring section focuses on pas-
sive log analysis. The students work through configuring rsyslog
log aggregation from the compute nodes to the master node. They
are then guided through setting up and using Splunk for log analy-
sis, including setting up Splunk alerts.

4.4.2 Chapter 9, Part 2: Benchmarking. This section of the chap-
ter also starts with a short lecture covering common terminology
around benchmarking, and the role of benchmarking in typical
HPC acceptance processes. Emphasis is placed on real versus syn-
thetic and micro versus macro benchmarks. A brief survey of these
different benchmarking methods is presented, including several

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 77

industry-standard benchmarks are introduced, including HPL and
various synthetic micro-benchmarks (e.g. STREAM, iozone, and the
MOFED IB benchmark tools).

In the practical guide for benchmarking, several of these tools
are used to gather information about the teams’ clusters. This also
serves as an “acceptance” stage for the teams’ clusters in which
they can verify that performance of the systems is as expected and
comparable to the performance of other teams. The students are also
instructed to run some scaling benchmarks, where a benchmark
starts at a single thread, and scales until it comprises the entire
system. This gives an idea of how well the system will scale with
idealized parallel applications.

As a final step in the benchmarking processes, the students
were provided with a ready-to-run real applications. We chose a
GROMACS[7, 16] molecular dynamics simulation, as it is a well
supported, open source code, and was easy to force to run for
predictable time periods. The students ran this code over night. This
both provided a way to perform a “real” benchmark on the clusters,
as well as data for visualization exercises in the next section.

4.5 Parallel & Cluster Programming and
Visualization

Chapter 10 introduces parallel programming concepts. We should
note that the focus of the boot camp is not on parallel program-
ming - LANL offers the “Parallel Computing Summer Research
Internship”[12] that focuses in this area for students who would
like more emphasis on programming. Instead, the objective of this
brief introduction to parallel programming concepts is two fold: 1)
to introduce a basic common understanding of parallel program-
ming techniques and pitfalls as may be relevant to their research
projects; 2) to introduce cluster programming and message pass-
ing concepts through a simple introduction to MPI programming.
These, together, help to give a more complete understanding of
how the systems the students have assembled will be used in addi-
tion to providing more hands-on experience with the high-speed
networking fabric.

The chapter is introduced with a lecture covering some basic the-
ory and terminology of parallel programming, including message
passing versus shared memory models. The practical guides are
divided into two. The first guide walks the students through some
simple threaded programming tasks in Python. The second guide
extends these concepts to span multiple nodes using the Python
mpi4py module.

Both the threaded and MPI guides follow examples of developing
and enhancing code that illustrates two examples that were given in
Chapter 1 as illustration of why we build HPC systems as clusters.
The first example illustrates a simple parallel summing algorithm.
The second example is more complex and implements different
versions of a 3D box of colliding particles4.

Finally, both the 3D box example and the results of the GRO-
MACS sample simulation provide input data for some brief visual-
ization experiments. For the 3D box example, students are guided

4Source code for the 3D box simulation, called “gas”, can be found in the curriculum
Supplements at [9]

through making a 3D rendered movie with ParaView. For the GRO-
MACS example, the students are guided through a 3D visualization
using VMD, the molecular dynamics visualization tool.

4.6 Future Technology
Chapter 11 concludes the boot camp with a discussion of upcoming
HPC technologies. In the current year, chapter introduced ideas
like Linux container and cloud computing. It is anticipated that
this chapter would change substantially over time to match new
upcoming technology trends. Due to time constraints for the boot
camp, this chapter consisted solely of a lecture. Ideally, it might
include some short, practical guides for working with some of the
new technologies mentioned.

5 EVALUATION
The CSCNSI is a program that we have traditionally had difficulty
evaluating. Unlike some summer programs, its value isn’t as much
in the results of the students’ final products as it is in founda-
tion we give them for understanding the fundamentals of high–
performance computing. For many students, this means that we
do not have a good way to evaluate the value of the program once
they have left for the summer unless we make efforts to track them
down and check on their progress in school and their careers. How-
ever, as we have already mentioned, this program is an important
recruiting vehicle for LANL’s HPC Division, meaning that we can
put at least one numeric score on the success of each year. This, in
conjunction with student surveys conducted throughout the pro-
gram give us some qualitative and quantitative ideas of the success
of the program.

5.1 Short Term: Qualitative Evaluation
Students who attend the CSCNSI are encouraged to give feedback,
and they are given frequent opportunities to do so. This year, the
instructor implemented a daily “sticky note” survey: each team
was given a pad of sticky notes at the start of the day, and each
member was asked to briefly summarize their feelings at the end
of each day. These notes were treated anonymously and were used
by the instructor to tailor the pace of the class and the topics being
covered each day to fit the needs of the students.

At the end of the summer, the students and the mentors were
asked to fill out a longer, more formal survey about their experiences
that summer. Afterward, the results of these surveys were used
to evaluate how the class went, decide which students should be
followed up with by our recruiting team, and begin planning for
the next year.

The surveys between the summers of 2018 and 2019 were also
significantly updated, so it is difficult to directly, quantitatively com-
pare the two results. Qualitatively, however, the student evaluation
of the boot camp was significantly more positive than previous
years5. Additionally, the overall approval rating of the program im-
proved. Given that the boot camp was the most significant change
between the years, it is reasonable to assume that the overall eval-
uation of the program benefited strongly from the updated boot
camp curriculum. The curriculum changes introduced this year
5The authors were unable to obtain releases for the survey data, so we are only able
to speak subjectively and qualitatively about that data.

Volume 11, Issue 1 Journal of Computational Science Education

78 ISSN 2153-4136 January 2020

Figure 1: Student outcome statistics for CSCNSI from 2007 to present.

were significant enough that they offer us an opportunity to draw
a strong distinction between the “old” and “new” curricula, which
will give us a good place to do comparisons as the “new” curriculum
ages and matures.

5.2 Long Term: Quantitative Evaluation
The CSCNSI has been an important recruiting tool for both HPC
Division in specific and the laboratory as a whole. Since 2007, we
have been maintaining records of the students who went through
the program,which ones came back again as a student in our general
student program, and which ones were hired as full time LANL
staff in HPC Division or other divisions at the laboratory. Ignoring
2019, which is too early to count in the statistics, we have had 142
individual attendees in the program (with some years varying from
the standard 12 attendees). Of these, about 15 returned to LANL as
a student again, another 15 were hired as full time employees in
HPC Division, and nearly 20 more were hired by other divisions
at LANL. While we do not directly track statistics on students
who end up at places other than LANL, we do know that several
more have ended up at other laboratories and nearby businesses.
The skills that the CSCSNI students learn during their summer

are clearly applicable with HPC Division directly, but also with a
variety of other scientific disciplines and industries. Figure 1 shows
the outcomes, where known, of CSCNSI students from 2007 to
present.

6 FUTUREWORK
We anticipate further developing the curriculum, the research, and
the mentoring segments of the CSCNSI program going forward.
Through the various sources of survey information, we will be
making further minor curriculum adjustments, but overall feel that
the new curriculum has provided a solid foundation to work on.

This years changes have emphasized the need for capturing
better metrics on the performance of the program. Some of this may
be achieved through ongoing improvements to the survey process.
We are also examining the possibility of introducing entrance and
exit exams to track student development.

Some students and mentors have pointed out that it would be de-
sirable to spread out the boot camp curriculum through the program
and to introduce the research components earlier. We are taking
under consideration that the initial boot camp could be shortened

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 79

to include only include Chapters 1 through 8, with the remain-
ing chapters taught in a more spread–out fashion throughout the
remainder of the program.

Finally, we have opened the curriculum[9] to the broader commu-
nity in hopes that it may both benefit the broader HPC educational
community, as well as open a forum for community curriculum
development. We have begun speaking with outside institutions
that may be interested in helping to develop the curriculum for
an academic course our workshop. The time frame of the CSCNSI
limits the boot camp to an intensive two week period, but we be-
lieve this curriculum could be adapted and expanded to a semester
course.

7 CONCLUSIONS
The CSCNSI program has a proven track record of demonstrating
that a broad systems–based background in cluster computing can
be a valuable background for students in a variety of HPC related
fields. We have seen this qualitatively, through student and men-
tor surveys, and quantitatively, through the hiring pipeline it has
provided. The changes to the CSCNSI program in the past year
have marked a turning point for the program. We anticipate that
the improved curriculum will further emphasize the benefits of a
ground–up, systems based background in HPC. Though it is diffi-
cult to make broad conclusions given the limited sample size after
one year, initial results are promising that this new mix of formal
and informal learning will lead to an even stronger program going
forward.

REFERENCES
[1] 2019. ACM Richard Tapia Celebration of Diversity in Computing. (2019). Re-

trieved Sep 23, 2019 from http://tapiaconference.org/
[2] 2019. Ansible is a simple IT automation tool. (2019). Retrieved Sep 24, 2019 from

https://www.ansible.com/
[3] 2019. CentOS Project. (2019). Retrieved Sep 24, 2019 from https://www.centos.org
[4] 2019. Cluster System, Cluster and Networking Summer Institute (CSCNSI). (2019).

Retrieved Jul 30, 2019 from https://clustercomputing.lanl.gov
[5] 2019. CSCNSI: Past projects. (2019). https://www.lanl.gov/projects/

national-security-education-center/information-science-technology/
summer-schools/cscnsi/student-projects.php

[6] 2019. Grace Hopper Celebration. (2019). Retrieved Sep 23, 2019 from https:
//ghc.anitab.org

[7] 2019. GROMACS. (2019). http://gromacs.org
[8] 2019. International Conference for High Performance Computing, Networking,

Storage, and Analysis. (2019). Retrieved Sep 23, 2019 from http://supercomputing.
org/

[9] 2019. LANL Supercomputing Institute Curriculum. (2019). Retrieved Sep 24,
2019 from https://github.com/hpc/cluster-school

[10] 2019. Los Alamos National Laboratory, HPC Division. (2019). Retrieved Jul 30,
2019 from https://hpc.lanl.gov

[11] 2019. OpenHPC. (2019). Retrieved Sep 24, 2019 from https://openhpc.community
[12] 2019. Parallel Computing Summer Research Internship. (2019).

https://www.lanl.gov/projects/national-security-education-center/
information-science-technology/summer-schools/parallelcomputing/index.
php

[13] 2019. tmux project. (2019). Retrieved Sep 24, 2019 from https://github.com/tmux/
tmux

[14] 2019. Warewulf cluster provisioning. (2019). Retrieved Sep 24, 2019 from
https://github.com/warewulf/warewulf3

[15] Prentice Bisbal. 2019. Training Computational Scientists to Build and Package
Open-Source Software. Journal of Computational Science Education 10, 1 (2019),
74–80.

[16] R. van Drunen H.J.C Berendsen, D. van der Spoel. 1995. GROMACS: A message-
passing parallel molecular dynamics implementation. Computer Physics Commu-
nications 91, 1-3 (September 1995), 43–56.

[17] David Brayford et al. Karl W. Schulz, C. Reese Baird. 2016. Cluster Computing
with OpenHPC. SC16: HPCSYSPROS Workshop (2016).

[18] Kai Himstedt Nathanael Hübbe Sandra Schröer Michael Kuhn Matthias
Riebisch Stephan Olbrich Thomas Ludwig Jean-Thomas Acquaviva Anja Gerbes
Lev Lafayette Weronika Filinger, Julian Kunkel and Hinnerk Stüben. 2019. To-
wards an HPC Certification Program. Journal of Computational Science Education
10, 1 (2019), 88–89.

Volume 11, Issue 1 Journal of Computational Science Education

80 ISSN 2153-4136 January 2020

http://tapiaconference.org/
https://www.ansible.com/
https://www.centos.org
https://clustercomputing.lanl.gov
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/cscnsi/student-projects.php
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/cscnsi/student-projects.php
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/cscnsi/student-projects.php
https://ghc.anitab.org
https://ghc.anitab.org
http://gromacs.org
http://supercomputing.org/
http://supercomputing.org/
https://github.com/hpc/cluster-school
https://hpc.lanl.gov
https://openhpc.community
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/parallelcomputing/index.php
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/parallelcomputing/index.php
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/parallelcomputing/index.php
https://github.com/tmux/tmux
https://github.com/tmux/tmux
https://github.com/warewulf/warewulf3

Creating a Relevant, Application-Based Curriculum for
High Performance Computing in High School

Vincent C. Betro, Ph.D.
Baylor School

171 Baylor School Road
Chattanooga, TN 37405

+1-423-313-7884
Vincent Betro

vincent.charles.betro@gmail.com

Mary E. Loveless, Ph.D.
Baylor School

171 Baylor School Road
Chattanooga, TN 37405

+1-615-260-2530
mloveless@baylorschool.org

ABSTRACT
While strides have been made to improve science and math
readiness at a college-preparatory level, some key fundamentals
have been left unaddressed that can cause students to turn away
from the STEM disciplines before they find their niche [10], [11],
[12], [13]. Introducing collegiate level research and project-based,
group-centered learning at a high school level has a multi-faceted
effect; in addition to elevated learning outcomes in science and
math, students exhibit improved critical thinking and
communication skills, leading to improved preparedness for
subsequent academic endeavors [1]. The work presented here
outlines the development of a STEM ecosystem where both the
science department and math department have implemented an
interdisciplinary approach to introduce a spectrum of laboratory
and computing research skills. This takes the form of both "in situ,"
micro-curricular elements and stand-alone research and computer
science classes which integrate the language-independent concepts
of abstraction and object-oriented programming, distributed and
high-performance computing, and high and low-level language
control applications. This pipeline has been an effective tool that
has allowed several driven and interested students to participated in
collegiate-level and joint-collegiate projects involving virtual
reality, robotics and systems controls, and modeling. The
willingness of the departments to cross-pollinate, hire faculty well-
versed in research, and support students and faculty with the proper
resources are critical factors in readying the next generation of
computing leaders.

Keywords

STEM; Education; Virtual Reality; Project-Based Learning; High
School Research

1. INTRODUCTION
Even a cursory exploration of current educational research

literature indicates that students’ understanding of science,
technology, engineering, and mathematics (STEM) topics is

increasingly important to the well-being of our global economy
[14], [15]. As noted in a U.S. Department of Labor study, “Long-
term strategies to maintain and increase living standards and
promote opportunity will require coordinated efforts among public,
private, and not-for-profit entities to promote innovation and to
prepare an adequate supply of qualified workers for employment in
STEM fields. American pre-eminence in STEM will not be secured
or extended without concerted effort and investment” [6].

The demand for scientists and engineers is expected to
continue to increase at a significant rate, especially in computing-
related fields. However, data from international studies, such as
TIMSS [16], and national studies, such as the 2007 and 2009
National Assessment of Educational Progress Report [17], [18]
indicate that both mathematics and science continue to be academic
stumbling blocks for many students, that students are consistently
not performing well in courses in these disciplines, and that, as a
consequence, too few are pursuing degrees in technical fields.

Additionally, according to Ronald Barr of the American
Society for Engineering Education, “When a national sample of
adults was asked what kind of career they would recommend to
young women, medicine was the top choice. A scant 3 percent
suggested engineering” [13]. This perception of the stature and
importance of qualified engineers and computer scientists must be
changed, and the way we inform under-represented groups about
career preparation must include heavy doses of STEM content.
Also, as posited on a study from the University of Chicago, as early
as elementary school, “teachers who are anxious about their own
math abilities are translating some of that to their kids,” and this
has been found to be particularly true in reference to both female
teachers and students, likely based on outdated social norms and
lack of role models [19].

The low enrollment and engagement in STEM fields has
become serious enough that the State of Tennessee has
incorporated engineering standards into the integrated science and
math curriculum. The state’s goal is to expose students to the
engineering design process and computational thinking strategies
early with hopes of increasing the number of students that will
become interested in pursuing a degree and career in a STEM field.

However, “developing a curriculum does not guarantee that
engineering education in K–12 will be successful. A critical factor
is whether teachers—from elementary generalists to middle school
and high school specialists—understand basic engineering
concepts and are comfortable engaging in, and teaching,
engineering design. For this, teachers must either have appropriate
background in mathematics, science, and technology, or they must
collaborate with teachers who have this background” [5]. This
statement from the National Academy of Engineering’s study
Engineering in K-12 Education is precisely why having both

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/13

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 81

interdisciplinary collaboration and expert teachers is so essential to
the success of a school's STEM ecosystem.

Even more specifically, high performance computing has
become an indispensable technology in myriad fields of research.
It has been noted by the National Science Foundation, as well as
the U.S. House of Representatives, that computational simulation
engineering (and thus engendering an understanding and interest
amongst young people) is crucial to enhancing our national security
and global competitiveness. The U.S. House of Representatives
passed a resolution “recognizing modeling and simulation as a
National Critical Technology important to the security and
prosperity of the U.S.” [7]. Moreover, in 2006, an NSF Blue Ribbon
Panel noted that “computer simulation has become indispensable to
the development of all other technologies” and “promises to
revolutionize the way engineering and science are conducted in the
twenty-first century” [8].

High performance computing (HPC) is an excellent vehicle to
steer students back into the STEM pathway. Between the
applications to such a broad spectrum of real-world problems and
the creativity that is implicit in computer science, it draws students
to want to better their math and science backgrounds and gives
them a creative outlet at the same time. Moreover, by giving
students access to faculty, resources, and time to explore computing
and engineering, we are giving them tools to solve problems which
have not yet been solved. This is quite different from the content
and approach espoused in most classes in K-12 education, wherein
students are simply trying to figure out what the question is asking
so they can also solve a solved, often artificial, problem. It is this
aspect of research, the unknown, that allows for both creativity and
the understanding of how to approach a truly unknown problem and
interpret results with sophistication beyond making numbers
simply match the back of the textbook. This is what most excites
students because it feels, and is, authentic; it is also the skill set that
students most need to take to the university to succeed.

2. BUILDING THE ECOSYSTEM
Baylor School has developed a multi-grade, multi-entry point

ecosystem to foster interest in STEM-related fields, particularly
computer science-related topics and applications; the relevant HPC
academic elements are represented in Figure 1. In order to
accommodate as many students, as well as levels of interest, as
possible, both curricular and extracurricular components have been
established, bridging computer science, mathematics and science
departments. Within the curriculum, two semester courses,
Engineering Design and Independent Research, were introduced.
Engineering Design teaches engineering-centric skills
(programming, electromechanical systems, and modeling, for
examples) in a project-based learning environment that utilizes a
flipped classroom design. Both Introduction to Computer Science
(Intro CS) and AP Computer Science Principles (AP CSP) were
introduced and curriculum was based on the University of
California at Berkley curriculum, The Beauty and Joy of
Computing. Streamlined coding practices (same language, Snap!
and NetsBlox [22, 23], and complementary curriculum pieces)
were incorporated into Engineering Design.

Students who complete Engineering Design (fall semester) are
eligible to take Independent Research I (spring semester); students
who continue to meet grade and commitment requirements can then
continue on to take Advanced Research: Engineering (1 year) and
subsequently Thesis: Engineering (1 year), depending on their
entry point. Projects specifically offered to foster opportunity in
high performance computing include embedded systems and
virtual reality (VR) application development.

Extracurricular programming was introduced as well.

Competitive afterschool Robotics teams were initiated in both the
middle (MS) and upper school (US). The MS team competes in the
First Lego League (FLL) while the US team competes in the First
Tech Challenge (FTC). Core STEM content includes:
design/design-thinking, modeling, mechanics, logic/code, physics,
and prototyping/3D printing.

Another extracurricular offering is Creative Design, which
allows students to participate in a range of exploratory and
challenge-based STEM activities/competitions; each year, the
extracurricular activity changes to meet the needs of the students’
area of interest. For example, students have participated in NASA
spin-off design competitions, VR projects with collegiate
partnerships, as well as motion-tracking for the Baylor Dance Club
using an XBOX 360 Kinect.

Figure 1. Interaction between math and science
departments is critical to fostering the interdisciplinary
environment where students can work on real applications
and become inspired to use HPC and other STEM tools.

Figure 2. Relevant HPC academic components. Both
curricular and extracurricular option are available to
students. Starting in 9th-10th grade, students can participate
in Engineering Design and Computer Science I, which can
be taken stand-alone or with the possible progression to
Independent Research and AP Computer Science Principles
courses. After school opportunities allow for entry at
multiple points during the student’s tenure. Progressing
further through the pipeline, students deepen knowledge,
interest, and independence in computer science-related
project, with the eventual outcome of presentations and/or
publications at collegiate-level conferences.

.

Volume 11, Issue 1 Journal of Computational Science Education

82 ISSN 2153-4136 January 2020

3. PROJECT DESCRIPTIONS AND
IMPACT
3.1 Within Curriculum
3.1.1 Introduction to Computer Science / AP
Computer Science Principles

In order to allow the most students access to computer science
in their packed schedules, the decision was made to set up the
introductory course and the AP course as semester offerings. This
way, a student who already has some programming experience and
who is willing to work through the first three units of the BJC
course independently can join the AP course in the spring semester
if that is the only space they have open. Otherwise, they can dive
deeper into programming in the introductory course first and have
more tools at their disposal when they take AP CSP. Despite the
compressed schedule, our AP scores are consistently above the
national and state averages.

The decision was made to offer AP CSP instead of AP
Computer Science A since the language agnosticism of CSP allows
more students to produce projects they are interested in. Also, it
leaves room for discussing HPC and applications in more depth,
since it is not primarily focused on Java syntax.

Also, students are introduced to programming using Snap!

(University of California, Berkley, CA) in order to avoid the pitfalls
of compilation and syntax errors as they are honing their logic and
algorithmic skills. Snap! is preferred not only because it is visual
but also because unlike Scratch! (Massachusetts Institute of
Technology, Cambridge, MA) it is possible to create first class
objects and utilize inheritance, making function creation extremely
powerful and simple.

The natural direction to take students once they have mastered
the basics of programming a serial application is to look at
scalability and synchronization issues by having them create a
distributed application using NetsBlox (Vanderbilt University,
Nashville, TN) [23-24]. Students initially struggle with
communication because they have never had to think about that
level of granularity when it comes to things like order of execution
and latency. Once they grasp the concept, they are much better
computational thinkers, which is the overall goal of the curriculum.
After all, given the numerous programming language a student may
encounter over his/her career, being able to design based on the
strengths of modern computing architectures and the principles of
object-oriented development will serve them more appropriately.

Once students have been exposed to these fundamental

concepts, students can begin to explore and work on projects that
interest them. For example, students have used XSEDE [24]
resources to compute pi to millions of digits with OpenMP and
C++; they have worked to develop MPI code that runs on our 8-
node Raspberry Pi cluster and beyond; and they have even
developed systems for various applications on the Arduino Uno.
Currently, a student is working with the Microsoft Kinect 360 and
Visual Studio to create an interactive backdrop for Verve, Baylor’s
dance troop.

Finally, it should be noted that this approach has allowed us to
grow the numbers of students in our CS program every year,
especially once we introduced Intro to CS in our second year, as
can be seen in Table 1.

Table 1. Enrollment in Intro and AP CSP over three years.

Year Course Enrollment

2017-18 Intro CS --

2017-18 AP CSP 9

2018-19 Intro CS 15

2018-19 AP CSP 20

2019-20 Intro CS 18

2019-20* AP CSP 22

*projected

3.1.2 Engineering Design Coding Challenge and
Introduction to Virtual Reality

Engineering Design offers project-based curriculum
components to convey engineering-centric skills. One of the most
intrinsically important skills in engineering is programming. As
such, a common programming language and technique were
deliberately discussed and agreed upon across all three courses:
Introduction to Computer Science, AP Computer Science
Principles and Engineering Design. As mentioned previously,
Snap! was chosen as a versatile, visual programming language that
can run on any web browser (many of our students use iPads) such
that students could focus understanding fundamental computational
principles rather than the potential distraction of syntactic nuances
of various languages such as Java or C#. To elevate curriculum
elements and introduce an important yet complicated topic –

Figure 3. The use of linked lists and standard lists, along
with the use of “blocks” or functions, is exhibited here in
Snap! Functions may be overloaded, as in C++, and if any
Sprites are created as a copy of this Sprite, they will inherit
all class functions.

.

Figure 4. Each “role” in a Netsblox project may have its
own code or it may simply mirror each other “role”.
Messages are passed within the “room” or to specific
“roles”, and instead of addressing to a specific “role”, each
role is set to only receive its type of envelope, with the
contents passed in as the actual message that is sent.

.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 83

networking – students are introduced to NetsBlox to introduce
concepts related to distributed programming.

Because Intro CS is not necessarily a pre-requisite for
Engineering Design, students are offered an introduction to Snap!
and NetsBlox via a video tutorial series as homework and a series
of challenges increasing in complexity to be completed in class
(flipped classroom paradigm). After an appropriate introduction to
the environments, a challenge is presented to the students involving
the gamification of a science/math concept that the students have
encountered in the Baylor School curriculum. Using the
Engineering Design Cycle as a guide for development, student
partners work through studying previous approaches (e.g., games
readily available that are educational in context), identifying design
requirements, and deciding on an appropriate game design to carry
on to production (digitize using NetsBlox). The students are then
given approximately two weeks to work in a collaborative NetsBlox
environment (meaning both students can edit the same game
space); this project culminates with a paper and presentation,
including testing/feedback sessions with classmates. Games that
were developed through this curriculum piece included complex
control structures, definition of variables, and network elements
such as message passing across a network and, in some cases,
remote procedure calls (RPCs). Critical thinking / computational
thinking skills, creativity, and presentation skills (text and oral)
were some intangible skills exercised by the students.

In order to remain relevant, the Engineering Design
curriculum changes depending on time-sensitive opportunities. For
example, one team (four students, seniors and juniors) had the
opportunity to work with a VR start-up company, founded at the
Massachusetts Institute of Technology. The company’s focus was
VR experience for the elderly, particularly investigating the use of
the immersive technology to combat neurodegenerative disease.
The students were asked to design and created a VR environment
using Unity 3D development software (Unity Technologies, San
Francisco, CA) and C# scripting for this company, which they
subsequently presented at MIT during the following semester.

3.1.3 Independent Research: High Performance
Computing Applications

Motivated students that finish Engineering Design with
proficiency are eligible to take Independent Research I. This course
allows students to delve deeper into a relevant engineering-centric
research project, such as modeling and virtual reality application
development. One student, continuing from the previous MIT
collaboration in Engineering Design, took the application of VR in
a very insightful direction. The student designed and developed a
VR calm room application for children with autism. One challenge
from which children on the autism suffer is sensory overload
episodes; many places, such as amusement parks and stores have
begun to offer physical spaces with dim lights, soothing music, and
lowered sensory environments to offer families more flexibility on
outings. While this is a step in the right direction, this Baylor
student took it a step further, removing the limitations of needing a
physical space by offering a virtual solution. The student designed
and created a virtual calm room, mimicking those used in private
therapy offices as well as those found in progressive places of
business. The goal was to create something that could be carried
with the family that offered a solution anytime, anywhere. The
phone application (paired with something as simple as Google
Cardboard / VR Cardboard viewers ($5-$15)) offers a flexible,
inexpensive solution for families with autistic children.
Professionals in occupational therapy have lauded this
development. The student was also accepted to present the device
at The American Occupational Therapy Association National

Conference in Salt Lake City, UTC in 2018 [26]. While the
application development was a step toward using advanced
computing techniques for rendering and scaling, the goal of
designing a VR experience on a mobile device also offered
conversations and successful (and plenty of failed!) attempts at
optimization; rendering optimization and reduced scene projection
became a very advanced curriculum piece that was subsequently
incorporated in off-shoot VR applications discussed below.

Following up on this work, another student expanded the
application of the VR calm room to offer passive and functional VR
de-escalation experiences for children with emotional troubles,
such as those who may suffer from early childhood trauma. The VR
application offers a way for teachers, professionals, and families to
offer a safe virtual space for the child to be removed from triggering
situations (passive VR calming space) as well as to learn techniques
and exercises within the VR experience to help manage emotional
outbursts, particularly anger and frustration (functional). This work
was recently presented as a poster entitles “A Virtual Reality
Approach to Pediatric Conflict De-escalation and Anger
Management” at Practice and Experience in Advanced Research
Computing (PEARC 19) in Chicago, IL in 2019 [21]. Currently,
collaborations with the University of Tennessee at Chattanooga
Occupational Therapy program are underway to test the efficacy of
such experience in a real patient population.

Another relevant application of VR has been the use of
immersive technology in education. One student in Independent
Research developed the backbone for a virtual “hands-on” learning
tool that works toward enabling a virtual dissection (and
subsequent rebuilding) of a variety of models, ranging from
components of human cell to the devices in a computer or car
engine. In many classrooms, time, space, and personnel can limit
the amount of hands-on learning as well as what type of hands-on
learning can occur within a classroom. As educators are aware,
hands-on learning has shown to be critical in the comprehension
process [20]. The student developed multiple class structures,
scripted in C# and implemented in Unity that established generic
component and connections between game object (Figures 5 and
6); further, the student functionalized control of these objects using
the Unity Touch system.

With further work, game objects could be interchanged for

relevant models and connection definitions (i.e., this piece connects
in this way to this other piece) to create virtual hands-on
experiences that could be created with by educators with very little
training necessary. This student’s work was also presented as a
poster at PEARC 19; the work was entitled “Virtual Reality Based
Environment for Immersive, Hands-On Learning” [22].

Figure 5. Example of student work presented at PEARC.
The student is defining generic gameObject handling for
hands-on learning in in a VR environment. On the left a 2D
depiction of block and connection points is represented
while the right box is the description on connect and
disconnect functions [22].

.

Volume 11, Issue 1 Journal of Computational Science Education

84 ISSN 2153-4136 January 2020

3.2 Extracurricular Programming
Four years ago, in collaboration with a digital design teacher

in the art department, a STEM after school offering was begun
called Creative Design. The multi-disciplinary atmosphere brought
aboard many students who had been looking for both a creative and
technical outlet by which to join the new STEM ecosystem, not
simply the latter.

At the end of the 2015-16 school year, we had our first STEM
Symposium for the school and broader community. It was so
successful in both recruiting students to the school/program and
giving current students well-deserved exposure for their hard work
that each year it has grown in attendance and has even begun to
offer juried cash prizes for the top projects. This type of activity
allowed us to increase our exposure to campus and begin to get
students and teachers recommending these afterschool options to
their advisees, which in turn led to them recommending students
take more STEM electives, like Intro CS/ AP CSP and Engineering
Design. This, in turn, allowed us to approach administration about
expanding the teachers in our ecosystem and the courses that we
offer in the school-day curriculum. As these courses have borne
fruit (e.g., student presentations, internships, AP credit, etc.), more
students have become interested and begun to enroll, causing us to
add more sections and serve more students’ needs.

Another example of success from the Creative Design
program would be the four students who participated in the NASA
OPSPARC design challenge in 2017. Their design for a
microshutter array fiber optic switch won the competition for best
high school design in the country. Students were flown to NASA
Goddard in Greenbelt, MD by the organizers in order to present
their technology transfer idea to NASA engineers. These students
became even more motivated to continue in computing, took more
elective STEM courses than they had planned, and one even went
on to create a poster for the PEARC 19 on yet another computer
science topic: virtual reality [21]. Not only has he explored this
space, but he is developing easy to understand tools for teachers to
use to create their own VR units. Also, all four students who were
on the winning OPSPARC team have gone to University of
Alabama at Huntsville to major in aerospace and/or computer
engineering.

These afterschool opportunities continue to offer another entry
point for students to enter high performance computing
applications, even when class schedules may not permit them to
take specialized courses. Creative Design has also offered VR
opportunities, which lend themselves to students creating and
functionalizing 3D models as well as learning C#. Students enrolled
in afterschool Creative Design had the option to develop an
immersive curriculum complement for a science/math teacher at
Baylor School. Teachers were asked if they had topics which might
be better comprehended if complemented by an immersive VR
experience; these educators emailed a list of topics (ranging from
the solar system to evolutionary/developmental biology topics) and
indicated their willingness to participate. Students were then asked
to interview a teacher (who had previously indicated interest) to
understand the design requirements outlined. Groups of students
developed these modules. Two student groups produced
experiences that gained the attention of the Tennessee
Technological University (Cookeville, TN); these groups were
invited to present and demo these VR experiences at the TTU iCube
facility.

4. LESSONS LEARNED AND
RECOMMENDATIONS

The foundational courses of computer science (Intro CS and
AP CSP) as well as relevant application-based courses
(Engineering Design and Independent Research) and
extracurricular activities (Creative Design and STEM) offer a
continuum of increasing knowledge and relevant application of
high-performance computing techniques and skills. The program at
Baylor School offers multiple points for students at any level to
enter and progress with their own pace and tailored interest.

Early in the development of these academic elements, it was
discovered that allowing students to pursue “anything related to
STEM they wanted” was ineffective, as students often do not
understand scope control as they have been fooled by the seamless
nature of modern technology to think that their idea will require
relatively little effort to implement. While the goal was for students
to work harder or be more motivated if they controlled the selection
of the project or topic, this open-ended project methodology did not
manifest as intended. In some cases the students were too
overwhelmed to even start a project; in other cases, they projects
were so many and diverse that it was logistically unfeasible to
mentor effectively. This resulted in students stagnating in projects,
getting frustrated, and allowing distraction to take away potentially
productive time if the mentor was working with another group.
Thus, it is advantageous to both students and mentors to define
constraints regarding applications. An example of this would be as
follows:

VAGUE Problem Definition: Explore Unity and come up
with your own VR experience.
RECOMMENDED Problem Definition: Using Unity, create
VR curriculum complement pieces for a science class of your
choice at Baylor School. Working with a science teacher,
select a science topic in which your immersive experience will
aid comprehension for the students in the class.

The vagueness of the first problem definition might paralyze

students from even knowing where to start. They may try to do
things outside of the scope of a beginning project and get frustrated
by a steep learning curve. Additionally, every student will have a
completely distinct experience in mind, stretching the mentor’s
time and breadth of knowledge. The specificity of the
RECOMMENDED problem statement allows the students

Figure 6. Example of the student work presented at
PEARC. The Point class definition for VR hands-on
learning and the Connect function definition are above.
Code is written in C# [22].

.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 85

autonomy (selecting the science course and/or topic) while having
boundaries that allow them to focus on distinct aspects of
development that the teacher has deemed approachable.

In classes such as Intro CS or Engineering Design, partner
work can be very helpful. Collaboration and communication
techniques are fostered in this model and confidence in the topic is
developed. Partners should be changed regularly to allow students
the opportunity to take on a different role. As motivated students
delve deeper (AP CSP and Independent Research), they should
progress toward independent contributions. With the growth of a
program of this nature, managing individual projects can be time-
consuming but, given proper foundational elements and class
opportunities, motivated students can be trusted to take a more
active role in problem solving at a more advanced level.

Offering both curricular and extracurricular opportunities not
only allow for multiple entry points for busy students, it also allows
for a range of risk/reward activities. As illustrated above,
commitment levels and performance levels vary throughout the
offerings, lending to student selection of projects based on their
learning pace and abilities in areas of strength. As with any
educational program, there needs to be room to fail and develop
resiliency. Offering projects for the school, collaborations with
external partners, and opportunities to contribute to the large
scientific community helps a student develop confidence in lower
risk options while highlighting the power of perseverance with
high-reward opportunities.

5. FUTURE DIRECTIONS
The AP Computer Science Principles assessment will change

after the 2019-2020 school year, requiring that more foundational
knowledge be tested on the written exam. This will change the
structure of the course somewhat, but it will make for a deeper dive
into the hardware, as the “computing innovation” research project
will be scrapped allowing for more time to be spent on how the
computer works. This is an area of HPC that hasn’t been explored
outside of specific projects where the students worked hands on
with an at times temperamental Raspberry Pi cluster.

Additionally, as we add more students to the pipeline, the
projects will become more varied and there will be even more carry
over allowing us to expand project scopes year after year, given that
we set up a good “mentoring” program where students transfer their
knowledge of the project and foundational issues so that each
project does not die unfinished when a student graduates.

And finally, as Baylor School has a middle school (6th-8th
grades), creating components (in addition to the already offered
Robotics extracurricular program), that help streamline
computational thinking and programming practices/applications
will allow students to achieve a high knowledge base and
confidence level more rapidly. This extension would continue to
allow an expanded project scope as well as the discussion of more
high-caliber electives in the upper school.

6. ACKNOWLEDGMENTS
We would like to acknowledge the support of Baylor School

and the Baylor Board of Trustees for allowing us the resources and
the latitude to form the STEM ecosystem we now have. We would
also like to thank the many faculty to have participated in these
STEM-related endeavors, specifically Heath Montgomery. We
thank the Weeks family, through the Harrison and Katherine Weeks
endowment, which has been critical to the growth of programs
presented here. Also, this work used the Extreme Science and
Engineering Discovery Environment (XSEDE), which is supported
by National Science Foundation grant number ACI-1548562.

7. REFERENCES
[1] Angela Eeds, Chris Vanags, Jonathan Creamer, Mary

Loveless, Amanda Dixon, Harvey Sperling, Glenn
McCombs, Doug Robinson, and Virginia L. Shepherd
(2014). The School for Science and Math at Vanderbilt: An
Innovative Research-Based Program for High School
Students. CBE—Life Sciences Education 2014 13:2, 297-
310

[2] Bevan, Bronwyn & Gutwill, Joshua & Petrich, Mike &
Wilkinson, Karen. (2015). Learning Through STEM-Rich
Tinkering: Findings From a Jointly Negotiated Research
Project Taken Up in Practice. Science Education. 99.
10.1002/sce.21151.

[3] Blikstein, Paulo & Krannich, Dennis. (2013). The makers'
movement and FabLabs in education: experiences,
technologies, and research. ACM International Conference
Proceeding Series. 613-616. 10.1145/2485760.2485884.

[4] National Research Council. 2003. Evaluating and Improving
Undergraduate Teaching in Science, Technology,
Engineering, and Mathematics. Washington, DC: The
National Academies Press. https://doi.org/10.17226/10024.

[5] Katehi, Linda, Greg Pearson, and Michael Feder (2009).
Engineering in K-12 Education: Understanding the Status
and Improving the Prospects. The National Academies Press,
Washington, D.C. 2009.

[6] Jobs for the Future (2007). The STEM Workforce
Challenge: the Role of the Public Workforce System in a
National Solution for a Competitive Science, Technology,
Engineering, and Mathematics (STEM) Workforce. U.S.
Department of Labor, Employment and Training
Administration. April 2007.

[7] House of Representatives (110th Congress, 2007).
Recognizing the contribution of modeling and simulation
technology to the security and prosperity of the United
States, and recognizing modeling and simulation as a
National Critical Technology. House Resolution 487.
Passed July 16, 2007.

[8] National Science Foundation (2006). Simulation-Based
Engineering Science – Revolutionizing Engineering Science
through Simulation. Blue Ribbon Panel on Simulation-
Based Engineering Science. 2006.

[9] Information Technology Association of America (2005).
Innovation and a Competitive U.S. Economy: The Case for
Doubling the Number of STEM Graduates. Washington:
ITAA. 2005.

[10] National Science Foundation (2002). Characteristics of
Scientists and Engineers in the United States: 1999. Division
of Science Resources Statistics. Arlington, VA (SRS 03-
407). November 2002. http://www.nsf.gov/statistics/us-
workforce /1999/tables/TableB2.pdf . February 8, 2010.

[11] Higher Education Research Institute (2007). Survey of the
American Freshman, special tabulations. University of
California at Los Angeles. Los Angeles, CA, 2007.
http://www.nsf.gov/statistics/wmpd/pdf/tabb-8.pdf . February
8, 2010.

[12] American Association of State Colleges and Universities
(2005). Strengthening the Science and Mathematics Pipeline
for a Better America. Policy Matters. Volume 2, Number 11.
November/December 2005.

Volume 11, Issue 1 Journal of Computational Science Education

86 ISSN 2153-4136 January 2020

[13] Barr, Ronald (2005). U.S. Needs More Engineering
Students. Miami Herald. August 11, 2005.

[14] Committee for Prospering in the Global Economy (2007).
April 8, 2011.

[15] National Science Board (2006). Science and Engineering
Indicators 2006, Volume 1. Washington, D.C.: National
Academies Press. 2006.

[16] Michigan State University (2001). Third International
Mathematics and Science Study. National Center for
Education Statistics. April 4, 2001.

[17] National Center for Education Statistics (2007). National
Assessment of Educational Progress Report. 2007.

[18] National Center for Education Statistics (2009). National
Assessment of Educational Progress Report. 2009.

[19] Kaplan, Karen (2010). Female teachers may pass on math
anxiety to girls, study finds. Los Angeles Times. Jan 26.

[20] Samantha Cleaver. 2018. Hands-On Is Minds-On. Retrieved
April 9, 2019 from
http://www.scholastic.com/browse/article.jsp?id=3751901.

[21] A. Mook and M. Loveless. Virtual Reality Based
Environment for Immersive, Hands-On Learning.
Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (Learning)
(2019). ACM, New York, NY, USA.

[22] J. Liu and M. Loveless. A Virtual Reality Approach to
Pediatric Conflict De-escalation and Anger Management.
Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (Learning)
(2019). ACM, New York, NY, USA.

[23] B Broll, A Lédeczi, P Volgyesi, J Sallai, M Maroti, A
Carrillo. A visual programming environment for learning
distributed programming (2017). Proceedings of the 2017
ACM SIGCSE Technical Symposium on Computer Science.

[24] B Broll, Á Lédeczi, H Zare, DN Do, J Sallai, P Völgyesi, M
Maróti, L Brown. A visual programming environment for
introducing distributed computing to secondary education.
Journal of Parallel and Distributed Computing 118, 189-200.

[25] Victor Hazlewood, Scott Lathrop, Dave Lifka, Gregory D.
Peterson, Ralph Roskies, J. Ray Scott, Nancy Wilkins-Diehr.
XSEDE: Accelerating Scientific Discovery. Computing in
Science & Engineering, vol.16, no. 5, pp. 62-74, Sept.-Oct.
2014, doi:10.1109/MCSE.2014.80.

[26] Harwood, H and M. Loveless. Virtual Reality-Based Calm
Room for Individuals With Autism Spectrum
Disorder (2018). Poster presented at The American
Occupational Therapy Association National Conference.
April 20, 2018 (Salt Lake City, UT).

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 87

Introducing Novices to Scientific Parallel Computing
Stephen Lien Harrell

Purdue University
sharrell@purdue.edu

Betsy Hillery
Purdue University

eahillery@purdue.edu

Xiao Zhu
Purdue University
zhu472@purdue.edu

ABSTRACT
HPC and Scientific Computing are integral tools for sustaining the
growth of scientific research. Additionally, educating future domain
scientists and research-focused IT staff about the use of computa-
tion to support research is as important as capital expenditures on
new resources. The aim of this paper it to describe the parallel com-
puting portion of Purdue University’s HPC seminar series which
is used as a tool to introduce students from many non-traditional
disciplines to scientific, parallel and high-performance computing.

KEYWORDS
JOCSE submissions, Undergraduate, Parallel Computing, Training,
HPC

1 INTRODUCTION
Scientific computing supports a wide range of disciplines to enable
new and exciting research topics and to create new opportunities for
multidisciplinary collaborations, which are vital for cutting-edge
research [13]. High performance computing (HPC) permits explo-
ration of complex phenomena that cannot be observed or replicated
by experiment. Recently, data-intensive science has emerged as,
considered by many, the fourth paradigm of scientific discoveries
[8]. Universities, research organizations, businesses and govern-
ment entities are working to create the best possible environment
for research and innovation to ensure the long-term success of
computational scientific research. Educating future domain scien-
tists and research-focused IT staff about the use of computation to
support research is as important as the supercomputers themselves.
A recent report by the NSF Cyberlearning Workforce Development
(CLWD) Task Force states that "computational science must be
introduced into the K-20 curriculum in ways that build deep under-
standing and stimulate further exploration. At the undergraduate
level, interdisciplinary computational approaches have essential
roles both as separate content areas and incorporated into existing
math and science (including social and behavioral sciences) curricu-
lum. These interdisciplinary computational approaches, including
computer science, have to be presented as more than just program-
ming" [14]. Similarly, NITRD’s High End Computing Interagency
Working Group suggests an approach that includes "Development
of the next generation workforce in undergraduate and graduate
university programs through collaborative curriculum development
to establish base skills" [9]. Additionally, the necessary skills needed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/14

are varied depending on the specific research topics and typically
require many fields of knowledge to be covered[12]. In this paper
we will discuss Purdue Research Computing’s approach to teach-
ing novices (often in scientific undergraduate programs) and how
to use parallel and data-intensive computing through a variety of
lectures and exercises. By doing that, we aim to give undergraduate
students an opportunity to explore the field of HPC and big data
in a non-traditional computer science course setting and build a
basic foundation of computational and data skills for their further
education and research activities.

1.1 Inspiring Undergraduates
As part of Purdue University’s Sesquicentennial anniversary cam-
paign, students are asked "What if". What if we could control the
brain for better health? What if we return to Pluto? What if the
world ran on 100 percent renewable energy? At Purdue, most un-
dergraduates are likely familiar with these lines from this "what if
series". However, they may not realize that many researchers will
rely on advanced computing and data solutions to enable them to
answer these complex questions.

Through computational science, we inspire students to change
the world. In this class, we pay special attention to hot topics, such
as climate change and artificial intelligence, in order to give students
an extra push to spend both extra time with their homework and
exercises as well as consider graduate work and/or staff roles within
advanced computing technologies.

1.2 Prior Work at Purdue
Purdue’s Research Computing has had a history of mentoring, train-
ing, and educating students in HPC. Although we are not alone
in these actions [3][4], our staff have had great success mentoring
undergraduate students in Systems-Facing as well as Research-
Facing roles [5]. The Student Cluster Competition [7] has also been
a useful tool to inspire students to consider HPC as a career. In
the classroom we have been developing techniques to explore the
breadth of HPC [6] and broaden participation from under-served
demographics [10].

2 HIGH PERFORMANCE COMPUTING
SEMINAR

The primary goal of the class is to have undergraduates recognize
that computing is an important creative vehicle for scientific dis-
covery on a myriad subjects, ranging from physics to social studies.
Aligning to this goal, we employed an integrated and informational
approach in teaching computing for this course. Specifically, we
integrated parallel computing instruction with different scientific
domains. To do this we adapted a combination of lectures from
domain science faculty and created labs where students led the

Volume 11, Issue 1 Journal of Computational Science Education

88 ISSN 2153-4136 January 2020

https://doi.org/10.22369/issn.2153-4136/11/1/14

Figure 1: Entire Class with Instructors

discussions on the tools and assignment. As the course designers,
we began with these learning outcomes in our mind:

• A good understanding of scientific workflow
• Familiarity of building and using scientific applications
• Basics of parallel computing, such as difference between
multi-node parallelism and node level parallelism

• Overview of state-of-art computing architectures (e.g. accel-
erators)

• Performance characteristics (strong and weak scaling) and
their connection with the architecture choices

• Bottlenecks in HPC (e.g. communication and datamovement)
and strategies to minimize them

2.1 Approach
Our approach to this curriculum was twofold, we engaged students
with hands-on exercises using a real-world scientific application
and regularly lectured on more general parallel computing topics in
the class. For their first assignment, we asked the students to follow
a typical workflow of a weather forecast experiment and reproduce
the results. Specifically, convert numerical weather prediction data
from the National Weather Service into a full input grid for WRF,
run WRF, and interpret the output results. During the lecture, the
students were taught parallel computing concepts.

2.2 Broadening Participation
In order to communicate the availability of this newly created class,
the instructor team was deliberate when it came to effectively ad-
vertising it campus wide and how we would engage the larger
undergraduate community on campus. During the initial recruit-
ments, the HPC Seminar leaders made a number of visits to clubs
on campus, specifically clubs such as Women in Computer Science,
Women in Engineering and the Women in HPC. Along with these
recruiting opportunities, direct communication was sent to student
peers of the previous all-female Student Cluster Challenge team
[10] in an effort to further attract additional participants.

One goal of this experience was to create interest in the class
from non-traditional computer science students âĂŞ specifically by
taking advantage of our current Research Computing employees
teaching across the university. Additionally, the faculty sponsor of
the class made direct contact with the Data Mine [10], a large-scale
living learning community for undergraduates from all majors,
focused on Data Science for All, in an effort to recruit students that
are not typically Computer Science students.

2.3 Syllabus
2.3.1 Course Description. This course introduces undergradu-

ates to advanced topics in High Performance Computing clusters,
operating systems, and the cluster batch-operating systems. Topics
covered in this course focus on aspects of the design, implemen-
tation, and use of high performance computing systems at the
system level. No previous experience with operating systems or
programming is required.

2.3.2 Course Objectives. Students will be able to effectively com-
municate general High Performance Computing (HPC) concepts
and knowledgeable on how scientific applications run on HPC
resources. The specific learning objectives for this course are:

(1) Students will effectively communicate how to build and com-
pile scientific applications

(2) Students will effectively understand the basics of the Linux
Shell

(3) Students will effectively communicate how scientific related
topics relate to high performance computing

2.4 Lectures
2.4.1 Introduction to the Linux Shell. Review the basic command

line interface. Students receive a solid foundation in how to use
the terminal and how to get a computer to do useful work. Some
materials were adapted from Software Carpentry lessons. [2]

2.4.2 Compiling and running HPL. Introduce HPL as a measure
of a computer system’s floating point computing power, thus pro-
viding data for the Top500 list to rank against supercomputers
worldwide. Students will understand and practice the usage of a
benchmark program on a cutting edge HPC system.

2.4.3 Installing Scientific Applications. In this lecture students
are familiarized with one of the most difficult tasks in the HPC
world, installing new scientific software packages. Students are
introduced to a few common used tools for managing the build
process of packages, such as Automake and CMake.

2.4.4 History of Weather and Computing - Guest Speaker. A
historical review of the connection between numerical weather
prediction and high performance computing and how the advance-
ment of computing technology changes research in the field. The
lecture was given by Associate Professor Mike Baldwin from the
Department of Earth, Atmospheric, and Planetary Sciences at Pur-
due.

2.4.5 Weather Prediction - Guest Speaker. Professor Baldwin
presented a few weather case studies that require some of the
most powerful supercomputers in the world. He also showcased
his Purdue football game day weather forecast.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 89

2.4.6 Cluster Design. Present the various factors in designing
a computing cluster, such as performance, availability, scalability,
cost, and the range of applications. Additionally, the impacts that
applications can have on those factors.

2.4.7 Big Data - Guest Speaker. Introduce the basic ideas of big
data to analyze and systematically extract information. Students
were giving a tutorial on how to use R to manipulate data sets too
large or complex to be dealt with by traditional data-processing
tools. The lecture was given by Associate Professor Mark Ward of
Purdue’s Statistics Department.

2.4.8 Science Writing and Presenting. Students are provided an
overview on effective scientific communication. Both presentation
and scientific writing was covered. Some fundamental tips and tech-
niques for effectively writing and presenting scientific information
are given.

2.4.9 Computational Fluid Dynamics - Guest Speaker. Purdue
Mechanical Engineering Professor Carlo Scalo illustrated the exam-
ples of using HPC and numerical analysis in solving problems that
involve fluid flows. His primary example of fluid flows was aircraft
design.

2.4.10 Molecular Dynamics - Guest Speaker. Purdue Material
Scientist Alejandro Strachan presented predictive atomistic and
molecular simulation to describe materials from first principles
and their application to problems of technological importance. His
presentation included shape memory and high-energy density ma-
terials. Dr. Schachan also demonstrated interactive simulation tools
on nanoHUB.org [11], a community-contributed resource for nan-
otechnology.

2.4.11 Astrophysics - Guest Speaker. Research Computing Staff
Matthew Route shared experiences in running a variety of current
parallel codes in astrophysics. He presented examples on both large-
scale simulations and big-data analysis of observational data sets.

2.4.12 Introduction to Python. Students learned the fundamen-
tals of the Python programming language, along with some of the
programming best practices. A few examples include using Python
data types and variables to represent and store data, and using
conditionals and loops to control the flow of your programs.

2.4.13 Introduction to Juypter Hub and R Studio. An introduc-
tion to two popular interactive and flexible computational environ-
ments for data analysis and graphics.

2.4.14 Final Presentation. Students presented in group about
what they learned from this class and their suggestions for improve-
ment. Excerpts from these presentations are available in section
4.1.

2.5 Assignments
2.5.1 Student Biographies. To get to know the students, we had

each student responsible for writing biographies about themselves
highlighting their area of study and special interests

2.5.2 Fundamentals of Compiling Applications. To warm the stu-
dents up for the major assignments, each student had to learn how

to compile HPL using Spack. Then each student did the same exer-
cise compiling HPL by hand. The idea is to have them understand
how to read logs and dependencies of compiling applications.

2.5.3 Compiling and Running WRF and OpenFoam. Students
compiled and ran WRF and OpenFoam and did visualizations of
their findings. These two applicationsmake up the core assignments
for the class and are described in detail in section 3.

2.5.4 Guest Lecture Prompt Responses. After each guest lecture
the students received writing prompts about the science being
discussed, how do we apply the lecture to the High Performance
Community and how would they apply the science to solving a
problem using a cluster.

2.5.5 Final Team Project. The students at the of the semester
were asked to put together a power point presentation. They needed
to answer 5 fundamental questions

• Describe your experience with building and compiling appli-
cations. Name the applications that you have built, what they
were used for and what struggles you had building them.

• Discuss your understanding of Linux, what your experience
was before attending the class and any new things you have
learned.

• Describe how scientific related topics relate to high perfor-
mance computing. Outline at least one presentation that you
attended and how it relates to the class.

• Discuss your opinion on the scientist presentations that were
held in class. Were they valuable? Why or Why not? Which
presentations if any did you like? Why or Why not?

• Discuss your opinion of the pace and difficulty of the class.
Be specific and describe the track you involved in.

They then presented their findings to the class and invited guests.

3 TEACHING SCIENTIFIC APPLICATIONS
To teach parallel computing principles, we chose WRF, widely used
on various HPC systems, as an illustrative scientific application.
WRF is related to the weather modeling history, and its background
taught by Dr. Baldwin for this class. Additionally, WRF is a ubiqui-
tous scientific code with layman-relatable input and output data.
We designed the lecture and hands-on WRF excersizes to achieve
the learning outcomes from Section 2. All assignments and hands-
on exercises were performed using Purdue’s teaching and learning
cluster, Scholar [1].

Keeping the students’ learning outcomes in mind, the second
application chosen was OpenFOAM, a popular open source soft-
ware for the solution of continuum mechanics problems, most
prominently with computational fluid dynamics. The goal of the
assignment was to have students further hone their skills learned
in the class to solve a practical problem independently. In contrast
to the WRF exercise, we decided not to reserve any class time for
questions (discussions among students in person or on Slack are
encouraged).

Volume 11, Issue 1 Journal of Computational Science Education

90 ISSN 2153-4136 January 2020

3.1 WRF
First, students learn the basics of parallel computation and MPI.
Secondly, they learn the advantages and disadvantages of differ-
ent parallel paradigms such as distributed memory parallelism vs.
shared memory parallelism. In practice, students also learn the in-
tricacy of properly setting up a parallel computing environment.
Finally, students gain a good knowledge of the performance char-
acteristics and how this will be impacted by the choice of hardware
architectures. They are also asked to perform scaling studies (strong
vs weak). Which illustrates the bottlenecks in parallel computation,
such as network and I/O related overhead.

While WRF is a very common application among meterologists,
when aimed at undergraduates it has some detriments. First, it can
be very hard to build for a novice. For instance, at compile time
you must know the differences between node-level and multi-node
parallelism and the important frameworks for each. Additionally,
some features are are hidden behind compile-time options in a
non-obvious way. For instance the choice of NETCDF 3 vs 4 has
consequences that may require one to recompile if the data set does
not match. This is all but obvious for weather scientists, however,
it requires a well-grounded understanding of Linux user-space
environments as well as parallelism in standard HPC clusters today.
Finally, the workflow for WRF is more complex than some other
scientific applications, requiring the use of multiple executables
from multiple packages in order to do a full weather simulation,
which is well documented in the language of meteorologists, but
not undergraduates.

3.2 OpenFoam
This assignment was given to the students after the Dr. Scalo’s
lecture on computational fluid dynamics. By this point the students
were more comfortable with software dependencies and how to
use tools like Spack, which was covered in a previous tutorial. Also,
they had a basic idea of fluid dynamics and a few important terms
after the guest lectures. Both would tremendously help them find a
viable solution for the assignment.

The individual assignment for the student was to take the soft-
ware OpenFOAM and manually compile the software or use Spack.
Once the students had the application compiled, the next step was
to run the simulations and visualize what they had obtained. Each
student was provided an initial input file, but once they were com-
fortable visualizing the assignment, the next step was to change
the input file to see the effects. The students used Paraview, which
they also needed to familiarize themselves with to visualize the
results. In this assignment, students were asked to solve a problem
of simplified dam break in two dimensions, where a transient flow
of water separated by a sharp interface. Knowing how to see the
effect of water breaking over a dam, students were more engaged
than in the WRF exercise, discussed in Section 4.1.1. We found that
most students were able to successfully present demo simulation
to the class.

Figure 2: Students Presenting about Learning Outcomes

4 OUTCOMES
4.1 Student Evaluation of the Class
In the final project, students were given prompts regarding the
learning objectives of the class and if they were met, students
presented their responses seen in Figure 2. Focusing on three of
the prompts, the responses below are illustrative of the general
outcomes of the class, the following information was conveyed:

4.1.1 Describe your experience with building and compiling ap-
plications. Students found that the directions for installing Spack
and OpenFoam were generally straightforward and easy to follow,
however, in practice it was very difficult to compile and run cor-
rectly. Additionally, the logic behind the steps was not explained
thoroughly, so it was difficult to troubleshoot errors in the home-
work assignments. Through the exercises the understanding of
Linux increased dramatically and although the students found the
method of learning difficult, this learning outcome was met. Many
students finished the class knowing how to navigate the shell and
how it interacts with the applications.

However, there were also frustrations with this format. Such
as the speakers didn’t understand the class objective was to learn
about HPC and it’s different implementations, not just whatever
the invited speaker science was. It would have been better if the
speakers focused more on how they use computers and HPC to do
their research and less on the details of what their research is for.

4.1.2 Discuss your opinion of the pace and difficulty of the class.
One student said that having to learn the science and parallel com-
puting at the same time was too much. Another said that the class
in general was very fast paced.

4.1.3 Discuss your understanding of Linux, what your experience
was before attending the class. Students stated they believed it was
very important to have a base understanding of Linux before attend-
ing the class, as there was not enough of "getting to know Linux"
done in class.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 91

4.2 Lessons Learned
While considerable success was achieved, such as compiling WRF
and getting correct simulation results, it was difficult for the stu-
dents to fully appreciate the entire process due to their lack of
meteorological knowledge. Additionally, the pace of the class had
to slow down to accommodate the majority of the students, and
consequently, instructors had no time for covering the visualization
of the simulation results. This resulted in dampening the students’
interest in the topic and thus the students became largely depen-
dent on instructors for the finishing assignments for this portion
of the class.

A better strategy would have been to have the students visual-
ize an existing WRF output file, allowing the students to become
familiar with meteorological visualizations before attempting the
somewhat daunting exercise of compiling and running WRF for
the first time. Although it does not follow the actual sequence of
weather modeling, we propose that this would better keep students’
attention and keep them motivated throughout the more esoteric
work during the hands-on section. More importantly, such experi-
ence highlights the key difference in instructional design between
a graduate course and an undergraduate one.

A second key lesson learned was that the Linux skills required
for this type of class were a serious impediment to students in-
terest and learning. A majority of the students started with little
to no experience in Linux, even with a class period dedicated to
command line basics, their understanding was insufficient. This
put a lot of burden on the students to learn how to compile an
application without knowing how to navigate the environment.
In future classes, it is recommended that either Linux knowledge
becomes a requirement for the class or a more significant amount
time is dedicated to this topic.

5 FUTURE WORK
For the next HPC seminar we run we plan to vet prior Linux experi-
ence and split the first few classes between experienced Linux users
and novices. This will allow novice users to get a more complete
understanding of basic Linux skills. The other major change we
will implement is switching visualization to be first when teach
scientific applications, this approach allows the students to visually
see the science in action.

ACKNOWLEDGMENTS
We’d like to acknowledge Dr. Mark Ward, Dr. Mike Baldwin, Dr.
Carlo Scalo, Dr. Alejandro Strachan and Dr. Matt Route for shar-
ing their knowledge with our students. We’d also like to thank
Christopher Phillips for his keen editorial skills.

REFERENCES
[1] M. E. Baldwin, X. Zhu, P. M. Smith, Stephen Lien Harrell, R. Skeel, and A. Maji.

2016. Scholar: A Campus HPC Resource to Enable Computational Literacy. In
2016 Workshop on Education for High-Performance Computing (EduHPC). 25–31.
https://doi.org/10.1109/EduHPC.2016.009

[2] Software Carpentry. [n. d.]. https://swcarpentry.github.io/shell-novice/
[3] Dirk Colbry. 2014. iCER Interns: Engaging Undergraduates in High Performance

Computing. In Proceedings of the 2014 Annual Conference on Extreme Science
and Engineering Discovery Environment (XSEDE ’14). ACM, New York, NY, USA,
Article 71, 5 pages. https://doi.org/10.1145/2616498.2616573

[4] Andrew Fitz Gibbon, David A Joiner, Henry Neeman, Charles Peck, and Skylar
Thompson. 2010. Teaching high performance computing to undergraduate faculty
and undergraduate students. In Proceedings of the 2010 TeraGrid Conference. 1–7.

[5] Stephen Lien Harrell, Marisa Brazil, Alex Younts, Daniel T. Dietz, Preston Smith,
Erik Gough, Xiao Zhu, and Gladys K. Andino. 2018. Mentoring Undergraduates
into Cyber-Facilitator Roles. In Proceedings of the Practice and Experience on
Advanced Research Computing (PEARC ’18). ACM, New York, NY, USA, Article
70, 7 pages. https://doi.org/10.1145/3219104.3219138

[6] Stephen lien Harrell, Benjamin Cotton, Michael Baldwin, and Andrew Howard.
2013. Developing a Scientific Computing Cluster Course for the Undergraduate
Curriculum. In Summit for Educators in System Administration 2013. Washington
D.C. http://funnelfiasco.com/research/sesa13.pdf

[7] Stephen Lien Harrell, Hai Ah Nam, Verónica G. Vergara Larrea, Kurt Keville, and
Dan Kamalic. 2015. Student Cluster Competition: A Multi-disciplinary Under-
graduate HPC Educational Tool. In Proceedings of the Workshop on Education for
High-Performance Computing (EduHPC ’15). ACM, New York, NY, USA, Article 4,
8 pages. https://doi.org/10.1145/2831425.2831428

[8] Tony Hey. 2012. The Fourth Paradigm–Data-Intensive Scientific Discovery. In
E-Science and Information Management: Third International Symposium on Infor-
mation Management in a Changing World, IMCW 2012, Ankara, Turkey, September
19-21, 2012. Proceedings, Vol. 317. Springer, 1.

[9] High End Computing Interagency Working Group. [n. d.]. Education and Work-
force Development in the High End Computing Community. Technical Report.
NITRD.

[10] Elizabett Hillery, Mark Daniel Ward, Jenna Rickus, Alex Younts, Preston Smith,
and Eric Adams. 2019. Undergraduate Data Science and Diversity at Pur-
due University. In Proceedings of the Practice and Experience in Advanced Re-
search Computing on Rise of the Machines (Learning) (PEARC ’19). Association
for Computing Machinery, New York, NY, USA, Article Article 88, 6 pages.
https://doi.org/10.1145/3332186.3332202

[11] Gerhard Klimeck, Michael McLennan, Sean P Brophy, George B Adams III, and
Mark S Lundstrom. 2008. nanohub. org: Advancing education and research in
nanotechnology. Computing in Science & Engineering 10, 5 (2008), 17.

[12] S. Lathrop. 2016. A Call to Action to Prepare the High-Performance Computing
Workforce. Computing in Science Engineering 18, 6 (Nov 2016), 80–83. https:
//doi.org/10.1109/MCSE.2016.101

[13] National Academy of Sciences, National Academy of Engineering, and Institute
of Medicine. 2005. Facilitating Interdisciplinary Research. The National Academies
Press, Washington, DC. https://doi.org/10.17226/11153

[14] Task Force on Cyberlearning and Workforce Development. 2011. A Report
of the National Science Foundation Advisory Committee for Cyberinfrastructure.
Technical Report. National Science Foundation.

Volume 11, Issue 1 Journal of Computational Science Education

92 ISSN 2153-4136 January 2020

https://doi.org/10.1109/EduHPC.2016.009
https://swcarpentry.github.io/shell-novice/
https://doi.org/10.1145/2616498.2616573
https://doi.org/10.1145/3219104.3219138
http://funnelfiasco.com/research/sesa13.pdf
https://doi.org/10.1145/2831425.2831428
https://doi.org/10.1145/3332186.3332202
https://doi.org/10.1109/MCSE.2016.101
https://doi.org/10.1109/MCSE.2016.101
https://doi.org/10.17226/11153

Evaluating the Effectiveness of an Online Learning
Platform in Transitioning Users from a High Performance

Computing to a Commercial Cloud Computing
Environment

Dhruva Chakravorty
High Performance Research

Computing
Texas A&M University

College Station, TX, USA
chakravorty@tamu.edu

Minh Tri Pham
High Performance Research

Computing
Texas A&M University

College Station, TX, USA
phamminhtris@tamu.edu

ABSTRACT	
Developments	in	large	scale	computing	environments	have	led	
to	design	of	workflows	 that	 rely	on	 containers	and	analytics	
platform	that	are	well	supported	by	the	commercial	cloud.	The	
National	Science	Foundation	also	envisions	a	future	in	science	
and	 engineering	 that	 includes	 commercial	 cloud	 service	
providers	 (CSPs)	 such	 as	 Amazon	 Web	 Services,	 Azure	 and	
Google	 Cloud.	 These	 twin	 forces	 have	 made	 researchers	
consider	 the	 commercial	 cloud	 as	 an	 alternative	 option	 to	
current	 high	 performance	 computing	 (HPC)	 environments.	
Training	 and	 knowledge	 on	 how	 to	migrate	workflows,	 cost	
control,	data	management,	and	system	administration	remain	
some	of	the	commonly	listed	concerns	with	adoption	of	cloud	
computing.		In	an	effort	to	ameliorate	this	situation,	CSPs	have	
developed	 online	 and	 in-person	 training	 platforms	 to	 help	
address	this	problem.		Scalability,	ability	to	impart	knowledge,	
evaluating	 knowledge	 gain,	 and	 accreditation	 are	 the	 core	
concepts	 that	have	driven	 this	 approach.	Here,	we	present	 a	
review	 of	 our	 experience	 using	 Google’s	 Qwiklabs	 online	
platform	 for	 remote	 and	 in-person	 training	 from	 the	
perspective	of	a	HPC	user.		For	this	study,	we	completed	over	
50	online	courses,	earned	five	badges	and	attended	a	one-day	
session.	We	 identify	 the	 strengths	 of	 the	 approach,	 identify	
avenues	 to	 refine	 them,	 and	 consider	 means	 to	 further	
community	engagement.		We	further	evaluate	the	readiness	of	
these	resources	for	a	cloud-curious	researcher	who	is	familiar	
with	HPC.	 	Finally,	we	present	recommendations	on	how	the	

large	 scale	 computing	 community	 can	 leverage	 these	
opportunities	 to	 work	 with	 CSPs	 to	 assist	 researchers	
nationally	and	at	their	home	institutions.	

CCS	CONCEPTS	
•CS→Computer	Science;	•Cybertraining→training	on	using	
cyberinfrastructure;	•HPC→high	performance	computing
Keywords	
HPC	training,	cloud	computing,	assessment	strategies,	best	
practices.	diversity
1.	INTRODUCTION	
The growing computing needs of researchers in data science and
engineering have led to increasing use of cloud computing
resources, coupled with innovative web-based platforms for data
analysis. This is observable in National Science Foundation (NSF)
investments in projects such as JetStream [1,2], Aristotle [3], and
CloudLab [4]. Indeed, in recent years, the research and engineering
(R&E) community has adopted commercially available cloud
resources and services (CACRS, also known as commercial service
providers) in research and education. This is particularly true for
the computational biology community, led by the National
Institutes of Health (NIH) Science and Technology Research
Infrastructure for Discovery, Experimentation, and Sustainability
(STRIDES) initiative [5]. The NIH STRIDES initiative explores
new models of data stewardship as it provides access to cloud
services such as compute, storage and training on Amazon Web
Services (AWS) and Google Cloud Platform (GCP). Indeed,
STRIDES is on its way to hosting the tens of petabytes of NCBI
data set on the cloud. In recent times, the NSF has also taken steps
to offer researchers cloud-based resources. The NSF Big Data
program [6] partnered with IBM, GCP, Microsoft Azure and AWS
to make a number of cloud-based awards as well. Similar
partnerships led to awards in the decade-long NSF CC* program in
2019 [7]. In perhaps a sign of the growing role of CACRS in R&E,
the NSF launched the NSF Cloud Access program [8] that created
a CSP-based cloud-exchange for NSF researchers requiring
CACRs for their NSF-funded projects. [NSF Cloud bank] The
scientific community has relied on high performance computing
(HPC) to meet its large-scale scientific computing needs. Owing
to the rapid proliferation of cloud computing in science technology
engineering and mathematics (STEM) disciplines, migration to

Permission	to	make	digital	or	hard	copies	of	all	or	part	of	this	work	for		
personal	or	classroom	use	is	granted	without	fee	provided	that	copies	
are	 not	made	or	 distributed	 for	 profit	or	commercial	advantage	and	
that	 copies	bear	 this	 notice	and	 the	 full	 citation	on	 the	 first	page.	To	
copy	otherwise,	or	republish,	to	post	on	servers	or	to	redistribute	to	
lists,	 requires	 prior	 specific	 permission	 and/or	 a	 fee.	 Copyright	
©JOCSE,	a	supported	publication	of	the	Shodor	Education	Foundation	
Inc.	
	
©	2018	Journal	of	Computational	Science	Education	
DOI:	https://doi.org/10.22369/issn.2153-4136/x/x/x	
	

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 93

CACRS requires training on both, how to configure and use these
resources.

Online training platforms offer opportunities to scale that are
beyond the capabilities of instructor-led, in-person classrooms. To
meet the growing demand for trained and certified cloud- and data-
science engineers, a number of online training platforms have
emerged to fill the void between existing curricula at institutions of
higher education and the urgent needs of these sectors. As such,
informal online education platforms have taken the lead in
preparing aspiring engineers for certifications and careers in these
fields. In addition to Coursera [9] and Linux Academy [10],
Qwiklabs is an online training platform that offers hands-on, lab-
learning environments on using cloud-based services. At the time
of this study, Qwiklabs, provided temporary credentials to Google
Cloud Platform (GCP) and Amazon Web Services (AWS). A study
of recent awards made by the NSF Big Data, CC* and E-CAS
programs (in collaboration with Internet2) [11] suggest that AWS
and GCP remain the platforms of choice for the large scale
computing community. Furthermore, researchers (and faculty) may
readily access Qwiklabs via free credits from generous programs
offered by GCP. Furthermore, instructors specializing in in-person
training events could use Qwiklabs to develop, host and broadcast
their hands-on training labs and lecture notes. Taken together, these
factors make Qwiklabs a strong candidate for an online platform
that can provide existing resources to a cloud-hungry group of
researchers. It should be noted that while Qwiklabs started as an
independent effort, it was acquired by Google in 2016. [12,13]
While GCP-related courses continue to be added, Qwiklabs
continues to offer AWS training courses as well. Support for
instructor-led training activities continues on this platform. In this
paper, we explore the readiness this learning platform in
transitioning HPC users to the commercial cloud.

2. EXPERIMENTAL DESIGN
At the onset, we acknowledge that proficiency in computing widely
differs from student to student. Furthermore, with a wide range of
computing constructs available, there is a need to define a standard
for introductory, intermediate, and advanced, activities
proficiencies in training. Teaching computing practices to HPC
users presents additional challenges. Researchers have a diverse set
of skills and varying degrees of experience using computing in their
research. The Qwiklabs training platform helps address some of
these concerns by including scaffolded instruction methods that
support learners with varied skill sets. Research find that active
learning is more effective than procedural training. [14-25] This
approach is adopted across the platform. Since Qwiklabs is owned
by Google, here we evaluate the efficacy of its GCP-centric labs in
helping HPC system administrators and users adopt to the GCP
environment.

2.1 The Qwiklabs Approach
Qwiklabs, as the name suggests, is compilation of quick labs that
give participants hands-on experience on the “real” cloud.
Qwiklabs leverage community expertise to develop these tutorials.
These labs are web-based. As such, they are platform agnostic and
can be run on any computer! These tutorials/labs themselves have
an easy-to-comprehend format. All labs are templated and follow a
similar format. While some labs are free, others require credits. A
collection of labs on a single topic are combined to create a quest.
Depending on the learning levels, quests are identified as
Introductory, Fundamental, Advanced and Expert. Community
experts typically create these labs, and some labs have an
associated tutorial entry on github. By employing community

experts to create the labs, the curriculum on Qwiklabs can extend
in complexity, while simultaneously supporting analysis across
various STEM disciplines. While templating labs allows for a large
number of contributors, the labs themselves may be of variable
quality. Participants can grade a lab on completing it as a measure
of feedback.

Informal effort that use well-reviewed pedagogical approaches to
education have been found to encourage participation and adoption
of computational thinking. [14-25] We have found that teaching
students new computing concepts, such as navigating a Linux
environment, using a command line, and writing code, is more
productive when done through an interactive format. [26-29] With
an interactive format, students are more motivated to follow along
with the instructor and other students by participating in the
activities. In agreement with existing literature, our data indicate
that students with varying degrees of programing are best suited
with scaffolded learning approaches like Jupyter notebooks for
application specific training. [DKC citations] A problem-solving
approach, though slower, encourages greater interactions and
deeper learning of the subject matter. Including a scaffolded
learning approach helps learners grasp complex concepts better,
and helps reduce the barriers to computing enablement. This is
particularly relevant for informal efforts supported by HPC centers
that support users with a diverse range of research needs and
computing prowess. The relatively inexpensive nature of these labs
and the quests open possibilities for educators to couple activities
with classroom and HPC training. Indeed, coupled with adequate
assessment techniques, Qwiklabs can serve as a scalable platform
on which students can develop prowess on GCP.

Here, we explore the usability of Qwiklabs, and the pedagogical
approaches used to introduce users to cloud computing services and
environments on GCP for R&E. In particular, we report on the use
of employing scaffolded instruction, tiered instruction techniques
and innovative active learning exercises in the context of teaching
Cloud Computing via Quests and their associated labs. In this
study, we do not expand on the challenges available in Qwiklabs.
The programs goals were to assess the usability of these existing
labs in (a) increasing participant engagement in cloud computing,
(b) teaching relevant knowledge for current HPC users in order to
help them migrate their workflows, and (c) providing participants
with a learning environment that employed hands-on exercises.

2.2 Using Qwiklabs
The lead author on this publication (Chakravorty) has worked with
HPC technologies since 2004 and did not use Qwiklabs prior to this
exercise. Tri Pham has adopted HPC and cloud computing practices
in recent years. The authors have completed over 50 Qwiklabs
courses in 2019. These are listed in Table 1. The primary author
was first introduced to the platform at the Google Next 2019
conference in San Francisco, where conference attendees were
encouraged to explore Qwiklabs, with assistance provided by
“Googlers.” Since then, the authors have completed various GCP
labs online. To understand the tiered training approach, we
completed learning labs in quests at the Introductory, Fundamental,
Advanced, and Expert levels. In this study we did not participate in
Challenge labs. In addition to taking the online labs described in
Table 1, the author attended an introductory level in-person Google
Cloud Platform Fundamentals class offered by a third-party
company on behalf of Google. This session provided an overview
of Platform products and services, and demonstrated how to
incorporate GCP solutions into business strategies. In addition to
providing an introductory overview of the GCP suite of products,
the course covered topics related to storage, virtual machines,

Volume 11, Issue 1 Journal of Computational Science Education

94 ISSN 2153-4136 January 2020

containers and applications in the cloud. The in-person section also
covered topics in developing, deploying, and monitoring processes
in the cloud, as well as the use of machine learning and Big Data
technologies in the cloud. In addition, the author also attended a
session taught by a Googler that demonstrated how APIs can be
integrated with G Suite for Big Data analysis.

Table 1. Completed courses and quests for GCP along with all
labs associated with the quests and learning level are listed.
Quests that are in progress are denoted with an asterisk (*).
Only completed labs are reported for quests that are yet to be
completed. A list of completed labs that are not associated with
Quests are provided under the category of “Independent Labs
Completed”.

Quest Courses

GCP
Essentials

Level:
Introductory

A Tour of Qwiklabs and the GCP
Creating a Virtual Machine
Compute Engine: Qwik Start - Windows
Getting Started with Cloud Shell & gcloud
Kubernetes Engine: Qwik Start
Set up Network and HTTP Load Balancers

Google Cloud
Platform
Fundamentals:
Core
Infrastructure
Level:
Fundamental

Getting Started With Cloud Marketplace
Getting Started with Compute Engine
Getting Started with Cloud Storage and
Cloud SQL
Getting Started with Kubernetes Engine
Getting Started with App Engine
Getting Started with Deployment Manager
and Stackdriver
Getting Started with Big Query

Baseline
Infrastructure

Level:
Introductory

Cloud Storage: Qwik Start - Console
Cloud Storage: Qwik Start – CLI/SDK
Cloud IAM: Qwik Start
Stackdriver: Qwik Start
Cloud Functions: Qwik Start - Console
Cloud Functions: Qwik Start – Command
Line
Google Cloud Pub/Sub: Qwik Start - Console
Google Cloud Pub/Sub: Qwik Start –
Command Line
Google Cloud Pub/Sub: Qwik Start - Python

Security &
Identity

Fundamentals
Level:

Fundamental

Cloud IAM: Qwik Start
IAM Custom Roles
Service Accounts and Roles: Fundamentals
Install a Forseti Server on GCP
VPC Network Peering
User Authentication: Identity Aware Proxy
Getting Started with Cloud KMS
Setting up a Private Kubernetes Cluster
GKE Migrating to Containers

Google
Kubernetes
Engine Best

Practices
Level:

Advanced

Monitoring with Stackdriver on Kubernetes
Engine
Tracing with Stackdriver on Kubernetes
Engine
Logging with Stackdriver on Kubernetes
Engine
Connect to Cloud SQL from an Application
in Kubernetes Engine
Quiz: Kubernetes Engine Best Practices Quiz

Baseline:
Data, ML and

AI
Level:

Introductory

Cloud ML Engine: Qwik Start
Dataprep: Qwik Start
Dataflow: Qwik Start- Templates
Dataflow: Qwik Start - Python
Dataproc: Qwik Start - Console
Dataproc: Qwik Start – Command Line
Cloud Natural Language API: Qwik Start
Google Cloud Speech API: Qwik Start
Video Intelligence: Qwik Start

Cloud
Architecture

Level:
Fundamental

Orchestrating the Cloud with Kubernetes

Deployment Manager- Full Production

Kubernetes in
the Google

Cloud*
Level:

Advanced

Introduction to Docker
Kubernetes Engine: Qwik Start
Orchestrating the Cloud with Kubernetes
Managing Deployments Using Kubernetes
Engine

Windows on

GCP*
Level:
Expert

Compute Engine: Qwik Start - Windows
Deploy Microsoft SQL Server to Compute
Engine
Running Windows Containers on Compute
Engine
Stackdriver: Qwik Start

G Suite:
Integrations*

Level:
Advanced

Introduction to APIs in Google

Creating a Gmail add on

Independent

Labs
Completed

Level:
Various

Hardening Default GKE Cluster
Configurations
Google Kubernetes Engine Security: Binary
Authorization
Provision Services with GCP Marketplace
Using Role-based access controls in
Kubernetes Engine

	

3. RESULTS
An important consideration while evaluating this learning platform
is that the author had self-selected himself to participate in these
exercises, and has worked in the field of informal computing

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 95

education. Each approach and the associated exercises were
appropriate for the author and were found to be equally engaging.

3.1 Pedagogical Approach
Complex computing projects can overwhelm the new learner.
Qwiklabs facilitates in a tiered format where information is
provided, comprehended, analyzed and employed before moving to
the next step. As described above, quests may be at the as
Introductory, Fundamental, Advanced and Expert levels. The
exercises in these approaches build on each other. In a quest, labs
typically begin with an introduction to basic concepts, ensuring that
learners are familiar with common technologies and understand the
language. This is especially important for users who have had little
to no experience of using CACRS. These baseline activities also
provide a useful review for students who had some experience with
CACRS. Each topic in the lab contained a small activity to allow
for immediate application of the respective topic. To synthesize
knowledge gained in the lesson, learners were tasked with activities
and performed small assignments. Each segment scaling up in
difficulty and building on previously-learned concepts, as per a
scaffolded instruction approach. The activities are designed to
engage learners at varied skill levels. For example, in labs that
required software installation or deployment of pods, the labs took
steps to reduce the complications arising from having to installing
software and associated libraries. Labs provide an installation script
that automated most of the process. Furthermore, in Data Science
labs, learners learn to how to call data sets and leverage existing
modules to solve real world problems. At increased levels of
complexity, activities that provided lesser scaffolding were harder
to grasp than those that employed more scaffolding. The approach
included structured components, and lecture notes (or tutorials) that
can be accessed by the learner after completing the exercise.

3.2 The Learning Environment
Like many other online learning platforms, Qwiklabs quests and
labs are timed and self-paced. QL labs can take anywhere from 30
minutes to 2 hours to complete, and a quest may contain between 5
to 7 labs. Rather than requiring a commitment of multiple hours to
complete a module, the relatively shorter duration of these labs is a
strength as learners are able to work them into their daily schedule
with relative ease. For example, in order to maintain a continuous
learning process, the authors strived to successfully complete one
lab every day.

The labs rapidly introduce learners to the richness of the GCP
environment. The menu is expansive and includes all attributes
present in the GCP production environment. This includes the
current analytics packages, orchestration environment and software
stack. Mindful of traditional HPC users, the interface offers both
command line and GUI-driven management options that may be
used. While this rich environment remains a strength for
experienced cloud users, we noted that this could be overwhelming
for new users, particularly those who were not guided through the
process. Users can select an option on the GUI and see the
corresponding command on the shell. The advantage of this
approach is that learners who are not familiar with the command
line can get to work using the GUI instantly, while those more
comfortable with using the command line and inbuilt technologies
are accommodated as well. In addition to simultaneously learning
how to use the GUI and command line to perform select functions,
we found this two-pronged approach to be particularly useful when
the instructions in the Qwiklabs tutorial did not map to the options
on the GUI.

Cross-listed	labs,	i.e.	labs	associated	with	more	than	one	quest,	
are	used	to	create	a	cross-pollinating	effect	that	encourages	the	
learner	 to	 start	 an	 additional	 quest.	 For	 example,	 the	 lab,	
“Stackdriver:	Qwik	Start”	is	cross-listed	on	the	“Stack	Driver”	
and	“Windows	on	GCP”	quests.	While	there	are	significant	gains	
associated	with	this	approach,	it	can	also	cause	learners	to	run	
into	a	cascading	effect	if	a	cross-listed	Qwiklabs	course	is	not	
well-developed	or	has	issues.	Such	a	situation	could	negate	the	
learning	environment	for	multiple	quests.	Though	the	author	
did	 run	 into	 less	 refined	 labs	 on	 the	 platform,	 he	 didn’t	
encounter	 these	 issues	with	 cross-listed	 labs.	 	 An	additional	
issue	is	that	Qwiklabs	labs	may	go	offline	or	be	placed	under	
maintenance.	 For	 example,	 the	 cross-listed	 course	 entitled	
“Continuous	Delivery	with	Jenkins	in	Kubernetes	Engine”	has	
stopped	 progress	 on	 the	 “Cloud	 Architecture”,	 and	 the	
“Kubernetes	in	the	Google	Cloud”	quests.		

3.3 Challenges
Technology plays an important role in the success of online
learning environments. Glitches in an online training platform are
likely to deter new users. The time limits, coupled with the for-
credits (dollars) nature of these activities, makes the learner more
sensitive to issues on these platforms. While the Qwiklabs platform
is highly usable, here we describe some of the issues that we
discovered in the process. These issues did not prevent us from
completing a lab or exercise. Some of these issues were: (a) on
starting a lab, the session would fail to launch; (b) the
corresponding shell session would fail to launch for a session; (c)
virtual machines took a large amount of time to spin up; (d) limits
on resources supporting virtual machines (VMs) were not
established in the exercise; (e) the automatic progress checks would
not approve a step, while latter steps were successfully completed
and authenticated by the system; and (f) labs previously completed
would appear as incomplete in the learner’s learning profile if
restarted. A working solution for problems (a) and (b) was to
refresh the web-browser, while for (c) we recommend choosing a
smaller VM.

4. FUTURE DIRECTIONS
In this section we discuss ways in which Qwiklabs may be
integrated into the HPC user-education, and staff professional-
development environment.

4.1 Supporting a HPC Quest
Qwiklabs supports enterprise IT and web-based services. While
these services overlap with the needs of the HPC community in
areas such as cybersecurity and resource management, the specifics
are different. In terms of research pathways, labs for Big Data
analytics and artificial intelligence are perhaps best aligned to the
needs of the HPC community. We once again find synergies in
hosted data sets, use of shared server/notebooks (example Jupyter
Notebooks, Codelab), and containers but the specifics such as the
type of containers (docker on GCP, but Singularity in HPC
workloads) may change. On our introduction to Qwiklabs, we tried
to find an appropriate quest that focused on HPC technologies such
as deploying clusters, job schedulers (SLURM and IBM Spectrum
LSF), setting up SSH tunnels, how to enable cloud-burst and setting
up virtual private networks. While Qwiklabs doesn’t host a
dedicated quest for HPC workflows, GCP has a collection of
tutorials and resources that are available on Github. We direct the
interested user to these resources listed in Table 2. Qwiklabs offers
a number of training labs for installing and running AI-relevant
software such as Tensorflow. This level of support extends to
analytics such as Google BigQuery as well. To the best of our

Volume 11, Issue 1 Journal of Computational Science Education

96 ISSN 2153-4136 January 2020

knowledge, this resource-rich training ecosystem does not,
however, extend to the use of some of the largest use-cases of HPC
software stacks such as multi-physics codes (examples LAMMPS,
GROMACS). A Qwiklabs quest that focuses on installing this
software in a Singular container, followed by applications and best
data- and computer-management practices would be useful for
researchers in the HPC community. These modules could be
extended to include ways to share data and results among
researchers.

Table 2. Resources for Cloud Bursting [30-35].
Resource Courses

Cloud Burst
Using Slurm

Workflow
tutorial

Deploy an Auto-Scaling HPC Cluster on
GCP with Slurm
Introduction to GCP Python Client for
Compute Engine
Setting up VPN tunnel between strongSwan
VPN and GCP Cloud VPN

Documentation
GCP Compute Engine: Instance Template
Slurm Elastic Computing (Cloud Bursting)
GCP Cloud DNS: Overview

	

4.2 Developing a Direct Pathway to GCP
Certifications
Offering certifications to system administrators fills a key need in
the cloud arena. Such certifications allow sites to help with
employment and system production decisions. While Qwiklabs
provides a quick way to jump onto GCP’s platform, the correlation
between completing quests and current GCP certifications such as
the Google Cloud Associate Engineer is not clear. As discussed
previously, a person may complete a lab by merely copying and
pasting text from the instruction set to the lab, thus making it hard
to assess the value of an individual completing a quest. A defined
(or prescriptive) pathway toward achieving this certification would
be meaningful. A casual look at sample questions for the Google
Cloud Associate Engineer suggests that the certification exam is
geared for folks who have months of experience on GCP
supplementing the knowledge gained from Qwiklabs exercises.
While this approach to training users is likely to work for
researchers who are merely trying to find ways to migrate their
workflows to GCP, it may create a “chicken or egg” situation for
employers keen to adopt GCP. In the absence of lower-level
certifications demonstrating an applicant’s skill level, employers
will be forced to make hiring decisions without knowing a priori
whether their future employees will be able to be certified.

4.2 Surveys and Assessments
Qwiklabs relies on the honor system to report a learner’s progress.
The hand-holding (concierge service) nature of the learning labs is
such that solutions to problems are visible to the users. Student
success is generally evaluated based on their ability to complete the
session’s hands-on activities. In specific cases a student’s progress
is marked by an in-built checkpoint. While focusing on ease of use,
the platform allows learners to copy paste the solution and complete
a lab within minutes. Only a few labs have associated quizzes that
test the knowledge gained by the exercise. This could be improved
on as an extension of the work. There are opportunities to perform
formative and summative assessments to gauge a learner’s learning
gains and the platform’s overall delivery. Formative evaluation can
be built into activities through short, informal student quizzes that
evaluate a learners’ understanding of the presented concepts. In

turn, a summative assessment would evaluate a student’s learning,
and collect feedback on the utility of the labs to a user’s learning.
It is important to note that in contrast to the Learning labs discussed
in this review, Challenge labs only provide objectives rather than
step-by-step instructions. These labs test a participant’s ability to
achieve them. Challenge labs could be associated with the quests
themselves, thus functioning as capstone projects that required the
students to apply the knowledge gained from the session. Taken
together this data could be used to build a quantitative model for
evaluating course success and to develop a profile of the kind of
students (or groups of students) that are most likely to benefit from
these labs.

5. CONCLUSIONS AND LESSONS LEARNED
Student training in computing is a critical area where demand
currently outweighs supply. By design, the scaffolded nature of the
labs in quests provide few opportunities to solve problems by
developing hypotheses and validating them. In contrast, to learning
labs, Challenge labs present a general objective and require
participants to complete a series of tasks. In such labs, participants
may choose one of many approaches to solve the problem at hand.
Our experience from this training program shows that intermediate-
level coding can be effectively combined with a number of
interesting activities. The largest challenges lies in that these
activities are not connected directly to HPC users. An abundance
of free-tutorials on Github, hands-on activities and scaffolding
educational technique helped reduce a priori knowledge that a user
is required to have in order to get started on traditional HPC
resources. The strategies described in this work are likely to help
specific aspects of undergraduate curricula. These approaches
present exciting opportunities to engage HPC users in Cloud
computing, a critical step, to get them to use CACRS effectively.

6. SUPPORTING INFORMATION
All training materials used in this study are available to the
community at Qwiklabs (https://www.qwiklabs.com). The author’s
progress on the Qwiklabs platform can be followed on his Linked-
in profile. Labs used in the in-person training exercise by a GCP
external provider are the property of the instructor and may be
accessed for reviewing purposes with explicit permission of the
instructor. Surveys, and review exercises that will be developed as
part of this longitudinal study may be requested from the author.
Please send us feedback about your adoption experience via an
email to help@hprc.tamu.edu.

7. ACKNOWLEDGEMENT
The authors thank staff at Texas A&M HPRC and Google Cloud
Platform for assisting with the research related to this study. We
thank the GCP training crew at Google Next 2019 for helping get
started on Qwiklabs and offering introductory credits. Additional
credits for Qwiklabs were kindly provided on request by GCP. We
gratefully acknowledge support from the National Science
Foundation (NSF). We thank the NSF for award #1649062, “NSF
Workshop: Broadening Participation in Chemical and Biological
Computing at the Early Undergraduate Level”, award #1730695,
“CyberTraining: CIP: CiSE-ProS: Cyberinfrastructure Security
Education for Professionals and Students”, and award # 1925764,
“NSF CC* SWEETER: South West Expertise in Expanding
Training Education and Research”

8.		REFERENCES	
[1] C.A. Stewart, T.M. Cockerill, I. Foster, D. Hancock, N.

Merchant, E. Skidmore, D. Stanzione, J. Taylor, S. Tuecke,
G. Turner, M. Vaughn, and N.I. Gaffney, “Jetstream: a self-
provisioned, scalable science and engineering cloud

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 97

environment,” In Proceedings of the 2015 XSEDE
Conference: Scientific Advancements Enabled by Enhanced
Cyberinfrastructure. St. Louis, Missouri. ACM: 2792774. p.
1-8. http://dx.doi.org/10.1145/2792745.2792774

[2] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A.
Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G.D.
Peterson, R. Roskies, J.R. Scott, N. Wilkins-Diehr, "XSEDE:
Accelerating Scientific Discovery", Computing in Science &
Engineering, vol.16, no. 5, pp. 62-74, Sept.-Oct. 2014,
doi:10.1109/MCSE.2014.80

[3] Aristotle - https://federatedcloud.org/about/index.php
[4] CloudLab - https://cloudlab.us/
[5] NIH Strides - https://datascience.nih.gov/strides
[6] Critical Techniques, Technologies and Methodologies for

Advancing Foundations and Applications of Big Data
Sciences and Engineering (BIGDATA) -
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5047
67

[7] NSF Campus Cyberinfrastructure (CC*) -
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5047
48

[8] Enabling Access to Cloud Computing Resources for CISE
Research and Education (Cloud Access) -
https://www.nsf.gov/funding/pgm_summ.jsp?pims_id=5055
91

[9] Coursera- https://www.coursera.org/
[10] Linux Academy - https://linuxacademy.com/
[11] NSF and Internet2 to explore cloud computing to accelerate

science frontiers -
https://nsf.gov/news/news_summ.jsp?cntn_id=297193

[12] Google acquires Qwiklabs to teach Developers cloud skills,
November 21, 2016. This article may be accessed online at
URL - https://techcrunch.com/2016/11/21/google-acquires-
qwiklabs-to-teach-developers-cloud-skills/

[13] Google acquires Qwiklabs to teach Developers cloud skills,
November 21, 2016. This article may be accessed online at
URL - https://blog.qwiklabs.com/skill-up-the-world/

[14] Texas Regional Collaboratives, “Building the Texas
Computer Science Pipeline Strategic Recommendations for
Success | theTRC.org,” 2014

[15] K. Saichaie, D. C. Brooks, P. Long, R. Smith, R. Holeton, C.
Meyers, A. Finkelstein, S. Dugdale, "7 Things You Should
Know About Research on Active Learning Classrooms," in
ELI 7 Things You Should Know, Educause Learning
Initiative (ELI), 2017

[16] P. Baepler, J. D. Walker, D. C. Brooks, K. Saichaie, C. I.
Petersen, B. A. Cohen, "A Guide to Teaching in the Active
Learning Classroom: History, Research, and Practice," Stylus
Publishing, ISBN-13: 978-1620363003, 2016

[17] Student-Centered Active Learning Environment with
Upside-down Pedagogies: http://scaleup.ncsu.edu/

[18] A. Yadav, N. Zhou, C. Mayfield, S. Hambrusch, and J. T.
Korb, “Introducing computational thinking in education
courses,” in Proceedings of the 42nd ACM technical
symposium on Computer science education, pp. 465–470,
ACM, 2011.

[19] J. J. Lu and G. H. Fletcher, “Thinking about computational
thinking,” in Proceedings of the 40th ACM Technical
Symposium on Computer Science Education, SIGCSE ’09,
(New York, NY, USA), pp. 260–264, ACM, 2009.

[20] K. Brennan and M. Resnick, “New frameworks for studying
and assessing the development of computational thinking,” in
Annual American Educational Research Association
meeting, (Vancouver, BC, Canada), 2012

[21] J. M. Wing, “Computational thinking and thinking about
computing,” Philosophical transactions of the royal society
of London A: mathematical, physical and engineering
sciences, vol. 366, no. 1881, pp. 3717–3725, 2008.

[22] M. Prince, “Does active learning work? a review of the
research,” Journal of engineering education, vol. 93, no. 3,
pp. 223–231, 2004.

[23] J. Parsons and L. Taylor, “Improving student engagement,”
Current issues in education, vol. 14, no. 1, 2011.

[24] Larkin, M. (2002). Using scaffolded instruction to optimize
learning. http://www.vtaide.com/png/ERIC/Scaffolding.htm

[25] C. Holdgraf, A. Culich, A. Rokem, F. Deniz, M. Alegro, D.
Ushizima. “Portable Learning Environments for Hands-On
Computational Instruction” in Proceedings of PEARC17,
New Orleans, LA, USA, July 09-13, 2017, 9 pages. DOI:
10.1145/3093338.3093370

[26] D. K. Chakravorty, M. Pennings, H. Liu, Z. Wei, D. M.
Rodriguez, Levi T. Jordan, D. F. McMullen, N. Ghaffari, and
S. D. Le. “Effectively Extending Computational Training
Using Informal Means at Larger Institutions,” Journal of
Computational Science Education 2018, 40-47 DOI
10.22369/issn.2153-4136/10/1/7.

[27] D. K. Chakravorty, M. Pennings, H. Liu, Z. Wei, D. M.
Rodriguez, L. T. Jordan, D.F. McMullen, N. Ghaffari, S. D.
Le, D. Rodriquez, C. Buchanan, and N. Gober. “Evaluating
Active Learning Approaches for Teaching Intermediate
Programming at an Early Undergraduate Level,” Journal of
Computational Science Education 2018, 61-66 DOI
10.22369/issn.2153-4136/10/1/10.

[28] D. K. Chakravorty, D. F. McMullen, N. Gober, J. H. Seo, M.
Bruner, and A. Payne. “Using Virtual Reality to Enforce
Principles of Cybersecurity,” Journal of Computational
Science Education 2018, 81-87 DOI 10.22369/issn.2153-
4136/10/1/13.

[29] D. K. Chakravorty, M. Pennings, H. Liu, X. Thomas, D. M.
Rodriguez, and L.M. Perez. “Incorporating Complexity in
Computing Camps for High School Students – A Report on
the Summer Computing Academy Program at Texas A&M
University,” Journal of Computational Science Education
2019. (Accepted).

[30] Slurm on Google Cloud Platform -
https://github.com/SchedMD/slurm-gcp

[31] Using the Cloud Client Libraries for Python -
https://cloud.google.com/compute/docs/tutorials/python-
guide

[32] How to set up a VPN between strong Swan and Cloud VPN -
https://cloud.google.com/community/tutorials/using-cloud-
vpn-with-strongswan

[33] GCP Compute Engine: Instance Template -
https://cloud.google.com/compute/docs/instance-templates/

Volume 11, Issue 1 Journal of Computational Science Education

98 ISSN 2153-4136 January 2020

[34] Slurm Elastic Computing (Cloud Bursting) -
https://slurm.schedmd.com/elastic_computing.html

[35] GCP Clound DNS: Overview The URL may be found at -
https://cloud.google.com/dns/docs/overview

REPRODUCIBILITY	APPENDIX	
	
Computational	results	are	not	part	of	this	paper.		(Please	refer	
tohttps://sc18.supercomputing.org/submit/sc-
reproducibility-initiative/)	
	
	

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 99

Teaching HPC Systems Administrators
Alex Younts

ayounts@purdue.edu
Purdue University

Stephen Lien Harrell
sharrell@purdue.edu
Purdue Univeristy

ABSTRACT
The ability to grow and teach systems professionals relies on having
the capacity to let students interact with supercomputers at levels
not given to normal users. In this paper we describe the teaching
methods and hardware platforms used by Purdue Research Com-
puting to train undergraduates for HPC systems-facing roles. From
Raspberry Pi clusters to the LittleFe project, previous work has
focused on providing miniature hardware platforms and develop-
ing curriculums for teaching. Recently, we have developed and
employed a method using virtual machines to reach a wider audi-
ences, created best practices, and removed barriers for approaching
coursework. This paper outlines the system we have designed, ex-
pands on the benefits and drawbacks over hardware systems, and
discusses the failures and successes we have had teaching HPC
System Administrators.

KEYWORDS
hpc, syspros, systems professionals

1 INTRODUCTION
As leadership computing facilities draw closer to exascale and aca-
demic research computing centers mature around the world, the
need for competent HPC System Administrators is increasing. Simi-
larly, the complexity of HPC systems is increasing with the slowing
of theMoore’s Law trend and node heterogeneity becoming all but a
necessity. Gone are the days when commodity hardware connected
with some cheap Ethernet switches were a viable solution to solving
the world’s science problems. Today, system administrators need to
tackle accelerators, big data technologies, AI and ML frameworks,
ever changing network fabrics, and a quickly changing ecosystem
of core architectures. In the same way that this complexity has
increased, HPC system administration training approaches must
also mature in complexity and scope.

1.1 Roles of HPC System Administrators
Although system administration, as a professional practice, is well
established, HPC adds a layer of complexity that requires it’s own
community, documentation, and training. While operating sys-
tem skills are the same, the “High Performance” in HPC requires
understanding of CPU architecture, exotic networks, computer ar-
chitecture, and parallel technologies in a way that is foreign to
most system administrators. As a background for teaching HPC

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/16

System Administrators, it is important to set a baseline of roles and
responsibilities needed to run an HPC machine.

There are four major roles that encompass the operation of HPC
machines (clusters):

• Network Administration
• Parallel Storage Administration
• Data Center and Hardware Administration
• System Administration and Automation

Additionally, these roles often have different responsibilities
within an HPC context than they would in a typical industry role.
For instance, a traditional network system administrator may need
to know a) routing protocols, b) network hardware administration,
and c) TCP/IP, whereas an HPC network administrator would be
expected to not only know these topics, but be expected to under-
stand low latency interconnects, such as RDMA networks, as well
as understanding how the network layer can impact parallel jobs
running over it. Similarly, while storage administrators may need
to know a) NFS, b) CIFS, and c) storage appliances in a traditional
industry role, within HPC they would be required to know parallel
file systems (Lustre, GPFS), file systems over RDMA and even tape
archival systems that often play a vital role in research-focused
computing. Data center focused administrators for large system
installations largely have the same concerns as their HPC-focused
colleagues. Lastly, systems administrators, who are responsible for
the OS, create and submit hosts and nodes of a cluster, set up the
scheduler, the general deployment of the entire cluster, and the on
going configuration management, are expected to understand a
completely different technology stack. While each of these roles
requires considerable expertise, many time systems facing staff are
expected to be experts in a few and knowledgeable in all of these
roles. The more roles staff are knowledgeable about, the better un-
derstanding of each component (systems, network, storage) and
how each component interacts with the whole system. This knowl-
edge is crucial to understanding failures and tuning the system to
be truly High Performance.

2 HPC SYSTEMS TRAINING APPROACHES
The traditional method for teaching system administration is the
apprentice model [14]. Within this model, an "expert" slowly feeds
tasks of increasing difficulty to the "apprentice", while at the same
time being a resource for topics intrinsic to a specific task, but also
as a guide to the self-learning process. While this is an important
and time-tested method for training system administrators of ev-
ery variety, this approach does not scale and is extremely high
touch. It requires an "expert" to have plenty of time and the right
demeanor for the apprenticeship to create a competent HPC System
Administrator.

Volume 11, Issue 1 Journal of Computational Science Education

100 ISSN 2153-4136 January 2020

https://doi.org/10.22369/issn.2153-4136/11/1/16

2.1 Workshops
Currently there are two workshops that include HPC System Ad-
ministration training and tutorials. The first and oldest, Linux Clus-
ters Institute (LCI), "provides education and advanced technical
training for IT professionals who deploy and support High Perfor-
mance Computing (HPC) Linux clusters" [4]. LCI provides two sep-
arate workshops, one for Linux novices and one for Linux System
Administrators that are trying to learn HPC. The second workshop,
The TACC Institute Series Immersive Training in Advanced Com-
putation: Designing and Administering Large-scale Systems, also
provides a week-long workshop where students are "provisioning
nodes, installing and configuring resource managers, maintaining a
sane user environment, and addressing security concerns" [6]. Both
of these workshop provide hands-on activities as well as lectures
that provide context for the training.

2.2 Student Cluster Competition
The Student Cluster Competition (SCC) [9] is described as ”a micro-
cosm of a modern HPC center that teaches and inspires students
to pursue careers in the field. It demonstrates the breadth of skills,
technologies and science that it takes to build, maintain and utilize
a supercomputer.“ [18]. This event, while not solely focused on HPC
Systems Administration, includes opportunities for undergraduates
to learn and practice HPC System Administration in the heart of
the competition.

2.3 Undergraduate Training at Purdue
At Purdue University, as well as other institutions, the HPC systems
staff provides job opportunities for undergraduates, as well as HPC
and clustering classes on campus. The material for the classes grew
out of the Purdue SCC program and have evolved into their own
topics over the years.

3 PURDUE HPC SYSTEMS TRAINING
THROUGH THE YEARS

Purdue University’s Research Computing center started hiring un-
dergraduates to do HPC systems work in 2003. This was the be-
gining of our HPC systems administrator training which primarily
used an apprentice model. Starting in 2007, Systems staff mentored
students in the Student Cluster Competition series. Since then, staff
have been iterating on how to best teach HPC concepts and system
administration to undergraduates and have tried many technology
platforms to provide consistent, affordable, and reliable platforms
for teaching HPC.

3.1 Early Years
In 2007 and the following few years, training initiatives at Purdue
were based around the Student Cluster Competition. [10] HPC sys-
tems staff partnered with faculty on campus to provide overviews
of parallelism, however these early years of the competition were
heavily geared toward HPC system administration, more so than
later years. The classes were primarily an open lab format which
could be categorized as a distributed apprentice model.

3.1.1 Training Platform: SCC Competition Hardware. The hard-
ware platforms chosen for these competitions varied from year to

Figure 1: Purdue Student Cluster Competition Team

year, and as the years progressed, the clusters became more com-
plex. In 2007, the student cluster was architected after a traditional
Beowulf cluster with simple servers and Ethernet networking. A
year later, the Purdue team took an experimental SiCortex many-
core cluster composed of hundreds of MIPS cores and a custom
interconnect [2]. Later, the cluster concept turned from homoge-
neous compute nodes to hybrid nodes prominently featuring GPU’s
for compute acceleration.

What remained the same throughout the years of building the
SCC clusters was that the hardware was always a short term loan
from a sponsoring vendor. Students, especially those handling the
team’s system administrator needs, were always presented with
the most recently released hardware and the time challenge of
preparing it for the competition.

3.1.2 Outcomes and Lessons Learned. While being a naive im-
plementation, this first method of teaching undergraduates HPC
systems-facing topics was somewhat effective and an important first
step. Those first classes, which were approximately ten students
each, were responsible for three students becoming HPC system
administrators and are currently working in the HPC community
today. Additionally, students were introduced to the academic writ-
ing process and published two experience papers on the subject
[12] [22].

We found that not having formal classes for something like the
SCC was a detriment to student participation. Student attendance
and commitment were sometimes low. Additionally, giving students
complex HPC-centric hardware right away created a very steep
ramp for students to overcome.

3.2 Formalized Classes
In 2011, to combat low participation in the SCC meetings and incon-
sistency in training, classes were formalized beyond an open lab.
While the classes were still centered around the SCC, we worked to
create a curriculum that could be reused and contained important
parallel computing and HPC systems topics.

3.2.1 Assignments.

(1) Introduction to HPC and the SCC

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 101

(2) Usage of Supercomputers (login and compile HPCC)
(3) Introduction to Computer and HPC Architecture
(4) Linux Installation, Daemons, Configuration Files and Basic

Networking
(5) Batch Schedulers, Advanced SSH
(6) Compiling with MPI and OpenMP
(7) Strong and Weak Scaling Studies and Bottleneck Identifica-

tion
(8) Specific SCC Applications and Strategy for the Rest of the

Course

3.2.2 Training Platform: Recycled Desktops. Our first attempts
at providing a dedicated training platform over short term vendor
loans was to re-purpose desktops [13] after their life in the student
computer labs ended. Every student was given 4 desktops, cables,
and an Ethernet switch. This was a fairly adequate solution when
new parts were available yearly, but as budgets and technology
have changed, computer labs changed their refresh cycles and are
no longer on a predictable schedule so this effort was sustainable
long term.

3.2.3 Outcomes and Lessons Learned. This era of classes was
a marked improvement over previous years. Although the classes
still included practical labs around the SCC, the instructors touched
on more “theory” topics than before such as computer architecture.

Additionally as the desktops aged, replacement parts were nec-
essary, especially after inexperienced students performed repairs.
Plus, full sized desktops take up a lot of floor space. During an
inspection of the space, a glib manager was heard saying “It would
be terrible if a student got trapped under an avalanche of chalk-dust
encrusted desktops."

3.3 Bare Hardware to Computational
Visualization

In 2013, we went back to an open lab that revolved around the
SCC and began a separate class that ran alongside the SCC open
lab. This was open to anyone that was interested in HPC, not just
SCC participants. It was also the time that we started to focus
on inspiring undergraduates as well as teaching. A breadth-first
approach was taken with the idea of having a final project where
students could see the fruits of their labors in an accessible way.
We chose to run weather code to forecast as weather maps from a
visualization of a forecast is a common and accessible experience
for almost everyone, regardless of background. [8]

3.3.1 Assignments.

(1) Introduction to HPC
(2) Basic Linux Installation
(3) Automating Installs
(4) Hardware Setup and Install [lab]
(5) Schedulers
(6) Interconnects and Storage
(7) DHCP and DNS for clusters [lab]
(8) Shared Storage for Clusters [lab]
(9) Scheduler Setup [lab]
(10) Installing MPICH
(11) Installing WRF
(12) Troubleshooting WRF and MPI

Figure 2: Student with LittleFE cluster.

Figure 3: LittleFE Computer Lab.

(13) Introduction to Python
(14) Visualizing wrfout
(15) Automating WRF Runs with Python

3.3.2 Training Platform: LittleFE. The "little iron" project brings
together curriculum and a hardware plan that many schools have
implemented to teach students high performance computing [16].
The platform itself is made of bare motherboards and metal rods to
act as a mounting platform. A student or a small team of students
get their own cluster. Each cluster costs a reasonable amount for
the number of computers involved and students can get the visceral,
hands on experience putting together their machine [17]. Also, it is
possible to get low-end consumer video hardware build onto the
node motherboards for lightweight accelerator work as well. While
initial investment per seat is manageable, and cheaper than a half-
rack of real cluster compute nodes, the costs are not insignificant.

After outgrowing the "pile of desktops" solution, we sought
an internal grant and built 15 LittleFe clusters to continue as our
teaching platform. Initially, it seemed like we could procure each
seat for a reasonable sum of money, but after the build was over

Volume 11, Issue 1 Journal of Computational Science Education

102 ISSN 2153-4136 January 2020

and all receipts were collected, the price had risen to approximately
20% due to needing additional pieces. This solution provided many
benefits that we were looking for but hit a wall when we needed
to scale the number of students we reached. Not only did the per-
seat cost end up being more expensive, but the desk space and
off-semester storage of the hardware became a logistical problem.

3.3.3 Lessons Learned. The breadth approach, while well inten-
tioned, was too much to include in one semester. Students were
often faced with hardware or OS problems when they were sup-
posed to be running WRF or writing python to visualize. Although
this method may work if the topic list is paired down, one must be
careful not to overwhelm the students. In the end, some students
did not have the time to complete the visualizations, thus negating
the point of this method.

The LittleFe hardware suffered a number of growing pains as we
progressed through the build and the course. The materials were
difficult to acquire through the University procurement system, a
web tool designed to buy complete computers and not just a stack of
parts. The mounting hardware shined a light on both cooling prob-
lems and static electricity issues, both causing general instability
for students. Given the overall mounting solution, the clusters were
essentially immobile and required us to open additional lab periods
so students could complete their work. Although this hardware was
not well suited for this task, it has been used quite successfully for
single day hack-a-thons and is sufficiently stable for that use case.
If we had the resources to develop a second generation of LittleFe
instruments, we believe many of these issues could be mitigated.

4 CURRENT EFFORTS
As an amalgamation of our previous experiences, the courses that
are instructed today [11] have two tracks. First a scientific comput-
ing track, which provides students with some basic Linux skills but
focuses on running and visualizing scientific codes. Then an HPC
Systems Track, which truly focus on important aspects of building
systems. This was a hybrid approach of inspiring undergraduates
but still focusing where the students interests lie in order to reduce
the amount of topics from our previous efforts.

4.1 HPC Systems Track
The HPC Systems Track was integrated into the new course cur-
riculum as a way to engage a more diverse set of students. Students
in the sciences had a firm footing for many of the course activities,
but students from the Polytechnic school and Computer Science
and Engineering majors were provided this path to understand the
technical work behind the scenes of supercomputing. The course
was broken into three modules and this track was offered as an
alternative to the second module. The first module covered intro-
ductory materials and labs and the third module was a crash course
in simulating fluid dynamics problems using OpenFOAM.

The System Track included practical activities in the data center
to work on the University’s real resources but focused on providing
a hands-on-keyboard experience to learn the guts of HPC clusters.
The goal was for students to be able to explore a working system
and replicate it themselves without copying the example. Each
assignment had a final stretch goal that allowed us to judge whether

students were simply copying configuration files around or actually
exploring and learning the material.

4.1.1 Assignments.

(1) Introduction to HPC
(2) Tutorial on the Advanced Linux Shell [lab]
(3) Presentation on Cluster Architecture
(4) Data Center Tour and Hands-on Lab
(5) Basic Linux Virtual Machine Installation [lab]
(6) Master Node xCAT Installation [lab]
(7) Building Compute Node Images [lab]
(8) Installation of Slurm [lab]
(9) Running Sample Jobs [lab]

4.2 Virtual Labs
As we expanded our scale to dozens of students per semester and
planned for even wider reach, it became clear the monetary invest-
ments in physical infrastructure and the time investment getting
low grade hardware to cooperate were detracting from reaching
our goals. We evaluated several commercial cloud-based offerings
to host the lab environment but the options seemed geared to-
wards traditional client-server IT teaching. We also researched
using infrastructure as code tools, like Terraform [1], to automate
lab environments in AWS, but found the variable costs very diffi-
cult to quantify and potentially quite large. We needed a new way
forward that fit with the campus’s available cyberinfrastructure
and could be delivered remotely. We came up with the virtual HPC
lab concept.

4.2.1 Implementation. The basics of the method was to enable
our Scholar cluster [5], which is a supercomputer dedicated to com-
putational research teaching, to run scripted virtualized clusters
for students. We required the solution involve no privileged system
access (e.g. sudo access) or access to the underlying network in-
frastructure [20] (e.g. Linux Ethernet bridges). We used the popular
QEMU system emulator along with the Virtual Distributed Ethernet
(VDE) userland networking stack [7].

Students had the ability to launch a script that brought up their
virtual lab through our ThinLinc remote desktop in a web browser
and get an empty, semi-configured, or completed configured cluster
environment [21]. The script, just a bash script run by students at
a terminal, lets students choose the lab to launch, handles creating
copy on write snapshots from golden image masters, lets students
continue progressing on current labs, and the ability to reset a lab
back to a checkpoint if something goes wrong.

The lab environment spawns several windows, each representing
the QEMU console to a running virtual machine or console access
to a VDE network instance. Students are able to adjust the running
parameters of the QEMU instances (e.g. inserting a boot disk) and,
with some limitations, have essentially identical access to the lab
as if it was running on real hardware.

4.2.2 Lessons Learned. Using previous courses as comparison,
the first readily apparent success of the virtual lab concept was that
students were learning valuable HPC skills in the first lab. Student
frustration was also significantly down, as rolling back to a working
check point or starting over did not take an hour waiting for the
RedHat installer to run. Students also appreciated the ability to

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 103

work on the labs and assignments outside of class since the Scholar
environment is available remotely any time of the day.

The class sessions themselves progressed fairly normally. The
lecturer presented context and background information at the start
of class. They could demonstrate any tips or tricks to the class using
a snapshot of the environment at the same stage of progress as
the students’ copies. Teaching assistants were available to assist
individual students on their laptops as problems arose or remotely
by using ThinLinc session sharing.

While the experience was overall very positive, one speed bump
did sneak up. Scholar, built as a platform for teaching science, had
a scratch file system primarily tuned for standard HPC workloads.
Having numerous QEMU virtual machines running with their disk
images doing random small block I/O did take a toll on overall
system responsiveness. The scratch file system was based on the
ZFS file system and adding a small quantity of SSD disks resolved
the issue.

4.3 Future work
After seeing a pair of courses successfully run using the virtual
HPC lab environment, we are encouraged that our goal to some day
offer our courses widely is possible. As we move forward to publish
our curriculum and environments, we hope to build momentum
to provide the academic HPC community the skill sets that are
desperately required.

5 OTHER TRAINING PLATFORMS
Although these platforms have not been used in any HPC Systems
Administration classes at Purdue, they have been evaluated and
and may fit the needs of others depending on the availability of
resources and time.

5.1 Raspberry Pi Clusters
A small stack of Raspberry Pi’s are all the rage across the Internet.
From business [15] to education to Department of Energy labs [19],
everyone seems to be building tiny clusters [3]. These clusters do
everything from compiling and testing pipelines, to simple MPI
scalability testing, and to running production workloads through
Kubernetes.

Aside from reliability issues with early Rasperry Pi’s and clone
boards, the best part about a stack of single board computers is the
cost. A student can readily be provided a cluster for under $500.
However, we believe that many of the drawbacks found in using
dedicated hardware are still present in a cluster of Pi’s.

5.2 Cloud Environments
Commercial cloud providers are a potential avenue to explore in
greater depth. The core technology requirements a) isolated net-
work segments, b) snapshots and rollback of instances, and c) the
ability for remote student assistance already exist as features on
all the various providers’ platforms. Additionally, while the scripts
written for Scholar could be portable to other institutions and sys-
tem resources, some effort will be required. We hope to keep that
effort to a bare minimum as we move towards publishing our work
further, but we acknowledge the strong advantages of a universal
platform with consistent lab materials and curriculum.

The largest drawbacks at the present time to the cloud are a lack
of a cohesive interface for students and the variable costs an insti-
tution will incur depending on student usage of the environment.

6 CONCLUSIONS
Purdue Research Computing’s training methods for HPC System
Administrators and the hardware platforms have supported these
efforts. We have found that running our own virtualized environ-
ment for teaching to be effective to meet our goals of low cost, low
overhead, and low student frustrations. Additionally, we have split
our class to have two separate tracks to focus on the HPC Systems
topics while still maintaining our goal of inspiring undergraduates.

ACKNOWLEDGMENTS
We thank our faculty partners, Dr. Evans, Dr. Baldwin and Dr.
Ward, and all our colleagues and management who made this work
possible. We’d also like to thank Christopher Phillips for his keen
editorial skills.

REFERENCES
[1] 2020. Terraform. https://www.terraform.io [Online; accessed 17. Jan. 2020].
[2] 2020. The SiCortex SC series | TOP500 Supercomputing Sites.

https://web.archive.org/web/20090531211623/http://www.top500.org/2007_
overview_recent_supercomputers/sicortex_sc_series [Online; accessed 17. Jan.
2020].

[3] Joel C Adams, Jacob Caswell, Suzanne J Matthews, Charles Peck, Elizabeth Shoop,
and David Toth. 2015. Budget Beowulfs: A showcase of inexpensive clusters for
teaching PDC. In Proceedings of the 46th ACM Technical Symposium on Computer
Science Education. ACM, 344–345.

[4] David Akin, Mehmet Belgin, Timothy A. Bouvet, Neil C. Bright, Stephen Lien Har-
rell, Brian Haymore, Michael Jennings, Rich Knepper, Daniel LaPine, Fang Cherry
Liu, Amiya Maji, Henry Neeman, Resa Reynolds, Andrew H. Sherman, Michael
Showerman, Jenett Tillotson, John Towns, George Turner, and Brett Zimmer-
man. 2017. Linux Clusters Institute Workshops: Building the HPC and Research
Computing Systems Professionals Workforce. In Proceedings of the HPC Systems
Professionals Workshop (HPCSYSPROS’17). ACM, New York, NY, USA, Article 4,
8 pages. https://doi.org/10.1145/3155105.3155108

[5] M. E. Baldwin, X. Zhu, P. M. Smith, S. L. Harrell, R. Skeel, and A. Maji. 2016.
Scholar: A Campus HPC Resource to Enable Computational Literacy. In 2016
Workshop on Education for High-Performance Computing (EduHPC). 25–31. https:
//doi.org/10.1109/EduHPC.2016.009

[6] Texas Advanced Computing Center. 2019. TACC Institute Series Immersive
Training in Advanced Computation. https://www.tacc.utexas.edu/education/
institutes/designing-and-administering-large-scale-systems

[7] Renzo Davoli. 2005. Vde: Virtual distributed ethernet. In First International Con-
ference on Testbeds and Research Infrastructures for the Development of Networks
and Communities. IEEE, 213–220.

[8] Stephen Lien Harrell, Benjamin J Cotton, Michael E Baldwin, and Andrew L
Howard. 2013. Developing a Scientific Computing Cluster Course for the Under-
graduate Curriculum. (2013).

[9] Stephen Lien Harrell, Hai Ah Nam, Verónica G. Vergara Larrea, Kurt Keville, and
Dan Kamalic. 2015. Student Cluster Competition: A Multi-disciplinary Under-
graduate HPC Educational Tool. In Proceedings of the Workshop on Education for
High-Performance Computing (EduHPC ’15). ACM, New York, NY, USA, Article 4,
8 pages. https://doi.org/10.1145/2831425.2831428

[10] Stephen Lien Harrell, Preston M. Smith, Doug Smith, Torsten Hoefler, Anna A.
Labutina, and Trinity Overmyer. 2011. Methods of Creating Student Cluster
Competition Teams. In Proceedings of the 2011 TeraGrid Conference: Extreme
Digital Discovery (TG ’11). ACM, New York, NY, USA, Article 50, 6 pages. https:
//doi.org/10.1145/2016741.2016795

[11] Elizabett Hillery, Mark Daniel Ward, Jenna Rickus, Alex Younts, Preston Smith,
and Eric Adams. 2019. Undergraduate Data Science and Diversity at Purdue
University. In Proceedings of the Practice and Experience in Advanced Research
Computing on Rise of the Machines (Learning) (PEARC ’19). ACM, New York, NY,
USA, Article 88, 6 pages. https://doi.org/10.1145/3332186.3332202

[12] Andrew Howard, Alex Younts, Preston M. Smith, and Jeffery J. Evans. 2008.
Undergraduate experience in clustering at the SC07 Cluster Challenge. In In
Proceedings of the 2008 Linux Clusters Institue.

Volume 11, Issue 1 Journal of Computational Science Education

104 ISSN 2153-4136 January 2020

https://www.terraform.io
https://web.archive.org/web/20090531211623/http://www.top500.org/2007_overview_recent_supercomputers/sicortex_sc_series
https://web.archive.org/web/20090531211623/http://www.top500.org/2007_overview_recent_supercomputers/sicortex_sc_series
https://doi.org/10.1145/3155105.3155108
https://doi.org/10.1109/EduHPC.2016.009
https://doi.org/10.1109/EduHPC.2016.009
https://www.tacc.utexas.edu/education/institutes/designing-and-administering-large-scale-systems
https://www.tacc.utexas.edu/education/institutes/designing-and-administering-large-scale-systems
https://doi.org/10.1145/2831425.2831428
https://doi.org/10.1145/2016741.2016795
https://doi.org/10.1145/2016741.2016795
https://doi.org/10.1145/3332186.3332202

[13] Jason St John and Thomas J Hacker. 2017. A Small-Scale Testbed for Large-Scale
Reliable Computing. In 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 1251–1258.

[14] David Jones. 2018. How do you teach Systems Administration?. In SAGE-AU.
[15] Patrick Kennedy. [n. d.]. Oracle Shows 1060 Raspberry Pi Supercom-

puter at Oracle OpenWorld 2019. https://www.servethehome.com/
oracle-shows-1060-raspberry-pi-supercomputer-at-oow/

[16] Mobeen Ludin, Aaron Weeden, Jennifer Houchins, Skylar Thompson, Charles
Peck, Ivan Babic, Kristin Muterspaw, and Elena Sergienko. 2013. LittleFe: The
high performance computing education appliance. In 2013 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 1–1.

[17] Charles Peck. 2010. LittleFe: parallel and distributed computing education on
the move. Journal of Computing Sciences in Colleges 26, 1 (2010), 16–22.

[18] SC17. 2017. Student Cluster Competition. https://sc17.supercomputing.org/
studentssc/student-cluster-competition/index.html

[19] Adam Simpson, Anthony DiGirolamo, and Robert D. French. [n. d.]. Tiny Titan
from Oak Ridge Leadership Computing Facility. https://tinytitan.github.io

[20] Julian Stecklina. [n. d.]. A Userspace Packet Switch for Virtual Machines. ([n.
d.]).

[21] Abhinav Thota, Le Mai Weakley, Ben Fulton, HE Dennis, Laura Huber, Scott
Michael, Winona Snapp-Childs, Stephen Lien Harrell, Alexander Younts, Daniel T
Dietz, et al. 2019. Research Computing Desktops: Demystifying research comput-
ing for non-Linux users. In Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (learning). ACM, 54.

[22] Alex Younts, Andrew Howard, Preston M. Smith, and Jeffrey J. Evans. 2009.
Bringing disruptive technology to competition. In In Proceedings of the 10 th LCI
International Conference on High-Performance Clustered Computing.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 105

https://www.servethehome.com/oracle-shows-1060-raspberry-pi-supercomputer-at-oow/
https://www.servethehome.com/oracle-shows-1060-raspberry-pi-supercomputer-at-oow/
https://sc17.supercomputing.org/studentssc/student-cluster-competition/index.html
https://sc17.supercomputing.org/studentssc/student-cluster-competition/index.html
https://tinytitan.github.io

Contributing HPC Skills to the HPC Certification Forum
Julian Kunkel

University of Reading
Reading, United Kingdom
j.m.kunkel@reading.ac.uk

Kai Himstedt
Universität Hamburg
Hamburg, Germany

Weronika Filinger
EPCC, The University of Edinburgh

Edinburgh, United Kingdom

Jean-Thomas Acquaviva
DDN

Paris, France

Anja Gerbes
Goethe-Universität

Frankfurt am Main, Germany

Lev Lafayette
University of Melbourne
Melburne, Australia

ABSTRACT
The International HPC Certification Program has been officially
launched over a year ago at ISC’18 and since then made signifi-
cant progress in categorising and defining the skills required to
proficiently use a variety of HPC systems. The program reached
the stage when the support and input from the HPC community
is essential. For the certification to be recognised widely, it needs
to capture skills required by majority of HPC users, regardless of
their level. This cannot be achieved without contributions from
the community. This extended abstract briefly presents the current
state of the developed Skill Tree and explains how contributors can
extend it. In the talk, we focus on the contribution aspects.

1 INTRODUCTION
Training was always important for the HPC community. However,
creating and providing training for practitioners with diverse back-
grounds and different levels of computer literacy is challenging.
The continuous growth of the HPC community make the tradition-
ally accepted training solutions insufficient. The multitude of paths
leading into HPC means the training providers can hardly assume
any previous knowledge or programming experience. There is no
common base knowledge possessed by all new users. This makes
the development and delivery of any training complicated. The
main goal of the International HPC Certification Forum (HPCCF) is
to ease the provision and uptake of training by clearly categorising,
defining and eventually testing the skills required to efficiently
use HPC resources. For this effort to be successful, the community
needs to support and contribute to the process of defining the HPC
Skill Tree. Input from members of different HPC branches is crucial.
This extended abstract aims at presenting the current high-view
state of the Skill Tree and describe the process of contributing.

2 SKILL TREE
The skills are organised in a tree structure from a coarse-grained
to a fine-grained representation, allowing users to browse the skill
based on the semantics. A skill is defined as a set of learning
outcomes and relevant metadata. Within a single skill, there can

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/17

also be multiple levels (basic, intermediate and expert level) build-
ing upon each other and further distinguishing the expertise. We
expect the practitioners to acquire the lower levels before progress-
ing to more complex levels. Currently, the Skill Tree1 contains six
branches: HPC Knowledge (K), Use of HPC Environment (USE),
Performance Engineering (PE), Software Development (SD), Sys-
tem Administration(ADM), and Big Data Analytics (BDA). These
are briefly described in the subsequent sections.

2.1 HPC Knowledge
This branch contains the basic information necessary to understand
what supercomputers are, how they work and how to make use
of them. It should give enough background to allow new HPC
practitioners to understand different aspects of HPC environments
and how to make use them. Its basic level sub-branches are: K1-
B Supercomputers, K2-B Performance modelling, K3-B Program
Parallelisation, K4-B Job Scheduling, and K5-B Cost Modelling.

Learning outcomes: A practitioner familiar with this branch
should: understand different aspects of HPC hardware, software
and operation of HPC systems; know how to use simple perfor-
mance models for systems and applications; understand scaling
and parallel efficiency; know different parallelisation paradigms; be
familiar with using HPC systems, and understand job scheduling
principles.

2.2 Use of HPC Environments
HPC environments are different from local systems and cloud envi-
ronments, and different HPC systems may utilise specific solutions
to setup and execute parallel applications. Although, knowing how
to use a specific system is important, most users will eventually
need to use more than one system. Therefore, understanding the
underlying principles is equally important. This sub-tree covers
skills for different user roles: users, testers and developers, allowing
to efficiently develop, build, run and monitor parallel applications
and automate repetitive tasks. The current basic level sub-branches
include: USE1-B Cluster Operating System, USE2-B Running of
Parallel Programs, USE3-B Building of Parallel Programs, USE4-B
Developing Parallel Programs, USE5-B Automating Common Tasks,
and USE6-B Workflow Integration.

A practitioner familiar with this branch should be able to: apply
tools provided by the operating system to navigate and manage
files and executables; select the software environment to effectively
build and develop existing and novel applications; use a workload
1https://www.hpc-certification.org/skills/

Volume 11, Issue 1 Journal of Computational Science Education

106 ISSN 2153-4136 January 2020

https://doi.org/10.22369/issn.2153-4136/11/1/17
https://www.hpc-certification.org/skills/

manager to allocate HPC resources; construct workflows that utilise
remote (distributed) environments to execute parallel workflows;
and design and deploy scripts that automate repetitive tasks.

2.3 Performance Engineering
Time to solution is one of the basic metrics in HPC - it’s vital to
obtaining the results in a timely manner and using the most optimal
resources. Performance engineering gives a systematic approach to
measuring and analyzing performance of systems and applications.
This sub-tree should cover the performance of applications and
systems, optimising of the runtime settings and applications and
strategies for efficient use of HPC resources. It has five basic level
sub-branches focusing on: PE1-B Cost awareness, PE2-B Measur-
ing System Performance, PE3-B Benchmarking, PE4-B Tuning, and
PE5-B Optimisation Cycle. A practitioner familiar with this branch
should be able to: describe the optimisation cycle; estimate the
cost a job on an HPC system; understand the typical performance
pitfalls; know how to perform benchmarks and use their results as
baseline; use profiling tools to analyse the performance and identify
bottlenecks; understand how various system and application set-
tings influence the performance; and finally be aware of optimised
libraries and how to use them.

2.4 Software Development
Software engineering is often neglected in computational science.
However, it can increase productivity by providing scaffolding
for the collaborative programming, reducing the coding errors
and increasing the manageability of software. This branch covers
concepts, practices and methods from software engineering that
should be applied in HPC environments. The current basic level
sub-branches are: SD1-B Programming Concepts for HPC, SD2-B
Programming Best Practices, SD3-B Software Configuration Man-
agement, SD4-B Agile Methods, SD5-B Software Quality, SD6-B
Software Design and Architecture, and SD7-B Software Documen-
tation. A practitioner familiar with this branch should be able to:
apply software engineering methods and best practices when devel-
oping parallel applications; write a modular and reusable code by
using software design principles; apply HPC design patterns; know
how to configure and use integrated development environments
(IDEs) to seamlessly perform a typical development cycle; use so-
phisticated debuggers for parallel programs; define and establish
coding standards and conventions in a project; apply version and
configuration management to establish and maintain consistency of
a program or software system throughout its life; configure an envi-
ronment for continuous integration with basic processing steps like
compiling and automated testing; apply unit testing in a specific
programming language using appropriate unit testing frameworks;
and appropriately document the entire software ecosystem.

2.5 Big Data Analytics
The analysis of large volumes of data was traditionally performed
in the cloud environment, utilising cheaper but less-reliable hard-
ware. However, it’s becoming more integral part of HPC workflows,
utilising tools and methodology from Data Science (DS) and Ar-
tificial Intelligence (AI) to process data in order to obtain results
quickly. AI can be used inside simulations or to steer workflows,

while data science can be used to find interesting patterns inside
the data. This branch should cover concepts and tools required for
effective data analysis on HPC systems. The current basic level
sub-branches include: BDA1-B Theoretical principles of Big Data
Analytics, BDA2-B Big Data Tools in HPC, and BDA3-B Integrating
BDA with HPC workflows. A practitioner familiar with this branch
should be able to: describe and apply the concepts of artificial intel-
ligence and data science; differentiate the various tools that could
be used in an HPC environment effectively; and design a workflow
consisting of HPC and BD tools to analyze the data.

2.6 System Administration
The administration of HPC systems requires integrating the state-of-
the-art hardware and software at various stages of their life-cycle,
to provide optimal environments for the users while managing
them efficiently. This branch should cover the concepts and tools
enabling efficient and cost-effective administration of HPC systems.
The current basic level sub-branches include: ADM1-B Cluster In-
frastructure, ADM2-B Software Stack, ADM3-B Monitoring Tools.
The practitioners familiar with this branch should be able to: un-
derstand the differences between different hardware options; apply
best practices for managing software and users; monitor the system
and software usage; manage and maintain the optimal environment
for users; and know how to establish the support structures.

3 HOW TO CONTRIBUTE
Ultimately, the chairs of the respective skill sub-trees will be in
charge of curating suggestions and change requests. However, di-
rect change requests are adopted for the phase of building the first
release version of the Tree. The MindMap and Skill definitions are
available in Markdown format2 and a wiki is available to render
them directly online. The skills are structured in directories accord-
ing to the hierarchy in the skill tree. The MindMap structures are
synchronised with the tree directory to test more invasive changes.

Contributions to the skill definitions can bemade by 1) discussing
them on Slack (it is a good idea to talk through non-trivial changes),
2) adjusting the skill-tree in the MindMap (editable via FreePlane),
3) editing the skill definitions on the Wiki, or 4) directly preparing
a pull request that changes the Markdown files. As GitHub allows
for commenting of individual lines, this provides means for rapid
feedback as well.

4 CONCLUSIONS
TheHPCCertification Forum is an effort to structure theHPC-related
skills and to offer certification to users. The high-level descriptions
of the sub-trees provide an overview and indicate our goal of creat-
ing a comprehensive tree. The tree itself will be released in stable
versions (and version controlled) and updated periodically.Wework
towards the first release but need the input of the community to
refine and complete, particularly the leaf-levels of the skill-tree.

ACKNOWLEDGMENTS
We thank the contributors to the HPC Certification Forum.

2See our GitHub https://github.com/HPC-certification-forum

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 107

https://github.com/HPC-certification-forum

	

	

Volume 11 Issue 1

January 2020

	01-frontcover
	02-blankpage
	03-titlepage
	04-blankpage
	05-contents
	06-blankpage
	07-body
	00-intro
	01-holcomb
	02-goodhue
	03-chakravorty
	04-ocais
	Abstract
	1 Introduction
	2 Software Carpentry and HPC Carpentry
	2.1 The Importance of Collaboration

	3 Lesson Design
	3.1 Lesson Portability

	4 Evaluation
	5 Conclusions
	Acknowledgments
	References

	05-houchins
	Abstract
	1 Introduction
	2 Education Allocations
	3 Broadening Participation Allocations
	4 Student Engagement
	4.1 Graduate Fellowships
	4.2 Undergraduate Internships

	5 Journal of Computational Science Education
	6 Education and Training
	6.1 HPC University Repository
	6.2 Undergraduate Petascale Curriculum Modules

	7 The Blue Waters Symposium
	8 Summary
	References

	06-kunkel
	Abstract
	1 Introduction
	2 The HPC Certification Forum
	3 Overview of the HPCCF activities
	4 Skills
	4.1 Description of a skill
	4.2 Skill Examples

	5 Certification
	5.1 Examination Process
	5.2 Certificates

	6 Ecosystem
	6.1 Training Delivery
	6.2 Navigation

	7 Related Work
	8 Conclusion
	8.1 Benefits

	Acknowledgments
	References

	07-wong
	Abstract
	1 Introduction
	2 Program design and plan
	2.1 Schedule of the REU program
	2.2 Recruitment and student selection
	2.3 International students
	2.4 Logistic support and social activities
	2.5 Computing resources

	3 Research work and mentorship
	3.1 Stages of the research plan and mentor experiences
	3.2 Progress oversight and deliverables
	3.3 Research projects
	3.4 Mentorship

	4 Accomplishments, challenges, and lessons learned
	4.1 Survey
	4.2 Challenges and lessons
	4.3 Program outcomes and impacts

	5 Conclusions
	References

	08-saravanan
	09-wang
	Abstract
	1 Introduction
	2 Background
	2.1 Compilers
	2.2 Clang/LLVM
	2.3 ROSE
	2.4 OpenMP

	3 Challenges and Solutions
	4 FreeCompilerCamp.org Platform
	4.1 Tutorial Website
	4.2 Play-With-Compiler Engine
	4.3 Customization

	5 Tutorial Design
	5.1 Concepts
	5.2 Example Tutorials
	5.3 Trial and Feedback

	6 Related Work
	7 Conclusion and Future Work
	References

	10-terboven
	Abstract
	1 Motivation
	2 HPC Software Labs
	3 Learning Objectives
	4 Stimuli
	5 Effort and Progress Tracking
	6 Evaluation of the Labs
	7 Student Feedback (Based on Teaching Evaluations)
	8 Conclusion
	References
	A Artifact Description: Self-paced Learning in HPC Lab Courses
	A.1 Abstract

	11-alessio
	12-wofford
	Abstract
	1 Introduction
	2 The CSCNSI
	2.1 Overview
	2.2 Process
	2.3 Technical

	3 The curriculum
	3.1 History & motivation
	3.2 Methodology

	4 Curriculum overview
	4.1 Introducing HPC
	4.2 System Management
	4.3 Cluster Provisioning & HPC Tools
	4.4 Monitoring & Benchmarking
	4.5 Parallel & Cluster Programming and Visualization
	4.6 Future Technology

	5 Evaluation
	5.1 Short Term: Qualitative Evaluation
	5.2 Long Term: Quantitative Evaluation

	6 Future work
	7 Conclusions
	References

	13-betro
	14-harrell
	Abstract
	1 Introduction
	1.1 Inspiring Undergraduates
	1.2 Prior Work at Purdue

	2 High Performance Computing Seminar
	2.1 Approach
	2.2 Broadening Participation
	2.3 Syllabus
	2.4 Lectures
	2.5 Assignments

	3 Teaching Scientific Applications
	3.1 WRF
	3.2 OpenFoam

	4 Outcomes
	4.1 Student Evaluation of the Class
	4.2 Lessons Learned

	5 Future Work
	Acknowledgments
	References

	15-chakravorty
	16-harrell
	Abstract
	1 Introduction
	1.1 Roles of HPC System Administrators

	2 HPC Systems Training Approaches
	2.1 Workshops
	2.2 Student Cluster Competition
	2.3 Undergraduate Training at Purdue

	3 Purdue HPC Systems Training Through the Years
	3.1 Early Years
	3.2 Formalized Classes
	3.3 Bare Hardware to Computational Visualization

	4 Current Efforts
	4.1 HPC Systems Track
	4.2 Virtual Labs
	4.3 Future work

	5 Other Training Platforms
	5.1 Raspberry Pi Clusters
	5.2 Cloud Environments

	6 Conclusions
	Acknowledgments
	References

	17-kunkel
	Abstract
	1 Introduction
	2 Skill Tree
	2.1 HPC Knowledge
	2.2 Use of HPC Environments
	2.3 Performance Engineering
	2.4 Software Development
	2.5 Big Data Analytics
	2.6 System Administration

	3 How to Contribute
	4 Conclusions
	Acknowledgments

	08-blankpage
	09-blankpage
	10-backcover

