
The Supercomputer Institute: A Systems-Focused Approach to
HPC Training and Education

J. Lowell Wo�ord
Los Alamos National Laboratory

Los Alamos, NM
lowell@lanl.gov

Cory Lueninghoener
Los Alamos National Laboratory

Los Alamos, NM
cluening@lanl.gov

ABSTRACT
For the past thirteen years, Los Alamos National Laboratory HPC
Division has hosted the Computer System, Cluster and Networking
Summer Institute summer internship program (recently renamed
“The Supercomputer Institute”) to provide a basis is cluster comput-
ing for undergraduate and graduate students. The institute invites
12 students each year to participate in a 10-week internship pro-
gram. This program has been a strong educational experience for
many students through this time, and has been an important re-
cruitment tool for HPC Division. In this paper, we describe the
institute as a whole and dive into individual components that were
changed this year to keep the program up to date. We also provide
some qualitative and quantitative results that indicate that these
changes have improved the program over recent years.

KEYWORDS
training, education, recruiting, student programs, system manage-
ment

1 INTRODUCTION
For the past thirteen years, Los Alamos National Laboratory HPC
Division[10] has hosted the Computer System, Cluster and Net-
working Summer Institute (CSCNSI)[4]1 summer internship pro-
gram to provide a basis is cluster computing for undergraduate and
graduate students. The institute invites 12 students each year to
participate in a 10-week internship program. The program is aimed
at students interested in a broad range of HPC related �elds, but
provides a systems design and management focused curriculum.
A number of recent articles have proposed training programs in
HPC[15, 18], but these programs have been focused on applications
and have only scratched the surface of lower–level HPC systems.
We believe that the inclusion of a systems focused program can
provide depth and perspective to many students, regardless of the
HPC related �eld they intend to enter.

The institute breaks the program into two parts: (1) a “boot camp”
running approximately two weeks covering fundamentals of cluster
computing; and, (2) an eight-week-long guided research project. At

1Since August 2019, the CSCNSI has been renamed “Supercomputer Institute.”

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full
citation on the �rst page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/11/1/12

the end of the program, students present their research in both a
short talk and a poster.

The boot camp curriculum was signi�cantly redesigned in the
last year around a new methodology. Whereas in previous years,
the boot camp largely consisted of guided projects to set up a small
compute cluster, this year took a more directed education approach
to teach the fundamentals of cluster computing before starting
research. The theory in these changes was: (1) a ground-up founda-
tion in cluster computing, starting with basic Linux skills, building
to how clusters are designed and built, and then building and run-
ning parallel applications on them will provide a strong basis for
any area of future HPC related research; (2) a curriculum based
on practical guides with occasional theory lectures will provide a
stronger foundation than self-guided projects; (3) frequent feedback
through anonymous as well as named survey evaluations allow for
day-by-day adjustments to the curriculum.

This approach has proven very successful based on comparative
analysis of survey results from both students and project men-
tors, as well as the quality and complexity of the research results
achieved in this institute. In this paper, we will layout the structure
of the institute, the motivations, and changes made to the boot
camp curriculum and qualitative and quantitative analysis of the
institute outcomes. Our focus will be the evaluation of the impact
this ground-up foundation in cluster computing has on subsequent
student research. Because the new curriculum has only been pro-
vided for one year, the sample size of students is relatively small,
however, the results suggest a strong positive impact on both stu-
dents’ assessment of the program and students’ productivity in the
research portion.

2 THE CSCNSI
2.1 Overview
The CSCNSI summer program is a 10-week paid summer internship
sponsored by the High Performance Computing Division at Los
Alamos National Laboratory (LANL). Each year’s program starts in
the fall with a recruitment and application process, from which 12
participants are selected based on qualities such as their existing
skills, their current progress in school, and interests they express in
their application materials. In parallel, HPC Division sta� members
propose projects that they would like to have CSCNSI students
work on during the upcoming summer. Four projects are selected
each summer, and each project is assigned a team of three students.
When the participants arrive for the program, their teams and
their project/mentor matches are already de�ned and they are
immediately ready to start the program.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 73



The �rst two weeks of the program consist of a “cluster boot
camp”. This portion of the program focuses strongly on building
base HPC systems knowledge, and includes work with bare metal
hardware; booting and provisioning systems; system con�guration
and management; developing and running parallel applications;
and looking at current and future HPC technology. For this portion
of the program, each student team is given a 10-node HPC cluster
to work with. Each team starts with an uncabled cluster with blank
disks, and by the end of the two weeks they have built a fully-
functioning 10-node, In�niband–connected cluster that is capable
of running real-life HPC applications.

During the remaining 8 weeks of the program, each team works
with their assignedmentors on the project that was selected for their
team. These projects normally make extensive use of the clusters
the teams have just built, and may involve building and benchmark-
ing parallel �lesystems; writing and testing parallel applications;
writing system software related to monitoring, containers, schedul-
ing, or other operating system level topics; testing known security
�aws for exploitability and to �nd mitigations; evaluating new net-
working technology; or almost any other topic of interest to HPC
researchers. At the conclusion of this directed research period, each
team gives a 20-minute presentation on their work to the HPC
community at the Laboratory as part of the yearly HPC Division
Student Showcase. A catalog of past projects and posters can be
found at [5].

2.2 Process
The process of preparation for each year’s CSCNSI session con-
sists of three main sections: the student selection process, includ-
ing recruiting, interviewing, and selecting participants in the pro-
gram; the mentor and project proposal process, which results in
the projects that will be worked on in the program; and the project
matching process, in which selected students are matched with
mentors and projects that �t their interests and skills.

The student selection process begins with recruiting in the fall of
the year before a particular CSCNSI session. This recruiting occurs
in conjunction with HPC Division’s regular student recruitment ac-
tivities at conferences, including the Grace Hopper Celebration[6],
the Richard Tapia Celebration of Diversity in Computing[1], the In-
ternational Conference for High Performance Computing, Network-
ing, Storage, and Analysis[8], and at university site visits. These
recruiting trips include on-site interviews and the ability for HPC
Division sta� to make spot o�ers to highly quali�ed candidates.

Meanwhile, the CSCNSI program is open to applications from
other students via its website[4]. Applications typically open at the
start of the fall semester, and application materials are typically
due by early December. At the close of this application period, a
selection committee from HPC Division reviews all applicants and
performs phone interviews with the strongest candidates. O�ers are
made to selected candidates, and these participants are combined
with any spot o�ers made at recruiting trips to make that summer’s
12-member CSCNSI class.

In parallel with this process, potential mentors from HPC Divi-
sion’s technical sta� propose projects for teams within the program.
This process begins with a call for proposals from across the Divi-
sion requesting the project title and a short abstract describing the

project’s goals and bene�ts, as well as the proposed mentors, any
extra hardware that would be required by the project, and skills
that are needed by students who would work on this project. These
proposals are evaluated based on their technical merit, their ability
to produce results by the end of the 10-week program, and their
ability to expose the students to new technology. They are also
evaluated alongside the applicant pool to ensure the skills needed
by each project can be met by the selected students each summer.
At the end of this process, four projects are selected to be worked
on that summer.

After the participants and projects have been selected, the �nal
step of the process is to build four three-person teams and assign
them to the selected projects. This is done by comparing knowledge
of students’ backgrounds and interests gathered from their inter-
views, resumes, and application materials with the project required
skills speci�ed by the mentors, with the goal of matching students
with projects that will o�er them an opportunity for growth and
an opportunity to be successful.

2.3 Technical
The CSCNSI is a multi-discipline program that starts with a two-
week “bootcamp” that focuses on HPC systems hardware and soft-
ware. Each team is supplied with a 10-node, In�niband–connected
cluster, and over the course of the bootcamp they learn to build their
cluster from scratch. Their clusters start out as bare hardware: the
nodes are racked, but all of the network and power cables are in a
box in the rack. Starting with how to properly label and cable a rack
of computers, the students spend their bootcamp period installing
the operating system, installing scienti�c libraries, automating the
node build process, and �nally running MPI applications across all
of their nodes. The process gives the students a strong understand-
ing of the underlying technology that makes an HPC system work.
The bootcamp curriculum is described in more detail in sections 3
and 4.

With their clusters built, the student teams are ready to work
on their main project. The technologies used in these projects vary
greatly depending on their focus. Recent projects include trans-
parently running user application containers; testing the overhead
incurred by compute node health checks; �nding security anomalies
in network �ows; and testing the overhead introduced by specula-
tive execution exploit �xes. Each of these projects digs deeply into
individual aspects of system hardware and software, building on
the base that the students learned during their bootcamp session.

3 THE CURRICULUM
3.1 History & motivation
The CSCNSI boot camp curriculum (“the curriculum”) has grown
organically during its long history, sometimes going for multiple
years with only small changes, while at other times receiving large
rewrites to update the material to better match updated technol-
ogy. The program’s instructor role has passed between multiple
people in recent years, resulting in a series of updates that weren’t
necessarily self consistent, and this year a decision was made to
do a major rewrite of the material. Using the existing material as a

Volume 11, Issue 1 Journal of Computational Science Education

74 ISSN 2153-4136 January 2020



topical guide, a new curriculum was built that included update tech-
nologies, removed outdated information, and more closely matched
the realities of today’s HPC environments.

Additionally, the previous approach to the boot camp left the
students to mostly explore the di�erent topics informally on their
own, with little guidance. While this informal approach has some
strong learning bene�ts, student surveys and previous instructor
feedback indicated that this left some teams struggling to have
viable systems for their subsequent research. Additionally, given
the rapid pace of the boot camp, this approach severely limited the
depth to which certain topics could be explored. All of these factors
suggested that a new approach to the curriculum that merged both
formal an informal learning may be bene�cial.

To achieve a more guided approach to the curriculum, a signi�-
cant amount of new material was required. For the 2019 curriculum,
over 200 pages of technical guides and roughly 300 lecture slides
were developed. These materials have been made public, and can
be found at [9].

3.2 Methodology
The objective of the new curriculum, aside general updates and
improvements, was to provide more formal learning components
than the previous curriculum. This would allow the students to
achieve the practical objectives of the boot camp—getting their
teams’ compute clusters deployed into a useable state—while also
allowing more depth to be explored in more topics. Meanwhile, we
did not wish to lose the learning bene�ts of the previous largely
informal learning approach.

The previous curriculum split the boot camp into lecture and lab
segments. The lecture segments were generally very short, with
one to two presented per day. The lab segments would consist of
an unguided list of tasks. Teams would go o� to achieve these tasks
with as-needed assistance by the instructors.

The alterations in the approach of the new curriculum were
two fold: (1) to extend the content of the lectures to include more
technical depth and more technical areas; (2) to replace the labs
with “practica.” These practica take the form of staged guides that
have a mix of free exploration prescribed steps. These guides will
be explained in more detail below.

At a high level, the boot camp curriculum builds the students’
skills in stages. Since students come from diverse backgrounds
with varied experience, we start with basic skills in using and
installing the GNU/Linux operating system. By the end of the 12-
day curriculum, the students have fully functional Linux compute
clusters controlled through con�guration management and using
industry-standard HPC tools for provisioning, monitoring, and
resource management. Students are introduced to a combination
of facilities, systems, programming and visualization concepts, and
tools.

Organizationally, the curriculum was divided into chapters. Each
chapter begins with a theory lecture, followed by practical written
guides, or practica. Most of the time is spent working through
these guides. The guides are further subdivided into steps. It is
expected that all of the students work through the guides and
synchronize at the end of each step. This helps ensure that the entire
class stays roughly on the same content throughout. Maintaining

synchronization of the students is important for both e�ciency
in teaching and assistance, as well as making sure that students
are focused on the same kinds of tasks at the same time. Keeping
students in sync means that questions from other students remain
timely and relevant, and other students are actively working on
the same projects, and therefore are more prepared to assist fellow
students. During each step the instructor and assistants help teams
that had questions or were stuck with portions of the guide. At
the end of each step, the instructor summarizes the step, performs
the step on an example cluster, handles any high-level questions
related to that step, and brie�y introduces the goals of the next
steps. For most guides, each step has an accompanying slide with
additional notes for that step.

To keep the more advanced students occupied as well as intro-
duce more advanced concepts such as advanced shell scripting,
for most guide steps a “challenge” problem was assigned. These
challenge problems leverages material from the section, as well as
requiring some outside information that the students must research.
Examples of challenge problems include: using the "�nd" command
to do a recursive �nd-and-replace operation and writing a shell
script to do a ping scan on a network. Teams that �nished the chal-
lenge were asked to present their solutions to the group, along with
explanations, and group discussion of the di�erent solutions was
encouraged.

4 CURRICULUM OVERVIEW
The curriculum for the boot camp is divided into 11 chapters. See
Table 1 for a syllabus of the curriculum. For the condensed two-week
boot camp, each chapter approximately represents the curriculum
content for one day. Each chapter is designed to both add relevant
HPC skills and further the process of bringing the teams’ 10-node
compute clusters into a usable and maintainable state for the later
research portion. Below we outline the curriculum by chapter, for
each chapter summarizing the structure, content and motivations
for that chapter. The chapters fall into logical groupings based on
their overarching objective. We have broken them out by these
groupings below.

4.1 Introducing HPC
The �rst two chapters of the curriculum provide a general intro-
duction to the course and some higher level concepts of high-
performance computing, systems, hardware, work�ows, and fa-
cilities. These chapters provide a backdrop and motivation for the
remainder of the course, and the ideas introduced in these chapters
are designed to develop throughout the course. There is an empha-
sis on the kinds of problems that HPC helps to solve, how to design
systems to solve these problems, and the subsequent challenges of
these system designs.

4.1.1 Chapter 1: Introduction to HPC. This chapter provides
the motivation for the rest of the course. While the course works
by building up HPC systems knowledge from the ground up, the
introduction takes a top-down approach to understanding HPC. In
the introduction, we focus on the kinds of problems that scientists
may need to solve. We then lay out how cluster computing designs
provide an e�ective architecture for solving these problems. This
helps to motivate the course by starting with a focus on research

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 75



Title Purpose Practical
Chapter 1 Introduction to HPC Overview of HPC systems, hardware, work�ows, and

facilities.
N/A

Chapter 2 HPC Facilities Space, power & cooling challenges for HPC. Cable and label cluster racks
Chapter 3 Exploring Linux Basic Linux system operating system concepts, in-

stall, use, and administration.
Master node is installed with Linux.

Chapter 4 Networks & Services Basics of netoworking and common Linux services. Master network, NAT, ssh con�gured.
Chapter 5 Netboot provisioning How to stateless netboot a node from scratch. Some nodes provisioned, 1st pass.
Chapter 6 HPC provisioning Using HPC provisionig tools to provision the whole

cluster.
All nodes provisioned, 2nd pass.

Chapter 7 HPC tools Overviews of common HPC tools for system man-
agement, scheduling & fabric management.

Clusters con�gured with workload man-
agement, high-speed network, power,
and console control. First jobs run.

Chapter 8 Version Control & Con-
�g Management

Learn version control and con�gurationmanagement
tools and motivations.

Clusters re-provisioned, con�guredwith
version controlled con�guration man-
agement.

Chapter 9 Monitoring & Bench-
marking

Overview of tools used for benchmarking and ac-
tive/passive monitoring clusters.

Monitoring and log analysis framework
installed. Baseline benchmarks taken,
system veri�ed.

Chapter 10 Parallel & Cluster Pro-
gramming

Introduction to parallel programming concepts and
challenges. Introduction to cluster programmingwith
MPI. Visualization tools.

Job submissions and MPI functionality
tests. First parallel runs. Real scienti�c
application run & visualized.

Chapter 11 Future technology Discuss revolving topics of future interest to HPC. N/A
Table 1: Syllabus for boot camp curriculum. The title, purpose of the chapter are given, and practical lessons are given for each
chapter. Shading represents groupings used in section 4.

problems, motivating the general cluster architecture, discussing
some important particular details of that architecture, and then
working on the tools to practically build a system with a clustered
architecture.

The toy research problems that are used as motivation for the
Introduction to HPC chapter reappear in later chapters as job and
programming examples that can be practically run on the systems
that the teams deploy throughout the boot camp. This aims at
keeping the students focused on why the systems are being built
while constructing them in stages from the ground up.

4.1.2 Chapter 2: HPC facilities. The general discussion on HPC
system design in the previous chapter naturally segues into a discus-
sion of the kinds of physical, power, and cooling concerns surround-
ing large clusters of computers. The second chapter overviews the
HPC facilities topics.

The HPC facilities introduction also provides the �rst practical
lesson for the students. As part of the facilities introduction, the
students are introduced to particular racking, cabling, and data
center organization techniques.With this introduction, the students
are then guided through physically cabling and labeling their teams’
clusters2.

4.2 System Management
While we do require some Linux experience for admission to the
program, the level of Linux experience has varied widely among

2For our boot camp, due to time and safety concerns, the clusters are pre–racked but
un–cabled when the students arrive.

the students. To achieve a baseline of knowledge in Linux, the
chapters 3 and 4 cover some of the basic Linux skills required for
HPC, ranging from basic commandline skills to basic network and
system service con�gurations. Throughout the guides for these
chapters, “challenge” questions are o�ered to students who �nish
early to start building shell scripting knowledge. Each question
pushes the students to �nd a new way to explore the Linux system
by writing a script.

4.2.1 Chapter 3: Exploring Linux. This chapter is longer than
other chapters and spanned two days. We begin with a lecture
on an overview of Linux. This lecture splits into three parts. The
�rst part covers some history of Linux as well as Linux and open
source community issues. It also touches on why we use Linux
for HPC. The second part of is focused on the Linux kernel and
operating system theory. The third part provides an overview of
Linux distributions.

Discussion of distributions in the lecture leads to a lab where
the students install CentOS Linux[3] on their cluster master nodes
following a basic install guide. Students perform the rest of the
work throughout the bootcamp on this system.

Following the install procedure, students work through two
guided practica on using Linux. Students are instructed in the use
of the tmux[13] tool to share terminal sessions across their individ-
ual workstations. The �rst guide covers a wide range of common
Linux tools with an emphasis on tools of particular use in HPC
environments. The second guide focuses on those tools dedicated
to inspecting the Linux system status and health.

Volume 11, Issue 1 Journal of Computational Science Education

76 ISSN 2153-4136 January 2020



4.2.2 Chapter 4: Networks & Services. Chapter 4 continues the
exploration of the Linux. A beginning lecture covers fundamen-
tals of networking and Linux networks, as well as Linux network
services.

The lecture is followed by a guide that explores setting up and
using various network settings and services in Linux. An emphasis
is put on veri�cation steps as each con�guration step is performed.
This guide also includes an exploration of systemd and service unit
�les. At the end of this guide, the master nodes have a complete
network con�guration and NTP, SSH and nginx services have been
con�gured.

4.3 Cluster Provisioning & HPC Tools
Chapters 5 through 8 center around cluster provisioning. This is
done in three stages. The theory is to start by provisioningmanually,
and add useful layers of abstraction in stages. First, the system is pro-
visioned by manually creating a stateless booting cluster using com-
mon services and a combination of provided and student-developed
scripts. Next, the system is re-provisioned using a common clus-
ter provisioning system (Warewulf[14]). In the third iteration, the
systems are re-provisioned again using con�guration management
(Ansible[2]) in conjunction with cluster provisioning (Warewulf).
Chapter 7 is injected in the middle of this sequence to introduce
core HPC tools not related to provisioning, such as the workload
manager, before moving on to the �nal stage of provisioning. At the
end of Chapter 8 the teams should have fully-functional, useable
compute clusters.

4.3.1 Chapter 5: Netboot provisioning. Chapter 5 consists of one
long guide that steps the students through everything necessary
to perform a stateless (diskless) network boot of a compute node.
This follows directly on the discussion of network and services in
the previous chapter, and con�gures the core services (DHCP and
tftpd) required to perform a PXE boot. The students are also guided
through the process of manually constructing a node image to be
provided to the compute nodes. Finally, the students are given a
base initramfs image3 that they can use to construct the staged
boot required by most stateless compute clusters. This simpli�ed
initramfs has been constructed with the intent of educating, so the
provided init stage scripts choose simplicity and readability over
features. By the end of this chapter, the teams’ clusters have two
nodes provisioned using this method, in addition to the manually
installed master node.

4.3.2 Chapter 6: HPC provisioning. Chapter 6 builds on Chap-
ter 5 by showing how HPC provisioning systems, in this case
Warewulf[14] can be used to dramatically simplify the process
that was worked through in Chapter 5. Because Warewulf simpli-
�es the netbooting process, this also a�ords the opportunity for
the teams’ to build more con�guration complete and feature rich
images for their nodes. At the end of this section, the entire cluster
has been provisioned with Warewulf. In order to simplify access to
packages and HPC tools, the OpenHPC project[11, 17] is used for
additional HPC software repositories.

3The initramfs source can be found under the “Supplements” folder in the curriculum
materials repository at [9]

4.3.3 Chapter 7: HPC tools. Up until this point, the students
have not been introduced to some of the fundamental tools for
HPC. It is useful to pause to look at some of these tools before the
�nal provisioning step in order to make them available in the �nal
provisioning of the clusters.

Several tools are introduced in this section that provide console
and power access to the nodes and In�niBand fabric management.
Particular attention is paid to workload management and sched-
uling. Using the existing Warewulf install, the Slurm workload
manager is installed, con�gured, and tested.

A �nal section of this chapter provides a short guide for working
with Slurm as a user. This includes various forms of job submission,
job inspection, and batch job scripting.

4.3.4 Chapter 8: Version Control & Config Management. The
�nal step the provisioning process involves moving all of the work
that has been done into a version controlled repository containing
a con�guration management speci�cation. Git is used for version
control and Ansible is used for con�guration management.

The chapter begins with a short lecture covering Git concepts,
followed by a practical learning guide for basic Git usage. Next, a lec-
ture is given on general con�guration management concepts with
an emphasis on Ansible. The Ansible practical guides are divided in
two. The �rst guide teaches basic practical Ansible examples. The
second of the Ansible guides takes the users through the process of
re-provisioning their clusters with Ansible and Git. A base Ansible
repository is provided to the teams, and they are left to integrate
their cluster-speci�c changes as well as the examples worked out
in the previous tutorial into this Ansible repository. Finally, the
students are instructed to completely re-install their master nodes,
and re-provision their entire clusters with this Ansible repository.
Any further changes to the system are a�ected through version
controlled Ansible. At this stage, the teams have fully functional
compute clusters managed using modern con�guration manage-
ment techniques.

4.4 Monitoring & Benchmarking
Chapter 9 is focused on monitoring and benchmarking tools. These
are related but disparate topics. They are presented separately but
combined into the same chapter for brevity and to emphasize their
common use to verify the state of the cluster.

4.4.1 Chapter 9, Part 1: Monitoring. We �rst start with a short
lecture that covers the basic terminology used in HPC monitoring
such as active versus passive monitoring, out-of-band monitoring,
and a summary of HPC monitoring concerns.

The practical portion of the monitoring section focuses on pas-
sive log analysis. The students work through con�guring rsyslog
log aggregation from the compute nodes to the master node. They
are then guided through setting up and using Splunk for log analy-
sis, including setting up Splunk alerts.

4.4.2 Chapter 9, Part 2: Benchmarking. This section of the chap-
ter also starts with a short lecture covering common terminology
around benchmarking, and the role of benchmarking in typical
HPC acceptance processes. Emphasis is placed on real versus syn-
thetic and micro versus macro benchmarks. A brief survey of these
di�erent benchmarking methods is presented, including several

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 77



industry-standard benchmarks are introduced, including HPL and
various synthetic micro-benchmarks (e.g. STREAM, iozone, and the
MOFED IB benchmark tools).

In the practical guide for benchmarking, several of these tools
are used to gather information about the teams’ clusters. This also
serves as an “acceptance” stage for the teams’ clusters in which
they can verify that performance of the systems is as expected and
comparable to the performance of other teams. The students are also
instructed to run some scaling benchmarks, where a benchmark
starts at a single thread, and scales until it comprises the entire
system. This gives an idea of how well the system will scale with
idealized parallel applications.

As a �nal step in the benchmarking processes, the students
were provided with a ready-to-run real applications. We chose a
GROMACS[7, 16] molecular dynamics simulation, as it is a well
supported, open source code, and was easy to force to run for
predictable time periods. The students ran this code over night. This
both provided a way to perform a “real” benchmark on the clusters,
as well as data for visualization exercises in the next section.

4.5 Parallel & Cluster Programming and
Visualization

Chapter 10 introduces parallel programming concepts. We should
note that the focus of the boot camp is not on parallel program-
ming - LANL o�ers the “Parallel Computing Summer Research
Internship”[12] that focuses in this area for students who would
like more emphasis on programming. Instead, the objective of this
brief introduction to parallel programming concepts is two fold: 1)
to introduce a basic common understanding of parallel program-
ming techniques and pitfalls as may be relevant to their research
projects; 2) to introduce cluster programming and message pass-
ing concepts through a simple introduction to MPI programming.
These, together, help to give a more complete understanding of
how the systems the students have assembled will be used in addi-
tion to providing more hands-on experience with the high-speed
networking fabric.

The chapter is introduced with a lecture covering some basic the-
ory and terminology of parallel programming, including message
passing versus shared memory models. The practical guides are
divided into two. The �rst guide walks the students through some
simple threaded programming tasks in Python. The second guide
extends these concepts to span multiple nodes using the Python
mpi4py module.

Both the threaded and MPI guides follow examples of developing
and enhancing code that illustrates two examples that were given in
Chapter 1 as illustration of why we build HPC systems as clusters.
The �rst example illustrates a simple parallel summing algorithm.
The second example is more complex and implements di�erent
versions of a 3D box of colliding particles4.

Finally, both the 3D box example and the results of the GRO-
MACS sample simulation provide input data for some brief visual-
ization experiments. For the 3D box example, students are guided

4Source code for the 3D box simulation, called “gas”, can be found in the curriculum
Supplements at [9]

through making a 3D rendered movie with ParaView. For the GRO-
MACS example, the students are guided through a 3D visualization
using VMD, the molecular dynamics visualization tool.

4.6 Future Technology
Chapter 11 concludes the boot camp with a discussion of upcoming
HPC technologies. In the current year, chapter introduced ideas
like Linux container and cloud computing. It is anticipated that
this chapter would change substantially over time to match new
upcoming technology trends. Due to time constraints for the boot
camp, this chapter consisted solely of a lecture. Ideally, it might
include some short, practical guides for working with some of the
new technologies mentioned.

5 EVALUATION
The CSCNSI is a program that we have traditionally had di�culty
evaluating. Unlike some summer programs, its value isn’t as much
in the results of the students’ �nal products as it is in founda-
tion we give them for understanding the fundamentals of high–
performance computing. For many students, this means that we
do not have a good way to evaluate the value of the program once
they have left for the summer unless we make e�orts to track them
down and check on their progress in school and their careers. How-
ever, as we have already mentioned, this program is an important
recruiting vehicle for LANL’s HPC Division, meaning that we can
put at least one numeric score on the success of each year. This, in
conjunction with student surveys conducted throughout the pro-
gram give us some qualitative and quantitative ideas of the success
of the program.

5.1 Short Term: Qualitative Evaluation
Students who attend the CSCNSI are encouraged to give feedback,
and they are given frequent opportunities to do so. This year, the
instructor implemented a daily “sticky note” survey: each team
was given a pad of sticky notes at the start of the day, and each
member was asked to brie�y summarize their feelings at the end
of each day. These notes were treated anonymously and were used
by the instructor to tailor the pace of the class and the topics being
covered each day to �t the needs of the students.

At the end of the summer, the students and the mentors were
asked to �ll out a longer, more formal survey about their experiences
that summer. Afterward, the results of these surveys were used
to evaluate how the class went, decide which students should be
followed up with by our recruiting team, and begin planning for
the next year.

The surveys between the summers of 2018 and 2019 were also
signi�cantly updated, so it is di�cult to directly, quantitatively com-
pare the two results. Qualitatively, however, the student evaluation
of the boot camp was signi�cantly more positive than previous
years5. Additionally, the overall approval rating of the program im-
proved. Given that the boot camp was the most signi�cant change
between the years, it is reasonable to assume that the overall eval-
uation of the program bene�ted strongly from the updated boot
camp curriculum. The curriculum changes introduced this year

5The authors were unable to obtain releases for the survey data, so we are only able
to speak subjectively and qualitatively about that data.

Volume 11, Issue 1 Journal of Computational Science Education

78 ISSN 2153-4136 January 2020



Figure 1: Student outcome statistics for CSCNSI from 2007 to present.

were signi�cant enough that they o�er us an opportunity to draw
a strong distinction between the “old” and “new” curricula, which
will give us a good place to do comparisons as the “new” curriculum
ages and matures.

5.2 Long Term: Quantitative Evaluation
The CSCNSI has been an important recruiting tool for both HPC
Division in speci�c and the laboratory as a whole. Since 2007, we
have been maintaining records of the students who went through
the program,which ones came back again as a student in our general
student program, and which ones were hired as full time LANL
sta� in HPC Division or other divisions at the laboratory. Ignoring
2019, which is too early to count in the statistics, we have had 142
individual attendees in the program (with some years varying from
the standard 12 attendees). Of these, about 15 returned to LANL as
a student again, another 15 were hired as full time employees in
HPC Division, and nearly 20 more were hired by other divisions
at LANL. While we do not directly track statistics on students
who end up at places other than LANL, we do know that several
more have ended up at other laboratories and nearby businesses.
The skills that the CSCSNI students learn during their summer

are clearly applicable with HPC Division directly, but also with a
variety of other scienti�c disciplines and industries. Figure 1 shows
the outcomes, where known, of CSCNSI students from 2007 to
present.

6 FUTUREWORK
We anticipate further developing the curriculum, the research, and
the mentoring segments of the CSCNSI program going forward.
Through the various sources of survey information, we will be
making further minor curriculum adjustments, but overall feel that
the new curriculum has provided a solid foundation to work on.

This years changes have emphasized the need for capturing
better metrics on the performance of the program. Some of this may
be achieved through ongoing improvements to the survey process.
We are also examining the possibility of introducing entrance and
exit exams to track student development.

Some students and mentors have pointed out that it would be de-
sirable to spread out the boot camp curriculum through the program
and to introduce the research components earlier. We are taking
under consideration that the initial boot camp could be shortened

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 79



to include only include Chapters 1 through 8, with the remain-
ing chapters taught in a more spread–out fashion throughout the
remainder of the program.

Finally, we have opened the curriculum[9] to the broader commu-
nity in hopes that it may both bene�t the broader HPC educational
community, as well as open a forum for community curriculum
development. We have begun speaking with outside institutions
that may be interested in helping to develop the curriculum for
an academic course our workshop. The time frame of the CSCNSI
limits the boot camp to an intensive two week period, but we be-
lieve this curriculum could be adapted and expanded to a semester
course.

7 CONCLUSIONS
The CSCNSI program has a proven track record of demonstrating
that a broad systems–based background in cluster computing can
be a valuable background for students in a variety of HPC related
�elds. We have seen this qualitatively, through student and men-
tor surveys, and quantitatively, through the hiring pipeline it has
provided. The changes to the CSCNSI program in the past year
have marked a turning point for the program. We anticipate that
the improved curriculum will further emphasize the bene�ts of a
ground–up, systems based background in HPC. Though it is di�-
cult to make broad conclusions given the limited sample size after
one year, initial results are promising that this new mix of formal
and informal learning will lead to an even stronger program going
forward.

REFERENCES
[1] 2019. ACM Richard Tapia Celebration of Diversity in Computing. (2019). Re-

trieved Sep 23, 2019 from http://tapiaconference.org/
[2] 2019. Ansible is a simple IT automation tool. (2019). Retrieved Sep 24, 2019 from

https://www.ansible.com/
[3] 2019. CentOS Project. (2019). Retrieved Sep 24, 2019 from https://www.centos.org
[4] 2019. Cluster System, Cluster and Networking Summer Institute (CSCNSI). (2019).

Retrieved Jul 30, 2019 from https://clustercomputing.lanl.gov
[5] 2019. CSCNSI: Past projects. (2019). https://www.lanl.gov/projects/

national-security-education-center/information-science-technology/
summer-schools/cscnsi/student-projects.php

[6] 2019. Grace Hopper Celebration. (2019). Retrieved Sep 23, 2019 from https:
//ghc.anitab.org

[7] 2019. GROMACS. (2019). http://gromacs.org
[8] 2019. International Conference for High Performance Computing, Networking,

Storage, and Analysis. (2019). Retrieved Sep 23, 2019 from http://supercomputing.
org/

[9] 2019. LANL Supercomputing Institute Curriculum. (2019). Retrieved Sep 24,
2019 from https://github.com/hpc/cluster-school

[10] 2019. Los Alamos National Laboratory, HPC Division. (2019). Retrieved Jul 30,
2019 from https://hpc.lanl.gov

[11] 2019. OpenHPC. (2019). Retrieved Sep 24, 2019 from https://openhpc.community
[12] 2019. Parallel Computing Summer Research Internship. (2019).

https://www.lanl.gov/projects/national-security-education-center/
information-science-technology/summer-schools/parallelcomputing/index.
php

[13] 2019. tmux project. (2019). Retrieved Sep 24, 2019 from https://github.com/tmux/
tmux

[14] 2019. Warewulf cluster provisioning. (2019). Retrieved Sep 24, 2019 from
https://github.com/warewulf/warewulf3

[15] Prentice Bisbal. 2019. Training Computational Scientists to Build and Package
Open-Source Software. Journal of Computational Science Education 10, 1 (2019),
74–80.

[16] R. van Drunen H.J.C Berendsen, D. van der Spoel. 1995. GROMACS: A message-
passing parallel molecular dynamics implementation. Computer Physics Commu-
nications 91, 1-3 (September 1995), 43–56.

[17] David Brayford et al. Karl W. Schulz, C. Reese Baird. 2016. Cluster Computing
with OpenHPC. SC16: HPCSYSPROS Workshop (2016).

[18] Kai Himstedt Nathanael Hübbe Sandra Schröer Michael Kuhn Matthias
Riebisch Stephan Olbrich Thomas Ludwig Jean-Thomas Acquaviva Anja Gerbes
Lev Lafayette Weronika Filinger, Julian Kunkel and Hinnerk Stüben. 2019. To-
wards an HPC Certi�cation Program. Journal of Computational Science Education
10, 1 (2019), 88–89.

Volume 11, Issue 1 Journal of Computational Science Education

80 ISSN 2153-4136 January 2020

http://tapiaconference.org/
https://www.ansible.com/
https://www.centos.org
https://clustercomputing.lanl.gov
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/cscnsi/student-projects.php
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/cscnsi/student-projects.php
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/cscnsi/student-projects.php
https://ghc.anitab.org
https://ghc.anitab.org
http://gromacs.org
http://supercomputing.org/
http://supercomputing.org/
https://github.com/hpc/cluster-school
https://hpc.lanl.gov
https://openhpc.community
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/parallelcomputing/index.php
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/parallelcomputing/index.php
https://www.lanl.gov/projects/national-security-education-center/information-science-technology/summer-schools/parallelcomputing/index.php
https://github.com/tmux/tmux
https://github.com/tmux/tmux
https://github.com/warewulf/warewulf3

