
Lessons Learned from the NASA-UVA Summer School
and Internship Program

Katherine Holcomb
Research Computing
University of Virginia

Charlottesville, Virginia
kah3f@virginia.edu

Jacalyn Huband
Research Computing
University of Virginia

Charlottesville, Virginia
jmh5ad@virginia.edu

Tsengdar Lee
High-End Computing Program

NASA
Washington, D.C.

tsengdar.lee@nasa.gov

ABSTRACT
From 2013 to 2018 the University of Virginia operated a summer
school and internship program in partnership with NASA. The goal
was to improve the software skills of students in environmental and
earth sciences and to introduce them to high-performance computing.
In this paper, we describe the program and discuss its evolution in
response to student needs and changes in the high-performance
computing landscape. The future direction for the summer school and
plans for the materials developed are also discussed.

Keywords
computer science education, scientific computing, curriculum
development, mentoring.

1. INTRODUCTION
The University of Virginia-NASA Summer School and Internship
Program was motivated by perceived gaps in basic software-
engineering and high-performance computing skills in students in
science programs, particularly environmental and earth sciences. As
science moves in an increasingly computational direction, the
preparation of students lags further behind the demands of their future
research careers. While most engineering undergraduates at the
majority of higher-education institutions are required to take some
form of introductory programming course, usually taught in a
Computer Science department, the same is not true of science students
in most cases. If they do take programming courses, they are often
taught by science faculty untrained in modern software principles. A
further omission is high-performance computing and parallel
computing; not only is this rarely taught even to computer-science
majors, but as an advanced topic it requires proficiency in basic
programming before students are able to assimilate it. Our program
was intended to explore ways to address these issues.

The program took place in two phases. In the first phase, which we
named the Intensive Summer School for Computing in Environmental
Sciences (ISSCENS), we accepted 20 students, with 10 of these
selected for subsequent 8-week internships at NASA centers. In the
second phase, Advanced Computing for Earth Sciences (ACES), we

accepted a minimum of 20 students, all of whom were placed in 8-
week internships. ISSCENS ran during the summers of 2013, 2014,
and 2015. ACES took place in 2016, 2017 and 2018. Through all
sessions of the Summer School we continuously modified the
curriculum and emphasis while retaining the basic structure
established for ISSCENS.

For both programs, applicants were required to be enrolled in or to
have just completed an academic degree program at a United States
institution of higher education. For undergraduate applicants, upper-
division students were preferred, but this was not a requirement.
During the ISSCENS phase, we accepted international students for the
10 slots that did not lead to NASA internships. For the other ISSCENS
students, and for all ACES students, United States citizenship was
required since this is necessary for regular NASA internships.
Students were housed in a dormitory on the campus of the University
of Virginia for the Summer School and were provided breakfasts and
lunches on weekdays.

No prior programming experience was required, but many attendees
had some minimal exposure, often through simple scripting in a
language like MATLAB™, while some, particularly the ACES
participants, had significant computing backgrounds. The attendees
came from 57 different US academic institutions. In both programs,
locally-residing students at the University of Virginia, most of whom
were graduate students in the Department of Environmental Sciences,
were invited to attend the full program, along with the out-of-town
students. Two to five UVA students attended each year. The
participants were almost equally divided between male (a total of 79)
and female (total 73). We did not formally track ethnicity but the
overwhelming majority would be described as white.

2. CONTENT
The program content was based on two courses taught through the
Department of Computer Science at the University of Virginia,
Computing as a Research Tool and Introduction to Parallel
Computing. Computing as a Research Tool was aimed at graduate
students who needed to apply computing to their research; basic
programming was taught in the student’s choice of language from the
selection offered, along with Unix command-line skills and using a
resource manager. Introduction to Parallel Computing teaches high-
throughput computing, threaded computing, and MPI programming
in a compiled language only (usually plain C). Computing as a
Research Tool was taught by staff of the Research Computing
support group, while Introduction to Parallel Computing is taught by
a Computer Science faculty member.
In recognition of the fact that formal coursework can never reach all
researchers who could potentially benefit, in 2008 the Department of
Computer Science developed a week-long, accelerated “High
Performance Computing Bootcamp” offered jointly with Virginia

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright ©JOCSE, a supported publication of the
Shodor Education Foundation Inc.

© 2019 Journal of Computational Science Education
DOI: https://doi.org/10.22369/issn.2153-4136/11/1/1

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 3

Tech. Taking place in early summer, it was open to all faculty, staff,
and students from institutions of higher education in the
Commonwealth of Virginia. For a few years this “Bootcamp”
alternated between the University of Virginia and Virginia Tech
venues, but in 2011 Virginia Tech developed a local version and
UVA continued on its own. Staff from Research Computing then
began to play an increasingly important role in teaching the
Bootcamp. When the ISSCENS program was developed, we
condensed our Computing as a Research Tool course into the
introductory 1.5 weeks and utilized the “Bootcamp” as the final
week. In 2016 Research Computing took full responsibility for the
Bootcamp and replaced some of the more theoretical material with an
introduction to data analytics for the high-performance platform.

The goal of ISSCENS and ACES was to reach students whose
universities do not offer coursework such as this at all, or who cannot
devote a semester to for-credit courses in computer-science topics.
The format was modeled after an accelerated traditional course, with
aspects of “flipped” classroom as much as possible. Each class day
consisted of a morning series of lectures, with short hands-on
exercises at regular intervals to the extent feasible. Afternoons
consisted of lab sessions with a set of “homework” problems. A
major adaptation over the length of the program was to differentiate
beginner, intermediate, and advanced programming projects for each
set of topics. This was particularly important for beginning students
and significantly increased their satisfaction with the program.
Evidence indicates that student comfort with their level of
understanding of an aspect of programming correlates best with
overall learning [1][2]; so, making sure students master at least the
basics of the beginning topics is critical for their success. Motivation
is another key factor in student learning [3] but our attendees
generally were highly motivated to enhance their career skills. In
fact, one student criticism of our program was that the assignments
were not based on “real” research problems.

3. STRATEGY
We settled on teaching Python as the common language. Python is
easy for most students to learn yet has sufficient power to serve as an
introduction to modern programming and basic software engineering.
Its popularity has grown substantially at high-ranked computer
science programs in the United States, passing Java recently as the
most popular language taught [4]. It is widespread in online
introductory courses from EdX, Udacity, Coursera, MIT Open
Courseware, etc. It has also exploded in popularity in many sciences.
In particular, it is displacing the commercial software IDL for areas
of interest to NASA, specifically Earth Sciences and
Astronomy/Astrophysics, particularly for data analysis. The ready
availability and ease-of-use of packages such as astropy (astronomy)
[5], Basemap [6], xarray [7], and many others for Earth sciences,
make it well suited for students in those fields. It is also free and
open source so that students are able to install it on their personally-
owned laptops without licensing expenses or concerns. Finally,
while the critical parts of data-mining and machine-learning systems
such as Theano [8] or Tensorflow [9] are generally written in a
compiled language such as C++, most users interact through these
packages’ Python bindings. On modern computing systems, the
general slowness of Python (and most other interpreted languages) is
usually not a significant issue.

Once Python was chosen, it was necessary to select a version and
then a distribution. We chose the older Python 2.7 simply because
some packages had not been ported to Python 3.3 and up at the time,
on at least one platform (e.g. Basemap was not ported to 3.N on
Windows). At all points at which differences are significant, we
taught both forms. By the time Python 2.7 reaches end-of-life in

2020 [10] we expect all packages to have been ported or replaced; for
instance, Cartopy [11] should have implemented all features of
Basemap. In 2018 we allowed students to choose but remained with
a base of Python 2.7, with an increase in discussion of maintaining
code for both versions [12].

Since our emphasis was on software development with an eye toward
more complex code projects, we focused on the Spyder IDE [13] rather
than the popular Jupyter notebook. Jupyter is oriented toward data
exploration and distribution of a “narrative” of code and analysis,
whereas Spyder is a lightweight but traditional IDE with many features
helpful for code development, including variable and object viewers
and direct access to the built-in debugger and profiler. Spyder also
marks syntax errors dynamically and can look up and show names and
documentation for functions in modules and packages on the fly. We
demonstrated use of Jupyter during exercises with the statistical
package Pandas, but mostly used Spyder. Students generally find
Spyder a comfortable working environment and often prefer it to
Jupyter.

For the Python language support, we quickly settled on the Anaconda
distribution from Continuum Analytics [14]. This distribution is
comprehensive, cross-platform, and usually very easy to install, even
for novices. Over the past six years Continuum has improved the
usability of their application and Anaconda now provides a graphical
interface for managing packages, a significant improvement over the
manual procedure using their Conda package manager from a
command line [15]. Conda is still functional for standalone
applications, with more powerful features such as conda environments
and “pinning” package versions in an environment. There is also the
pip installer for packages they do not support directly [16], but for
beginners a graphical package manager is very helpful.

Modern Fortran, taught in an accelerated fashion, was used as the class
compiled language for the first four sessions. Students who needed to
learn it would be motivated to continue, using resources we provided
as well as their own references, while students who would not need it
(or would need it only occasionally) gain some exposure without being
forced to spend too much time with it. Fortran is widely used in the
Environmental/Earth Sciences community. There are also many
legacy codes written in Fortran that students are likely to encounter if
they remain in their fields. However, it is rarely taught except to
advanced students majoring in atmospheric sciences or meteorology,
and even then it often is not taught particularly well. Modern Fortran
(the 2003 standard and up), includes many features of newer
programming languages, including arrays as a container data structure,
modules, subprogram interfaces, and more sophisticated data
structures, including classes. We particularly emphasized array
operations, which in our testing using recent compilers have proven to
be remarkably fast. Obsolete constructs were described so students
would recognize them, but we did not use them in examples or
exercises.

For the last two years we taught Fortran and C++ side by side, allowing
students to choose the one most useful to their research goals.

For the final week of each session, in which high-performance and
parallel computing were introduced, we supported C/C++, Fortran,
Python, and sometimes R.

4. CURRICULUM
The program started the Wednesday following Memorial Day and ran
for two and a half weeks. We began with three days of instruction in
a common scripting language (i.e., Python). The next Monday and
Tuesday were devoted to object-oriented programming concepts and
an introduction to software engineering. The next day was generally

Volume 11, Issue 1 Journal of Computational Science Education

4 ISSN 2153-4136 January 2020

focused on advanced visualization, with instruction in compiled-
language programming for the last two days of the week. The last
week was variable over the life of the project; but in the three ACES
sessions it consisted of Unix, bash scripting, and use of a queueing
system on Monday, either optimization and high-throughput
computing or data analytics on Tuesday, MPI usually on Wednesday
and Thursday, and programming using a multicore paradigm usually
on Friday.

The curriculum evolved significantly from the first session in 2013.
For the summers of 2013-2015 students applied directly to the
ISSCENS program, and we then recruited NASA mentors for 10 of
them. As a result, most of the applicants to ISSCENS had little to no
programming experience and we spent more time on basic skills. We
also included a session on scripting ESRI’s ArcGIS Desktop with
Python. We spent three days on a mixture of Fortran and Unix skills.
The final week, the “High-Performance Computing Bootcamp,”
focused on high-throughput computing, using a resource manager,
code optimization with an emphasis on compiled languages, OpenMP,
and MPI.

For the second phase (ACES), students applied directly to NASA
centers through the One-Stop Shopping Initiative. The mentors were
recruited by NASA education officers, and the students were selected
by the mentors. This changed the typical background of the students,
since mentors usually wanted students who were more prepared to
work on computational projects. Consequently, we reorganized the
ISSCENS curriculum. We continued to teach three days of
introductory Python and one day of object-oriented Python, but we
increased the material for the “software engineering” day, and upped
the sophistication of the “advanced visualization” day. Fortran was
consolidated into two days, with Unix and bash moved to the first day
of the “HPC Bootcamp.” Coinciding with the first ACES session in
2016, Research Computing took over full responsibility for the
“Bootcamp” from the Computer Science Department and drastically
reduced the amount of theory in the instructional materials,
substituting more practical and hands-on content in its place. The
Unix/bash/SLURM session enabled students to use larger systems at
NASA immediately upon arrival at their internship, if appropriate to
their projects. Most ACES students, even those with computational
experience, arrived never having used anything other than personal
laptops or institutional desktops, so this was also essential preparation
for the rest of the week. In 2017, in recognition of the growing
importance of “big data” analytics and machine learning, we devoted
the second day of the “Bootcamp” to this topic, including some
exercises in applying Tensorflow to remote-sensing images. We
discussed how cloud resources, such as Amazon Web Services, could
be used for implementations of Spark Machine Learning.

In 2017 we also combined serial optimization with
OpenMP/multiprocessing (the latter for Python users). Serial
optimization is especially important for Python programmers; so we
increased the content in that area beyond the original Computer
Science material. We reduced the MPI introduction to a minimum and
provided information about accelerators such as the Intel Knight’s
Landing and NVIDIA GPGPUs, although we had no KNL nodes and
only two NVIDIA-equipped nodes at the time, which made direct
experience difficult. In any case, the students’ general lack of
computer-science background and, often, C/C++ programming skills,
as well as the short time available to devote to accelerators, prohibited
any attempt to teach CUDA programming for GPUs. Therefore, our
focus was on introducing OpenACC [17] instead

For 2018 we “packaged” different portions of the curriculum into
workshops that we offered to the larger University of Virginia
community. The only session we did not open to University attendees

at that time was the “software engineering” session. It is important to
note that we taught little modern software engineering. Our emphasis
is on readable code, careful consideration of code data and algorithmic
structures, team development, and testing and debugging skills.

The HPC “Bootcamp” for 2018 was broken into three logical portions,
each of which was accessible to all UVA students and faculty as well
as to ACES students. By that time we also had accelerator hardware
available for hands-on access, and so had the opportunity to restructure
appropriate sections to take more advantage of these devices, including
KNL. We also acquired more GPUs on our HPC system so that we
demonstrated Tensorflow in its most usual environment (in 2017 we
used a core-only version). The “big data on HPC” day was also a
workshop available to UVA affiliates. The final segment was a three-
day block; the first day covered serial optimization, OpenMP, and
OpenACC. The two following days introduced MPI, including
mpi4py [19]; the introduction to the Intel Knight’s Landing MIC
occurred on the final day, along with PGAS concepts such as co-array
Fortran [20][21] and UPC++ [22]

5. OUTCOMES
Our effectiveness was variable and depended very much on the
background of individual students. The biggest challenge we faced
throughout the program was that the participants’ experience, interests,
and aptitudes ranged from complete beginners who had never
programmed in any language to students finishing a master’s degree in
computer science. The intention of the program was to train students
in HPC, but students who have not mastered basic serial programming
have very little ability to absorb parallel computing, particularly in an
intensive setting with a short timeframe.

Assessments administered to the students showed that the majority felt
that the pace was reasonable; it was fast, but they felt they could go
back later to pick up more details. In aggregate, approximately 10%
thought the pace was too fast, and 5% thought it too slow.

In the 2017 session we forced students to work in small teams on a
programming project for the “software engineering” session.
Somewhat to our surprise, most of the students had never worked
collaboratively on programming, where one programmer must code to
an API that other programmers established. Many of the students felt
that this was one of the most valuable learning experiences of the entire
program.

The most important assessment is their performance in their later
research and internships. For the first three summers only 10 students
went to NASA internships sponsored by us, but many went to
internships with other organizations. Others returned to their research.
For the final summers all but one non-UVA attendee went to NASA
internships. Student assessments were quite positive of their
internships with one exception. Assessments were anonymous but
several alumni contacted us personally to state that their internships
would have been much more difficult without the training program.

Example quotes:
“I was able to make more progress than my mentor had expected.”
 “I know that I would have been woefully unprepared for this summer
if not for the lessons and guidance provided to us through ACES.”

Several NASA mentors also requested students who had participated
in our program in previous years. In at least one case, a mentor also
sent an intern from the previous summer to ACES before the student’s
second summer internship.

In a few cases, our program was career-altering. During the first
ISSCENS session, an attendee who had never programmed before

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 5

discovered she had aptitude in that area, and reoriented her area of
interest in her field of hydrology toward computational modeling.

Another outcome of this project was a professionally-produced video
series on introductory Python, aimed specifically at scientists and
engineers and therefore emphasizing NumPy, SciPy, Pandas, and other
packages and techniques used heavily by scientific applications.
Seven students in an advanced chemistry course at the University of
Virginia were recruited as a focus group to use this series to learn to
program using these videos. Even those who had no programming
experience were able to contribute to a final group programming
project for the course.

6. FUTURE OF THE PROGRAM
Once we opened the “packaged” sessions to University of Virginia
affiliates, we found that they were extremely popular, so we have
continued the program as the Research Computing Summer Education
Series (SES). For 2019, with no ACES students attending, we
condensed the Python sessions to 3 days, largely by eliminating some
topics that are primarily of interest to environmental-science students
as well as a few more advanced topics. Response was so enthusiastic
that we had to find a larger auditorium. The C++/Fortran short course
also proved popular. Inspired by our success with Python, we added
short courses in R and MATLAB™. We opened the “software design”
short course and it attracted considerable interest as well. We
augmented the last week’s HPC training with more data analytics,
including machine learning, and added short courses in image
processing and bioinformatics, the latter emphasizing HPC
applications.

A major difference between the Summer School students and the
UVA-only attendees was the level of motivation and distraction.
Summer School attendees expected to devote their entire day to the
material, were motivated to learn in order to do well at their
internships, and maintained focus. Summer Education Series
attendees were not as reliable at returning for lab sessions. Lab
attendance was very good for Python and R, less so for compiled
languages and advanced topics, and highly variable for HPC-specific
topics. SES students also tended to be low skill. We will adjust our
material to reflect that, by incorporating some of our “beginner” level
material as exercises within the lecture/hands-on sessions.

We currently have all Summer Education Series course materials
online but not in a polished or readily accessible form. Our plan for
the next year is to convert the lectures and hands-on materials into a
combination of Markdown and, where appropriate, Jupyter notebooks.
These will be posted to a public site which will also host our Python
video series; this site currently is https://learning.arcs.virginia.edu but
this will be consolidated in the near future with other education sites
managed by UVA Research Computing. This will make self-guided
learning possible. It will also allow us to disseminate the coursework
to any institution that would be interested in replicating our series.
Only the “Introduction to HPC” session is particularly site-specific,
and even that could be easily modified for other sites and resource
managers.

7. SUMMARY AND LESSIONS LEARNED
For six sessions over five years we operated a successful summer
program to train students, primarily in Earth and environmental
sciences, in programming skills, scientific visualization, software
design, and high-performance computing. The greatest challenge was
to provide a good program for students with widely varying
backgrounds, skills, and expectations. We accommodated the
diversity by increasing hands-on exercises interspersed with lectures
and by expanding our bank of programming exercises to span a range

of abilities. We also encouraged students to work more in small groups
rather than individually.

The most important conclusion we have drawn is that it is possible to
provide students a “crash course” in programming that enables even
beginners to handle research-level scientific programming tasks, and
for more advanced students to produce near professional-quality
software. From our experience, a one- to three-day targeted course
seems to well serve the needs of researchers and research students.
They rarely have the time or opportunity to take for-credit courses in
programming, yet self-teaching or the very short (less than a day)
workshops frequently offered often do not adequately prepare them for
real-world programming. Many of our students have also expressed
dissatisfaction with well-known online courses and found they
achieved more when assistance was available, even if they were
responsible for most of the material on their own. Over the course of
the programs we also moved to include more team-based programming
projects, more basic to intermediate projects so that beginners can
progress more smoothly without too large a jump in difficulty, and
greater integration of hands-on exercises and projects within the
“lectures” rather than having dedicated lecture sessions each day.
These changes considerably enhanced student satisfaction and
assimilation. One clear pattern emerged, however, and that is the
importance of the programming exercises, ideally including the more
complex “homework” problems. For those, the availability of expert
assistance is extremely helpful, and we would advise other groups
wishing to undertake a similar experiment to prioritize face-to-face
assistance.

8. ACKNOWLEDGMENTS
We thank the education officers and intern coordinators at the NASA
centers that have hosted our students, especially Blanche Meeson and
Mablelene Burrell of Goddard Space Flight Center in Greenbelt,
Maryland, who worked to recruit mentors for our students and to make
sure they had an enriching internship experience. We are grateful to
the many NASA scientists who mentored our students. We also thank
Professors Andrew Grimshaw and Aaron Bloomfield for developing
and delivering the original material for the “HPC Bootcamp.” This
work was supported by NASA grants NNX16AB18G and
NNX12AP99G.

9. REFERENCES
[1] Bergin, Susan, and Reilly, Ronan 2005. Programming: factors that

influence success. ACM SIGCSE Bull. 37, 1, 411-415.
DOI=http://dx.doi.org/10.1145/1047124.1047480.

[2] Wilson, Brenda 2002. A study of factors promoting success in computer
science including gender differences. Computer Science Education 12,1-
2 , 141-164.
DOI=http://dx.doi.org/10.1076/csed.12.1.141.8211

[3] Liu, Ou Lydia, Bridgeman, Brent, and Adler, Rachel M. 2002. Measuring
learning outcomes in higher education: motivation matters. Educational
Researcher 41, 9, 352-362.
DOI=https://doi.org/10.3102/0013189X12459679

[4] Guo, Philip 2014. Python is now the most popular introductory teaching
language at top US universities. [Online] Available:
https://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-
popular-introductory-teaching-language-at-top-u-s-universities/fulltext.
[Accessed 26 July 2019]

[5] The Astropy Project. 2016. [Online] Available: http://www.astropy.org/
[Accessed 26 July 2019]

[6] Whitaker, Jeffrey. 2011. Basemap. [Online] Available:
https://matplotlib.org/basemap [Accessed 26 July 2019]

[7] Hoyer, Stephan, and Hamman, Joe 2017. “xarray: N-D labeled arrays and
datasets in Python.” Software Sustainability Institute: Journal of Open
Research Software 5, 1, 10, 2017. DOI: http://doi.org/10.5334/jors.148

Volume 11, Issue 1 Journal of Computational Science Education

6 ISSN 2153-4136 January 2020

[8] Theano Development Team. 2017. [Online] Available:
http://deeplearning.net/software/theano/ [Accessed 26 July 2019]

[9] Abadi, Martin et al. 2015. Tensorflow: large-scale machine learning on
heterogeneous distributed systems. Preliminary White Paper. Google
Research. [Online] Available:
https://static.googleusercontent.com/media/research.google.com/en//pub
s/archive/45166.pdf [Accessed 26 July 2019]

[10] Python Software Foundation 2008. PEP 373 – Python 2.7 release
schedule. [Online] Available: https://www.python.org/dev/peps/pep-
0373/ [Accessed 26 July 2019]

[11] Met Office (UK). 2017. Cartopy. [Online] Available
https://scitools.org.uk/cartopy/docs/latest [Accessed 26 July 2019]

[12] Python Software Foundation. 2017. [Online] Available
https://docs.python.org/3/howto/pyporting.html [Accessed 26 July 2019]

[13] Pierre Raybaut. 2017. Spyder: The Scientific Python Development
Environment [Online] Available: https://spyder-ide.org [Accessed 26
July 2019]

[14] Anaconda, Inc. , 2019. The Anaconda Distribution [Online] Available:
https://docs.anaconda.com/anaconda [Accessed 16-Aug-2017]

[15] Anaconda, Inc. 2017. “Conda.” [Online] Available:
https://docs.conda.io/projects/conda/en/latest/ [Accessed 26 July 2019]

[16] Anaconda, Inc. 2017. “Managing Packages.” [Online] Available:.
https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-
pkgs.html [Accessed 26 July 2019]

[17] OpenACC-standard.org. 2015. “OpenACC programming and best
practices guide.” [Online] Available:
https://www.openacc.org/sites/default/files/inlinefiles/OpenACC_Progra
mming_Guide_0.pdf [Accessed 26 July 2019]

[18] Lu, Xiaoyi, Shankar, Dipti, Gugnami, Shashank, and Panda, Dhabaleswar
K 2016. High-performance design of Apache Spark with RDMA and its
benefits on various workloads. IEEE International Conference on Big
Data (Big Data), 253-262. DOI=10.1109/BigData.2016.7840611.

[19] Dalcin, Lisandro. 2019. “MPI for Python.” [Online] Available:
http://mpi4py.readthedocs.io/en/stable/ [Accessed 26 July 2019]

[20] Reid, John, and Numrich, Robert W. 2007. Co-arrays in the Next Fortran
Standard. Scientific Programming, 15, 1, 9-26.
DOI=10.1155/2007/954503

[21] Fanfarillo, Alessandro, Burnus, Tobias, Cardellini, Valeria, Filippone,
Salvatore, Nagle, Dan, and Rouson, Damian 2014. OpenCoarrays: Open-
source Transport Layers Supporting Coarray Fortran Compilers. In
Proceedings of the 8th International Conference on Partitioned Global
Address Space Programming Models (PGAS '14). ACM, New York, NY,
USA, Article 4 , 11 pages.
DOI=http://dx.doi.org/10.1145/2676870.2676876

[22] Zhen, Yili, Kamil, Amir, Driscoll, Michael B., Shan, Hongzhang, and
Yelick, Katherine 2014. UPC++: A PGAS extension for C++, IEEE 28th
International Parallel and Distributed Processing Symposium, pp. 1105-
1114.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 7

