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Introduction to Volume 10 Issue 2: Special Issue on HPC Training
and Education

Nitin Sukhija
Slippery Rock University of Pennsylvania

Slippery Rock, PA

FORWARD
High performance computing is becoming central for empowering
scientific progress in the most fundamental research in various
science and engineering disciplines as well as broader societal do-
mains. It is remarkable to observe that the recent rapid advancement
in the today’s and future computing and software environments
provide both challenges and opportunities for cyberinfrastructure
facilitators, trainers and educators to develop, deliver, support, and
prepare a diverse community of students and professionals for ca-
reers that utilize high performance computing to advance discovery.
This special issue focuses on original research papers submitted
to the First Workshop on Strategies for Enhancing HPC Educa-
tion and Training (SEHET18), which was held in conjunction with
PEARC18 in Pittsburgh, Pennsylvania, U.S.A., July 25, 2018 and
the Fifth SC Workshop on Best Practices for HPC Training and
Education (BPHTE18), which was held in conjunction with SC18
conference in Dallas, Texas, U.S.A., November 12, 2018.

This special issue begins with an article by Ponce et al. that
presents tools, techniques and a methodology for developing cur-
riculum courses aimed at graduate students in emerging computa-
tional fields, including biology and medical science. The teaching
methodology used focuses on computational data analysis and sta-
tistical analysis, while at the same time teaching students’ best
practices in coding and software development. They found sig-
nificantly good evaluation results especially in the Institutional
composite questions. Those include items such as an intellectually
stimulating course, provides a deeper understanding of the subject
matter, learning atmosphere, and overall quality of the learning
experience

The article by Stieber describes the curricula of a 10-week ad-
vanced computational inorganic chemistry course based on the
course-based undergraduate research experiences (CUREs). The
students used the computational resources enabled by the National
Science Foundation’s Extreme Science and Engineering Discov-
ery Environment (NSF XSEDE) to conduct independent research
projects following in-class lectures and tutorials. They conclude
by highlighting the impact of the program on the students and its
relevance to workforce training.

The article by Coulter et al. presents the XSEDE National Inte-
gration Toolkit that provides the software used on most XSEDE
systems in an effort to enable easy knowledge and best-practice
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transfer from XSEDE service providers to campus cyberinfrastruc-
ture (CI) professionals. They describe the Use Case based approach
for the creation of the XNIT Toolkit to provide campus cyberinfras-
tructure administrators a way to include software that is commonly
found on XSEDE resources, without having to do a complete re-
installation of operating system that the XCBC cluster distribution
would require. They conclude by discussing more flexible, extensi-
ble solutions for scientific software delivery for the XNIT toolkit to
continue providing a useful solution to easing the pain of adminis-
trating a general HPC-style resource at the campus level.

The article by Fietkiewicz et al. presents a comparative study
of student’s experiences in a high performance computing course.
They utilized a recursive matrix multiply as an exercise for design-
ing a parallel program and to have students use an application that
contrasts with a previous experience using the iterative, loop-based
algorithm. They conclude by reporting on student outcomes with
respect to their prior multithreaded programming experience and
on the common errors that included recursively creating excessive
threads, failing to parallelize all possible mathematical operations,
and poor use of OpenMP directives.

The article by Ponce et al.. surveys the current academic and
non-academic programs across the globe, and presents quantitative
evidence demonstrating the need for programs in higher education
in High-Performance Computing and Data Science. They focus
on Canadian programs and specifically on the education program
of the SciNet HPC Consortium, using its detailed enrollment and
course statistics for the past six to seven years. They conclude
by illustrating SciNet’s path in developing and transgressing the
usual role of training events for users, into full credited graduate
courses recognized at the university level for masters and doctorates
degrees.

The article by Destefano and Sung describes the external eval-
uation activities in the first three years of the Blue Waters (High
Performance Computing) Community Engagement program for
graduate fellows and undergraduate interns. The evaluation utilized
the ‘Educative, Value-Engaged Approach’ and conducted formative
and summative evaluations to improve the programs and activities
based on continuous feedback, while collecting appropriate data
and information to conduct a longitudinal analysis of the impact of
the programs over the life of the project. They report that the evalu-
ation plans, activities, findings significantly affected the fellowship
and internship program implementation, and program impact.

The article by Chakravorty et al. describes an informal curricular
model of short, intensive and applied micro-courses offered at Texas
A&M University High Performance Research Computing (TAMU
HPRC) that address generalizable competencies in computing as
opposed to content expertise. The model used a number of inter-
ventions that have been systematically applied on a semester-by
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semester basis for greater visibility for the courses, engaging stu-
dents with active learning methods and retaining student interest
via the HPRC seminar series. They found number of factors that
amount to 300% growth in participation in HPRC short courses and
provide a longitudinal report that assess the success of strategies
implemented by TAMU HPRC to promote cybertraining efforts
across campus.

The article by Nunez et al. presents different learning meth-
ods and tools employed by Pawsey Supercomputing Centre to ad-
dress specific educational and training purposes. They used various
techniques ranging from traditional on-site training, through self-
guided training materials to online training and webinars and an
open repository of materials, covering different aspects of HPC sys-
tems usage, parallel programming techniques as well as cloud and
data resources usage. They found through numerous feedbacks that
there is no universal learning solution; instead, various solutions
and platforms need to be carefully selected for different groups of
interest.

The article by Zon et al. describes the changes in the training
and educational efforts the Canadian academic high performance
computing center in the areas of scientific computing and high per-
formance computing over the last six years. They used enrollment
data, attendance and certificate numbers to report on trends on
the growth, demand and breadth of the Scinet’s training program.
They conclude by highlighting the results of the assessment which
is a steady increase in the demand for the data science training and
wider participation of ‘non-traditional’ computing disciplines.

The second article by Chakravorty et al. describes a concep-
tual framework to evaluate and explore different pedagogical ap-
proaches that utilize technologies to introduce learners to complex
programming scenarios suitable for the intermediate level. They
provide quantitative and qualitative evaluation of three distinct
models of programming education: (i) connect coding to hands-on
“maker" activities using Raspberry Pi’s; (ii) incremental learning
of computational thinking elements through guided exercises that
use Jupyter notebooks; and (iii) problem-based learning with step-
wise code fragments leading to algorithmic implementation. They
conclude by reporting on the student assessment outcomes that
involve using the Jupyter notebooks to accelerate student learning
with coding concepts.

The article by Mullen et al. describes the applicability of Mas-
sively Open Online Courses (MOOCs) for scaling High Performance
Computing (HPC) training and education. They used two MOOC
case studies, including the design decisions, pedagogy and delivery
to outline how MOOC courses differ from face-to-face training,
video-capturing of live events, webinars, and other established
teaching methods with respect to pedagogical design, development
issues and deployment concerns. They conclude by reporting on
best practices for segmenting content into smaller concept sized
chunks for addressing HPC specific technical needs and concerns.

The article by Bisbal et al. presents training guidelines for build-
ing open-source software to address common problems encoun-
tered in the scientific community members when developing their
own codes and building codes written by other computational sci-
entists. The article outlines topics that are needed to be taught to
computational scientists in a logical order to train them to build

open-source software. The article concludes by providing refer-
ences to some of the topics that could be used to develop training
materials or distributed directly to students as part of the train-
ing materials for bridging a major skills gap for the computational
scientists.

The article by Seo et al. describes the design of the Cyberinfras-
tructure Security Education for Professionals and Students (CiSE-
ProS) system. They used engaging approaches to evaluate the im-
pact of learning environments produced by augmented reality (AR)
and virtual reality (VR) technologies for teaching cybersecurity con-
cepts. They conclude by reporting on the successes and feedback of
CiSE-ProS virtual reality (VR) program using the pilot study with
high school students at the Summer Computing Academy at Texas
A&M University.

The article by Kunkel discusses the preliminary design of the
HPC Certification Program and an independent body that curate
the competencies and issue certificates for the users. The article
presents two purposes of the program: defining and organizing
the fine-grained skills and the establishment of the certificates and
online exams that confirms that the user possess those skills. They
conclude by reporting on the HPC certification forum which plays
a virtual central authority to curate and maintain the skill tree and
certificates.

The second article by Fietkiewicz discusses the experiential dif-
ferences in student performance and perceptions in the undergrad-
uate level high performance computing (HPC) at Case Western
Reserve University. They used six main HPC techniques, which
includes: batch job processing, general optimization for sequen-
tial programming, parallel programming using spawned (forked)
processes, parallel programming using OpenMP and multithread-
ing, parallel programming using OpenACC and GPUs, and parallel
programming using message passing and MPI. They found that
academic experience was correlated to performance, and techni-
cal experience may have no correlation at all, assuming adequate
coverage in class is provided.

The article by Chen et al. describes an online education and train-
ing platform designed byNVIDIADeep Learning Institute (DLI) that
helps students, developers, and engineers solve real-world problems
in a wide range of domains using deep learning and accelerated
computing. The new educational platform uses a combination of
current online learning andragogy along with a cloud computing
platform consisting of a VM and Docker containers. The online
platform enables students to use the latest AI frameworks, SDKs,
and GPU-accelerated technologies on fully-configured GPU servers
in the cloud so that the focus is more on learning and less on envi-
ronment setup. They conclude by reporting on the project-based
assessment and certification offered to the students at the end of
some courses and the feedback from the DLI University Ambas-
sador Program offered to educators to teach free DLI courses to
university students, faculty, and researchers.

The article by Ngo and Denton describes the approaches in lever-
aging Cloud-Lab, a publicly available computing resource, as a
platform to develop and host materials to support teaching topics
in cluster computing. They used two approaches in using CloudLab
to teach advanced concepts in cluster computing: direct deploy-
ment of virtual machines (VMs) on bare-metal nodes and indirect
deployment of VMs inside a CloudLab-based cloud. They found

Volume 10, Issue 1 Journal of Computational Science Education

2 ISSN 2153-4136 January 2019



that the flexibility, availability, and scale of CloudLab bring signif-
icant applicability to other topics in computer science, including
operating system, networking, and cyber-security.

The second article by Coulter discusses the elasticity and pro-
grammability of cloud resources to be used as a tool for educators
who require access to a wide range of computing environments.
The article presents the Jetstream cloud environment to provide
training for both new HPC administrators and users, by showing a
ground-up build of a simple HPC system that allows an educator to
tackle everything from basic command-line concepts and scheduler
use to advanced cluster-management concepts such as elasticity
and management of scientific software.

The article by Marques et al. presents the best practices and expe-
riences organizing the Best Practices for HPC Software Developers
(HPC-BP) webinar series, an effort for the dissemination of soft-
ware development methodologies, tools and experiences to improve
developer productivity and software sustainability. They report on
a model for a number of distinct roles and steps in the process of de-
veloping and delivering a specific webinar event. They conclude by
reporting opportunities to further enrich the pool of topics related
to software productivity and sustainability and further expand their
outreach activities.
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ABSTRACT
In this paper we describe our experience in developing curriculum
courses aimed at graduate students in emerging computational
fields, including biology and medical science. We focus primarily
on computational data analysis and statistical analysis, while at the
same time teaching students best practices in coding and software
development. Our approach combines a theoretical background
and practical applications of concepts. The outcomes and feedback
we have obtained so far have revealed several issues: students in
these particular areas lack instruction like this although they would
tremendously benefit from it; we have detected several weaknesses
in the formation of students, in particular in the statistical foun-
dations but also in analytical thinking skills. We present here the
tools, techniques and methodology we employ while teaching and
developing this type of courses. We also show several outcomes
from this initiative, including potential pathways for fruitful multi-
disciplinary collaborations.

CCS CONCEPTS
• Social andprofessional topics→Computing education;Model
curricula; Student assessment; Computational thinking; Comput-
ing education programs; Accreditation;

KEYWORDS
Training and Education, Computational Statistics, graduate courses,
curricula, student assessment
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1 INTRODUCTION
In this paper, we present the methods and strategies we have used
to expand our traditional scientific and high-performance comput-
ing programs into university-curriculum courses for disciplines
ranging from physics and biology to medical sciences [5, 10]. We
show our steady growth in these disciplines, demonstrating a clear
need for approaches like ours, not only for the traditional high-
performance computing sciences but also for the not-so-usually
engaged disciplines, as shown in Figures 1 and 2. We discuss the
methodology we use to teach these non-traditional students.

This paper is organized as follows: in Section 2 we explain the
main motivations and goals that we target when designing a course
like this; Section 3 describes the basic layout and main elements of
the course; Section 4 describes the methodology we use to evaluate
and transfer the knowledge to the students, including the different
strategies have we used for offering the course; in Section 5 we
evaluate the outcomes and discuss future directions and implemen-
tations for the course; in Section 6 we draw some final reflections
about the approach presented in this paper.

2 MOTIVATION
Proper training in data analysis and statistical techniques is indis-
pensable for modern scientific research. Recent times in particular
have seen the adoption of computerized data analysis techniques in
all fields (biology, human sciences, medicine, etc.). The last decade
has also seen the advent of a new era of data availability and scale,
with huge amounts of data easily collected and shared among sci-
entific researchers, governments and businesses.

However, the skills and knowledge needed to seize the oppor-
tunities presented by these data have, in general, not been taught
in university courses. Researchers, in particular graduate students
and postdocs, are largely forced to learn these skills on their own, if
they learn them at all. The effort to understand basic concepts and
overcome the technical difficulties associated with data analysis
tools diverts from and delays the main goal, research.

Expecting students to pick up this knowledge and skill by them-
selves is especially troublesome in fields that do not have a tradition
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of doing computational research, such as biology, medical science,
health science, humanities, etc. Students in those fields cannot turn
to their senior colleagues for guidance, something that is common
in traditionally computational disciplines like physics, chemistry,
engineering and astronomy. We have offered scientific computing
courses for students in the physical sciences for many years, but
these courses focused on compiled languages, numerical libraries,
solving differential equations, and parallel computing. They were
found to be ill-suited for most students in biomedical fields both
because of required prior knowledge and the mismatch of topics
covered. Biomedical computation is more likely to involve statis-
tics, data analysis and interpreted languages, not discretized partial
differential equations.

Our recently developed courses aim to fill this gap by training
students in the practical application of statistical data analysis,
machine learning tools, and professional coding practices. It begins
by offering an introduction to the R programming language [6], an
open source tool for data analysis that is popular in the medical
sciences. Basic concepts and elements of statistical analysis are
presented, not only by reviewing theoretical foundations but also
by examining examples and applications. Next, statistical methods
such as hypothesis testing, parametric and non-parametric model
creation, model diagnosis, clustering and decision trees algorithms
are discussed and implemented using R, and applied to several real-
world examples. This particular course is aimed to graduate students
(master and doctorate degrees) from the Institute of Medical Science
(IMS) at the University of Toronto.

In previous years, we offered a very successful subset of the
current course, in a modular format. One important conclusion we
drew from students’ feedback and comments was that the students
would definitely benefit from a more comprehensive and extensive
program, incorporating more advanced topics and extending the
duration of the course. Hence the latest iteration of the course
spans a full semester. The course is in high demand: in the last year
(fall 2017, winter 2018) we delivered this course in two consecutive
terms and the registration was above the original number of spots
reserved for the course, resulting in the creation of a long waiting
list each time and an increase of 33% in the planned size of the class
for the next year.

3 COURSE DESIGN
The goal of this class is to prepare graduate students to perform
scientific data analysis. Successful students learn how to use statis-
tical inference tools to gain insight into their data, and are exposed
to cutting-edge techniques and best practices to store, manage and
analyze data. We use the R Statistical Language [6] to teach the
students the basics of programming and how to perform proper
data and statistical analysis.

We focus on four main areas in the course: i) computer program-
ming techniques, including: basics of programming, functions and
arguments, documentation and well commented codes and scripts;
ii) software development best practices, such as, modularity, version
control and proper file IO operations; iii) implementation of statisti-
cal analysis techniques and pipelines employing the programming
skills transferred in the previous points, i.e. computational statistics;

Figure 1: Distribution of student’s departments/institutions
in all SciNet courses, period 2013-2017. As can be seen tra-
ditional HPC disciplines, such as STEM, still constitutes
the majority (roughly 60% of our trainees). However, biol-
ogy and medical students are quickly catching up in num-
bers representing approximately 35% andwith an increasing
trend in the last years [13].

and iv) advanced and cutting-edge statistical analysis, including
machine learning and neural network implementations.

By the end of the course, the students should have developed
basic programming skills and created a set of tools and scripts
that help them analyze and tackle their own datasets and research
problems.

3.1 Course Content
The course is given in twelve weeks, with two 1-hour lectures per
week. Grading is based on 10 assignments set throughout the course,
and further discussed below. The course is open to all graduate
students at the university but there are a limited number of spots
(currently 60), that were all filled in the past.

The list of topics covered includes:
• Introduction to the Linux Shell. File manipulation, regu-
lar expressions, bash scripting, automation of data-analysis
pipelines.

• Introduction to programming with R. IDEs and R standard
console, basic programming concepts: conditionals, loops,
variable types.

• Introduction to programming best practices in R. Functions
and scripts, interactive versus batch processing, variable
scope, modular programming, defensive programming, com-
ments and documentation.

• Introduction to version control. Motivation, implementation
and use of version control, GIT, logs, rollback, branches.

• Binary file input/output. Accessing, reading and writing bi-
nary data, file input and output strategies, and best practices.
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• Basic statistics using R. Review of the basic concepts of proba-
bility and statistics, probability distributions, descriptive and
inference statistics. Statistical modelling implementations
using R: linear models, quadratic models, generalized linear
model. Testing models: correlation and covariance, Pearson
coefficient. Hypothesis testing: examples of null hypothe-
sis tests implementations, T-Student test, two sample T-test,
matched pair experiments, independence tests, ANOVA-like
based tests. Model Diagnostics: graphical tools, leverage,
influential points, Cook’s distance, residuals, validation of
assumptions.

• Advanced statistical topics: Generalized linearmodels, power
analysis, survival analysis, structural modelling equation,
etc.

• Statistical discussion of some important “paradoxical” cases:
Simpson’s paradox, Anscombe’s quartet, ...

• Introduction to machine learning. Regression, overfitting,
bias-variance tradeoff, cross-validation, bootstrapping, LOESS,
LOWESS.

• Advanced machine learning. Variable selection, dimension-
ality reduction, principal component analysis.

• Classification algorithms. Decision trees, confusion matrices,
clustering, logistic regression, Naive Bayes.

• Introduction to Neural Networks. Motivation. Basic exam-
ples and implementations in R.

• Visualization of data. Publication-quality figures, basic plot-
ting, 1D (curves), 2D (contour maps, heatmaps, dendograms,
etc) and 3D plots, interactive visualization, animations.

• High-performance R. Memory management, in-core process-
ing, byte-compiling, C++ interfaces, parallel techniques.

Examples and assignments, presented and discussed within the
course, cover study cases based on clinical trials, drug tests, medical
cases and hospital treatments, differential gene expression, bioin-
formatics and *omics techniques, etc.

3.2 Prerequisites
Students should ideally have some light programming experience
in any language, and a bit of command-line experience is a plus.
Students should have a laptop to bring to the lectures, with R
installed, which is freely available for Linux, OS X and Microsoft
Windows. We have noticed that due to the way we are able to
deliver the course even students with no previous experience in
coding are still able to follow and succeed in the course; however
their dedication and time commitment might be a bit higher than
for other students with a background in computing. Initially, we
assumed that because this was aimed as a graduate course, students
would have taken previous courses in statistics, however not all of
them have a solid foundation or have even taken a recent course
on basic statistics. Therefore, we decided to add as prerequisites for
the course some basic knowledge on and exposure to at least one
statistical course.

3.3 Passing Requirements & Grading Scheme
Most weeks, students are given a programming assignment, with a
due date one week after. These assignments are designed to help
students absorb the course material. There are 10 assignments in

total. The average of the assignments makes up the final grade.
To ensure a timely reporting of student grades, we adhere to the
following policy: homework may be submitted up to one week after
the due date, at a penalty of 0.5 point per day, out of the 10 points
for each homework assignment. All sets of homework need to be
handed in for a passing grade, although a make-up assignment can
be given at the end of the course. Rather than focusing on the topic
of a specific week, the make-up assignment may involve any of the
material covered in the course.

Attendance is not mandatory for the course, but strongly recom-
mended. This constitutes an important departure with respect to
other courses offered at the university level, in particular for IMS
students. Because the way we deliver our lectures and we offer the
material to students (see next section) students have the flexibility
of attending or watching our classes remotely.

4 METHODOLOGY
4.1 Strategies
One of the main challenges of formally implementing and offering
this course was to make it available to students across the univer-
sity as a listed graduate course. The difficulty originates from the
fact that SciNet, the supercomputer department of the University
of Toronto and the home department of the instructors, is not a
teaching department.

One of the most efficient ways we found to overcome this was
partnering with other departments or institutes at the university
level (e.g. the Institute of Medical Science, Physics Department,
Department of Physical and Environmental Sciences). By doing so,
we provide a formal framework for the course, allowing students
to enroll through the official university system, thus being recog-
nized in their official transcripts, i.e. taking the course for actual
university credit. At the same time, by having the course listed on
the official calendar, the course is also visible to students from any
other departments at the university, thus increasing its exposure to
the graduate students.

With respect to strategies related to the consolidation of knowl-
edge and application of concepts, an approach we usually employ in
some of the assignments is to ask the students to use their own data,
if it is the case that they have data which is suitable and available to
be used in the assignment. This approach has several advantages,
on the one hand, it allows the students to make direct contact with
the techniques described in class and immediately apply them to
their own research fields. It enables students to use the tools in
a more friendly and familiar environment, as it is basically their
own research questions and problems. It also demonstrates to the
student the efficiency and capabilities of the techniques and tools
we teach, and how they can be properly applied to their own re-
search and problems. It has the tremendous advantage of allowing
us to gain some insights of what the students struggle with in their
day-to-day work, what type of questions they are trying to answer,
in short what their research is about. Moreover, we may be able to
help students develop actual tools that they can then use and bring
into their corresponding labs and groups. The only downside to this
sort of assignment, as these are quite open, is the grading itself. In
this case we don’t have tentative solutions that we can offer to the
TAs (see below), but we provide very detailed guidelines. Similarly,
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we also ask students to focus on particular techniques we discussed
in class. Although they are welcome to use others not introduced in
the course, they need to explain those in a brief report following a
traditional paper structure, which also constitutes part of this type
of assignment.

In a similar vein, we ask students to create scripts that allow
them to produce professional/publication quality figures. At the
same time that we evaluate students’ understanding of the material,
we empower them by creating tools that will be of utility when they
need to generate plots for their own papers or research projects.
To show off some of the remarkable results we have obtained, we
have created a Visualization Gallery [14] where we post and display
figures, graphics and animations created by the students of our
courses.

Another crucial point that touches upon the partnership with
other departments and institutes is the necessity of having teach-
ing assistants (TAs) helping with the grading of the assignments.
The importance of having TAs has been shown in many situations,
e.g. [9]. In particular for courses with this number of students (ap-
proximately 60 per term) and 10 assignments per course, meaning
around 600 assignments to grade. Furthermore, the way we grade
the assignments is not automatically or in bulk, i.e. we do look at
each assignment individually, look at the logic of the implemen-
tation, whether it works, if it’s logically correct, and we provide
individual feedback and detailed comments for each student. This
is quite labour intensive, and hence not doable without the support
of the TAs, which are the main graders of the course. The fact that
the TAs are financially covered by the departments sponsoring
the course, not only allows us to provide speedy turnover in the
comments and feedback to the students, but also to substantially
increase the number of students we can accept into our courses.
For a course with 60 students we utilize 3 TAs, who are current
MSc or PhD students. Ideally we expect the TAs to have experience
with programming in general and specifically in R, Linux OS and
command line terminal, version control systems (such as GIT), and
being knowledgeable in statistics. Not surprisingly, excellent can-
didates for these TA positions are often students who have taken
our course before, as they have being trained on the good practices
we want to emphasize, have received the type of feedback we want
them to provide to fellow students, and they have experienced first
hand the course and the whole evaluation process.

The TAs’ main duties are marking and grading 10 weekly as-
signments, i.e. evaluate assignments and provide comments and
feedback. We also recommend that the TAs attend and review the
content presented in the lectures (12 lectures at 2 hours per week)
and spend some time in preparation for the grading (review topics
covered in class and get familiar with the material). We usually
host weekly meetings with instructors to discuss assignments and
grades. In general, depending on the department a workload like
this is given between 70 and 120 hours of work per TA.

As mentioned before, neither a fast feedback nor the size of the
classes would have been possible without the support of the TAs,
and this can be easily seen in Figure 2; each time a new partnership
has emerged there is a bump in our enrollment numbers. However
to make things work smoothly there is a lot of logistical work that
has to be done, ranging from the usual paperwork for hiring and
selecting candidates, up to the most important part related to the

Figure 2: Aggregated attendance hours on “Data Science”
and “Scientific Computing” graduate courses in the period
2012 to 2017. The effects of size increment, mostly due to the
ability of being able to handle more students can be clearly
seen in the years 2016 and 2017.

grading itself. In particular, we do provide the TAs explicit guide-
lines, grading schemes and tentative solutions for each assignment.
We try to anticipate and cover all the basic mistakes and important
concepts the students could face on the assignments. This is a lot of
work upfront, but it is totally worth it for the number of students we
have to handle. Of course, sometimes we have to look at a particular
student’s submission or assignments, as there are always corner
cases, but this is still a manageable amount.

4.2 Lectures
The type of knowledge we teach in our classes is rarely found at
university-level courses and is quite sought-after. In many cases
and disciplines, students and even researchers spend a good amount
of time self-learning many concepts we include in our “best prac-
tices” topics, such a modularity, testing and developing strategies,
defensive programming, version control, etc. To instill such best
practices in a graduate course setting, we have found that one of the
most efficient ways to deliver our lectures is with a combination
of theoretical concepts and practical examples and applications.
Depending on the particular topic to be presented, we emphasize a
more practical/hands-on approach during the class – for instance,
when covering topics such as introduction to Linux Shell, exploring
the basics of the R language, visualization, etc.. However, if the topic
to be covered requires some theoretical background, we then deliver
a more traditional lecture – e.g. reviews on probability and statis-
tics, introduction to machine learning and neural networks, etc. In
general, even when we are discussing and presenting theoretical
concepts and examples, we still mix practical implementations of
such concepts using the computer, so that the students can actively
follow the computational implementation during the lectures.

We usually face the question whether we would prefer to deliver
our lectures in a computer-lab or traditional classroom. Having
a computer-lab based classroom offers the advantage of control-
ling the workstations and computers, as well as the installation
of the software and libraries to use. However, we prefer that the
students use their own laptops instead, so that they actually have
to go through the process of installing, fixing and sometimes trou-
bleshooting problems dealing with their own computers and instal-
lations. This comes back to the point that our courses are aimed
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to deliver practical skills, so that the students sitting in our classes
can help others in their labs and groups, after having transited that
path before with our guidance and support. There are some features
that are desirable in traditional lecture rooms: spacious locations
are preferable, so that students can comfortably place their laptops
and there is room for the instructors to help and move around,
especially for the lectures when there is an important hands-on
component. As students will be following along, features such as
power bars and outlets are desirable, as well as a reliable wireless
internet connection. Our lectures are delivered mostly using slides
so having a projector is crucial, but often involve the blackboard as
well to clarify or demonstrate some concepts or examples. For big
rooms, having the support of AV systems, in particular microphones
and speakers is important as well.

4.3 Tools
Online resources: All our material (slides, assignments, lecture
recordings) is freely available online in our education website [12].
We keep all our past courses, lectures, slides, assignments and
recordings available on their respective websites1.

Our educational website [12] is developed based on the open
source web-based learning content management system ATUTOR
[1].

One resource that students appreciate very much is the fact that
we record all our lectures and post them on the course website. This
allows students to access the material even if they were not present
in the class or if they want to review and revisit some of the topics
covered in class. In some cases we also live stream the lectures
if there is demand, with a live chat to answer remote questions
as supported by the ATUTOR[1] framework. For recording and
streaming the lectures we use a set of mostly open source tools2 in
combination with our own setup for streaming video [15].

Another useful and practical online resource, that we offer is
an online forum system (also provided by ATUTOR), where the
students can post questions, see questions posted by other students
and even answer the questions, in other words, start a conversation
among their own peers. We, the instructors and TAs, also keep an
eye on it, and try to answer their questions there too. One nice
feature that the system offers, is that the users can register to get
email notifications when new posts are added in the forum.

Another important online contact resource we offer to the stu-
dents is email, this is by far the online resource most used by the
students. For instance, in this last year’s edition alone, we have
answered around 4000 emails. It is quite challenging to keep this
under control and balance, but we know this way of interaction is
greatly appreciated by the students. We personally, as instructors,
like to see and answer every email, as that also provides us with
important insights and diagnostic information about what topics
the students are struggling with the most. In some cases, when
we detect some particularly problematic issues, we can take quick
measures to help alleviate the problems. For instance, we can clarify
questions or address particular points during the classes, and even

1See, for instance, hyperlinks for our previous editions: Fall 2016, first module version
part of the Translational Research program, Fall 2017, first full course edition, Winter
2017/2018, second full course edition.
2Open Broadcaster Software: https://obsproject.com, Camtasia: https://www.techsmith.
com/camtasia.html, ActivePresenter: https://atomisystems.com/activepresenter.

in some cases if it is more of a technical issue, we would create a
post or discussion item in the course website.

We have also found that a crucial part of the learning process
and something students truly appreciate are our weekly office hours,
which students can attend to pose questions either on particular
topics covered in class or to get help while they work on their
assignments. Not surprisingly, we have found that just one hour
is not enough and we usually find ourselves extending the period
or even staying for around 30 minutes after class discussing and
answering questions from students.

4.4 Evaluation Methods
Our main evaluation avenue in the course are quasi-weekly assign-
ments. The reason we prefer assignments over mid-terms and/or
finals is because we think that having almost one assignment per
topic covered offers us the possibility of evaluating with much more
fine granularity the knowledge gained by the students. It also offers
the students the opportunity to practice the concepts discussed in
class. Moreover, the type of knowledge we try to transmit in our
lectures is applied/practical by its own nature. Thus having the
students implement something by themselves is the best scenario
we could think of to reinforce the learning and concepts presented
in class. The assignments are designed with two major objectives:
1) to offer the student a chance to practice the most relevant parts
of the techniques or concepts discussed in class, and 2) to chal-
lenge the students to digest and think beyond the material that
was presented, presenting problems in which they need to join
different techniques to arrive at new results. Usually we like to
set up the assignments with a sort of “hidden message”, a learning
opportunity, something the students can discover by themselves
by following specific guidelines and clues that we leave for them.
In this case we believe this self-discovery process is much richer
than the knowledge one can transfer in any sort of direct or explicit
message delivered in lectures.

This way of evaluation posses quite significant challenges [4]:
coming up with actual assignments that fulfill such a role, find
the suitable sweet spot of being interesting but not too hard to
overwhelm the students, and still be amenable to grading. However
one of the most difficult challenges to take into consideration when
having this type of homework is being vigilant of students sharing
solutions or working on the same code/submission, in other words
any sort of plagiarism. We encourage students to openly discuss
with peers, but we strongly enforce individual work. No collabora-
tive work or submission is allowed under any circumstances. We
strictly follow the university’s “Code of Student Conduct”3 regard-
ing plagiarism. In this particular case, this challenge is even harder
[7, 8], as the students are submitting programs, scripts, in many
cases just pure code. So in order to tackle this issue, we have in
place a series of tools. When possible we actually run some scripts
we developed with the goal of identifying substantial overlap in
the submitted assignments (similar tools exist for students when
writing essays or papers –see [2]–). If there is just one TA grading
a whole batch, usually in smaller class sizes (upto 20-30 students),
then we ask the TA to be vigilant about this type of situations and

3http://www.governingcouncil.utoronto.ca/Assets/Governing+Council+Digital+
Assets/Policies/PDF/ppjun011995.pdf
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can warn us about any suspicious submissions. In the case of larger
courses, we can basically take two approaches: i) Have one TA
doing the grading for one whole assignment; this has the benefit
that this one TA can see all the submissions at once and identify
any potential overlapping assignments. It also helps to normalize
the grading criteria – even when we provide concrete and precise
guidelines and grading schemes, each TA has also his own style, a
fact reflected in the assignment feedback. However, this approach
has its own disadvantages too, as it takes longer to give feedback
to the students, and it is also more sensitive to grader bias. ii) A
second approach, which is the one we follow for larger courses, is to
equally divide the number of submissions among the TAs and have
all of them working in parallel grading a subset of the assignments.
This method allows us to achieve impressive turnaround times, of
no more than 48 hours! i.e. on average two days after the students
had submitted their assignments they got feedback, comments on
what they did correctly and what to improve for future assignments.
In order to minimize biases here, we randomize the list of students
to be graded by the TAs. The disadvantages of this approach are:
that the grading score is not quite normalized as there are different
TAs grading at the same time (we believe that this is a really minor
point, mostly because the precise grading instructions we provide
to the TAs leaves little room for that, and if any particular issues
are noted we are ready to intervene); and secondly, it is harder to
catch situations as the ones mentioned before, however we have
still been able to identify and detect cases of suspect plagiarism.
After dealing with the incidents in question, the subsequent assign-
ment submissions from those students are graded by the same TA
to prevent recurrence.

In other courses we also use some online quizzes that allow us to
quickly evaluate, with multiple choice questions, basic concepts the
students should assimilate. The procedure is completely automated
and included in the features of the ATUTOR [1] web-platform that
we use in our education website, hence giving us rapid access to
results and diagnostics. This particular technique, due to its au-
tomated nature, can be easily implemented in courses with large
numbers of students. A variation of this technique had been em-
ployed in the shorter precursor of the current course, where it was
used to take attendance live during class with minimal disruption,
with approximately 100 students in class.

Finally inmore-advanced courses, we also employ research based
projects, which include having the students working on a particular
project, submitting a preliminary report, a final report and a presen-
tation describing the project to the rest of the class by the end of the
course. This technique even while quite powerful and interesting,
is more desirable and applicable to more mature students, having
solid foundations and clear understanding of what the goals of the
project should be. As the projects can grow in complexity and sig-
nificantly change as the projects evolve, these are sometimes quite
close to actual research explorations the students are pursuing (e.g.
[3]), hence one needs to closely follow the evolution of the students
and the projects. Because of this very same reason, this technique is
probably not suitable for large classes, and if the class size is above
the desirable number of projects/students to follow, or if the project
appears to be too complex, partnering students in groups could be
a good way to accommodate those situations.

5 DISCUSSION
5.1 Outcomes
There are several ways in which we can aggregate the outcomes
from this type of courses. From observations during the course,
assignment evaluations, and interacting with students during the of-
fice hours, we were able to detect a few weaknesses related to some
particular areas. For instance, we noticed that in some cases, beyond
the obvious differences in academic formations and backgrounds,
there are some serious weaknesses that academic programs could
and should target in incoming students. Among the most concern-
ing are weak analytical and critical-thinking skills, and insufficient
mathematical and statistical foundations and ability to understand
concepts. This is of course worrisome but clearly provides some im-
portant information and indicators for academic program designers
to take into consideration. From a more technical side, one of the
most challenging topics for the students to assimilate is the con-
cept of functions, arguments and return statements. Students were
able to understand modularity, and even functions as elementary
blocks in a modular framework, but the passing and receiving of
arguments and/or returning information from functions into new
parts of the code was probably the hardest concept many of the
students dealt with. Of course, it is arguable that this could be one
of the expected struggling points due to the abstract nature of the
concept. However, this is also very important information for our
future editions of the class.

Another interesting observation is the effect of “early dropouts”.
These are students that dropped out of the course very soon after it
started, between the first and second week, sometimes even before
the first assignment was posted. These early dropouts constitute
not more than 10% of the class size, which in practice does not
pose a problem (the enrollment was so high that we had a waiting
list for students that did not initially get a spot). Interestingly, we
speculate that this effect can be mostly due to a couple of causes: i)
either the course was not what the student was expecting; ii) the
workload demanded by the course might have produced a negative
impression on the student (however as we argue later in this section
it is quite the opposite); iii) the course structure was not appealing
to the students.

One quantitative indicator of how well the course is perceived
among students is course evaluations run at the university level.
These surveys are optative, and the students can decide to com-
plete them providing anonymous feedback about the course. The
questionnaire has two major components: a series of standardized
questions where students can pick numeric values ranging from
1 to 5, representing 1: “Poor”, 2: “Fair”, 3: “Good”, 4: “Very Good”,
5: “Excellent”. The second part of the evaluation is composed by
open-ended questions that allow students to provide more detailed
feedback about the instructors, the level of assistance during the
course, and overall quality of the course.

The first remarkable result is the level of participation in theses
surveys, especially considering that these are optional. The percent-
age of participation in our courses’ evaluations is usually between
57% and 72%.

Additionally for the so-called Institutional composite questions,
which include items such as intellectually stimulating course, deeper
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understanding of the subject matter, learning atmosphere and over-
all quality of the learning experience, the resulting mean from the
evaluations is 4.5/5.04.

Another interesting and somehow surprising result is how the
students perceive the workload of the course compared to other
courses: 3.33/5.05; which represents just a bit above the average
workload. In principle one could think that having roughly weekly
assignments for almost the whole duration of the course would
be a stumbling block, however the students realize that overall,
comparing the stress of just one or two instances of evaluations
(e.g. mid-terms and/or finals) versus a more gradual evaluation, the
latter is comparable or even preferable.

In addition to this, we could literally fill pages with testimonials
about the level of instruction, support and professionalism, these
courses offer, unfortunately we don’t have a good way to measure
this rather than just through anecdotal notes.

But perhaps the most outstanding quantitative result is that
97% of the students got an “A” (i.e. their average was above 85%).
This again provides support for an evaluation approach based on
assignments. As argued before, not only does this allow students to
digest the material and implement it in a practical fashion, but also
in the end helps them learn and assimilate this knowledge, which
is a more “fair” and useful measure of success in the course.

One really interesting byproduct of these courses, is the po-
tential for establishing research collaborations among different
groups and labs in need of more robust scientific computing im-
plementations. This is particularly true among non-traditionally
computational scientific disciplines like the ones this course tar-
geted. During the course, many students approached us with open
problems and potential avenues for collaborations. One of the most
recent demonstrations of this, is an ongoing research project where
in collaboration with microbiologists and biochemists, we devel-
oped a bioinformatics pipeline employing traditional HPC resources
and open source tools, which we expect will produce at least three
publications, the first one being already published [11].

Another demonstration of the success of this course, is the re-
markable interest shown by the students in becoming TAs for next
year’s course. By the end of every single term, we had students
approaching us, asking about the possibility of TAing for the course
in future editions. Somehow, students with a natural inclination
discovered the enchanting realm of scientific computing and seek
the opportunity of becoming active participants in the field. As
educators, this kind of outcome is just priceless.

5.2 Future Directions
In order to further improve our teaching and student learning expe-
rience, we continue to develop new ideas and avenues to facilitate
the transfer of knowledge and consolidate the assimilation of basic
and foundational concepts. One way we think we can help students
digest and familiarize themselves with new or difficult-to-assimilate
concepts is the development of customized lecture notes for the
course, in addition to the already available slide decks. We have no-
ticed that it is quite challenging to find resources that we can refer
4The detailed statistical indicators are: mean=4.5, mode=5.0, standard deviation=0.22
over a period of 2 years –2017/2018–.
5In this case the numeric scale is interpreted as follows: 1: “Very Light”, 2: “Light”,
3: “Average”, 4: “Heavy”, 5: “Very Heavy”.

the students to for further reading, as on the one hand it is difficult
to find references that cover the variety of topics we tackle in this
course and with the depth we try to achieve; and on the other hand
the wide range and heterogeneity in the students’ backgrounds
make it even more challenging.

We are also considering implementing an additional evaluation
requirement for passing the course, consisting of an online quiz to
be carried out by the middle of the semester. The weekly assign-
ments will continue being our main source of evaluation, however
we have noticed that students either by a lack of comprehension
or not performing the exercises in a mindful way, sometimes miss
important concepts. The in-class multiple choice quiz will help us
further diagnose difficulties in specific topics/areas and also make
the students aware of their own weaknesses. We have implemented
similar evaluation procedures for other courses, and we find them
easy to implement and evaluate using the online platform [1] we
use for our education website.

6 CONCLUSIONS
In this manuscript we described the road we followed in order
to create a graduate course aimed for non-traditional scientific
computing students. We believe the strategies, partnerships and
methodologies we present here can be useful for others to bridge
the gap between traditionally computational disciplines and disci-
plines that are new to computing. Our approach is also different
from the traditional standard university courses, but has proven
to be successful in reaching and providing new and useful tools
to students, scientists and researchers. Furthermore, having the
chance to directly interact with students we were able to identify
some important concepts that students were missing and diagnose
some crucial weaknesses which graduate programs should tackle.
Last but not least, providing this type of courses, not only offers
benefits to the students learning new skills, but it is also a way
to catalyze and push frontiers in new multidisciplinary research
fields, instigating in this way collaborations that might not have
been possible otherwise.
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ABSTRACT 
Advanced computational inorganic methods were introduced as 
course-based undergraduate research experiences (CUREs) 
through use of the National Science Foundation’s Extreme Science 
and Engineering Discovery Environment (NSF XSEDE). The 
ORCA ab initio quantum chemistry program allowed students to 
conduct independent research projects following in-class lectures 
and tutorials. Students wrote publication-style papers and 
conducted peer review of classmates’ papers to learn about the full 
scientific process.  
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1. INTRODUCTION 
Undergraduate Research Experiences (UREs) have been shown to 
be beneficial for learning and retention [1], and science persistence 
rates for those who participate in UREs are 14-17% higher than for 
those who do not [2-4]. For small teaching institutions there are 
oftentimes not enough research positions for all students who are 
interested in UREs, so there is a need to provide other opportunities 
for students to have similar experiences. Course-based UREs 
(CUREs) have been proposed as an alternative, allowing research 
modules to be incorporated into a class to provide research 
experience to all students in the course [5]. Five specific 
components of a well-designed CURE include 1) Use of scientific 
practices, 2) Discovery, 3) Broadly relevant or important work, 4) 
Collaboration, and 5) Iteration. For a CURE to achieve similar 
benefits to learning and understanding as a URE, it should include 
student-led research modules and appropriate mentoring. A lack of 
mentoring and the short time-scale of coursework are the most 
common pitfalls in successful implementation of CUREs [1]. 
In the chemistry curriculum CUREs are oftentimes difficult to 
implement in a lecture-based course because laboratory 
experiments require specialized equipment, space, and have 
additional safety concerns. Computational chemistry offers a 
unique alternative because the safety concerns are mitigated, and 
computers can easily be implemented in a standard lecture class. 
Additionally, if computational chemistry modules are posted on the 
web, students can access content and conduct research from 
anywhere with an internet connection. Despite these advantages, 
there are few publically available computational chemistry CUREs. 

A semester-long course using WebMO is available [6], and two 
individual modules for organic and general chemistry have been 
published by Hope College. [7] Several modules focus on the 
introductory concept of valence shell electron pair repulsion 
(VSEPR) theory, so more advanced computational chemistry 
applications are of interest. Herein, a state-of-the-art quantum 
chemical computational CURE for an advanced undergraduate and 
Master’s course is described.  

2. STRATEGY 
2.1 Course structure 
A newly developed CURE module was implemented in the course, 
Advances in Inorganic Chemistry (CHM 571 and 572), at Cal Poly 
Pomona (CPP) in Spring 2016 (6 students) and Fall 2017 (17 
students). The course met twice a week for 1.5 hours during a 10-
week quarter in a classroom with an individual PC computer 
workstation for each student. The general format of the course 
included a lecture the first day each week, and hands-on 
computational tutorials during the second class period. Table 1 
depicts the weekly schedule for the course. Although the course is 
offered as part of the Master’s curriculum at CPP, advanced 
undergraduates also take the course and most students had not taken 
an inorganic chemistry course before. 

Table 1: Weekly Schedule for Advances in Inorganic 
Chemistry, Fall 2017 

Week Type Topic 
1a Lecture Electron counting 
1b Lecture Group theory 
2a Lecture Molecular orbital theory 
2b Lecture Density functional theory 
3a Lecture Input files/geometry optimization 
3b Lab Input files/geometry optimization 
4a Lab Analysis of results 
4b Lecture Crystallography 
5a Lecture Infrared & Raman spectroscopy 
5b Lab Vibrational frequency calcs. 
6a Lecture Electron paramagnetic resonance 

(EPR) and magnetism 
6b Lab EPR calculations 
7a Lecture Moessbauer 
7b Lab Moessbauer calcualtions 
8a Lecture X-ray absorption spectroscopy 

(XAS) and time-dependent density 
functional theory (TD-DFT) 

8b Lab TD-DFT and XAS calculations 
9a Lecture X-ray emission spectroscopy 

(XES) 
9b Lab XES calculations 
10a Lab In-class peer review 
10b Lecture Responding to peer review 
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The first two weeks comprised of a brief introduction to 
organometallic and inorganic chemistry to ensure that all students 
had a basic understanding of metals, d-orbitals, counting electrons, 
and symmetry. The computational component began in the fourth 
class meeting with a lecture introduction to density functional 
theory. For the rest of the quarter, a lecture was generally given the 
first day of the week to introduce a new spectroscopy and the 
computational method for calculating spectra.  

2.2 Implementation of computational 
modules 

2.2.1 Computational resources  
Prior to the start of the course, 50,000 SUs of computational 
resources on the Gordon compute cluster and 500 GB of storage 
were requested and received from the National Science 
Foundation’s Extreme Science and Engineering Discovery 
Environment (NSF XSEDE). On the first day of class, students 
were instructed to create user accounts as homework using a self-
guided tutorial. The classroom contained 30 PC workstations for 
students to use. All students had personal laptops for conducting 
research projects from home, however students could also use the 
classroom computers outside of class. 

2.2.2 Programs used 
All programs used in the course are free for academic use. The 
ORCA ab initio quantum chemistry program [8] was used for all 
computational modules in this course. Additional support programs 
included WinSCP (PC) and Cyberduck (Mac) for file transferring, 
Avogadro for molecular visualization and centering, and Chimera 
[9] for visualization of orbitals. Excel was also used for plotting 
calculated spectra.  

2.2.3 Tutorials  
Step-by-step tutorials were developed as text documents with 
screen shot images to guide students through all of the 
computational techniques listed in the lab sections of Table 1. 
During class, students worked through the tutorials and the 
instructor was available to help. The tutorials were posted through 
the class Blackboard site to ensure that students could remotely 
access the tutorials as needed. 

2.3 Independent research projects 
2.3.1. Independent projects  
Independent research projects were designed to incorporate all 5 
areas of a well-designed CURE. In particular, a goal was to teach 
students the full scientific process including project proposal, 
project implementation, paper writing and peer-review. By week 3 
of the course, students were required to submit a project proposal 
for a project that they would complete during the course of the 10-
week quarter. In total, there were 7 project components (I-VII) that 
students turned in. This framework fulfilled CURE area 1) Use of 
scientific practices. 

2.3.2 Proposal 
The proposal (component I) included searching the inorganic and 
organometallic chemistry literature for complexes containing first 
row transition metals that had been crystallographically 
characterized. The complex should also have experimental data 
available for one of the types of spectroscopy addressed in class, 
but have no computational studies. Students each proposed four 
complexes, of which the instructor chose one for the student to 
study. Having the instructor choose the ultimate complex for study 
avoided problems resulting from systems that would be too 
complicated. Many students also had difficulty assessing whether 

or not calculations had been previously published, so the instructor 
could omit those. This project proposal fulfilled CURE area 2) 
Discovery.  

2.3.3. Independent research  
The independent research each student conducted included 
conducting a geometry optimization, generating a d-orbital splitting 
diagram (Fig. 1), and calculating one spectrum (Fig. 2). From the 
geometry optimization, students compared their calculated to 
experimental bond distances and angles to assess the validity of 
their computational model. The spectrum they calculated was 
compared to the experimental data. When students finished the in-
class tutorials teaching a new computational method, they had time 
to work on their independent projects. The rest of the project was 
completed as homework. Although only a geometry optimization 
and one spectroscopic calculation were required for the final 
project, most students practiced each new method on their research 
complex. The research component fulfilled CURE areas 1) Use of 
scientific practices, 2) Discovery, and 3) Broadly relevant or 
important work.  

 

Figure 1: Qualitative d-orbital splitting diagram from a 
geometry optimization generated by a student in the course 

for (MeN2N)Ni-H [10]. 

2.3.4. Publication writing  
In order to facilitate reasonable progress in the research project and 
writing, a series of due dates were set for specific project 
components I-VII. Students were also told that they could turn in 
assignments early for additional feedback. In week 5, students 
submitted a geometry optimization check (component II) with their 
input files and an expected d-orbital splitting diagram. This ensured 
that errors in coding could be addressed early on. In week 7 the 
paper introduction and results section (component III) for the 
geometry optimization were due. This included a comparison of 
experimental and calculated bond distances and angles, and a d-
orbital splitting diagram. In week 8, the methods section and 
analysis of spectroscopic properties (component IV) were due. In 
week 9, a final draft (component V) was given to a peer reviewer. 
In week 10 the peer review (component VI) was due, and in finals 
week the final project (component VII) was due. This fulfilled 
CURE area 5) Iteration. 
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Figure 2: Calculated infrared spectrum for (MeN2N)Ni-H, 
generated by a student in the course. 

2.3.5. Peer review  
The final component of the project was to learn about the peer 
review process by conducting an in-class peer review. The 
instructor distributed student papers to other students in the course, 
making sure to omit names and assign papers to classmates who 
were not sitting near each other. The instructor gave a brief 
introduction to peer review and utilized a published paper with 
posted reviewer comments for students to see what real reviewer 
responses look like [11]. Most students did not actually know what 
peer review really meant, and how formalized of a process it was. 
At the end of the class period, students had the chance to ask the 
instructor clarifications about the paper. Students had one day to 
write their formal peer reviews so the instructor could return the 
reviews to the student authors. The following class period, students 
received their peer review comments and could ask the instructor 
for advice. The peer review fulfilled CURE area 4) Collaboration, 
although this CURE area was also achieved throughout the course 
because students oftentimes worked together on the tutorials.   

3. ASSESSMENT 
3.1 Assessment strategy 
3.1.1. Course assessment  
Students performance in the course was assessed through 
homework, in-class quizzes and the final research project. Since 
students had varying degrees of chemistry experience and most had 
not taken inorganic chemistry, the course was designed to be 
project-based.  

3.1.2. Homework 
There were eleven homework assignments to give students practice 
in basic inorganic chemistry. The areas of focus were electron 
counting and group theory. The group theory assignments were 
based on completion of self-guided programs using Alan Vincent’s 
book, Molecular Symmetry and Group Theory: A Programmed 
Introduction to Chemical Applications.  

3.1.3. Quizzes 
Five in-class quizzes were distributed throughout the quarter. The 
first three tested basic inorganic chemistry concepts including 
electron counting and group theory. Because the group theory 
homework could only be assessed based on completion due to the 
nature of the programs, quizzes tested the students’ understanding 

of group theory. The last two quizzes tested knowledge of the 
ORCA input and output files, respectively. The averages for 
quizzes were typically between 76 – 80% (n = 17). 

3.2 Final project assessment 
The final project comprised of 40% of the final grade. Of this, the 
grade distribution for each of the components was 40% for 
components I-V, 20% for component VI, and 40% for component 
VII. Components I-V were graded based on effort and completion 
to ensure that students were learning. This gave students the 
opportunity to work on their writing and receive detailed feedback 
from the instructor without worrying about whether the answer was 
“right” or not. In particular, since research does not always have a 
defined answer, this was a valuable approach for students to learn 
and gave them ownership and taught independence. Component VI, 
the peer review, was a significant component of the grade to ensure 
that students took the process seriously and wrote thoughtful 
reviews. Component VI was graded on completion, level of thought 
and thoroughness. The final project component VII was graded 
based on quality of research and writing. Most students made vast 
improvements in their writing over the course of the quarter and 
submitted research projects that were of very high quality. The 
average grade for this component was 91% (n = 17).  

3.3 Course assessment 
3.3.1. Evaluation of success 
Students were highly engaged in the course and were very positive 
in both informal and formal evaluations. Formal university 
evaluations resulted in scores of “very good” and “good” (the 
highest possible) for all thirteen categories that were questioned in 
both years the course was taught. In particular, questions included 
“instructor presents material in an interesting manner,” and what is 
your overall rating of the instructor in this course?” Informal 
interactions with students during office hours gave the impression 
that students had to work a lot, but they felt like they were learning 
so much that the time was worth it. Students reported being very 
excited to conduct their own research projects and do work that no 
one in the world had done before. They also remarked upon their 
own improvements in writing, and were excited by their progress. 
Perhaps the most indicative indicator of success of the course was 
that one out of six students in the first year of the course continued 
to use ORCA and XSEDE for his own computational research, 
taught his whole group how to use these, and applied for XSEDE 
resources with his PI. In the second year of the course, two out of 
seventeen students joined the instructor’s research group and began 
computational research projects, and one additional student in a 
synthetic research laboratory used ORCA to calculate the 
compounds he was making.   

3.3.2. Lessons learned 
Students were very interested in conducting original research 
projects and doing calculations that had never been done before. As 
such, most students were highly motivated to learn and do a good 
job. It was impressive that students were able to learn such 
advanced computational techniques over a short period of time (10 
weeks) and write such high quality research papers.  

What was perhaps most surprising was the limited computer 
literacy of many students. In the first year of the course only one 
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student (n = 6) had used the command line, and in the second year 
none had (n = 17). As such, on the first computational lab day of 
class, a significant amount of time needed to be spent on basic 
command line and linux commands. Several students were also not 
familiar with computer file structures and did not know how to 
locate the C drive or search for files. Future iterations of the course 
will include additional command line tutorials to be completed as 
homework. With regards to writing, at least half of the students 
were not comfortable with basic formatting using Microsoft Word, 
including adding footnotes or references and figures. In the future, 
students will be directed to additional tutorials to learn formatting. 
The second year the course was taught, there was a TA who had 
taken the course in the previous year and was of significant help 
during the computational lab tutorials.  

3.3.3. Reproducibility and recommendations for 
implementation 
The course has been taught twice at CPP and student responses to 
the course were highly reproducible and favorable. The overall 
structure of the course and research project is a model that could be 
applied for a wide range of topics. Although computational 
inorganic chemistry is highly specialized, the general structure of 
the research project could be implemented for any type of 
computational project. For example, the research project proposal 
and writing components were implemented as a literature review 
project in an advanced Metals in Biology course in Spring 2017. A 
TA or student helper with command line experience is strongly 
recommended for classes with more than 10 students. 

3.3.4. Relevance to workforce training 
This course taught computational inorganic chemistry methods that 
are used by active research groups throughout the world and are at 
the forefront of the field. A course of this type is entirely unique 
and teaches students computational methods that they would 
normally only learn through a Ph.D. research program. 
Additionally, this gave students a research experience and 
confidence in using free software for conducting calculations of 
chemical systems, which they could apply to a variety of future 
careers. The strong focus on writing will benefit students in any 
future endeavor.  

4. CONCLUSIONS 
Computational inorganic chemistry techniques using density 
functional theory were taught in a 10-week lecture course through 
the use of a CURE. The course was taught in a lecture and tutorial 
lab format, and students conducted original self-designed research 
projects. The research projects included a proposal, a paper and a 
formal peer review process, allowing students to experience the full 
scientific process. Overall, student responses to the course were 
highly favorable, and several students continued to use the 
computational programs, methods and XSEDE resources after 
completion of the course. 
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ABSTRACT
XSEDE Service Providers (SPs) and resources have the benefit of
years of testing and implementation, tuning and configuration, and
the development of specific tools to help users and systems make
the best use of these resources. Cyberinfrastructure profession-
als at the campus level are often charged with building computer
resources which are compared to these national-level resources.
While organizations and companies exist that guide cyberinfras-
tructure configuration choices down certain paths, there is no easy
way to distribute the long-term knowledge of the XSEDE project to
campus CI professionals. The XSEDE Cyberinfrastructure Resource
Integration team has created a variety of toolkits to enable easy
knowledge and best-practice transfer from XESDE SPs to campus
CI professionals.

The XSEDE National Integration Toolkit (XNIT) provides the
software used on most XSEDE systems in an effort to propagate the
best practices and knowledge of XSEDE resources. XNIT includes
basic tools and configuration that make it simpler for a campus clus-
ter to have the same software set and many of the advantages and
XSEDE SP resource affords. In this paper, we will detail the steps
taken to build such a library of software and discuss the challenges
involved in disseminating awareness of toolkits among cyberin-
frastructure professionals. We will also describe our experiences
in updating the XNIT to be compatible with the OpenHPC project,
which forms the basis of many new HPC systems, and appears
situated to become the de-facto choice of management software
provider for many HPC centers.
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Clusters, Scientific Computing, System Administration, OpenHPC,
XSEDE, XCRI
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1 INTRODUCTION
1.1 Overview of XCRI
The XSEDE Cyberinfrastructure Resource Integration (XCRI) team
is charged with helping to provide resources that extend the impact
of experienced campus support and computational capacity for
support of research activities. XCRI is a sub-group of the XSEDE
Cyberinfrastructure Integration (XCI) team within XSEDE. While
many campuses provide substantial resources to their users, IT staff
are performing a common set of tasks locally that are duplicated at
each site. Furthermore, when users move from these local environ-
ments to XSEDE SP resources, the change can be disconcerting as
environments and software implementations are different, despite
being billed as similar systems. By providing a set of consistent
instructions and software layouts, XCRI strives to improve the ag-
gregate use of national infrastructure, save local IT staff time and
frustration, and support environments that aremore similar to those
found in the national scale cyberinfrastructure, easing transitions
for scientists moving from campus to national computing.

1.2 XCRI Toolkits
One of the core pieces of the XCRI mission is providing software
toolkits to enable cyberinfrastructure providers to easily emulate
eminent SPs within XSEDE. Most of the toolkits curated by XCRI
involve helping ease some type of pain common to a provider of
research computing services, such as building an HPC system (The
XSEDE Compatible Basic Cluster - XCBC[4, 5], and the Jetstream
Virtual Cluster), assisting users with datamovement (Ansible scripts
to build a local Globus Connect Server), or providing users with
scientific software. The last case is the primary driver of XNIT.

1.3 Toolkit Development Process
The XCRI toolkits are not produced in a vacuum, of course. By in-
terfacing with the Requirements Analysis and Capability Delivery
(RACD) team in the XSEDE Cyberinfrastructure Integration (XCI)
group, we are able to gain access to the needs and preferences of
the large XSEDE SPs. RACD is concerned with identifying software
or services that will help the XSEDE SPs operate in an integrated
way, while XCRI aims to take the lessons learned from XSEDE SPs
on a large scale, and make them available to smaller scale institu-
tions. The XCRI toolkit plan is based on the initial set of use cases
developed in collaboration between the XSEDE Campus Bridging

Volume 10, Issue 1 Journal of Computational Science Education

16 ISSN 2153-4136 January 2019

https://doi.org/10.22369/issn.2153-4136/10/1/3


team (now known as XCRI) with the XSEDE Architecture team dur-
ing the first iteration of the XSEDE project [14]. Campus Bridging
use cases were largely based on the output of the NSF Advisory
Committee for Cyberinfrastructure Task Force Report on Campus
Bridging[6], which examined ways to best enable researchers at
institutions on all levels of the funding spectrum to use advanced
research computing infrastructure with minimal friction. Campus
Bridging use cases were later augmented by a set of project-wide
“canonical use cases” that cover activities for multiple facets of
XSEDE[15].

In creating use cases, XCRI goes through a drafting and review
process to ensure that the essential parts of the Use Case will serve
its constituents without requiring a particular solution. The Use
Case process involves review by multiple parties in XCI, who are
familiar with the XSEDE SP network and aware of the many dif-
ficulties involved in sharing knowledge between educational in-
stitutions. While the Use Case describes an outcome, it does not
prescribe the solution. At this point in the process, interaction with
the larger XSEDE user community is necessary, to determine what
technologies are commonly used or coming into use. XCRI also
often undertakes surveys with community collaborators to deter-
mine their interest level in new toolkits, based on the Use Cases in
question. Once a plan is in place, XCRI team members will divide
the project, and prepare a delivery mechanism for interested parties
to use the selected software. If necessary, “glue code” will be created
to ease the installation process, and friendly users will be sought
out to ensure the toolkit is easily used by an outside party. At this
point, the toolkit is considered completed.

Once a toolkit is completed, the release and distribution process
begins. This depends quite heavily on the form the toolkit takes.
XCRI toolkits are always linked in the XSEDE Community Software
Repository. Toolkits have taken the form of everything from iso files
(the original XCBC toolkit, based on Rocks), to Ansible playbooks
delivered via a git repository (the current XCBC toolkit). For more
frequently updated toolkits, delivery via GitHub offers an easy form
of distribution, which invites community feedback. In the case of
XNIT, of course, updated packages are simply copied into the yum
repository from build servers.

Many of the XCRI toolkits fall under use case CB-02, “Share
the XSEDE Environment with Campus Uses”[14] as this is an area
with significant challenges for resource-constrained institutions,
but still remains amenable to primarily technical solutions with-
out the need for massive institutional buy-in, as is necessary for
say CB-06, “Sharing computational resources between campuses”.
Many problems faced by campuses attempting to expand research
computing are in fact political and cross-departmental, which are
not well addressed by the provision of toolkits. Something akin
to the ACI-REF[1] model of research computing facilitator, or the
XSEDE Campus Champion, is more appropriate in tackling such
issues (for example, convincing the administration that sharing sci-
entific data with the broader community will be severely hindered
if all access to institutional data must be done through local affiliate
accounts rather than utilizing the InCommon Federation tools[16].

2 DEVELOPMENT OF XNIT
The idea behind the creation of XNIT was to provide campus cy-
berinfrastructure adminstrators a way to include software that is
commonly found on XSEDE resources, without having to do a
complete re-installation of operating system that the XCBC cluster
distribution would require. Campus cyberinfrastructure may be
set up for any number of purposes and local administrators may
have quite salient reasons for configuration choices within the lo-
cal environment, based on the needs of campus faculty. To satisfy
the needs of a wide range of users, XNIT had to provide a set of
scientific software that can be installed without overly disturbing
local environmental configurations. The XNIT was created as a
straightforward yum repository, so that administrators could in-
stall scientific software as easily as installing standard linux tools,
without forcing anyone to learn to use yet another piece of software.

The XNIT was intended to provide access to rpms of commonly
used scientific software that future users of XSEDE software could
expect to see on XSEDE resources. In order to facilitate free dis-
tribution and extension, packages were all based on open-source
software. The earliest list of software included in XNIT was elicited
from the XSEDE Campus Champions list, with some discussion
and modification by the packaging team led by XSEDE staff at
Cornell University. Package maintainers regularly update package
files based on new versions as they are released by the develop-
ers (which can be few and far between), and add new packages
requested by campus CI providers, XSEDE Campus Champions,
or other members of the community. Initial testing of XNIT was
undertaken on systems at Cornell and Indiana University, with
some “friendly-user” testing courtesy of Notre Dame’s Center for
Research Computing.

3 SPREADING THEWORD
Developing a user community for XCRI offerings represents a
unique set of challenges. While there are a number of venues for
discussing research computing on campuses, many of these activ-
ities focus on the concerns of established centers, and there are
few signposts for those looking to start and support a research
computing effort, implement the first cluster on campus, or those
who are directed to start supporting a new research effort. Cam-
pus CI providers that are already engaged with XSEDE are usually
(though not always!) able to get information about XSEDE software
and practices to incorporate into their own local offerings. Larger
conferences such as Supercomputing (SC) are mostly directed at
those who are already fairly established in providing HPC offerings
to their user base. Previously one venue where the XCRI team has
been able to find interested CI providers has been the Educause
Regional conference series, although the stream of interactions
which lead to XCRI engagements has slowed over time. While it is
difficult to find people and institutions seeking the type of help that
XCRI can provide, the rewards gained in terms of increasing en-
gagement with national CI, and enabling students and researchers
at resource-constrained institutions to work beyond their funding
capacity, are incalculable.

It is surprisingly difficult to spread word about free resources in
the research computing community, particularly resources aimed
at helping people who are not already well-established members.
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Site Date TeraFlops
Marshall University April 2015 9
Souther Illinois University September 2015 35
Bentley University January 2016 2
University of Texas at El Paso May 2016 43
Brandeis University March 2017 200
South Dakota State University June 2017 10
Slippery Rock University October 2017 10

Table 1: Table of site visits inwhichXCRI Staff helped imple-
ment or upgrade a physical cluster using the XCBC toolkit.
Remote consultations are not listed, but include a variety
of activities, including support for existing clusters, XNIT
implementation, Virtual Cluster builds, and pointing insti-
tutions to other resources if necessary.

While XCRI has access to a vast array of XSEDE resources, it is
rare that an institution which is already aware of XSEDE or already
providing on-campus computational resources is in need of aid
from XCRI. It follows in the same vein that institutions who are
sending staff to large HPC conferences such as Supercomputing are
rarely (but not never!) looking for help implementing or improving
their current resources. The XSEDE Campus Champions commu-
nity has proven to be a most valuable resource when attempting
to spread the word that institutions looking for help can come to
XCRI. Having XCRI members involved in the mailing list and pro-
viding occasional highlights in the monthly Campus Champion
calls are outreach strategies that have resulted in several useful
interactions for XCRI. Connections for six of the site visits XCRI
has conducted have been made through the Champions’ mailing
lists. These interactions have also included support of campuses
applying for hardware awards from the NSF and other institutions,
as well as institutions building or rebuilding hardware they already
own. To date, XCRI has written letters of support for five different
proposals for cluster acquisitions, pledging to provide an integra-
tion site visit for winning campuses. Working with Campus CI
implementers to build a community of practice around XNIT and
other XCRI toolkits takes time, useful sets of tools, and a critical
mass of users. Regular showings at conferences is a primary method
of fostering awareness of XCRI offerings in the research commu-
nity. While conference papers are quite useful for disseminating
technical information, we’ve found that running tutorials aimed at
new-to-HPC CI professionals is an excellent way to both support
the community and spread awareness of XCRI toolkits. In general,
XCRI tutorials and informational webinars have generated the high-
est attendance, compared to more traditional presentations. Beyond
conference gatherings, BoFs, and panels, XCRI has worked to pro-
vide permanent venues for discussion and capture of knowledge
so that XNIT users can record and exchange information amongst
each other. Uptake of these tools has been variable and mostly
transient at best. CI providers are most engaged with tools that
have low barriers to entry and a bit of current interest, notably
Slack, in conversing with each other and sharing their experiences
with other providers. In addition to an #xcri Slack channel, XCRI
has provided forum access on the XSEDE Community Software
Repository, an xcbc-hosts mailing list, and a wiki area hosted by
XSEDE. Thus far the clear winner in terms of user engagement

has been the Slack channel, whereas the wiki area, which requires
more planning and regular engagement by users and XSEDE staff
in order to be useful, has seen little-to-no engagement. The mailing
list proved to be a difficult effort in light of the small population
involved. Enabling a community of practice takes time and a pop-
ulation that is encouraged to engage by common goals, identity,
and participatory spirit[2]. Given the relatively limited population
of adopters of XCRI toolkits, considerable work could be put into
creating frameworks for collaboration that still fail to reach crit-
ical mass. Adopters may feel that their local issues would not be
interesting to CI providers at other campuses. XSEDE resources for
XCRI are thinly-spread at best, some work to improve the offerings
for community collaboration might be provided by a future Campus
Champions fellow or other similiar effort.

3.1 Tracking Usage
During the early stages of XNIT, XCRI staff worked closely with
two early-adopters at the University of Hawaii and Montana State
University. In both cases, the campuses had existing HPC infrastruc-
ture which didn’t require a full rebuild à la the XCBC, but needed
the additional support provided by an easily-installed repository of
scientific software. Beyond direct communication with end-users,
tracking the uptake of XNIT is very difficult. The most information
it’s really possible to see is how often, and from where, rpms are
downloaded. Over the lifetime of the project, XNIT has attracted
roughly 90 regular users across the US, based on simple download
numbers.

4 EVOLUTION OF XNIT
In the initial conception of XNIT, the plan was to provide a means
by which local campus administrators could easily install the same
open-source scientific software as that found on XSEDE resources,
concentrated around packages specifically called out by the XSEDE
community. In order to provide a widely applicable toolkit, which
couldwork both for established and new systems, the packageswere
built to be fully relocatable, by providing a “prefix” option in the
rpm configuration. While initially this seemed a promising method
of satisfying the needs of existing systems, in practice it is actually
fairly non-trivial to successfully install an rpm to a non-standard
location while also providing users with an easy means of access,
without conflicting with existing standard package installations. In
addition to the challenges involved in providing relocatable rpms,
which often involves tracking down source code and creating “.spec”
files from scratch, the adoption of the OpenHPC[13] project for the
foundation of the XCBC toolkit led to a fundamental incompatibility
between the two toolkits.

Several factors in the ongoing development of the HPC commu-
nity made it more apparent that XNIT needed to change. After a few
site visits involving already established clusters, the team learned
that many admins have a need to maintain multiple versions of
scientific software, and that the dependency enforcement built into
yum, in which only a single version of a package can be available,
makes XNIT untenable in that situation. Many site administrators
also seem to accept that the burden of building packages will fall
on them, and simply use an array of tools such as EasyBuild[8],
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Helmod[3], or Spack[7], along with a module environment[8] to
manage their scientific software.

With the rise in popularity of container solutions for platform-
independent application deployment, and the arrival of HPC-friendly
container runtimes such as Singularity[10] and CharlieCloud[12],
it became clear that there are now much more powerful means of
providing general scientific software. While an immediate switch
to containerized software is not in the works, the XNIT project
is in the process of pivoting to providing a more focused set of
OpenHPC-compatible packages alongside the current relocatable
options. By offering packages built with the open-source compil-
ers and MPI implementations available in OpenHPC, XNIT will
continue to support existing systems while staying in step with an
open-source cluster management system with active development
that is often the choice for new deployments based on ease of use
and management. In the near future, the XCRI team will also begin
to offer containerized versions of some packages, selected based on
usage numbers gleaned from the XSEDE-wide XDMoD[11] usage
tracking site and other data sources from XSEDE, which will work
within the Singularity container runtime. There is also collabora-
tion in the works with one of the lead SingularityHub developers,
to offer a container registry tool that will allow access to both lo-
cal and non-local containers, and easy interoperability with the
Slurm[9] resource manager, used in the XCBC and a large segment
of HPC systems.

5 LESSONS LEARNED
Since the initial release of XNIT toolkit in 2012, the team has taken
several lessons from working with the community. First and fore-
most, it is extremely hard to gain live feedback from a community
without a dedicated engagement team. XSEDE External Relations
and Broadening Participation teams have been vital in helping pro-
duce materials and identify venues for outreach in the areas where
new offerings for campus cyberinfrastructure will be well-received.
The Indiana University Center for Engagement and Support has
been invaluable to the XCRI team inmanaging and collecting survey
data from the relevant groups, despite the challenges in surveying
such small numbers. It is equally hard to observe usage of a service
when the main interface is a passive yum repository. While this is
excellent for ease-of-use, it provides little visibility past a list of IP
addresses accessing the repository.

Second, it is not always the case that soliciting user requests
will result in a tool with long-term uptake. Even after designing
the toolkit based on community input, it still required a great deal
of outreach in order to keep the toolkit visible to the community.
Requirements alone are not sufficient for generating a toolkit, as
a number of potential users are interested and want to move into
cyberinfrastructure projects, but have little to guide them as to
what will support those activities. It is important for a potential
toolkit developer to take requirements, direction of technological
initiatives, and goals and needs of users into account. In light of this,
taking advantage of tools like XDMoD[11], which gives detailed job
information for the whole of the XSEDE SPs, is essential. Detailed
reporting like this makes it possible to see what the community is
really using without the necessity of collecting user responses in a
survey format.

Third, it is absolutely necessary for software toolkits to be built
in such a way that it is possible to evolve the delivery mechanism
based on user needs and preferences. While the demand for sci-
entific software remains, the desire for such software delivered
in rpm form has greatly dwindled. Due to the relative inflexibil-
ity of yum, and lacking a module system such as is available in
OpenHPC, actually using XNIT is much more cumbersome than
initially planned. In an age where software build solutions run
rampant (such as Spack[7],EasyBuild[8], and Helmod[3]), cyberin-
frastructure administrators have a wide array of flexible options at
their fingertips.

Moving to a more flexible, extensible solution for scientific soft-
ware delivery is a must for XNIT to continue providing a useful
solution to easing the pain of administrating a general HPC-style
resource at the campus level.

6 CONCLUSION
THE XCRI team occupies a unique space in the national cyber-
infrastructure environment. Neither SP nor software developers,
we stand at the edges of the research computing world, trying to
help new or under-resourced institutions find their way towards
providing high-quality resources to their scientists. With a man-
date to primarily provide software toolkits, it can be challenging
to keep up efforts to make newcomers to the research computing
community aware of our presence. These same challenges appear
through the HPC education community. Through a combination of
white papers, tutorials, and engagement with online communities,
however, it is possible to reach the relevant population.

With the ever changing nature of computing, it is also necessary
to continuously update the offerings that XCRI makes available.
In the case of XNIT, it has been not only necessary to change the
software we offer (by keeping the repository up-to-date and be-
ing open to adding new software as requested), but to completely
change the model of how that software is delivered. By keeping
extant packages viable, offering an installation method that stays
in step with a modern HPC solution, and beginning to offer truly
system-independent container software, the XSEDE National In-
tegration Toolkit will continue to evolve, and broaden the reach
of resources available to all institutions taking part in the national
research computing arena.
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ABSTRACT 
Students in a course on high performance computing were assigned 
the task of parallelizing an algorithm for recursive matrix 
multiplication. The objectives of the assignment were to: (1) design 
a basic approach for incorporating parallel programming into a 
recursive algorithm, and (2) optimize the speedup. Pseudocode was 
provided for recursive matrix multiplication, and students were 
required to first implement a serial version before implementing a 
parallel version. The parallel version had the following 
requirements: (1) use OpenMP to perform multithreading, and (2) 
use exactly 4 threads, where each thread computes one quadrant of 
the array product. Using a class size of 23 students, including 
undergraduate and graduate, approximately 70% of the students 
designed valid parallel solutions, and 13% achieved the optimal 
speedup of 4×. Common errors included recursively creating 
excessive threads, failing to parallelize all possible mathematical 
operations, and poor use of compiler directives for OpenMP.   

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education - Computer Science Education, Curriculum 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Parallel programming, OpenMP, recursion, matrix multiply. 

1. INTRODUCTION 
Matrix multiplication is a common application in high performance 
computing and is often used for benchmarking in distributed 
systems. The standard iterative, loop-based algorithm is easily 
parallelized, and we have previously used this as an elementary 
application of multithreaded programming in a course on high 
performance computing. Alternatively, a recursive approach serves 
as a basis for algorithms that are faster than the O(N3) time of the 
standard iterative algorithm [1]. We introduced recursive matrix 
multiply as an exercise for designing a parallel program and to have 
students use an application that contrasts with a previous 
experience using the standard iterative, loop-based algorithm. 

Certain constraints were given regarding the parallelization such 
that the solution would be different from common, public sources. 

2. METHODS 
The class was taught during the Spring semester of 2018 at Case 
Western Reserve University in Cleveland, Ohio. The total 
enrollment was 23 students, including undergraduate, graduate, and 
non-degree students. Table 1 shows the distribution of students by 
level, including subcategories for undergraduate and graduate 
students. Graduate students include Ph.D. and Master’s. 
Undergraduates include juniors (3rd year) and seniors (4th year). 
Results also include one student who was of non-degree status. 
Though the course had been offered twice before, this was the first 
time that the recursive algorithm was included in the content. 
Survey data was collected to determine whether students had prior 
experience with C programming and multithreading, and this data 
was considered with regard to student outcomes. 

Table 1. Distribution of students by level. 

Level Number Portion 

Ph.D. 4 17% 

Master's 6 26% 

Senior 10 44% 

Junior 2 9% 

Non-degree 1 4% 

Total 23 100% 

 
Prior to the assignment used in the present study, students had 
already completed lectures and assignments on parallelizing the 
standard iterative matrix multiply using the C language. Coverage 
of the standard algorithm included techniques for cache 
optimization, multiprocess programming using fork(), and 
multithreading using OpenMP. To prepare students for 
programming the recursive algorithm, lecture coverage included 
three components: (1) a mathematical definition of the algorithm, 
(2) a pseudocode implementation, and (3) a primer on coding and 
debugging the primary recursive function. 

 Recursive matrix multiply is defined [1] as 

𝑪 = 𝐶%% 𝐶%&
𝐶&% 𝐶&&

= 𝑨×𝑩 = 𝐴%% 𝐴%&
𝐴&% 𝐴&&

× 𝐵%% 𝐵%&
𝐵&% 𝐵&&

 

𝑪 = 𝐴%%𝐵%% + 𝐴%&𝐵&% 𝐴%%𝐵%& + 𝐴%&𝐵&&
𝐴&%𝐵%% + 𝐴&&𝐵&% 𝐴&%𝐵%& + 𝐴&&𝐵&&
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where 𝐶,- is a subarray of 𝑪 with quadrant indexes i and j. As part 
of the lecture, students were asked to perform a recursive 
multiplication by hand using arbitrary arrays of size 4×4. In a 
separate lecture, a pseudocode implementation was given for a 
function multiply(A, B, C, size), where A, B, and C are square arrays 
and size is the number of rows (and columns) of the arrays. The 
pseudocode for a serial algorithm was given as shown below: 

1. Base case: if size = 1, then 𝐶%% = 𝐴%%𝐵%%. 

2. Otherwise: use a temporary array T and compute the 
following: 

• multiply(A11, B11, C11, size / 2) 
• multiply(A11, B12, C12, size / 2) 
• multiply(A21, B11, C21, size / 2) 
• multiply(A21, B12, C22, size / 2) 
• multiply(A12, B21, T11, size / 2) 
• multiply(A12, B22, T12, size / 2) 
• multiply(A22, B21, T21, size / 2) 
• multiply(A22, B22, T22, size / 2) 
• 𝐶%% = 𝐶%% + 𝑇%% 
• 𝐶%& = 𝐶%& + 𝑇%& 
• 𝐶&% = 𝐶&% + 𝑇&% 
• 𝐶&& = 𝐶&& + 𝑇&& 

 
Due to the complexity of the algorithm, another lecture was given 
as a primer on coding and debugging the primary recursive 
function. Students were advised to use a reduced algorithm in order 
to test proper indexing and use of the temporary array T. As a test, 
it was recommended that students first compute only one of the four 
quadrants. An example was given in class for computing only C21 
as follows: 

𝑪 = 0 0
𝐴&%𝐵%% + 𝐴&&𝐵&% 0  

An example of using this reduced algorithm was calculated by hand 
in class using the same 4×4 array that was previously 
demonstrated. Following the hand calculation, a discussion was 
provided regarding how to properly associate the quadrant indexes 
(i,j = [1, 2]) with array indexes in the range 0 to size – 1. 

For the assignment, students were required to use the C language 
to implement separate serial and parallel versions. The parallel 
version had the following requirements: (1) use OpenMP to 
perform multithreading, and (2) use exactly 4 threads, where each 
thread computes one quadrant of the final array product. The first 
requirement was given because students had already completed a 
previous assignment in which the standard iterative algorithm was 
parallelized using OpenMP. The second requirement differs from 
other common approaches in which each call to multiply() is 
performed on a separate thread. We required exactly 4 threads, with 
one for each quadrant, for two reasons. First, this unusual approach 
was intended to discourage the use of publicly available source 
code. Second, it has the advantage of being appropriate for 
development on commonly available 4-core CPUs. 

For the parallelized implementation, students were required to 
report the speedup which was defined as the ratio of the serial run 
time to parallel run time. A solution was considered valid if it 
achieved a speedup greater than 1×, up to 4×, as compared to the 
serial version. Students were not told in advance what speedup ratio 
could be expected. 

3. RESULTS 
All students achieved a successful serial implementation, 
suggesting that adequate coverage was provided in class regarding 
the algorithm and coding suggestions. Therefore, the outcomes 
were evaluated according to five categories of reported speedup 
values: (1) approximately 4×, (2) greater than 1× but less than 4×, 
(3) no speedup or approximately 1×, (4) decrease in speed (less 
than 1×), and (5) not applicable (N/A). The N/A category 
represents students who reported unreasonable speedup values 
above 4× that were due to errors. The results given in Table 2 show 
that 70% of the students successfully achieved a speedup in 
categories (1) or (2). 

Table 2. Student outcomes categorized by speedup values. 

Speedup Number Portion 

4× 3 13% 

Less than 4× 13 57% 

1× 1 4% 

Less than 1× 3 13% 

N/A 3 13% 

Total 23 100% 

 
In analyzing the student outcomes, we considered the background 
experience of the students. In addition to the academic levels listed 
in Table 1, survey data showed that 57% of the class (n = 13) had 
prior experience with C and multithreaded programming prior to 
taking the course. Prior to the present assignment, however, all 
students had completed five previous programming assignments. 
All previous assignments required C programming, and two of the 
previous assignments required the use of multithreaded 
programming with OpenMP. 

We determined that experience prior to the course was not a 
determining factor for success in the present assignment. With 
regard to academic experience, valid solutions were obtained by all 
students in the two lowest experience levels: undergraduate juniors 
and non-degree. Invalid solutions occurred for students in the three 
highest levels: Ph.D., Master’s, and undergraduate seniors. 

We also concluded that outcomes did not depend on prior 
experience with C and multithreaded programming. For students 
with valid solutions (n = 16), only 50% of those had prior 
experience (n = 8). For students who did not have valid solutions 
(n = 7), 71% of those had prior experience using C programming 
(n = 5). Furthermore, of the students that lacked prior experience (n 
= 10), 80% of them had valid solutions (n = 8), including one 
student with an optimal speedup of 4×. This high success rate 
among students without previous experience suggests that lectures 
and previous class assignments were appropriate in preparing 
students. 

Among students with valid solutions, two particular factors 
affected the speedup value. One significant factor was the specific 
implementation for the temporary array T that was used for 
intermediate calculations. We observed three basic approaches to 
implementing the use of T: (1) allocating it privately within the 
multiply() function, (2) allocating it as a single, full-sized array that 
was shared among all threads, and (3) eliminating T altogether by 
performing addition in the recursion base case. Approach (1) was 
the most common and generally resulted in speedup values from 
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2× to 3×. All students who achieved optimal speedup of 
approximately 4× used approach (3). 

A second factor affecting the speedup in valid solutions was 
whether the student actually parallelized the addition step C = C + 
T. Several students neglected to include this operation in the 
separate threads. While they still obtained a speedup, this error 
significantly reduced the speedup from what was otherwise 
possible. Interestingly, one student implemented a recursive 
version of the addition step, as opposed to the ubiquitous use of for-
loops for this purpose. Unfortunately, this appears to have 
significantly limited the speedup value. 

Among the 30% of students that did not have valid solutions (n = 
7), there were many different types of errors. The expected solution, 
as explained in the assignment instructions, required the creation of 
4 threads at the beginning of the program, with each thread making 
an initial call to multiply(). In some cases, students mistakenly 
created the 4 threads in the recursive function itself, resulting in an 
excessive number of threads. For large array sizes, the effect was a 
significant increase in run time. Another error that was observed 
was poor use of OpenMP compiler directives. In previous 
assignments using OpenMP, students were required to compare the 
clauses “parallel” and “parallel for”. In the present assignment, 
some students attempted to use the “parallel for” clause with a for-
loop to create the 4 threads. In all of these cases, the students 
introduced some type of error with regard to the number of threads 
that were created or the manner in which multiply() was called. 

Some students (n = 3) reported unreasonably high speedup values 
greater than 4× and were categorized as N/A in Table 2. Each of 
these cases involved unique logic errors in the parallel 
implementation. We do not report the specific errors here because 
they were unique to each student. However, they all can be 
described as parallelization errors in which less than 100% of the 
required calculations were actually performed. Additionally, 
another common factor in these cases was that students apparently 
did not test their programs using appropriate array sizes. Their 
programs actually produced correct results for sizes up to N = 4, 
which happens to immediately lead to the recursion base case after 
the recursive subdivision into separate quadrants. However, their 
programs failed for N = 8 and higher. 

In requiring students to first implement a serial version, we 
intentionally gave them complete freedom in how to associate the 
quadrant indexes (i,j = [1, 2]) with array indexes in the range 0 to 
size – 1. An interesting observation is that several students included 
mechanisms to preserve the quadrant indexing from the original 
mathematical formulation. It is noteworthy that all of these attempts 

were successful in the serial version, but some students’ designs 
involved inefficiencies that limited the parallel version for large 
arrays. 

4. DISCUSSION 
The assignment used in the present study was our first attempt at 
requiring students to parallelize recursive matrix multiply. Our 
intent was to provide experience in designing a parallel program 
and to use an application that contrasts with a previous experience 
using an iterative, loop-based algorithm. We consider the 
requirements for parallelization to have been straight forward. We 
conclude that the complexity of the algorithm posed the most 
significant challenge in understanding how to apply parallel 
programming techniques. It is important to consider the students’ 
backgrounds, and our survey data suggests that appropriate 
preparation was given to the students prior to the assignment. This 
preparation included previous lectures and programming 
assignments on the topics of iterative matrix multiplication, C 
programming, and multithreaded programming with OpenMP. 
Additionally, the lecture on debugging may have also been 
important. Overall, we consider the assignment to have been 
successful in challenging students to work with an unusual 
application using familiar techniques.  

In the future, we hope to expand the assignment to require a more 
detailed efficiency analysis. In the present study, we focused 
exclusively on the students’ ability to implement valid parallel 
solutions with at least some amount of speedup. However, we did 
not require students to analyze and report on the efficiency of 
smaller components of their implementation. Many students 
casually accepted less than optimal speedup values, suggesting that 
it was due to unavoidable issues, such as unknown aspects to using 
recursion. In general, students did not analyze the efficiency of 
separate components of the algorithm. For example, the utilization 
of the T array involved a large amount of variability in students’ 
results. Additionally, several students did not parallelize the 
summation of the C and T arrays. In future versions of the 
assignment, we will consider adding a requirement to use multiple 
approaches for comparison. 
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ABSTRACT
We present an overview of current academic curricula for Scientific
Computing, High-Performance Computing and Data Science. After
a survey of current academic and non-academic programs across
the globe, we focus on Canadian programs and specifically on
the education program of the SciNet HPC Consortium, using its
detailed enrollment and course statistics for the past six to seven
years. Not only do these data display a steady and rapid increase in
the demand for research-computing instruction, they also show a
clear shift from traditional (high performance) computing to data-
oriented methods. It is argued that this growing demand warrants
specialized research computing degrees.

CCS CONCEPTS
• Social and professional topics→Model curricula;Comput-
ing education programs; Accreditation;

KEYWORDS
Training and Education, Scientific Computing, High-Performance
Computing, Data Science, Master’s Program

1 INTRODUCTION
The computational resources available to scientists and engineers
have never been greater. The ability to conduct simulations and
analyses on thousands of low-latency-connected computer proces-
sors has opened up a world of computational research which was
previously inaccessible. Researchers using these resources rely on
scientific-computing and high-performance-computing techniques;
a good understanding of computational science is no longer optional
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for researchers in a variety of fields, ranging from bioinformatics
to astrophysics.

Similarly, the advent of the internet has resulted in a paradigm
where information can be more easily captured, transmitted, stored,
and accessed than ever before. Researchers, both in academia and
industry [19], have been actively developing technologies and ap-
proaches for dealing with data of previously-unimaginable scale.
Researchers’ ability to analyze data has never been greater, and
many branches of science are actively using these newly-developed
techniques.

Unfortunately, the skills needed to harness these computational
and data-empowered resources are not systematically taught in
university courses [20]. Some researchers, postdocs and students
may find non-academic programs to fill this void, but others either
do not have access to these courses or cannot commit the time to
follow them. These researchers typically end up learning by trial
and error, or by self-teaching, which is rarely optimal.

A number of academic programs that aim to address this issue
have emerged at universities across the world (a few examples
are [11, 28]). Some of these grew out of the training efforts of
High Performance Computing (HPC) centres and organizations
(e.g. [27]). Recognizing the need for additional skills in their users,
computing centres such as those in the XSEDE partnership [29]
in the U.S., PRACE in Europe, and Compute/Calcul Canada have
been providing local and online HPC training as part of their user
support. Universities have also developed graduate programs in
both Scientific andHigh-Performance Computing, to train scientists
and engineers in the use of these computational resources.

A more-recent complement to these graduate programs is the de-
velopment of the degree in Data Science (DS), that is, degrees which
focus on the analysis of data, especially at scale. These degrees come
in a variety of forms, from multi-year academic graduate programs
to specialized private-sector training. These programs are in strong
demand at present, as large companies have discovered the value
in thoroughly analysing the vast quantities of customer data which
they collect. It is expected that this field will continue to grow, and
academic programs will continue to be introduced to meet this
demand.
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The SciNet HPC Consortium [15, 26] is the high-performance-
computing center at the University of Toronto. SciNet provides both
computational resources and specialized user support for Canadian
academic researchers, and as members of its support team, we are
responsible for training researchers, postdocs and graduate stu-
dents at the University of Toronto in HPC techniques. In this paper
we provide a review of the current state of graduate-level Scientific
Computing, High-Performance Computing and Data Science aca-
demic programs, and endeavour to share our training and teaching
experiences as they might result useful for other super-computer
centers. The paper is organized as follows. In Sec. 2 we discuss how
computation has become an essential ingredient in many academic
research endeavours; in Sec. 3 we review the current status of edu-
cation in the areas of High-Performance and Scientific Computing.
In Sec. 4 we present the Data Science education efforts at the aca-
demic and non-academic level. We conclude with final remarks and
perspectives for the future in Sec. 5 and 6.

2 THE ROLE OF HPC IN CURRENT
RESEARCH

It is essentially impossible to give an overview of all the uses of
computational methods in current scientific and academic research.
Wewill nonetheless attempt a review of at least some computational
scientific research, since the way computers are used in research
(and other realms of inquiry) influences what should be taught to
students.

Astrophysical computational research inherently involves large
scale computing, such as the simulation of gravitational systems
with many particles, magnetohydrodynamic systems, and bodies
involving general relativity. Atmospheric physics requires large
weather and climate models with many components to be simu-
lated in a variety of scenarios. High-energy particle physics projects,
such as the ATLAS project at CERN, require the analysis of many
recorded events from large experiments, while other high-energy
physics projects have a need for large scale simulations (e.g. lattice
QCD investigations). Condensed matter physics, quantum chem-
istry and materials science projects must often numerically solve
quantum mechanical problems in one approximation or another;
the approximations make the calculations feasible but still rely on
large computing resources. Soft condensed matter and chemical
biophysics research often involve molecular dynamics or Monte
Carlo simulations, and frequently require sampling a large parame-
ter space. Engineering projects can involve optimizing or analyzing
complex airflow or combustion, leading to large fluid dynamics
calculations. Bioinformatics often involves vast quantities of ge-
nomic input data to be compared or assembled, requiring many
small computations. Research in other data-driven fields such as
social science, humanities, health care and biomedical science [13],
is also starting to outgrow the capacity of individual workstations
and standard tools.

Examining these cases in more detail, one can distinguish differ-
ent ways in which research relies on computational resources:

(1) Research that is inherently computational, i.e. it cannot rea-
sonably be done without a computer, but which requires
relatively minor resources (e.g. a single workstation).

(2) Research that investigates problems that do not fit on a single
computer, and therefore rely on multiple computing nodes
attached through a low-latency network.

(3) Research that requires many relatively small computations.
(4) Research that requires access to a large amount of storage,

but not necessarily a lot of other resources.
(5) Research that requires access to a lot of storage, on which

many relatively small calculations are performed.

The distinction between the various types of research determines
the appropriate systems and tools to use. Graduate students that
are just starting their research often do not have enough knowledge
to make the distinction (as nobody has taught them about this), let
alone select and ask for the resources that they will need [20].

Note that all five categories fall under “Advanced Research Com-
puting” (ARC). The categories are not mutually exclusive, but re-
search of the second and third kind are usually associated with HPC,
while the fourth and fifth, and sometimes the first, are associated
with Data Science (DS). Although there is a lot of overlap between
HPC and DS, these fields require somewhat different techniques.
For that reason, we will consider separate programs for HPC and
DS.

3 PROGRAMS IN HIGH-PERFORMANCE
COMPUTING

Much of the research presented in the previous section falls in the
category of Scientific Computing (SC). The growth in the compu-
tational approach to research, both academic and industrial, has
prompted some institutions to develop graduate-level programs
crafted to teach the skills needed to design, program, debug and run
such calculations. These programs, having been in development
for more than two decades, are now fairly widespread and mature,
and are known by the names of “Scientific Computing” or “Compu-
tational Science and Engineering”. Scientific Computing graduate
degrees are offered internationally in several graduate education
hubs around the world (U.S., England, Germany, Switzerland, etc.,
— lists of which can be found at the SIAM and HPC University [14]
websites). Canada is no exception, with at least eight universities
offering graduate-level programs in Computational Science. These
programs include one-year and two-year Master’s programs, as
well as Ph.D. programs. Most of these programs (e.g. the ones shown
in Tables 1 and 4) require a final thesis. The projects and theses
are faculty-guided research projects and are usually one-term long,
though, as with all research, these projects sometimes take longer.

A typical curriculum for a two-year Master’s program in Scien-
tific Computing (in this case from San Diego State University) is
presented in Table 1. It clearly shows that Scientific Computing has
its roots in research in the physical sciences; the program heavily
emphasizes numerical analysis and scientific modelling. In some
ways this is not surprising: computers are very apt at solving such
problems, and the formalism of the physical sciences often lends
itself easily to computer programming. Other topics of study which
are also often encountered in these programs include finite element
analysis, matrix computations, optimization, stochastic methods,
differential equations and stability.

In contrast to Scientific Computing, HPC requires somewhat
wider knowledge; its practitioners need to understand more than
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Course Name Type
Introduction to Computational Science required
Computational Methods for Scientists required
Computational Modelling for Scientists required
Computational Imaging required
Scientific Computing required
Applied Mathematics for Computational Scientists required
Seminar Problems in Computational Science required
Computational and Applied Statistics elective
Computational Database Fundamentals elective
Research required
Thesis required

Table 1: The curriculum for the two-year Master’s program
at the Computational Science Research Center at San Diego
State University [9]; this forms a good example of a typical
Scientific Computing graduate program.

just the theoretical and numerical principles. They require skills
such as serial and parallel programming (often in several languages,
and on different platforms) and scripting, as well familiarity with
numerics, data handling, statistics, and supercomputers and their
technical bottlenecks. In addition, these practitioners are usually
not computer science students, so they must cope without that
background. This is somewhat unavoidable as they need to have
sufficient domain knowledge as well. Much of the same holds true
for Data Science.

3.1 Academic HPC Programs
There are not many academic programs that focus on HPC. Part
of the reason may be that such programs require access to a high-
performance-computing machine so that students can develop their
skills on real hardware, in a real supercomputing environment.
These machines require multiple computing nodes which are con-
nected by a low-latency network. Fortunately, such systems do
not need to be local: as long as the machine is accessible through
the internet the machine could be used for teaching. Nonetheless,
having the hardware local to the students lends advantages, since
most of the administrators and analysts of the system are typically
available to assist students with optimizing their codes and devel-
oping good computational strategies. Not surprisingly, the majority
of the currently offered HPC graduate programs seem to have been
developed by or in conjunction with supercomputer centres. Avail-
ability of HPC resources at the local institution or department level
varies significantly by country or region. While most top-ranked
institutions in the US have HPC facilities, the funding model in
Canada [6] is such that all the HPC resources are concentrated in a
few national centers (like SciNet).

As examples of High Performance Computing programs, the Uni-
versity of Edinburgh (UK) offers an MSc in High Performance Com-
puting, the Universitat Politècnica de Catalunya/Barcelona Tech
(Spain) offers a Master in High Performance Computing and a Mas-
ter program in Data Mining and Business Intelligence, SISSA/ICTP
in Italy offers a Master in High Performance Computing, while a
collaboration between the University ITMO (Russia) and the Uni-
versity of Amsterdam (Netherlands) offers a Double-Degree Master

Programs in Applied Mathematics and Informatics (Computational
Science). Note that many of these programs emerged from locations
with a very strong tradition and consolidated background in HPC.

3.2 SciNet’s HPC Programs
ManyHPC centers provide training for their users to fill the computational-
skills gap for the wider scientific community, such as, SDSC, PSC,
TACC, NCSA, BSC, EPCC, CSCS, SHARCNET, AceNet, Calcul
Québec, among many others. In its capacity as an HPC and ARC
centre based at the University of Toronto, SciNet has developed
several education and training programs [24] aimed at helping stu-
dents and users obtain the skills and knowledge required to get the
most out of advanced-research-computing resources. SciNet’s train-
ing events and courses are currently taken by researchers, postdocs,
and graduate students across many different departments and even
from outside of the University of Toronto (UofT). Some of these
courses are considered part of the official curricula and count as
graduate level courses within the Ph.D. programs at UofT.

Initially SciNet provided training specifically oriented toward
Scientific Computing, with the purpose of maximizing user pro-
ductivity. These early classes focused on parallel programming
(MPI and OpenMP), best coding practices, debugging, and other
scientific computing needs. Over the years the breadth of courses
has grown, with classes offered in Linux shell programming, par-
allel input/output, advanced C++ and Fortran coding, accelera-
tor programming, and visualization. This is in addition to the an-
nual HPC Summer School which SciNet runs in collaboration with
two other HPC centres within Compute Ontario[4], CAC[1] and
SHARCNET[2]. The summer school is a week-long intensive work-
shop1 on HPC topics, and more recently, also Data Science and
Medical/Bio-Informatics topics. Table 2 shows the curriculum of
our summer school for last year.

Table 3 shows the training events and courses that SciNet has
already been teaching in the areas of HPC and Data Science. The
number and types of classes which SciNet teaches have grown
significantly [25]. This can be seen in Figure 1, which presents the
total student class-hours taught by SciNet over the last six years.
This remarkable growth is a testament to the latent need for this
material to be taught. The need for this training is supported by the
enrolment statistics: our students constitute 35% of SciNet’s total
users, clearly showing that even in a specialized audience this kind
of training is still needed.

For several years the four-week graduate-style classes offered by
SciNet have been accepted for graduate class credit by the depart-
ments of Physics, Chemistry and Astrophysics at UofT. This was
possible by accepting the classes as “modular” (or “mini”) courses,
one-third semester long, and bundling three such classes into a
full-semester course. This arrangement has been so popular with
students and faculty that the Physics Department recently listed
SciNet’s winter twelve-week HPC class in the course calendar [5],
allowing graduate students from other departments in the univer-
sity to take the class for university credit. Following exactly the
same path, a six-week module designed to teach students from Bio-
logical and Medical Sciences, basics on data analysis with emphasis

1Similar initiatives and trends are being carried on by the International HPC Summer
School [3] within the theme of HPC Challenges in Computational Sciences.
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HPC Stream Data Science Stream BioInformatics/Medical
Stream

Introduction to
HPC & SciNet

Introduction to
Linux Shell

PLINK

Shared Memory
Programming
with OpenMP

Introduction to R Next Generation
Sequencing

Programming
Clusters with
MPI

Data Science with
Python

RNASeq Analysis

Programming
GPUs with
CUDA

Parallel R for Data
Science

Python for MRI Analy-
sis

Debugging and
Profiling

Python for HPC
(Parallel Python)

Image Analysis at Scale

Bring your own
code Labs

Visualization with
Python

Machine Learning for
NeuroImaging

Scientific Visualiza-
tion Suites

R for MRI Analysis

Public Datasets for Neu-
roimaging
HCP with HPC: Sur-
face Based Neuroimag-
ing Analysis

Table 2: Curriculum for the 2017 SciNet’s summer school,
showing three parallel streams: the traditional High-
Performance Computing, Data Science and adding a new
parallel stream on BioInformatics/Medical applications.
This type of events not only benefit the students and partici-
pants of the summer school, but also enables collaborations
between departments and consortia, as it was this particular
case, where part of the trainingwas delivered in partnership
with colleagues from SHARCNET and the Center for Addi-
tion and Mental Health (CAMH).

Figure 1: Attendance hours at SciNet training and education
events, per year, for all SciNet classes and Data Science spe-
cific classes.

Course Name Certificate Credits
Quantitative Applications for Data Analysis‡ DS/SC 36
Introduction to Computational BioStatistics
with R‡2

DS/SC 36

Introduction to Neural Network Program-
ming

DS/SC 4

Neural Network Programming DS/SC 16
Advanced Neural Networks DS/SC 4
Intro to Apache Spark DS 3
Machine Learning Workshop DS/SC 6
Hadoop Workshop DS 3
Scalable Data Analysis Workshop DS 12
Relational Database Basics DS/SC 6
Storage and Input/Output in Large Scale Sci-
entific Projects

DS/SC 6

Workflow Optimization for Large Scale
Bioinformatics

DS/HPC/CS 6

Python for High Performance Computing DS/HPC/SC 12
Parallel R DS/HPC/SC 3
Python GUIs with Tkinter DS/SC 2
Scientific Visualization DS/SC 6
Visualizing Data with Paraview DS/SC 6
Scientific Computing for Physicists‡3 HPC/SC 36
Intro to Programming with Python‡ SC/DS 12
Intro to Research Computing with Python‡ SC 8
Intro to High Performance Computing HPC 3
Advanced Parallel Scientific Computing HPC 12
Intro to Scientific C++ HPC/SC 6
Intro to Scientific Programming with Mod-
ern FORTRAN

HPC/SC 7

Intro to Parallel Programming HPC/SC 7
Programming Clusters with Message Pass-
ing Interface

HPC/SC 12

Programming Shared Memory Systems
with OpenMP

HPC/SC 6

Practical Parallel Programming Intensive HPC/SC 32
Intro to GPGPU with CUDA HPC/SC 9
Programming GPUs with CUDA HPC/SC 12
SciNet/CITA CUDA GPU Minicourse HPC/SC 12
Coarray Fortran HPC/SC 2
Parallel I/O HPC/SC 6
Debugging, Optimization, Best Practices HPC/SC 6
HPC Best Practices and Optimization HPC/SC 3
HPC Debugging HPC/SC 3
Intro to the Linux Shell HPC/SC 2
Advanced Shell Programming HPC/SC 3
Seminars in High Performance Computing HPC/SC 4
Seminars in Scientific Computing HPC/SC 4

Table 3: Courses taught by SciNet onData Science (DS),High-
Performance Computing (HPC), and Scientific Computing
(SC). ‡ denotes courses already recognized at the Univer-
sity of Toronto in several departments, such as, Physics, As-
trophysics, Chemistry, Ecology and Evolutionary Biology,
Institute of Medical Science, Physical and Environmental
Sciences, Engineering, as graduate level credits. We should
also mention that students from other universities in the
province of Ontario –e.g. Ryerson University– were allowed
to enroll in some of these graduate courses for credit via a
provincial academic transfer program.
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in statistical analysis using the R Statistical Language [18], has now
become one of the most popular courses at the Institute of Medical
Science at UofT [7].

The skills that SciNet aims to transfer are rare and sought-after,
and complement and enhance the skills students learn in regular
curricula. That is why SciNet has developed a set of Certificate
Programs [23], that users and students can pursue in Scientific Com-
puting,High Performance Computing, and/orData Science, once they
have completed enough credit-hours. As a document that proves
the holder has highly competitive skills, and in lieu of graduate
credit for most SciNet courses, the certificates are in high demand.
In a resounding endorsement of our teaching, thus far students
have completed a total of 161 certificates (116 in Scientific Comput-
ing, 23 in High-Performance Computing and 22 in Data Science4).
According to the current registration and trends, we are projecting
to have over 250 certificates completed by mid-2018. Moreover,
anecdotal feedback from some of our students suggests that the
courses and their SciNet certificates were instrumental in successful
job applications, in industry and in the financial sector.

4 PROGRAMS IN DATA SCIENCE
The wide adoption of the internet in the professional and the per-
sonal sphere ushered in the age of “Big Data”. The ease of recording
of people’s online behaviour, and the ability to rapidly move data,
lead to a large, diffuse, complex amount of data waiting to be mined
for useful information. Because of the typically large size of the
data special hardware and training are often needed. In contrast to
Scientific Computing and HPC, there are many applications of Data
Science in the private sector, e.g. in the medical, banking, retail,
insurance, and internet industries.

Bioinformatics also has a large component in the academic world.
Though a more-recent addition to the HPC disciplines, the bioinfor-
matics field is well-populated with graduate programs, a testament
to its rapid growth and latent demand. Its emergence as a major
user of HPC systems has resulted in the development of “Master’s
of Bioinformatics”, and related degrees. A typical Master’s program
is outlined in Table 4, this one from the Indiana-Purdue Univer-
sity at Indianapolis. While having many features in common with
a more-standard SC Master’s program, such as the study of pro-
gramming and algorithms, it exhibits the particular needs of the
bioinformatics community, stressing the importance of genetics
and biological processes, and a lesser emphasis on mathematics
and programming theory.

Degrees in Data Science are relatively new, with the first Mas-
ter’s program only being introduced in the U.S. (by North Carolina
State University) in 2007. A sample of some of the classes offered
in one such program is given in Table 5. As can be seen, these pro-
grams have a strong focus on data, with statistics, machine learning,
and databases being their standard focus. Analyzing data that are
too big to fit on a standard desktop computer requires specialized
equipment; such training is also part of these graduate-level pro-
grams, as indicated by the presence of the “Cloud Computing” and
“Distributed Systems” classes. Like typical graduate-level programs,
these degrees usually require a final project or thesis to be presented
by the student.

4This number has triplicated since the launch of the program in 2016.

Course Name Type
Introduction to Bioinformatics required
Seminar in Bioinformatics required
Biological Database Management required
Programming for Life Science required
High Throughput Data in Biology required
Machine Learning in Bioinformatics elective
Computational System Biology elective
Structural Bioinformatics elective
Transitional Bioinformatics Applications elective
Algorithms in Bioinformatics elective
Statistical Methods in Bioinformatics elective
Computational Methods for Bioinformatics elective
Next Generation Genomic Data Analytics elective
Next Generation Sequencing elective
Bioinformatics Project required

Table 4: The curriculum for the “Project Track” two-
year Master’s of Science in Bioinformatics at the Indiana
University-Purdue University in Indianapolis; this forms a
good example of a typical Bioinformatics graduate program.

One could argue that the novelty of methods in Data Science is
due to its roots in Business Analytics (BA), where the objective is
to make a decision. The field has certainly grown beyond that, and
BA is now considered a sub-field of Data Science. Another more-
recently developed sub-field is in the realm of health care (“Health
Informatics”). Because these sub-fields are directly applicable to the
private sector (and the associated revenue streams these present)
these have become the most-commonly implemented post-graduate
programs. The Business Analytics programs focus on using data to
refine business administration, as well as develop marketing strate-
gies. Health Informatics programs concentrate on using clinical
data to optimize health care processes.

The practical focus of Data Science is reflected in the presence
of an internship in the Data Science curriculum listed in Table 5.

Course Name Type
Analysis of Algorithms required
Machine Learning required
Advanced Database Concepts required
Distributed Systems elective
Advanced Database Concepts elective
Cloud Computing elective
Information Retrieval elective
Data Mining elective
Web Mining elective
Applied Machine Learning elective
Complex Networks and Their Applications elective
Relational Probabilistic Models elective
Internship in Data Science elective

Table 5: A selection of the courses available for the Master’s
of Data Science at the Indiana University.
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Internships in such programs are similar to other co-op-type ar-
rangements: the student works with an employer for a semester,
allowing the student to gain hands-on experience applying the
skills learnt during such period.

4.1 Academic Data Science Programs
Graduate level programs in Data Science are not difficult to find. For
instance, programs in bioinformatics (a data-driven field), can be
found on theweb site of the International Society for Computational
Biology. It speaks to the rapid rise of the field bioinformatics, that
there are more bioinformatics programs available than Scientific
Computing programs. Examples lists of other Data Science pro-
grams can be found at the NCSU analytics web site, the online busi-
ness analytics programs site of predictiveanalyticstoday.com
and at online.coursereport.com. Initially these programs were
not as common as Scientific Computing, due to the fact that Data Sci-
ence was a relatively new field of study. This situation has changed
dramatically in the last few years. For instance in the United States
alone there are hundred of Data Science degrees and certificates
[8]. Among those programs about half are offered in the fields of
Business Analytics and Health Informatics, with the other half be-
ing proper Data Science programs. There has also been a surge in
Machine Learning and Artificial Intelligence programs, which span
data science and scientific computing.

4.2 Non-academic Data Science training
The demand for Data Science skills (or “Data Analytics” skills as
they are often called in the private sector) is so high [19] that the
private sector has developed programs to meet the growing demand.
See, for instance, on skilledup.com, which contains a list of data sci-
ence boot-camps. The format of these classes is varied, though they
are all oriented toward a “boot-camp” format: some are in person,
some online; some are one-week long, others twelve weeks. These
programs are very applied, often with one-on-one mentorship with
a seasoned Data Analytics expert. They also include direct contact
with possible future employers.

Moreover, a great number of these training programs are not
focused on developing analytical thinking or problem-solving skills,
[12] but rather are aimed at Ph.D.s and postdocs, whose problem-
solving skills are assumed to have already developed. This allows
them to focus on the technical training relevant to the job market.
Some of these programs are free, some of them offer fellowships,
and many of them charge on the order of 10-30 thousand US-dollars
for a training period of, typically, three months. These programs
have acquired such a level of popularity among young and recent
graduates that the companies offering these programs have started
to perform evaluation tests in order to assess which candidates are
more suitable to be accepted to their programs. Perhaps the most
appealing part for trainees is the networking platform offered by
these programs, as in most cases they provide the opportunity to
interact with actual companies looking for new talent and avoid
recruitment layers.

Institutions in the non-profit arena are also starting to offer
programs on Data Science. For instance the Fields Institute, a tra-
ditional institution for mathematical research, has offered several
workshops and courses, and developed a thematic program on Big

Data. Other examples include the International Centre for Theo-
retical Physics (ICTP) and the International School for Advanced
Studies (SISSA), prestigious institutions with a well known tradi-
tion in theoretical physics, now offering training in “Research Data
Science”.

HPC centers are also venturing into Data Science training, offer-
ing workshops on R, Hadoop, machine learning, etc. SciNet started
offering classes with greater data-oriented content (cf. Table 3) in
2013, with a four-week class in scientific analysis using Python.
Having now finished its third year, the class remains popular, with
about twenty students taking the class each year. The 2015 fall
semester also inaugurated SciNet’s first “Data Science with R” class,
focusing on data analysis techniques using the R language. This
class was very popular with over twenty-five students finishing
the course, and most students requesting a second installment with
more advanced material. Continuing its growth in the Data Sci-
ence area, in the last year SciNet has held workshops in machine
learning, scalable data analysis, and Apache Spark.

Comparing the student- and taught-hours per year shown in
Fig. 2, one sees that the Data Science classes have been growing
consistently, both in absolute as well as relative numbers (Data
Science related courses roughly constituted less than 2% (2012), 4%
(2013), 21% (2014), 22% (2015), 27% (2016) and 28% (2017) of the total
classes taught respectively in each year. While attendance to Data
Science courses, follows even a more significant trend: 1% (2012),
23% (2013 and 2014), 29% (2015), 40% (2016) and 41% (2017). We
project for the current year a growth of at least 10%, positioning at
equal levels the traditional Scientific Computing and Data Science
trainings.

5 DISCUSSION
As mentioned above, scientific computing is used by scientists and
engineers as never before, and graduate-level programs in Scientific
Computing are numerous in Canada and around the world. In
contrast, the development of HPC and Data Science programs is
in its early stages, both in academia and the private sector. These
programs are being developed to meet the continued shortfall in
skill in these areas, with the McKinsey Global Institute estimating
that the United States will be short 140,000 to 190,000 data analytics
professionals by 2018 [16].

One may wonder whether online learning could not satisfy this
need. A few examples of MOOCs (Massively Open Online Courses)
in HPC and Data Science do exist5. However, seeing the growth in
enrolment in SciNet’s in-person courses and the summer school
over the years (cf. Figs. 1, 2 and 3) shows that many students still
prefer the face-to-face format.

Similarly, one may wonder why certificate programs do not suf-
fice for HPC and DS education. As successful as these programs are,
they have a few disadvantages. Firstly, they are mostly collections
of fairly specific technical training: this leaves no room for more
fundamental material. Secondly, it is also hard to encorporate an in-
ternship or thesis into such a certificate. Finally, certificates tend to
carry less weight than degrees, and, in line with this, the demand for
for-credit courses is larger than that for not-for-credit courses, as

5E.g. https://www.citutor.org/, http://www.hpc-training.org, https://www.futurelearn.
com.
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Figure 2: Total student hours (top) and taught hours (bottom)
per year, for SciNet’s Data Science and Scientific Computing
related courses. The trends clearly show the need for train-
ing courses in both fronts, at the level of university recog-
nized courses.

Figure 3: Average class size trend for Scientific Computing
and Data Science courses at SciNet.

our experience with SciNet’s Scientific Computing graduate course
has shown.

A degree program in HPC or DS could offer more academic and
fundamental education, which would leave the student with the
analytical skills and high-level knowledge to stay on top of their
field regardless of changes in computational technology.

6 CONCLUSION
We believe we have offered quantitative evidence demonstrating
the need for programs in higher education in High-Performance
Computing and Data Science, in particular in our own institution.

If the qualitative evidence of this seems somewhat limited, it should
be understood that existing HPC and DS programs (academic and
non-academic) are still relatively new. While some such programs
are already in existence, in many cases students must use non-
academic options, or teach the material to themselves. Academic
programs would offer the benefit of not just teaching specific techni-
cal skills, but an education in the fundamentals of HPC and DS and
instilling the analytical skills needed to adopt to an ever-changing
technological landscape.

We have reviewed existing academic and non-academic educa-
tion programs, in both HPC and DS. In light of this review, we
invite eager readers to look at a longer and complementary version
of this manuscript [17] where we present the design for a tenta-
tive Master’s programs in HPC and DS, based on the examples
discussed here and drawing from the experience and enrollment
statistics in not-for-credit training in HPC and DS by the SciNet
HPC Consortium at the University of Toronto.

Getting well-founded graduate programs off the ground will
not be without challenges. It will likely involve partnerships and
discussions with other departments and institutes in order to offer
a stronger and multi-disciplinary program. Existing HPC Centers,
which already operate across multiple disciplines, can play a fun-
damental role in bringing together such programs. Thus, we have
described SciNet’s path in developing and transgressing the usual
role of training events for users, into full credited graduate courses
recognized at the university level for masters and doctorate de-
grees. Moreover, the creation of these graduate courses allowed us
to leverage two key elements:

(1) Several of our analysts involved in the educational efforts
got recognized by obtaining graduate teaching affiliations
with the corresponding institutes/departments that were
sponsoring the courses.

(2) Interact with students at a more professional level, collabo-
rating and participating in research projects, allowing us to
launch research initiatives [22] for which we already have
successful cases [10, 21] and many more in the process of
being developed. Perhaps the most important point here is
to note that these collaborations were catalysed by the direct
interaction with our students and researchers.

We hope this might help other super-computer centers transition a
similar path and develop strategies to play a fundamental role in
the multidisciplinary fronts that are HPC, SC and DS.
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Abstract 
The external evaluation activities in the first three years of 
the Blue Waters Community Engagement program for 
graduate fellows and undergraduate interns are described in 
this study. Evaluators conducted formative and summative 
evaluations to acquire data from the participants at various 
stages during this period. Details regarding the evaluation 
methodology, implementation, results, information feedback 
process, and the overall program impact based on these 
evaluation findings are outlined here. Participants in both 
groups were selected from a variety of different scientific 
backgrounds and their high performance computing 
expertise also varied at the outset of the program. 
Implementation challenges stemming from these issues were 
identified through the evaluation, and accommodations were 
made in the initial phases of the program. As a result, both 
the graduate fellowship and undergraduate internship 
programs were able to successfully overcome many of the 
identified problems by the end of the third year. The 
evaluation results also show the significant impact the 
program was able to make on the future careers of the 
participants. 

CCS CONCEPTS 
Social and professional topics: Computational Science and 
Engineering Education 

Keywords 
Education, Program Evaluation, High Performance 
Computing, Blue Waters 

1. Introduction 
This paper describes the evaluation efforts regarding the 
Blue Waters Community Engagement program and relevant 
outcomes. The focus is on the first three years of the 

program, when challenges were identified and solutions 
implemented based on the evaluation results. Details 
regarding the evaluation methodology, implementation, 
results, information feedback process, and the overall 
program impact based on changes made in response to 
evaluation feedback are mainly outlined here. 

The Blue Waters Community Engagement program is a high 
performance computing-based outreach program centered 
around the Blue Waters High Performance Computer at the 
University of Illinois Urbana-Champaign. Blue Waters was 
funded by the National Science Foundation, and managed by 
the National Center for Supercomputing Applications 
(NCSA). The system opened to the scientific community at 
large in March, 2013, and at the time of construction, was 
the fastest supercomputer on a University campus [1]. The 
Blue Waters Community Engagement program was created 
to support and educate computational science teams to make 
effective use of the unique and novel capabilities of Blue 
Waters. The community engagement program includes a 
graduate fellowship program, an internship program, 
webinars, workshops, annual symposiums, education 
allocation services, and community outreach efforts. The 
evaluation results presented here will focus only on the 
community engagement aspect involving Blue Waters 
graduate fellowship and internship programs. 

The Blue Waters program is uniquely challenging, requiring 
a flexible and adaptive evaluation strategy to determine the 
effectiveness of both implementation and impact. The 
challenging aspects are that the program involved 
participants (both fellows and interns) who came from very 
different research backgrounds and are expected to interface 
with the same Blue waters supercomputing program 
structure from different scientific domains. Also, all 
participants had varying degrees of pre-knowledge 
regarding high performance computing. Based on these 
facts, a carefully planned initiation process and support was 
required in adjusting to the program. Additionally, this 
program also aims to achieve a goal of diversity and 
inclusion of various institutions with an emphasis on 
engaging women and minorities. 

In this study, we implemented a flexible formative and 
summative evaluation strategy to capture the program 
implementation and effectiveness, as well as program impact 
and sustainability over the first 3 year period. A series of pre, 
mid, and post session surveys and focus groups were used 
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for the formative evaluation during the program. 
Additionally, annual follow-up surveys and focus groups 
with program participants, mangers, and stakeholders were 
conducted for the summative evaluation and data collection. 
The results show that in such a program, providing detailed 
support plans and program expectations based on the 
entering knowledge level and background of the participants 
at the outset is important. Also, extended training and 
networking opportunities are critical in enhancing a positive 
learning experience and encourages pursuing further 
education and training required for a stronger next 
generation HPC community. We show that the evaluation 
feedback over the initial 3 years and subsequent changes 
have led to dramatic improvements in experience for most 
of the attendees. 

2. Blue Waters and Program Outline 
Blue Water is one of the most powerful supercomputers in 
the world and is also the fastest supercomputer on a 
university campus. The machine architecture balances 
processing speed with data storage, memory, and 
communication within itself and to the outside world in 
order to cater to a wide variety of scientific endeavors. It is 
supported by the National Science Foundation and the 
University of Illinois at Urbana-Champaign, and its projects 
are managed by the National Center for Supercomputing 
Applications. The NCSA provides expertise to help 
scientists and engineers take full advantage of the system for 
their research. 
To achieve the vast potential of the Blue Waters system, 
well-educated and knowledgeable computational scientists 
and engineers are required. In an attempt to train and educate 
current and future generation of scientists and engineers who 
possess the extraordinary capabilities required at Blue 
Waters and other petascale computing systems, the Blue 
Waters established an expansive community engagement 
program engaging researchers, educators, HPC center staff, 
campus staff, and undergraduate and graduate students 
across all fields of study. As an effort to pursue growth and 
expertise in extreme scale computing for students, a graduate 
fellowship program and an internship program for 
undergraduate students were created as part of the a 
community engagement agenda. These initiatives were 
evaluated by an external evaluation team (Dr. Lizanne 
DeStefano, Executive director in CEISMC, Georgia Institute 
of Technology and Jung Sun Sung, Visiting Evaluator 
Specialist, University of Illinois at Urbana-Champaign). The 
community engagement program in total includes the 
graduate fellowship program, internship program, webinars, 
workshops, annual symposium, education allocation 
services and community outreach efforts. The evaluation 
results presented here will focus only on the community 
engagement aspect involving the Blue Waters graduate 
fellowship program and the undergraduate internship 
program. 

2.1 Graduate fellowship Program 
The Blue Waters Graduate fellowships provides PhD 
students with a year of full-time research support, including 
an annual stipend, an allocation of up to 50,000 node-hours 
on the powerful Blue Waters petascale computing system, 
and funds for traveling to the Blue Waters symposium to 

present research progress and results. The applicants are 
evaluated based on related experience and services, research 
plan in relation to Blue Waters, along with academic record. 
The fellows would work with assigned point of contacts at 
NCSA through regular meetings. The point of contacts are 
responsible for facilitating the fellows’ access to Blue 
Waters, working with the fellow to solve computational 
problems, and helping fellows to connect with other sources 
of support. Six to ten fellows were accepted every year as 
Blue Waters fellows from 2014 to 2017, and a total of 26 
fellows completed the program by the spring of 2018.   

2.2 Undergraduate internship program 
This program sponsors about 20 undergraduate research 
interns every year. A stipend, a two-week intensive Petascale 
Institute at the beginning, and an education allocation on 
Blue Waters are provided for each intern. Selected interns 
are able to travel to the Blue Waters symposium. Accepted 
students work with a faculty mentor either in their home 
campus or at another campus for one year. This program is 
also open to faculty who are willing to mentor undergraduate 
students in the internship program that involves teaching or 
research in the use of high performance computing. Faculty 
can participate in this program with assigned student(s), 
otherwise students and faculty mentors are matched by 
program managers. A total of 60 students completed the 
program between 2014 to spring 2017. 

3. Evaluation Strategy 
The external independent evaluation team conducted 
formative and summative evaluations to improve the 
programs and activities based on continuous feedback, while 
collecting appropriate data and information to conduct a 
longitudinal analysis of the impact of the programs over the 
life of the project. The ultimate goal of the evaluation is to 
validate and document the effectiveness regarding a new 
model of an education training program, and disseminate 
this model through publications and presentations. The 
evaluation utilized the ‘Educative, Value-Engaged 
Approach’ [2]. This approach, developed with NSF-EHR 
support, defines high quality STEM educational programs as 
that which effectively incorporates cutting edge scientific 
content, strong instructional pedagogy, and sensitivity to 
diversity and equity issues. In the Educative, Value-Engaged 
Approach, a key role of the evaluator is to work closely with 
program implementer to promote their understanding of 
program theory, implementation and impact.  

The evaluation for Blue Waters community engagement 
program was specifically designed to answer four questions: 

• Implementation:	 Is	 program	 being	 implemented	 on	
schedule	and	as	planned?	

• Effectiveness:	 Are	 key	 components	 of	 the	 program	
model	 operating	 effectively?	 How	 might	 they	 be	
improved?	

• Impact:	 What	 outcomes	 (e.g.	 scientific	 knowledge,	
technical	skills,	and	employment)	are	associated	with	
participation	 in	 the	program?	How	does	 impact	 vary	
across	 groups?	 	 What	 is	 the	 value-added	 from	
participation	in	the	program?	
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• Sustainability:	How	and	to	what	extent	are	elements	of	
the	 program	 becoming	 institutionalized	 to	 ensure	
sustainability	 of	 program	 components?	 What	
opportunities	and	barriers	exist?	

3.1 Methods 
In our approach, the external evaluators’ functions were as 
educators as suggested in Lee J. Cronbach and associates 
Tower Reform of Program Evaluation [3]. The value of the 
evaluation would not be judged by accuracy of answers to 
the questions, but growth of understanding of others 
involved. As such, the evaluation results should be 
consumed in the progress of understanding the program and 
in discussions of alternative plans, not so much in 
determining if the current program is right or wrong. In 
acquiring a response to each question, the evaluation 
employed multiple methods. 

• Implementation:	 Using	 a	 simple	 monthly	 reporting	
software	and	interviews	with	key	implementers	(at	the	
University	 of	 Illinois	 and	 partner	 institutions),	
evaluators	 routinely	 monitored	 program	
implementation	 and	 reported	 on	 the	 progress,	
challenges,	 and	 slippage	 at	 each	 program	 staff	
meeting.		When	implementation	problems	or	slippage	
occurred,	the	program	staff	determined	strategies	for	
overcoming	barriers	and	keeping	the	program	on	track	
through	communications	with	the	Blue	Waters	Project	
Office.	

• Effectiveness:	 All	 key	 components	 were	 routinely	
evaluated	 and	 continuously	 refined	 to	 improve	 the	
participants’	 experience.	 For	 example,	 to	
quantitatively	assess	the	extent	to	which	the	program	
is	creating	training	and	education	materials	to	address	
knowledge	 gaps	 among	 the	 HPC	 community,	
evaluators	(1)	conducted	a	formal	review	by	stratified	
random	 sample	 of	 participants,	 oversampling	 under-
served	groups,	(2)	obtained	expert	endorsement	of	the	
quality	 of	 materials	 and	 services,	 (3)	 documented	 a	
reduction	in	training	needs,	and	(4)	assessed	improved	
educational	 and	 research	 outcomes	 associated	 with	
training	 and	 education	 materials	 and	 activities,	
especially	in	under-served	groups.	For	all	new	training	
and	 education	 materials	 and	 activities,	 evaluation	
included	direct	assessment	of	student	knowledge	and	
skills,	 observation	 of	 instruction,	 review	 of	 content,	
and	measures	 of	 student	 and	 instructor	 satisfaction.	
All	 key	 components	were	 routinely	 evaluated	 in	 this	
manner	 and	 evaluative	 information	 was	 used	 to	
continuously	 refine	 and	 improve	 program	
implementation.	

• Impact:	The	external	evaluation	implemented	a	web-
based	survey	system	for	carefully	tracking	all	program	
participants	 over	 time.	 The	 system	 captured	 entry	
characteristics,	program	participation,	subsequent	use	
of	 materials	 and	 services;	 application	 of	 knowledge	

and	 skills	 gained,	 research,	 educational,	 and	 career	
outcomes.	 The	 value-added	 in	program	participation	
was	 evaluated	 by	 comparing	 key	 outcomes	 (e.g.	
diversity,	 research,	 publications,	 presentations,	
awards,	 retention,	 continued	 education,	 satisfaction,	
and	within	the	timeline	of	funding	time	to	degree	and	
initial	 employment)	 where	 baseline	 data	 from	 each	
institution	was	 identified.	 Impact	 data	was	 reviewed	
by	the	Blue	Waters	User	Advisory	Committee	to	obtain	
an	independent	assessment	of	the	quality	and	impact	
of	the	program.	

• Sustainability:	 Through	 annual	 surveys,	 interviews	
with	 institutional	 leadership	 and	 key	 stakeholders,	
review	 of	 program	 requirements,	 and	 other	 means,	
the	evaluation	also	examined	the	institutional	changes	
that	 occurred	 as	 a	 result	 of	 the	 program	 including:		
changes	 in	 student	 knowledge	 and	 skills,	 increased	
diversity	 in	 targeted	programs,	 institutionalization	of	
elements	 of	 the	 program	 as	 routine	 university	
practices,	 etc.	 In	 addition	 to	 regular,	 informal	
reporting,	 the	 evaluation	 team	 produced	 an	 annual	
compilation	of	evaluation	findings	and	work	with	the	
PIs	 to	 prepare	 the	 relevant	 sections	 of	 the	 annual	
report	to	NSF.	

Table 1 and Table 2 show examples of the evaluation process 
for the graduate fellowship program and the internship 
program. Each activity was flexibly conducted depending on 
the year (e.g. the first year, the program managers, 
instructors were also invited to the interviews and surveys 
for initial implementation) and number of participants at 
each events. 

Table 1. Example of overall evaluation process for 
graduate fellowship program 

Time Evaluation 
activities  

Fellows Faculty 
Advisors 

Point of 
contacts 

June First Focus 
group at 
annual 
symposium 

√   

September Focus 
group at 
NCSA 
meeting 

 √  

February  Mid-Survey √ √  

 Focus 
group 

  √ 

May Final focus 
group 

√   

 Post-survey  √  

After one 
year 

Follow-up 
survey 

√   

Table 2. Example of overall evaluation process for 
internship program 

Time Evaluation 
Activities 

Interns Faculty 
Advisors 
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May Pre-Survey √ √ 

May-June Petascale 
Institute Daily 
Survey 

√  

June Focus group √  

Aug-April Monthly Report  √  

May Final focus 
group at annual 
symposium 

√  

August Post-survey  √ 

After one year Follow-up 
survey 

√  

 

Informing and educating the program participants regarding 
the importance of their feedback, and goals of evaluation 
activates were found to be very effective. Participants who 
experienced immediate changes due to their feedback 
actively participated in the evaluation activities. Also, the 
formative evaluation results indicate the importance of 
maintaining flexibility in program implementation 
particularly in the early stages as the results show specific 
problems that can be changed. Evaluators also found the 
challenges of maintaining a longitudinal study and keeping 
perspective as seeking conclusive results regarding the 
impact of a year long program can be limiting and the 
response rate for the follow-up survey tends to decrease each 
year. 

3.2 Findings 
These findings are mainly focused on the challenges in the 
first year of the program revealing issues at the outset of 
program implementation. 

3.2.1 Graduate fellowship program. 
The first cadre of fellows were accepted in spring 2014 and 
the program period started in August for 1 year. These 
fellows were invited to the Blue Waters symposium in May, 
2014 at the start of the program where they were introduced 
to the program model. The main context of the fellows were 
that each of them came from a very different science domain 
and their lab or faculty advisors may have had limited 
experience in HPC resources. Each fellow had an assigned 
point of contact to discuss technical difficulties and the 
general project progress. The initial process of starting the 
Blue Waters program and timelines of the research progress 
were the main focus of implementation at this stage.  
Table 3. Findings from 2014 Blue Waters fellows at the 

initial phase of the program. 
Fellows needs Point of Contacts needs 

• Keeping	allocation	on	
Blue	Waters	

• One-On-One	
discussion	with	point	
of	contacts	

• Basic	tips	and	
guidelines	at	the	
beginning	

• Regular	basis	
communication	

• Job	description	
• Work	plan	from	

fellows	

• Clear	expectation	for	
the	symposium	and	
conference	

 

Table 3 lists the needs from both the fellows and the point of 
contacts at the very early phase of the program. The main 
needs from fellows were connected to the context of the 
program. Since all fellows were from different scientific 
fields and generally new to the HPC domain, they required 
specific guidance to HPC conferences or symposia and in 
learning how to use the useful but enormous resources. Some 
of the faculty advisors had not used computational resources 
for their research data, and fellows definitely needed more 
technical support from their point of contact. Many of them 
desired one-on-one discussions along with regular group 
meetings to allow them to focus more on individual issues. 
Once they had experienced the power of Blue Waters, many 
of them wished to keep their data and work on Blue Waters 
to create further research outcomes beyond this program. 
In the first year, the point of contacts were not very clear 
about how to provide specialized support for the fellows 
which were different from other allocation users. They 
expressed the need to have a clear research plan for the 
fellows at the beginning, and clear expectations for their 
roles as point of contact. The point of contacts also addressed 
the limits of their support, in that they lacked understanding 
of the scientific content in the research.   

3.2.2 Internship program. 
The main context of the internship program is to provide the 
undergraduate students with their first experience in the HPC 
field. As such, pursuing the goal of engaging and sustaining 
involvement by under-represented communities is also 
important. The participating students had very different 
levels of pre-knowledge on HPC, and some of them would 
have limited resource/programs to continue their education 
at their home campuses. There was an assumption that for 
the first time users to be successful, they would need (1) 
training, (2) practice, (3) user support, (4) extended 
collaborative support, (5) software tools and environment 
including science gateways to join the HPC community [4]. 
The pre-survey was conducted with students and faculty 
mentors a few weeks before the two-week workshop which 
started at the beginning of the program to find out the 
students’ knowledge level. The daily session surveys had an 
important role in analyzing students learning experience 
from session to session during the institute. The interns were 
also invited to a face to face focus group at the end of the 
two-week institute to discuss their plans, needs, and 
concerns for the upcoming year-long internship. The 
evaluators also reached out to the faculty mentors, program 
managers, and instructors to find out the logistic challenges 
especially in the first year. The interns also responded with 
a monthly progress report and select interns participated in 
the focus group at the annual Blue Waters symposium to 
discuss the main impact of the program. Table 4 shows the 
main findings from interns each year.  

Table 4. Findings from Blue Waters Interns for each 
year. 
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2014 2015 2016 

• Over	
loaded	
daily	
schedule	
for	two-
week	
Institute		

• More	
resourc
es	for	
the	
session	
content
s	

• More	
hands-
on	
activitie
s	

• Detailed	
information	
before	the	
start	of	the	
program	

• Improvemen
t	in	evening	
lab	

• Insufficient	
program	
advertiseme
nt	directly	to	
the	students	

• Insufficient	
program	
advertiseme
nt	directly	to	
the	students	

 
In the first year, as interns had different levels of pre-
knowledge in HPC, some found certain topics to be easy, 
while others struggled to keep up. Also, in daily session 
surveys and focus groups, many of the interns mentioned 
that the daily schedule at the institute was overloaded and 
covered too much content in too short a time. More handouts 
and hands-on activities were strongly suggested by the 
interns. In the second and third year, while content issues 
diminished, evaluators found out that faculty mentors heard 
about this program in a variety of ways, while only a few 
students were able to found out about this program on their 
own. As a result, it was became obvious that (1) if students 
could participate in this program only through their faculty 
mentors, this program would not be able to reach diverse 
institutions, and (2) the selection process is more likely to be 
strongly affected by the ‘intern-faculty matching’ process. 

3.3 Program Adjustments 
The findings from the preliminary evaluations were reported 
and the program managers and Blue Waters leadership were 
very flexible in adjusting the program implementations 
based on the feedback and discussing the future direction of 
the program. This part summarizes the main implementation 
changes based on the evaluation activities. 

3.3.1 Fellowship program Adjustments. 
These were the adjustments for the fellowship program 

• Visiting	NCSA:	 to	overcome	 the	 challenges	 regarding	
lack	of	clear	expectations,	and	starting/setting	up	close	
communication	relationships,	the	fellows	were	invited	
to	the	NCSA	in	early	fall	to	have	a	meeting	with	their	
assigned	point	of	contact(s).	The	fellows	are	also	were	
introduced	 to	 other	 resources	 and	 faculty	 at	 the	
University	of	Illinois	campus.	

• Connecting	 with	 other	 resources:	 to	 support	 more	
fellows’	 regional	 issues	 and	 context,	 either	 program	
managers	 or	 point	 of	 contacts	 started	 helping	 the	
fellows	to	connect	with	other	possible	technical	staff	
at	NCSA	or	other	HPC	student	programs	at	their	home	
campuses.	

• Extended	 allocation:	 Blue	Waters	 allowed	 fellows	 to	
extend	 the	 allocation	 period	 after	 the	 end	 of	 the	
program	to	continue	conducting	research.	

• More	 face	 to	 face	 opportunities:	 More	 face	 to	 face	
meetings	and	activities	were	added	to	the	beginning	of	
the	 program	 to	 provide	 networking	 opportunities	 at	
the	symposium.	

3.3.2 Internship program Adjustments. 
These are the adjustments for the internship program 

• Fewer	topics	at	the	two-week	institute:	Based	on	the	
interns’	 feedback,	 the	 instructors	 narrowed	 the	
content	 topics	 for	 the	 two-week	 institute	 and	
researched	 the	most/least	 desired	 topics	 every	 year	
through	the	post-survey.	

• More	 hands-on	 activities:	 More	 hands-on	 activities	
were	 added	 into	 the	 less	 intensive	 schedule	 at	 the	
institute	so	that	students	had	enough	time	to	learn	and	
attend	the	open-topic	evening	lab	for	catching	up.	

• More	communication	and	workshops	during	the	year:	
Interns	expressed	a	desire	to	be	connected	after	 the	
institute	 and	 program.	 The	webinars	 and	workshops	
were	provided	to	the	interns	during	the	year	to	share	
their	experience	and	build	a	community.	

• Inviting	guest	speakers	from	career	development	and	
HPC	 fields:	 The	 specialist,	 NCSA	 directors,	 HPC	
program	 directors,	 graduate	 program	 advisors	 were	
invited	to	the	petascale	institute	sessions.			

3.4 Impact of program 
3.4.1 Impact of the fellowship program. 
The impact of the program was mainly assessed from the 
focus groups, interviews, and post-surveys with fellows, 
point of contacts, and faculty mentors right before the 
completion of the program. We also utilized annual surveys 
with fellows a year or two after the end of the program. 

Overall, the fellowship program enhanced the fellows’ 
research progress by utilizing the unique power of Blue 
Waters. Fellows expressed that using Blue Waters allowed 
them to ask different types of questions with totally different 
physical scales in their research and bring about unforeseen 
results. After one year of the program, fellows pointed out 
that Blue Waters added a whole new dimension to their 
research and that it allowed them to make the best use of 
their resources. They emphasized not only the additional 
computational power and speed as a result of using Blue 
Waters, but also that the fellowship was a valuable learning 
experience. Fellows’ comments regarding the program 
includes 
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- “For	me,	this	fellowship	is	enabling	a	project	that	I	
just	wouldn’t	be	able	to	tackle	without	it.	So	getting	
started	and	beginning	to	move	forward	on	Blue	
Waters	itself,	it’s	definitely	letting	me	tackle	science	
questions	that	I	couldn’t	if	I	didn’t	have	this	
fellowship….	Different	types	of	questions	and	
different	scales	of	questions,	so	being	able	to	resolve	
ends	in	my	model	with	the	biogeochemistry	is	not	
something	that	would	be	fiscal	on	the	scale	of	my	
whole	domain	with	the	types	of	systems	that	I’ve	
been	using	up	to	this	point.”	

Fellows also believed that the most prominent strengths of 
this program would be embracing all different fields of 
science and allowing the fellows to work on their research 
independently. They explained that one of the most powerful 
aspects of this program was learning the possibilities of 
multidisciplinary research (by using Blue Waters). They also 
expressed that the financial support helped them to conduct 
research independently for their degrees. 

Hands-on experience on the powerful Blue Waters was 
emphasized as a benefit of this program by both faculty 
advisors and fellows. Attending the Blue Waters symposium 
provided the fellows with networking opportunities and 
helped them broaden their perspectives on HPC. The 
Fellows said that they had opportunities for interacting with 
other professionals, scientists, and also with other fellows 
through this program. Attending the Blue Waters 
Symposium is a good example of this. The networking 
opportunities helped them to broaden their field of research 
and expand their career choices as well. 

The Fellows expressed their appreciation for the support 
from the point of contacts. The personalized technical 
assistance from point of contacts was greatly appreciated by 
the fellows. The fellows pointed out the importance of the 
communication with point of contacts, and how this help 
actually impacted their research progress. The meeting at 
NCSA enhanced the understanding of the research goal and 
detailed plan for both fellows and point of contacts. 

On the post survey, faculty advisors reported that this 
program provided fellows with excellent computational 
resources along with personalized technical assistance, and 
a great opportunity for networking. They said their fellows 
were able to accomplish their research goals because of this 
program. At the follow-up survey, the fellows emphasized 
how this fellowship enhanced their skills in conducting 
research independently, and helped them to build a strong 
network with other scientists for their current and future 
careers. The comments from the previous fellows include  

• “The	BW	fellowship	was	very	important	to	my	current	
and	future	professional	endeavors.	The	fellowship	
allowed	me	the	freedom	and	opportunity	to	propose	
and	tackle	my	own	research	projects.	Establishing	this	
confidence	and	experience	helped	me	obtain	my	
faculty	position	without	a	postdoc.	Moreover,	the	
connections	with	NCSA	staff	and	other	BW	fellows	
have	been	useful	and	will	continue	to	be	useful	going	
forward.	In	particular	the	opportunity	to	collaborate	

with	NCSA	and	other	fellows	our	careers	advance.	
Currently	another	BW	fellow	and	myself	are	
brainstorming	and	joint	cross	discipline	NSF	proposal	
coupling	our	work.	We	plan	to	write	and	submit	once	
they	complete	their	PhD	and	are	either	a	postdoc	or	a	
junior	faculty.”	

3.4.2 Impact of the internship program. 
The impact of this program was gauged mainly from the pre, 
exit-surveys, focus groups, and annual follow-up surveys. 

Overall, the internship program provided undergraduate 
interns with hands-on research experience which allowed 
them to have a strong HPC background and practical skills. 
Every year, more and more of the interns were planning to 
participate in the HPC-related programs/classes after this 
internship. In addition, a majority of the interns said that this 
internship program motivated them to pursue further 
research/career in this field. 
The faculty mentors believed that this internship program 
was worthwhile in terms of providing interns with a very 
positive research experience and themselves with a 
professionally rewarding opportunity. The two-week 
institute at the beginning helped the interns in developing 
their technical skills and learning the overall concept of 
parallel computing through high-quality communication 
with the instructors. Table 5 shows that each item on the 
survey was highly rated by interns at the end of the two-week 
institute. 

Table 5. 2016 Blue Waters internship program: Two-
week Petascale Institute Exit- Survey. 

Statements Mean N SD 

a. My goals for attending the 2-
week training institute were 
achieved.  

4.93 15 0.25 

b. I am interested in attending 
similar programs as a result of 
this experience.  

4.93 15 0.25 

c. I am satisfied with the 
interaction and communication 
with other participants during the 
institute.  

4. 87 15 0.34 

d. I am satisfied with the 
interaction with instructors during 
this institute.  

4.93 15 0.25 

e. This institute helped me to 
develop my technical skills.  4. 73 15 0.44 

f. I have the resources that I need 
in order to accomplish my goals 
during this program.  

4. 73 15 0.44 

g. I have a better understanding 
of the topics discussed as a result 
of this experience.  

4. 87 15 0.34 

h. I have a better understanding 
of Blue Waters as a result of this 
experience.  

5.00 15 0 
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i. I have a better understanding of 
supercomputing as a result of this 
experience.  

5.00 15 0 

j. I have a better understanding of 
my future career as a result of this 
experience.  

4. 00 15 0.82 

k. The project presentation helped 
me understand my project better.  4.00 15 0.63 

l. I know the next steps for me to 
proceed with my assigned 
project.  

4. 47 15 0.50 

m. I know the next steps for me 
to build on what I learned during 
this institute.  

4. 53 15 0.50 

n. Overall, I would rate this 
experience as successful.  5.00 15 0 

 (*5Rating scale: Strongly Disagree=1, Disagree=2, 
Neutral=3, Agree=4, Strongly Agree=5) 

This program also includes a diverse group every year in an 
effort to reach out to underrepresented ethnic and gender 
group in STEM education. Figure 1 and Figure 2 show the 
underrepresented ethnic and gender group fractions of each 
year’s participants. 

 
Figure 1. The ratio of female participants and 

MSI/EPSCoR Institution each year 

 
Figure 2. The ratio of participants from 

underrepresented group each year 

 (*Underrepresented ethnic group includes here African-
American, American-Indian, Alaskan, and Hispanic)    

3.5 Lesson learned 
The evaluation process with Blue Waters community 
engagement program in the initial 3 years confirms some of 
the important program features which not only enhanced the 
fundamental goals of the program, but also led to critical 
adjustments at the early stage of the new program model. 
The evaluators tried to focus on analyzing data quickly to 
provide instant suggestions and feedback which directly 
affected the program directions.   

• Complementary	 activities:	 In	 order	 to	 maximize	 the	
HPC	education	and	training	program,	the	importance	
of	 combining	 efforts	 with	 other	 complementary	
activates	 were	 emphasized	 by	 the	 results	 of	 the	
evaluation.	 Fellows	 expressed	 that	 attending	 the	
conferences,	 NCSA	 meeting,	 and	 symposium	 helped	
them	 to	 expand	 their	 networking,	 to	 expand	 their	
career	 spectrum,	 and	 how	 to	 cooperate	 with	 other	
scientists.	 For	 interns,	 adding	 professional	
development	 activities	 to	 the	 technical	 workshop	
allowed	the	 interns	to	be	encouraged	to	 learn	about	
the	 new	 career	 choices	 in	 HPC	 fields	 and	 advanced	
education	potentials.	

• Direct	dissemination	to	students:	to	reach	out	to	more	
diverse	 institutions,	 and	 underrepresented	
populations,	 it	 is	 important	 to	 have	 more	 direct	
information	routes	for	the	students	who	are	in	smaller	
colleges	with	limited	HPC	resources.			

• User	support:	Providing	close	connection	with	point	of	
contact	for	fellows	were	recognized	as	a	huge	success	
model	 for	 learning	 how	 to	 use	 the	 power	 of	 Blue	
Waters	by	providing	a	physical	individualized	support	
in	addition	to	virtual	resources.	

4. Conclusion 
The evaluation plans, activities, findings significantly 
affected the fellowship and internship program 
implementation, and program impact. The evaluation 
findings enhanced achieving the mission of educating a new 
and young generation for utilizing the powerful Blue Waters 
and other petascale computing systems in the future. Careful 
assessment of the program implementation and flexible 
adjustments can contribute to a successful outcomes in 
future HPC education and training programs. 
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ABSTRACT 
Short courses offered by High Performance Computing (HPC) 
centers offer an avenue for aspiring Cyberinfrastructure (CI) 
professionals to learn much-needed skills in research computing. 
Such courses are a staple at universities and HPC sites around the 
country. These short courses offer an informal curricular model of 
short, intensive, and applied micro-courses that address 
generalizable competencies in computing as opposed to content 
expertise. The degree of knowledge sophistication is taught at the 
level of below a minor and the burden of application to domain 
content is on the learner. Since the Spring 2017 semester, Texas 
A&M University High Performance Research Computing (TAMU 
HPRC) has introduced a series of interventions in its short courses 
program that has led to a 300% growth in participation. Here, we  

present the strategies and best practices employed by TAMU 
HPRC in teaching short course modules. We present a longitudinal 
report that assesses the success of these strategies since the Spring 
semester of 2017. This data suggests that changes to student 
learning and a reimagination of the tiered instruction model widely 
adopted at institutions could be beneficial to student outcomes. 

CCS CONCEPTS 
• CS→Computer Science; • Cybertraining→training on using 
cyberinfrastructure; • HPC→high performance computing 

Keywords 
HPC training, broadening participation, assessment strategies, best 
practices, diversity, computational thinking, tiered instruction 

1. INTRODUCTION 
Research efforts in STEAM (Science, Technology, Engineering, 
Art, and Mathematics) have significantly benefited from the rapid 
growth of computational capacity and the extensive use of data-
analytics tools.  The rapid proliferation of these methods has 
brought about an urgent need to train researchers who can 
effectively incorporate field-relevant computational tools and 
methods in their research workflows.  In fact, developing 
computational and programming competency in the future science, 
technology, engineering, and mathematics workforce is a core 
component of the National Strategic Computing Initiative and the 
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National Science Foundation vision for Cyberinfrastructure for the 
21st century [NSF NSCI]. In stark contrast to a global needs for a 
computationally-trained workforce, a vast majority of graduate 
students have limited exposure to computing. Indeed, during the 
NSCI presentations at SuperComputing 17 (SC17, Denver, CO) 
Irene Qualters (Director of the Office of Advanced 
Cyberinfrastructure, National Science Foundation NSCI Driver) 
discussed the need to train students to write coherent code [NSF 
HER].  There is a rapidly growing need to identify strategies to 
successfully introduce this population of students to computational 
methods and approaches [Lu 2009, NSF-Research, TRC 2014, 
Wing 2008, Yadav 2011]. 

Short courses and tutorials provided by HPC units remain stalwarts 
of informal education at the collegiate level. HPC-led short courses 
provide researchers with much needed technical information 
required for research and fill a void for student, staff, and faculty 
professional development that is not provided in a formal 
educational setting. Such courses further the institution’s academic 
mission while simultaneously addressing the research computing 
needs of users who rely on these facilities. Unlike traditional credit-
bearing courses that need to be approved at the department, college, 
and university level, an HPC unit can launch a short course in as 
little as two weeks. Furthermore, HPC units are constrained only 
by the expertise of their staff. While the importance of in-person 
training exercises cannot be stressed enough, “live” online training 
events organized at the regional or national levels are also effective. 
Events such as the XSEDE Big Data workshops and the Peta Scale 
Institute allow HPC units across the country to provide training on 
specialized topics that may go beyond local expertise at any 
specific site. 

HPC-led courses are dynamic in nature. Owing to variations in the 
availability of expertise and researcher needs, HPC units have 
adopted different models of user training. At a rudimentary level, 
HPC short course offerings traditionally include courses that 
provide an introduction to operating systems on the cluster (Linux), 
cluster utilization (schedulers and file structures), and interpreted 
languages (Perl or Python). Larger HPC centers offer courses that 
included parallel programming paradigms (Open MP and MPI), 
rudimentary bioinformatics job-submission interfaces (Galaxy), 
and perhaps software applications as well (Abaqus or AMBER). As 
many branches of science have adopted large-scale computing, the 
HPC user profile has changed in recent years. We now offer 
additional courses that cover the use of data analysis toolkits 
(MATLAB, SAS and R), interfacing interpreted languages with 
data analysis packages (MySQL for Python users), and machine 
learning frameworks (TensorFlow and Caffe). This change in 
course offerings has been complemented by the gradual adoption 
of HPC course materials in into the formal classroom space. For 
example, TAMU HPRC does not offer the standard course that 
introduced Galaxy to our users. This material is now covered in the 
BIOL 647, “Digital Biology”, a credit-bearing course taught by 
Prof. Rudolfo Aramayo with assistance from TAMU HPRC. 
Conversely, we have witnessed a significant growth in interest in 
our Python offerings because the traditional Computer Science 
course on Python is no longer approved for a graduate student’s 
degree plan. 

Researcher participation in HPC-led courses can be remarkably 
different at various institutions. This is surprising, considering that 
the topics covered in HPC courses and the computing needs of 
researchers largely remain the same across institutions of a similar 
size. Furthermore, the best practices in informal education are also 
well documented. The typical factors attributed to such variations 
are the instruction models used in teaching HPC courses, the 

Figure 1. Number of registered participants in TAMU HPRC 
short courses from Fall 2016 through Spring 2018. The number 
of registered participants is not adjusted for hours of 
instruction, or the number of courses offered in each semester.  
amount of technology used in training, the length of the courses, 
the frequency of course offerings, the location of course offerings, 
the composition of research projects at the university, advertising 
information about the courses to the research community, student 
preparation at the undergraduate level, formal courses offered at the 
institution, and involving faculty in HPC instruction.  While a 
number of interventions are possible to address these factors, there 
remains a dearth of quantitative data about the effects of these 
interventions on researcher participation in literature.  

In this paper, we present a report on the effects of introducing 
curricular interventions on researcher participation in TAMU 
HPRC short courses program since Fall 2016.  In the subsequent 
sections of this paper, we present quantitative data from our short 
course program along with details of our current offerings. We next 
describe a list of interventions that were introduced to our short 
courses program over the last four semesters. The paper next 
describes our efforts toward assessing the success of these courses 
on student learning using evaluations. We finally discuss the 
lessons learned over the previous year and summarize our findings 
in conclusion.  

2. TAMU HPRC SHORT COURSES 
TAMU HPRC short courses use active learning techniques and rely 
on HPRC staff expertise for content development. The courses are 
traditionally structured on a tiered instruction model (TIM) [Adams 
2003, Tomlinson 1999, OME 2005, and OME 2013].  The tiered 
instruction approach provides lessons at different ability levels or 
areas of interest for a diverse learning community. Students and 
researchers using HPC resources come from varied academic and 
research backgrounds. In addition, these researchers may have 
different levels of exposure to computing and will require diverse 
computing skill sets to meet their research needs.  In a typical TIM 
approach, the vast majority of learners would first participate in 
foundational courses, with a gradual drop-off as medium to higher 
level topics are approached. The TIM, however, faces challenges 
from advances in technology that eliminate the need for certain 
foundational courses and popular advanced offerings, such as 
CUDA or Machine Learning, that appeal to a wide range of 
researchers.  These short courses are offered free of charge in an in-
person format at the TAMU main campus in College Station, TX. 
These courses are also offered “live” via WebEx to an online 
audience that includes participants from a number of universities in 
the United States (including Puerto Rico). Figure 1 shows the 
number of registered participants in TAMU HPRC courses since 
Fall 2016. For the purposes of this paper, we use participation data 
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from Fall 2016 to describe a baseline that is compared to 
subsequent semesters where curricular and technical interventions 
were implemented.  

3. IMPLEMENTED INTERVENTIONS 
A number of technical, curricular, and engagement interventions 
have been systematically applied on a semester-wise basis. These 
include greater visibility for the courses, engaging students with 
active learning methods, better advertising, and retaining student 
interest via our HPRC seminar series. These steps have been 
simultaneously complemented by improved documentation on our 
website and wiki.  Table 1 describes a series of interventions that 
were implemented in the TAMU HPRC short course offerings 
starting in Spring 2017. Taking a semester-by-semester approach 
as opposed to implementing all interventions in one semester, 
allowed us to quantify the effects of each semester. This approach 
also lets one to refine each intervention individually while allowing 
a short-staffed operation to adjust to the changes in schedules.  
While these interventions have overall contributed to making our 
courses more accessible, we have seen that our evolving online 
platform has had the largest effect on participation in our courses.    
Table 1. Interventions introduced to TAMU HPRC short 
courses since Fall 2016. Interventions were carried into 
following semesters unless otherwise noted. 

Semester Interventions 

Fall 2016 
2-hour long lecture format courses. Hands-on 
exercises were not included. 

Certificates of attendance provided to attendees.  

Spring 
2017 

2-hour long lecture format courses. 

Printed flyers distributed across campus. 

All courses slides were made available online in 
a standard format post-course.  

Handouts offered to students. 

Surveys collected via email. 

Seminal course on databases offered. 

Summer 
2017 

WebEx introduced and online registration 
systems tested. 

Multiple courses offered on the same day 

Courses co-located and advertised with research 
computing event and open to REU students 
visiting TAMU 

Fall 2017 

Registrations standardized via Google forms 
interface.  

Offered seminal course on data management 
practices new to HPC training nationwide. 

Courses are first advertised to TAMU HPRC 
users and then to the entire TAMU community 
via campus email 

Introduced a new course, titled “Introduction to 
R”. Python offerings increased to include w 
courses.  

Handouts and PowerPoint presentations offered 
pre-class online.  

Fall 2017 
continued 

To avoid issues with user registrations on 
HPRC systems, virtual machines were used for 
short course support.  

All courses were broadcast via WebEx.  

Certificates were restricted to in-person 
attendees alone. 

Courses offered three days a week at two 
different locations near Engineering 
departments and biology/life sciences 
departments. These two locations were selected 
to ensure convenient commute for the 
participants. 

Partnered with the Laboratory for Molecular 
Simulation to offer new courses. 

Typical course length was 1.5 hours. 

Interactive exercises introduced. 

Spring 
2018 

Surveys collected in-person on paper on 
conclusion of the courses.  

Classes offered on an all-day Friday setting at a 
single location near engineering and science 
departments.  

All courses offered in 3-hour format with a 10-
minute break. 

All courses use active learning methods.  

Courses were recorded for future ADA 
compliant online courses.  

Introduction to Galaxy HPRC course 
discontinued. Supported BIOL647  “Digital 
Biology” a credit-bearing course. 

Offered training support to formal courses at 
TAMU. 

Standardized format to support XSEDE online 
workshops/courses. 

Open-on-demand shell access used in lieu of 
Moba-X-term and Putty during training. 

Offsite in-person training offered at other 
universities. 

Reports and analytics on short courses were 
prepared. 

Employed analytics to make decisions 

Machine Learning/Artificial course bouquet 
was offered to complement AI/ML support 
push by HPRC.  

4. GROWTH IN PARTICIPATION 
As described above Texas A&M HPRC offered a number of 
courses in Spring 2018. These courses and workshops were offered 
on a Friday morning and afternoon schedule to maximize the 
opportunities for researchers to attend these courses. A complete 
listing of short courses offered in Spring 2018 along with the 
number of registered participants in each course are provided in 
Table 2.  
Table 2. List of TAMU HPRC short courses offered in Spring 
2018. The courses are listed in the order in which they were 
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offered. The number of registered participants includes both 
online and in-person attendees.  

Course Name Registered 
Participants 

Introduction to Linux  118 

Data Management Practices  76 

Workshop - Introduction to Linux  65 

Introduction to HPRC Clusters  98 

TAMU Open on Demand Portal  17 

Deep Learning with TensorFlow  226 

Molecular Modeling Workshop 30 

Introduction to Python  217 

Introduction to Scientific Python  190 

Introduction to MATLAB 103 

Python for MATLAB Users  89 

Introduction to Perl  89 

Introduction to Databases  108  

Modern Computational Physics 11 

Introduction to CUDA  43 

Introduction to MATLAB Parallel Toolbox 10 

Software Carpentry - Git, Shell & R  40 

Using LS Dyna  18 

Code Parallelization Using OpenMP 35 

Code Parallelization Using MPI 30 

Introduction to NGS  47 

Introduction to NGS Assembly 45 

Linux and Cluster Usage (TAMU Galveston) 18 

Introduction to NGS Metagenomics 22 

Introduction to NGS RADSeq/GBS 23 

Introduction to the R programming language   136 

Introduction to Fortran  57 

Machine Learning and Deep Learning with 
MATLAB 183 

XSEDE Big Data Workshop 40 

 

4.1 Impact of the Academic Year  
While we observed significant growth in participant registrations 
since Fall 2016, we recorded the highest number of participants in 
Fall 2017, when three HPRC courses were offered each week on a 
Tuesday, Wednesday, Friday schedule. Each course was taught for 
90 minutes. This matches traditional expectations of the academic 
year, as new graduate students traditionally enroll at the university 
in the Fall semester. In Spring 2018, a number of these courses were 
consolidated to offer two courses each week that were taught for 
three hours each on a Friday morning and afternoon schedule. It is 
important to note that while the number of offered courses was 
reduced, the increase in instruction hours more than compensated 
for this effect. Furthermore, in Spring 2018, TAMU HPRC taught 
portions of formal graduate level courses that relied on the use of 
HPRC resources.  These co-taught training models helped us 

strengthen ties with faculty and freed up time on our training 
program allowing us to offer new courses, a Software Carpentry 
series and support XSEDE workshops.  Consequently, the total 
number of participants when adjusted for each hour of instruction 
represented a slight increase in Spring 2018 as compared to Fall 
2017. This is surprising, as there were fewer new students to the 
Texas A&M campus in Spring 2018 as compared to the Fall 2017 
semester. An additional compensating factor could be that existing 
graduate students at TAMU who had not previously enrolled in the 
HPRC short course program registered for the offerings in Spring 
2018.  We anticipate that participation data from Fall 2018 will 
bring clarity to this discussion.   

 
Figure 2. Distribution of participant registrations in HPRC 
short courses during Spring 2018. The figure displays 
combined attendance for both the in-person and WebEx 
sessions for each course. Topics include Fortran (FORT), R 
programming language (R), MATLAB (ML), Machine 
Learning and Deep Learning with MATLAB (ML_DEEP), 
Python programming language (PYTH), Linux classes and 
workshops, (LINUX), Databases (DBASE), Molecular 
Modeling Workshop (MMW) Scientific Python (SciPy), Python 
for MATLAB users (PY/ML), Perl (PERL), Next Generation 
Sequencing (NGS), NGS Assembly (NGSA), HPC Cluster 
usage (HPCC), Visualization portal (VIS), Data Management 
Practices (DMGP),  TensorFlow (T_FLOW) and other topics. 

 
Figure 3.  Distribution of registered participants in Spring 2018 
across various TAMU colleges. The abbreviations used for the 
various colleges are Engineering (EN), Agriculture (AG), 
Business (BA), Science (SC), Liberal Arts (LA), Veterinary 
Medicine (VM), Other Entities including Industry (XX), and 
Other Academic Institutions (XA).  

4.2 Developing Online Efforts 
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In Summer 2017, we observed that our data analysis bouquet of 
classes (Python and MATLAB) was routinely over-subscribed and 
the classrooms could no longer accommodate all interested 
participants. As we were on track to offer three courses in the 
following semester (Fall 2017), offering repeat courses for popular 
topics was not a viable option. To ensure that all researchers 
interested in taking these in-demand courses had an opportunity to 
benefit from them, we started offering HPRC short courses over 
WebEx in Fall 2017. WebEx participants participate in the same 
hands-on exercises as in-person attendees. To achieve this, we 
include a monitored discussion channels for online participants and 
have opened usage by migrating the training platform from HPRC 

 
Figure 4. Distribution of registered participants across TAMU 
departments. Only departments with significant participation 
numbers are shown. Over 100 departments and institutions 
were served during this time frame. Percentage registrations 
from Electrical and Computer Engineering (ECEN), 
Mechanical Engineering (MEEN), Civil Engineering (CVEN), 
Petrochemical Engineering (PETE), Computer Engineering 
(CSCE), Industrial Science and Engineering (ISEN), 
Veterinary Small Animal Clinical Sciences (VSCS), Computer 
Science (CPSC), Ecosystem Science and Soil Management 
(ESSM), Veterinary Pathobiology (VTPB), Marine Biology 
(MARB), Materials Science and Engineering (MSEN) and non-
TAMU units (Other) are shown. 
clusters to Jupyter notebooks hosted on virtual machines. The 
online class platforms were further standardized in Spring 2018. 
We noticed that these sessions had an equal number of participants 
register as the in-person sessions.  Providing these courses online 
via WebEx helped us reach out to a number of non-TAMU 
participants across the nation. While the majority of non-TAMU 
attendees participate using WebEx, individuals from local 
universities have also attended in-person sessions in College 
Station.   

4.3 Location and Participation 
Broadening participation in computing is a core tenet of the HPRC 
training program. We have taken a number of steps to assist users 
from non-traditional fields of computing. Figure 3 describes the 
distribution of registered participants for Spring 2018 across 
TAMU colleges, other universities and industry. As TAMU is a 
predominantly engineering university, it is not surprising to note 
that the majority of participants in the TAMU HPRC short course 
program (64%) belong to the College of Engineering. While it is 
heartening to note the participation from the department of 
education, the limited participation from biology users is noticeably 
low for an agriculture-focused school. This “anomaly” in national 
trends is because a number of HPRC-themed bioinformatics 
courses are now taught by the Biology department in the “Digital 
Biology” course.  An accompanying distribution of TAMU 

departments with the most registered researchers is provided in 
Figure 4. Unlike Figure 3, Figure 4 does indicate four biology 
departments with significant student participation.  
TAMU HPRC short courses have been traditionally taught at a 
location that is close to most departments in the Colleges of Science 
and Engineering.  TAMU main campus is divided into East and 
West Campus with buildings being miles apart. While the East 
campus has a stronger Engineering focus, the West Campus houses 
a number of the biology disciplines.  It is possible to hypothesize 
that the location of our short courses may be a deterrent to 
participation from non-engineering disciplines. In an effort to rule 
out “location” as being a factor in the lack of short course  

 
Figure 5. Student persistence profile for TAMU HPRC short 
courses in Spring 2018.  Almost 50% of students enrolling in a 
HPRC short course returned for other courses. Participants 
enrolled in up to 14 short courses during the semester. 
attendance from, we hosted a number of short courses in the West 
Campus library that is located close to the Mays Business School, 
the College of Agriculture and the College of Veterinary Medicine 
in Fall 2017. While we observed a slight dip in participation from 
engineering departments, no similar uptick was observed from the 
departments located on West Campus.  With the expanding online 
training platform further reducing the impact of location, all in-
person courses were returned to their original locations. Indeed, 
overall that the trends observed in Figures 3 and 4 have been 
consistent over the last few semesters regardless of location, 
suggesting that location of these courses is not critical to their 
success.  To assist our biology-oriented users, we moved our short 
course schedule from a mid-week schedule to an all-day Friday 
schedule so that our users would find it easier to park and would 
not have to travel back and forth across campus on multiple days. 
A longitudinal study is planned to test the hypothesis that the 
availability of courses over WebEx has reduced the importance of 
the location of our courses.   

4.4 TIM and Student Persistence 
In an effort to refine our offerings, we have investigated the 
participation profiles of our course attendees over Spring 2018. 
Figure 5 presents a student persistence profile that describes how 
many HPRC courses each participant registered for in Spring 2018. 
It is heartening to note that over 49% of participants re-registered 
for two or more courses.  A significant number of these participants 
returned to take 4 or more courses over the Spring 2018 semester, 
with single participants registering for 13 and 14 courses as well. 
Though there was limited participation from students belonging to 
non-traditional fields of computational enquiry, those who did 
attend were most likely to register for a large number of all HPRC 
courses. This is not surprising considering that programming and 
HPC training is not commonly offered in these departments.  These 
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data present an emerging paradigm that students in disciplines that 
less computationally inclined are most likely to learn about 
computing from informal HPC short courses as opposed to formal 
courses. A similar longitudinal study about student attendance 
across multiple semesters is in the works. This data presents 
interesting insights into the design of a formal data sciences-
oriented minor around these short courses.    

The persistence information data indicates that a significant number 
of one-time participants register for some of the more popular 
HPRC courses (Machine Learning, CUDA, R, Python and 
MATLAB). As described above, TIM anticipates continued 
participation of students in foundational courses with a drop-off in 
participation as more advanced topics are covered. On the surface, 
the observed participation profile appears to violate the anticipated 
TIM learner progression, suggesting a reimagining of the 
instruction model.  It is unclear whether technological interventions 
implemented by TAMU HPRC have allowed researchers to skip 
the foundation courses, or that immediate applicability of these 
materials to research forces students to cover the foundational 
materials on their own time.  These data suggest that there is a need 
for the HPC-education community to develop TIM approaches for 
topics like Python and MATLAB.  The TAMU HPRC short courses 
program is experimenting with a TIM model for Python. In Spring 
2018, we offered a number of courses that introduced complexity 
in Python programming - Introductory Python, Applications of 
Scientific Python, TensorFlow, and Python for MATLAB users. In 
future iterations, we will include courses that cover topics in 
Parallel Applications of Python and the use of Pandas and Forecast 
Libraries.  

It is interesting that the TAMU HPRC courses on R, MATLAB and 
Python continue to draw significant interest despite being 
supported by a number of formal efforts. In sharp contrast, our once 
popular “Introduction to CUDA” has since waned in popularity. 
This may be because, much like the case of Digital Biology formal 
classes, CUDA too is now being adopted in the formal Computer 
Science classroom. In contrast to CUDA, our classes with Artificial 
Intelligence or Machine Learning themes have been filled to 
capacity with students from Engineering.  These participants 
represent a population of HPC users with different needs and are 
different from our typical user base. This became evident in our 
more traditional user-oriented courses. For example, attendees who 
took our “Scientific Python” course didn’t appreciate the examples 
from Machine Learning training sets that were used as examples!  

5. SUSTAINABILITY 
The demonstrable need for TAMU HPRC short courses makes 
them inherently sustainable. They are offered free-of-charge to all 
participants on free-to-use software and machines.  All course 
materials and notebooks are available for download free-of-charge 
from the TAMU HPRC website and we intend to release course 
recordings in the near future. The material from our short courses 
has been incorporated by courses currently taught at TAMU is 
currently being adopted by TAMU Galveston and Prairie View 
A&M University as well.  The equipment for online WebEx 
broadcasts and video recordings is commercially available and may 
also be checked out from the TAMU libraries free-of-charge. Our 
National Science Foundation funded Cybertraining grant has 
provided us with the opportunity to develop a minor with a field of 
concentration in HPC as well. In addition, TAMU has submitted 
proposals that leverage the strengths of these short courses in search 
of federal dollars. As such, the approach toward institutionalizing 
the TAMU HPRC short course is likely to further strengthen the 
sustainability aspects.  

6. EVALUATIONS & ASSESSMENTS 
TAMU HPRC has worked with faculty in developing of “phase-
gapped” evaluation strategies that help assess these programs. We 
are currently evaluating our initial designs in terms of their (1) 
connection to delivering key chemical and STEM concepts, (2) 
engagement and accessibility for students in a cyber learning 
context, and (3) support for instructors/peer leaders [Prince 2004, 
Parsons 2011]. TAMU HPRC currently collects data from two 
forms of evaluation: (1) a formative evaluation to assess the quality 
of project components, monitor project implementation, and 
provide ongoing feedback to the leadership team, and (2) a 
summative evaluation to examine the benefits to instructors and 
assess the impact of the project in reaching its stated goals. Both 
types of evaluation use a mixed method approach of qualitative and 
quantitative indicators.  In the near future, we will also evaluate 
progress on the decided learning objectives, including our 
effectiveness in student-teacher engagement and learning.  

We have traditionally relied on in-person interviews for feedback 
from the community. Registration and attendance data further help 
identify the effectiveness of our short courses. We rapidly came to 
the realization, however, that while these data demonstrated the 
demand for our courses on campus they didn’t inform us about the 
quality of our courses. We experimented with collecting short 
surveys about the courses in Fall 2017. While we initially followed 
a model of mailing surveys electronically, the returns were 
extremely limited. Physical post-class surveys that required 
attendees to complete a questionnaire were implemented in the tail 
end of Fall 2017. Spring 2018 represents the first semester when 
evaluations were standard to each HPRC short courses. We 
currently follow a post-training evaluation model that includes in-
person interviews and a free-format survey questionnaire. The 
survey focuses on course content and the participant’s objectives.  
A free-format survey with open-ended questions was chosen over 
a Likert-scale style survey to ask open-ended questions and not 
constrain our participant’s choices. Our typical surveys, while 
anonymous, provide participants with the opportunity to provide 
their email addresses if they wish to be contacted. Since TAMU 
HPRC courses are taught by CI professionals who volunteer to 
teach these topics, questions about the quality of the instructor that 
are typical in surveys on formal courses are not included. The 
Spring 2018 survey was a one-page document that includes 
questions such as [i] Did you attend this course for research, 
personal or class needs? [ii] What did you expect to learn from this 
course? [iii] Did the course meet your objectives? [iv] What did you 
like about the course? [v] What would you like us to do differently? 
[vi] What other courses would you like HPRC to offer? [vii] If you 
would like to subscribe to HPRC announcements please provide us 
with your email address. [viii] Please provide any additional 
comments below.  

While the feedback from the surveys has helped refine our program, 
we face challenges in efficiently quantifying the collected data.  
Responses to the free-format surveys have provided us with data 
points for course success that we had not considered.  Analyzing 
these surveys tends to be laborious and leaves room for ambiguity 
and personal interpretation.  For these reasons, we will transition to 
a Likert-scale style survey approach in Fall 2018. This survey has 
been developed with feedback from TAMU faculty who focus on 
education. Some key points that we will be addressing in our future 
surveys are: 
The open-ended questions in our survey will be:  

1. How did you learn about this course? 
2. Why did you register for this course? 
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3. Is this course related to your research or degree plan? 
4. What are the difficulties that you faced in this course? 
5. What do you think are the strengths of this course? 
6. What specific content/concepts in the course were 

particularly challenging for you? 

7. What specific content/concepts in the course were 
particularly easy for you? 

8. How do you plan on using what you learn in this course? 
9. Who would you recommend the course to? 
10. Please add any additional comments below. 

The Likert Scale (1-5 scale) questions will be: 
1. How easy was the course for you? 
2. How satisfied are you with the course? 
3. How likely are you to take the course again? 
4. How likely are you to recommend the course to others? 

Our future surveys will provide us a rationale for why people are 
attending our classes. We will use these data to build a quantitative 
model for evaluating course success that goes beyond repeat 
attendance, and finally develop a profile of the kind of students or 
groups that are most likely to take our courses. In the future, we 
will partner with research groups on campus for an Internal Review 
Board (IRB) approved study to investigate whether attendees at our 
courses are meeting their desired learning objectives. Over the next 
few semesters, we will correlate data from assessments with course 
registration profiles to develop a teaching model for specific short 
courses. These steps are critical to shape the design of future HPC 
short courses type of efforts for users in non-traditional fields of 
computing. 

7. CONCLUSIONS & LESSONS LEARNED 
TAMU HPRC has implemented a number of interventions to drive 
a 300% growth in participation in HPRC short courses. In addition 
to the general need for data analytics in the scientific workflow, this 
growth may largely be attributed to our social and curricular 
interventions. Our data suggests that the influencing factors include 
offering courses on exciting topics, making the community aware 
of these courses, better student engagement by using active learning 
methods, avoiding policy bottle necks that curbed user 
participation, and finally by supporting our users with better 
documentation and support. The data from the TAMU HPRC short 
courses program supplies interesting insights on widely accepted 
models of the “tiered instruction” approach such as TIM. A 
longitudinal analysis of this data is further required to entirely 
understand these effects. While our current assessments have 
allowed us to refine our courses significantly, we will be utilizing 
stronger research-based methods in the near future. We will further 
standardize the active-learning segments of our courses so that all 
participants are   guaranteed a similar experience in all of our 
courses. Over the coming semester we anticipate that developing 
ADA-compliant online courses will be our single-largest legal and 
administrative challenge. In our previous curriculum revisions, we 
have found that initial student resistance to new approaches can be 
overcome by good communication and persistence.  Once students 
get accustomed to new approaches and expectations, they quickly 
regain their comfort level.   We have utilized our student workers 
to serve as tutors and act as liaisons in resolving issues that arise.  
These steps have placed us on a firmer footing to develop this 
home-grown HPC effort into a certificate program. 

8. SUPPORTING INFORMATION 
All training materials developed by TAMU HPRC are available for 
download free-of-charge on the TAMU HPRC website. Please 
access the material at https://hprc.tamu.edu/training and send 
feedback about your adoption experience to help@hprc.tamu.edu. 
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ABSTRACT 
The Pawsey Supercomputing Centre has been running a variety of 
education, training and outreach activities addressed to all 
Australian researchers for a number of years. Based on experience 
and user feedback we have developed a mix of on-site and online 
training, roadshows, user forums and hackathon-type events. We 
have also developed an open repository of materials covering 
different aspects of HPC systems usage, parallel programming 
techniques as well as cloud and data resources usage. In this 
paper, we will share our experience in using different learning 
methods and tools to address specific educational and training 
purposes. The overall goal is to emphasise that there is no 
universal learning solution, instead, various solutions and 
platforms need to be carefully selected for different groups of 
interest. 

Keywords 
Online training, Self-guided learning, HPC training and outreach 
 

1. INTRODUCTION 
The Pawsey Supercomputing Centre is constantly evolving its 
training programs to build a critical mass of advanced computing 
knowledge in the research community. It will continue to engage 
in a broad range of activities to further grow the expertise of the 
next generation of supercomputing specialists and create a skilled 
workforce in Australia. The success of our HPC training program 
is driven by its diversity. From basic computer science training for 
non-experienced users, through introductory and intermediate 
supercomputing and cloud, to parallel programming courses, GPU 
hackathons and customised training for research groups. 

   

In this paper, we will address some of the most recent 
challenges in delivering HPC training and describe our ideas and 
experiences in facing them. We will share our experience in using 
different learning methods and tools to address specific 
educational and training purposes. Starting from traditional on-site 
training, through self-guided training materials to online training 
and webinars. The overall goal of this paper is to emphasise that 
there is no universal learning solution; instead, various solutions 
and platforms need to be carefully selected for different groups of 
interest. 

 

2. PAWSEY TRAINING PROGRAMME 
The Pawsey Supercomputing Centre has been developing and 
offering its training program for over ten years. It consists of 
various training modules related to HPC, Data, Cloud and 
Visualisation which are being offered to Australian researchers 
within the National Training Programme. The list of the training 
modules together with a short description of the content is 
presented in Table 1.  

National Training is traditionally delivered on-site at 
universities and research institutions across Australia. Currently, it 
is composed of 5 training modules (first five modules listed in 
Table 1) presented during two days. The target audience of the 
training is researchers (students, PhD students, postdocs) who are 
willing to use infrastructure services offered by HPC centres for 
their research. It is required that the participants have a basic 
understanding of computer science. After two intensive days of 
training the participants should be able to (among others): 

● understand HPC, Data and Cloud services offered in 
computing centres, 

● understand what a shell program is and use basic Unix 
shell commands,  

● setup, manage and use VMs in the Cloud environment, 
● submit various types of jobs on HPC systems with the 

use of schedulers, 
● use compilation environment on HPC systems, 
● understand the concept of parallel file systems and their 

efficient use.   
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Figure 1. Attendance for the 5 core training modules. 

 

We have gathered the attendance statistics for all training 
events provided over the years. Figure 1 presents attendance 
numbers for 5 core training modules of the National Training 
Programme over the past three years. Significant growth in 
attendance can be observed and we believe that this trend will 
continue in next years with some of the new online training 
offerings.    

Table 1. Pawsey Training Programme  
(as of September 2018)  

Training Module Description of content and format 

Introduction to Pawsey Pawsey HPC, Data and Cloud resources. 
Usage scenarios. 

30min presentation 

Introduction to Unix Intro to shell, navigating, pipes and filters, 
shell scripts, finding things. 

1.5hr self-guided hands-on training 

Introductory 
Supercomputing 

Basic supercomputing concepts, 
supercomputing architectures, use of 
queueing systems. 

3hr session: presentation + hands-on  

Intermediate 
Supercomputing 

Compiling codes on HPC systems, advanced 
workflows and queueing scripts, parallel file 
systems. 

3hr session: presentation + hands-on  

Using Nimbus: Cloud 
computing at Pawsey 
(Intro to Cloud) 

Intro to cloud computing, How to create and 
launch a Nimbus VM (including making 
keypairs, security, attaching storage, 
managing instance). 

3hr hands-on session 

Introduction to Data 
Services 

Intro to Pawsey Data services and good data 
management practices. 

30min presentation 

Introduction to pshell Intro to command-line access to long-term 
data storage. 

30min hands-on session 

Introduction to 
Supercomputing 
Technology 

Supercomputing building blocks: CPU 
architectures, memory hierarchy, nodes, 
interconnect, network topologies. 

2hr session: presentation + hands-on  

Remote Visualisation Intro to remote visualisation tools offered at 
Pawsey. 

3hr session: presentation + hands-on 

Containerising 
Workflows 

Intro to Docker, Discipline specific 
examples. 

2-3hr session hands-on session  

Optimising Serial 
Code 

Programming languages, profiling codes, 
cache usage optimisations, basic loop 
transformations, vectorisation. 

3hr session: presentation + hands-on 

Parallelising your code 
with MPI 

Distributed memory parallelisation concepts. 
Basic MPI: point-to-point communication, 
non-blocking communication, collectives.  

3hr session: presentation + hands-on 

Parallelising your code 
with OpenMP 

Shared memory parallelisation concepts. 
OpenMP directives, library routines and 
environment variables. 

3hr session: presentation + hands-on 

GPU Programming 
Essentials 

GPU parallelisation concepts. GPU 
architecture, developing codes with CUDA 
and OpenACC, GPU libraries. 

2x 3hr sessions: presentation + hands-on 

 
All hands-on training materials are available on Github: 
http://github.com/PawseySC 

All presentations are available on Pawsey Centre user support 
pages: 
https://support.pawsey.org.au  
 
Pawsey Supercomputing Centre has more than 1500 registered 
users affiliated with different research institutions across 
Australia. For that reason, Pawsey’s National Training sessions 
are being offered in Australia’s largest cities: Sydney, Melbourne, 
Perth, Brisbane and Hobart. As the travel costs associated with the 
organisation of those training programs are usually substantial, we 
try to accommodate as many modules as possible within a single 
training. However, we have found that it is very hard to address 
different skill sets and interest of attendees with an increasing 
variety of topics presented during National Training. As a result, 
the most advanced training modules were usually less attended. 
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Over the years we have also struggled to increase the turnout of 
our training events. Statistics for previous years are presented in 
Figure 2. Introducing small nominal registration fees was one of 
the considered solutions. This might potentially increase turnout, 
however, more organisation overhead is required and there is 
always a risk that the training might become less accessible, 
especially for students.    

 
Figure 2. Turnout % (percentage calculated from actual 

attendance versus registration) for various training modules. 
 

3. IN SEARCH OF THE NEW LEARNING 
FORMATS... 
In the past, HPC developer courses were part of the National 
Training program. Training modules covering MPI, OpenMP and 
serial code optimisations were offered during the third day of the 
training. Unfortunately, we have found that with the proposed 
format it was particularly challenging to address different learners 
experience. Also, the number of registrations, as well as turnout of 
those training sessions, were often below expectations (Figure 2). 
To address those particular issues we have decided to experiment 
with a new online courses format designed especially for 
advanced HPC topics.  

In the new format, parallel programming courses are divided 
into short webinar sessions (max. 90 minutes) organised 
throughout the week. Exercises are introduced to participants at 
the end of each session. Participants work on the solutions offline 
as access to HPC systems is granted to all participants throughout 
the whole week. 

Interaction and communication are some of the most important 
aspects of training and education activities, which should be 
carefully addressed, especially in the case of online activities. 
Participants of the Pawsey online courses are encouraged to use 
chat room messaging during webinar sessions and a dedicated 
Slack channel for communication with Pawsey staff (or between 
themselves) while working offline on the solution of the exercises. 
This can be easily handled by two trainers, one presenting the 
material and the other keeping track and responding to chat 
messages.    

We have found it very interesting that participants use both 
communication channels for exchanging their own experience and 
comments as well as helping themselves while working on the 
exercises. Participants can easily share their solutions by forking 
training materials repositories available on Github. 

 

Table 2. Content and format of the Developing with MPI 
online course. 

Online Course: Developing with MPI 

Webinar 1 Introduction and Point-to-Point Communication  

Exercise 1 Ping-Pong 

 
Webinar 2 Non-blocking Communication and Communicators 

Exercise 2 Message in a Ring 

 
Webinar 3 Collectives, overview of other topics and next steps 

Exercise 3 Game of Life 

 
Table 3. Content and format of the GPU Programming 

Essentials online course. 

Online Course: GPU Programming Essentials 

Webinar 1 GPU Computing at Pawsey 

Exercise 1 Compile and run a GPU program 

 
Webinar 2 Introduction to CUDA 

Exercise 2 Host-device transfer and vector addition 

 
Webinar 3 Programming with OpenACC 

Exercise 3 Accelerating a Jacobi simulation 

 
Webinar 4 GPU Libraries 

Exercise 4 Using the cuBlas library 

 

We have run two HPC developer online courses as a pilot in 
June 2018. Contents and schedules of those courses are presented 
in Table 2 and Table 3. Both courses were very successful in 
terms of the number of registrations and participants. Although 
the turnout (actual webinar attendance versus registrations) was 
on the similar level as for the on-site training (around 50%), the 
registration numbers where much higher. We’ve got 54 
registrations for the MPI course and 60 registrations for the GPU 
one. All registered participants received links to the webinar 
recordings. Therefore, potentially all registered participants could 
follow the course even if, for any reason, they were not able to 
connect to the live webinar session.       

The pilot run of two described online courses was followed by 
the “Overview of Containers in HPC” webinar which covered a 
brief introduction to containers, usage of containers on Pawsey 
systems as well as example workflows and benchmarks using 
containers. It was a huge success, with 87 overall registrations and 
more than 50 actual attendees.   
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4. SELF-GUIDED LEARNING 
Basic computational science skills should be developed as part of 
a University’s curriculum, especially in computational science 
areas where computer simulations are a basic scientific tool. In 
practice, HPC centres still struggle to educate non-experienced 
computer users to use high-end computing infrastructure. We 
have identified self-guided learning platforms as particularly 
useful tools to address that problem. Specifically, our basic Unix 
training, which is based on Software Carpentry material [2] and 
uses the JupyterHub platform [3].  We deploy JupyterHub on our 
Pawsey cloud infrastructure (Nimbus), which provides us with the 
flexibility to give all users the same command-line environment to 
undertake hands-on exercises.  This assists new users as they just 
need a browser and don’t need to be familiar with a shell / 
command-line environment.  Limiting the diversity of command-
line clients also reduces the troubleshooting issues faced by 
trainers and helps training stay on schedule. 

Our Nimbus Cloud and Container training are also structured 
in the ‘Software Carpentry style’ which enables instructors to 
easily undertake hands-on and interactive training but also enables 
users to undertake training in their own time.  We have also 
adopted the “One-Up, One-Down” Software Carpentry feedback 
approach [5] at the end of training each day.  This approach 
involves the instructor asking the learners to alternately give one 
positive and one negative point about the day, without repeating 
anything that has already been said. We write the responses on a 
whiteboard and we have found this ‘encourages’ people to say 
things they otherwise might not, compare to post-training surveys.  
This has given us valuable feedback to improve our training.  

 

5. COLLABORATIVE COURSES 
As opportunities have arisen, Pawsey staff have collaborated with 
researchers and software developers to run various HPC and 
domain-specific courses, including areas such as quantum 
mechanics, radio astronomy, and fluid mechanics. The format of 
these courses has varied, from workshops over a couple of days to 
semester-long university courses. 
Introductory HPC material is provided and delivered by Pawsey 
staff, and it is important that this occurs at the start of the course 
before the participants commence more specific learning that uses 
the systems. Our staff also manage processes for reserving 
resources and setting up accounts to support the coursework on 
our systems. 

A critical factor in the success of these courses is the knowledge 
and expertise provided by the collaborating researcher or 
developer, and their willingness to provide effort to develop and 
deliver material. 
 

6. BRIDGING GAPS 
Carefully planned outreach activities can be extremely useful in 
bridging gaps between education programs and HPC training. The 
Pawsey Supercomputing Centre has not only continued to deliver 
training sessions to maximum capacity but has introduced a 
variety of complementary outreach activities addressed to 
different communities, students and research groups. These 
activities include roadshows, internship programs, careers nights, 
open days and community data centre tours [4]. During the talk, 

we will mention a few of those activities and share our 
experiences with running them. 

Pawsey Roadshows are information sessions where researchers 
showcase their science and research to university students across 
Australia with focusing on how their outcomes have been 
positively impacted by high-compute power and staff expertise. 
This encourages the future scientists of the Nation to keep 
supercomputing at the forefront of their mind when the time 
comes for them to begin their research. 

Though in previous years Pawsey Roadshows saw high 
attendance, 2018 numbers have been minimal to date. Although 
attendees found benefit in learning about supercomputing, it did 
not muster enough interest to increase attendance. Due to this, the 
Pawsey Uptake Group (PUG) and training committee trialled 
hosting roadshows within university events and research open 
days rather than stand-alone activities. This decision has proven to 
be successful with Roadshow attendance and engagement with 
Pawsey nearly doubling. 

The Pawsey Supercomputing Centre Summer Internships is a 
good example of bridging gaps and developing skills for a new 
generation of HPC-ready researchers.  The internship program 
runs for 10 weeks during the period November/December through 
to February.  The internships are open to 3rd year, higher 
undergraduate students (including honours) or Masters students at 
Australian higher education institutions looking to complement 
their discipline knowledge with hands-on HPC experience.  
Pawsey staff run an intensive week of hands-on training based on 
the existing Pawsey training program expanded to include other 
topics which would assist students in their projects, such as an 
introduction to Git and Python. 

As part of our outreach activities, Pawsey hosted its first 
Careers Night in July in an endeavour to encourage year 10 
students to pursue Science, Technology, Engineering and 
Mathematics (STEM) subjects in university. The careers night 
saw presentations from Pawsey staff, researchers and industry 
representatives - all with a story to tell and how studying a STEM 
subject have influenced their lives. After the presentations, the 
students spent their evening networking with the presenters and 
additional Pawsey staff to answer their curious questions. 

  
Table 4. Pawsey outreach activities to bridge gaps. 

 2016 2017 2018 

Pawsey Roadshow 56 139 26* 

Student Summer Internship 16 14 12* 

Career Night - - 52 

Pawsey Open Day 300 - 500 

Community Tours 28 66 431 

                                                                    
1 as of October 2018 
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Events such as the Careers Night reinforce Pawsey’s focus on 
STEM and its importance in growing the minds of future 
scientists. It gives them insight into potential career paths and the 
ability of HPC to be part of any domain. 

Similar to the Careers Night, every two years, Pawsey opens 
its doors to host a Pawsey Open Day as part of Australia’s 
National Science Week. This day targets Perth’s families of all 
ages and local government to raise awareness amongst the 
community about the benefits of supercomputers and the ground-
breaking science Pawsey enables in Australia. 

The Open Day includes back-to-back tours of the facility, 
‘designing a supercomputer’ competition, researcher presentations 
and science activities (including child-friendly games that 
demonstrate parallelisation) to highlight the opportunities and 
encourage the ambition of young minds to work, research or be 
involved in HPC.  

As a consequence of the first Open Day, Pawsey Community 
Tours are run every month and is an opportunity for the Perth 
residents to explore the Tier-1 facility that is sitting in their 
backyard. Any person over the age of 12 can tour through the 
Centre, which is predominantly guided by Pawsey’s Head of 
Supercomputing. Tour groups are briefed with a Science 
Showcase of the work undertaken at the Centre, followed by a 
walkthrough of the supercomputing cell, I/O cell and tape cell.  

Table 4 outlines the outreach activities discussed here and their 
corresponding attendance for the year.   

 

7. SUMMARY AND FUTURE WORK 
Pawsey has seen a marked change in the nature and size of its 
training and education program to better reflect the requirements 
of potential and existing Pawsey users. Through various feedback 
mechanisms, we seek to continue this change.  In the future, we 
expect to increase the range of self-guided domain-specific 
training offerings, such as the recent bioinformatic training 
workshop we hosted on the 7th September 2018.  This included 
specific material on running bioinformatics software from 
containers using our Nimbus cloud. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

  Similarly, we are planning to significantly increase the number 
and scope of training offered as online courses. Pawsey 
Supercomputing Centre experts have found the organisation of 
those training very effective, both in terms of the attendance and 
the overall cost. We also recognise a large potential of those 
training activities. Although there is a number of similar webinars 
and online pieces of training available worldwide, most of them 
are hardly accessible due to the time difference.       

     We are also planning to continue the National Training 
Programme as this creates unique possibilities to reach out to 
research groups and to understand their particular interests and 
needs. 
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ABSTRACT
We analyze the changes in the training and educational efforts of the
SciNet HPC Consortium, a Canadian academic High Performance
Computing center, in the areas of Scientific Computing and High-
Performance Computing, over the last six years. Initially, SciNet
offered isolated training events on how to use HPC systems and
write parallel code, but the training program now consists of a broad
range of workshops and courses that users can take toward certifi-
cates in scientific computing, data science, or high-performance
computing. Using data on enrollment, attendence, and certificate
numbers from SciNet’s education website, used by almost 1800
users so far, we extract trends on the growth, demand, and breadth
of SciNet’s training program. Among the results are a steady overall
growth, a sharp and steady increase in the demand for data science
training, and a wider participation of ’non-traditional’ computing
disciplines, which has motivated an increasingly broad spectrum
of training offerings. Of interest is also that many of the training
initiatives have evolved into courses that can be taken as part of
the graduate curriculum at the University of Toronto.
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1 MOTIVATION
Not that long ago, many larger scientific computations for academic
research were performed on clusters built by researchers using
commodity components strung together by a commodity network,
i.e. Beowulf clusters. The research groups building these clusters
were also the ones using it. The knowledge of how to build, program
and use these systems were transmitted from one graduate student
to the next, with perhaps the briefest of instructions posted on a
website. Every system was a bit different, which did not matter too
much, as the knowledge to use the system was already in-house,
and the systems were maintained by a member of the research
group that happened to have affinity with the technology.

This era of self-built clusters was driven by the need for more
computational resources and faster computations than a single
workstation could provide, which is reflected in the name of the
field, High Performance Computing (HPC). It was made possible
by the availability of relatively cheap commodity hardware and
technical knowledge in the research groups. This practice of self-
built, maintained, and documented systems often took place in
traditionally highly technical areas such as engineering and the
physical sciences (physics, astronomy, chemistry).

However, the demand for computational resources in academic
research has not stopped increasing, and is not exclusive to the
physical sciences. Part of this demand is now driven by the increase
of data availability in many disciplines and industries: bioinformat-
ics, health sciences, social science, digital humanities, commerce,
astronomy, high energy physics, etc.

With the increased demand for scientific computational resources
build-your-own clusters were no longer sufficient. A select few re-
searchers in some countries had access to large national systems,
but most researchers did not. To solve this issue, many researchers
started using shared clusters, first within their department, then
their own university or HPC consortia in which several universities
collaborated, and finally nationally and cross-nationally available
shared computing resources (XSEDE [17], Compute Canada [4],
PRACE [11]). But this brought about a second issue, that the knowl-
edge on how to use these systems no longer resided within the
research groups. This especially put ’non-traditional’ fields at a
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disadvantage: while they now had access to great computational
resources, they lacked the institutional knowledge required to use
these as effectively as possible and missed the opportunity to de-
velop this knowledge within their own research groups.

This computational knowledge gap is the motivation for training
provided by experts that are situated at the centres that provide the
HPC resources. Larger computing centres [2, 5, 8, 15] have usually
engaged in these kinds of training events. But such endeavours
do not automatically tie in with universities’ educational systems.
This implies that participants of such training events do not get
formal recognition of the skills and knowledge they learned, unless
an explicit mechanism for this is put in place, such as badges and
certificates.

This paper focuses on SciNet’s training efforts. SciNet is the HPC
centre at the University of Toronto. It hosts some of the largest
academic supercomputers in Canada. Since SciNet’s operations
started in 2009 [7], courses have been taught on scientific technical
computing, high performance computing, and data analysis for the
Toronto-area research community.

As will be detailed below, what started as small-scale training
sessions on parallel programming has grown into a large, success-
ful program consisting of seminars, workshops, courses, and sum-
mer schools, delivered by computational science experts. Graduate
courses are given in partnership with other departments, and all
events are part of a program in which participants work towards
certificates in scientific computing, high-performance computing,
or data science. In this paper, we use the (anonymized) enrollment
data of SciNet’s online learning system, which includes attendance
records for almost 1800 students over the last seven years, aug-
mented by information on field of study and gender, to get a picture
of the growth in amount and depth of training in general scientific
computing, as well as trends in training in data science and high
performance computing1.

2 TRAINING FORMATS
The training at SciNet takes place in various different formats. These
will be briefly describe here, including their intended usage and
their advantages and disadvantages.

Common to all training events is a substantial on-line presence
which supports the learning and administration of the program.
SciNet’s training and education site2 contains lecture videos, slides,
links, forums and other electronic material, freely publicly available
and organized by course [14].

On the site, users of the SciNet facilities can log in with their
SciNet account, while students that are not users must be assigned
a temporary account. Logging in is not required to access the con-
tent, but is required to enroll in courses, to take tests, to submit
assignments (for the graduate-style courses), and to track progress
towards earning certificates.

All of SciNet’s training is free for anyone working in academia.

1The curated and anonymized data can be requested from the authors for academic
research purposes.
2courses.scinet.utoronto.ca

2.1 Seminars
Seminars are short, one-hour sessions. Sometimes they are about a
technical topic, sometimes they are a research presentation. The
format of seminars may not be ideal for knowledge transfer and
training, but it is a good way learn about something new. Further-
more, many of these seminars happen at the monthly SciNet User
Group (“SNUG”) meetings, which are an opportunity for SciNet
users to come together and exchange experiences.

2.2 Workshops
Workshops are usually half a day to one day long, and focus on a
very specific topic. Examples of topics are “Parallel I/O”, “Relational
Database Basics”, “Intro to the Linux Shell”, “Intro to HPC”, and
“Intro to Neural Networks”. Such workshops are given a few times
throughout the year, and typically have a hands-on component.

The annual summer school (further described below) consists of
a carefully selected collection of these kinds of workshops.

SciNet also provides occasional workshops for other organiza-
tions, such as the Fields Institute, Creative Destruction Lab, and the
Chemical BioPhysics symposium in Toronto.

2.3 Graduate-style courses
The graduate-style courses share a common approach which is
focussed on the practical application of presented materials. These
courses typically have two lectures per week of one hour each. In
addition, each week, students are given a programming assignment,
with a due date one week after, and feedback is given to the students
in the following week. These assignments are designed to help
absorb the course material. The average of the assignments also
make up the final grade. To further support the students’ learning,
there are office hours, online forums, and instructor email support.

Initially, these courses ran for four weeks at a time, a format that
coincided with the “mini” or “modular” courses given by the Physics
Department and the Astrophysics and Astronomy Department of
the University of Toronto. Topics for these mini-courses included
“Scientific Software Development and Design”, “Numerical Tools for
Physical Scientists”, “High Performance Scientific Computing”, “In-
troduction to Programming with Python”, “Numerical Computing
with Python”, “Advanced Parallel Scientific Computing”, “Introduc-
tion to Machine Learning”, and “Introduction to Neural Networks”.

Some of these graduate-style mini-courses have grown into full-
fledged, term-long graduate courses. The process of creating these
recognized graduate courses is described in more detail in section
3.2 below.

2.4 Summer schools
The annual one-week long summer school is a flagship training
event for graduate students, undergraduate students, postdocs
and researchers who are engaged in compute intensive research.
SciNet’s first summer school was given in 2009 and was called a
“Parallel Scientific Computing” workshop. As the program in table 1
shows, it was heavily focussed on HPC, parallel programming, and
applications in astrophysics.

These days, SciNet’s summer school is part of the Compute
Ontario Summer School on Scientific and High Performance Com-
puting. Held geographically in the west, centre and east of the
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First day
Welcome and Introduction to Parallel Scientific Computing

Introduction to OpenMP with brief C tutorial
Second day

Introduction to OpenMP, continued
Introduction to MPI

Third day
Map Making

Compressible Hydrodynamics
Fourth day

OpenMP N-Body
MPI N-Body
Fifth day

CUDA N-Body
C-Blocks and Erlang

Advanced Topics: Additional Resources,
Performance tools and exotic architectures

Table 1: SciNet’s first summer school in 2009 focussed onPar-
allel Scientific Computing and placed emphasis on scientific
applications such as in astrophysics.

province of Ontario, the summer school provides attendees with
the opportunity to learn and share knowledge and experience in
high performance and technical computing on modern HPC plat-
forms. The central edition is the continuation of the SciNet summer
school. Not only is the school organized in a wider context, its
program has expanded as well. As table 2 shows, in 2018 there
were three streams in the Toronto edition, and a wide variety of
topics, from shell programming to data science, machine learn-
ing and neural networks, biomedical computing, and, still, parallel
programming.

This type of event not only benefits the students and participants
of the summer school, but also enables collaborations between
departments and consortia, as part of the training was delivered in
partnership with colleagues from SHARCNET [16] and the Centre
for Addiction and Mental Health [3].

SciNet participates also in the International HPC Summer School
[6], sending a few instructors and 10 students to this competitive
one-week program every year.

2.5 Guest Instructors
In the capacity of “guest instructors”, SciNet also delivers a 7-week
module in an undergraduate “Research Projects Course” from the
Department of Physics at the University of Toronto. Topics include
an introduction to High Performance and Advanced Research Com-
puting, Data Science, and Scientific Visualization.

SciNet also occasionally provides guest lectures in other courses.

3 CERTIFICATES AND CREDITS
3.1 Certificate Programs
Since December 2012, SciNet has offered recognition to attendees
of its training events in the form of SciNet Certificates [13]. Re-
quirements for these certificates are based on the number of credit-
hours of SciNet courses a student has successfully completed. For a

short course (typically a day long or shorter, without homework),
a lecture hour counts as one credit hour; for a long course with
homework due between sessions, a lecture hour counts as 1.5 credit
hours.

There are currently three certificate programs, with the following
descriptions:

Certificate in Scientific Computing: Scientific computing is
now an integral part of the scientific endeavour. It is an interdis-
ciplinary field that combines computer science, software develop-
ment, physical sciences and numerical mathematics. This certifi-
cate indicates that the holder has successfully completed at least 36
credit-hours worth of SciNet courses in general scientific computing
topics.

Certificate in High Performance Computing: High Perfor-
mance Computing, or supercomputing, is using the largest avail-
able computers to tackle big problems that would otherwise be
intractable. Such computational power is needed in a wide range
of fields, from bioinformatics to astronomy, and big data analytics.
Since the largest available computers have a parallel architecture,
using and programming high performance computing applications
requires a specialized skill set. Those earning this certificate have
completed at least 36 credit-hours of SciNet courses in high perfor-
mance computing topics.

Certificate in Data Science: The SciNet Certificate in Data
Science attests that the holder has successfully taken at least 36
credit-hours of data science-related SciNet courses. The latest certifi-
cate launched, it is indeed one of the fastest growing in popularity,
clearly displaying the growing interest in data-science-related com-
putational fields, such as artificial intelligence and deep learning.

3.2 For-Credit Graduate Courses
By partneringwith different institutions at the University of Toronto,
many SciNet courses have been consolidated into recognized grad-
uate courses that students enrolled in Masters and Doctorate pro-
grams can take as part of their graduate curriculum. So far, SciNet
has started three graduate courses recognized at the University of
Toronto: PHY1610 “Scientific Computing for Physicists” in partner-
ship with the Department of Physics, MSC1090 “Introduction to
Computational Biostatistics with R" in partnership with the Insti-
tute of Medical Science, and EES1137 “Quantitative Applications
for Data Analysis” in partnership with the Department of Phys-
ical and Environmental Sciences at the University of Toronto at
Scarborough. These courses are in principle open to students of
other departments as well, and indeed attract students from Physics,
Chemistry, Astrophysics, Ecology and Evolutionary Biology, Engi-
neering, Computer Science, and others.

Some of the shorter graduate-style courses are still taught as well,
and are recognized by a subset of the departments at the university
as “mini” or “modular” courses.

In fact, the physics graduate course started out as a collection
of three such modular courses, on “Scientific Software Develop-
ment and Design”, “Numerical Tools for Physical Scientists”, and
“High Performance Scientific Computing”, respectively. These three
modules were recognized by the Physics, Astrophysics, and Chem-
istry Departments, and were subsequently merged into a single,
one-term course with a Physics designation. This meant the course

Journal of Computational Science Education Volume 10, Issue 1

January 2019 ISSN 2153-4136 55



HPC Stream Data Science Stream BioInformatics/Medical Stream
First day

Welcome and Introduction to HPC and SciNet
Programming Clusters with MPI Introduction to Linux Shell Python for MRI Analysis

Second day
Programming Clusters with MPI
(cont.)

Introduction to R Image Analysis at Scale
Introduction to Python HCP with HPC: Surface Based Neuroimaging Analysis

Third day

Programming GPUs with CUDA Parallel Python PLINK
Machine Learning with Python Next Generation Sequencing

Fourth day
Programming GPUs with CUDA
(cont.)

Neural Networks with Python RNASeq Analysis
Scientific Visualization Suites R for MRI Analysis

Fifth day
Shared Memory Parallel Programming
with OpenMP

Debugging, Profiling Public Datasets for Neuroscience
Bring-Your-Own-Code Lab Biomedical Hacking

Table 2: SciNet’s latest (and largest) summer school, held in June 2018. This summer school had three parallel streams: the
traditional High-Performance Computing, one on Data Science and a stream on BioInformatics/Medical applications, which
was added in 2017. Details of the courses covered in the school can be found in the Summer School website [12].

was now listed in the graduate curriculum and drew a larger audi-
ence. Similar tracks were followed to establish the other full-term
graduate courses, but under different partner departments.

To avoid a growing teaching burden, teaching assistant support
is provided by the partner department. The course instructors are
still SciNet analysts, now hired as sessional lecturers for the purpose
of these courses.

These for-credit courses follow the same format as our other
graduate-style courses, with assignment-based learning and evalua-
tion, with on-line support in terms of forums, email, and availability
of materials including lecture recordings. There is no final exam for
these courses, although for some courses a mid-term exam is set.

It should be noted that designing a course in scientific computing
for students in a non-traditional field such as medicine and biology
poses its own unique problems, which are discussed in more detail
elsewhere [9].

4 ENROLLMENT DATA
The start of the certificate program in 2012 required a more compre-
hensive online registration and learning management system than
SciNet’s previous Drupal-based site could provide. The replace-
ment system is based on ATutor [1], an open-source web-based
learning management system. This system was augmented with a
few in-house-developed modules for event management, certificate
programs, and integration with the LDAP authentication server
used for SciNet’s computing resources. In addition to the LDAP
authentication for users with computing accounts, there are tempo-
rary accounts, which are authenticated separately through a local
database.

The site keeps track of all courses in which users are enrolled,
and which of those courses have been completed. Every course
is also categorized. For clarity, in this paper, a restricted set of
four categories is used: “High Performance Computing”, “Scientific
Computing”, “Data Science” and “Seminar”.

Each course consists of a set of ’events’, e.g. lectures, meetings,
or workshops, which in total determine the length of the course
and when it was given. Attendance of events by people without an
account on the site is allowed, and is tracked by entering the number
of ’anonymous attendees’ for each event. The system also records
whether users have earned a certificate in Scientific Computing,
High Performance Computing or Data Science, and the date when
they obtained it.

Unfortunately, the system was not setup to gather all the in-
formation needed to, for instance, investigate the distribution of
training demand over different genders and different fields. To be
able to investigate this, it was necessary to assign genders and
fields to users of the site. For anonymous attendees, this assign-
ment is impossible, but for the users with accounts on the system,
these attributes were reconstructed as well as possible given the
information that was in the system.

The gender assignment for accounts whose gender was not
known was performed by checking first names against an online
database that returns the most likely gender (https://genderize.io).
In the end, the data set of 1776 users was determined to contain
1047 males and 567 females, leaving 162 unknown.

The assignment of fields of study was done in a variety of ways.
For users with accounts on computing resources, the research group
is known and for most groups their field of study is known. Tempo-
rary users were often asked for a description of what they do, from
which the research field could be deduced. For the graduate courses,
the field of the user’s ’host’ department was used. Sometimes the
email address of a user revealed his or her field. The assignment
of the field of study was the most laborious part of the data anal-
ysis, only made possible by using a restricted set of categories of
fields of study: ’engineering’, ’physics’, ’chemistry’, ’earth science’,
’computer science’, ’mathematics’, ’medicine’, ’biology’, ’economics’,
’humanities’ and ’social science’. In the end, 1577 of the 1776 user
accounts on the site could be assigned a field of study.
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Figure 1: Growth in total course hours delivered by SciNet.
The shaded regions in each bar show the course hours in
the topics scientific computing, high performance comput-
ing, and data science.

The data covers the period from 2012 to July 2018. Thus, the
statistics for 2018 do not constitute a full year. Furthermore, the
2012 data was imported from the older courses website, with at-
tendance numbers added by hand. Virtually all attendees in 2012
were therefore recorded as anonymous attendees, for which neither
gender or field of study is known.

While these assignments of gender and field of study used some
of the user’s personal attributes in the system, once the assign-
ment was done the personal information was no longer needed.
The subsequent analysis of trends was performed having removed
names, emails, institutions, supervisor information, and any other
identifying information, using only anonymous data.

5 RESULTS
Before presenting the results, two central notions must be intro-
duced: the first is a course hour, which is an hour in which an event
was held, be it a lecture, seminar, presentation, meeting, or some
other type of event. The number of course hours is a measure of
the teaching effort. The second notion is that of an attendance hour,
which is one person attending one hour of training. For example, if
a training event of two hours has ten attendees, that training event
counts as twenty attendance hours. Attendance hours are a mea-
sure of the effect of the teaching and to some extent an indicator of
the demand for that training.

5.1 Overall Growth and Distribution by Topic
Figure 1 shows the overall growth of the number of hours of train-
ing events delivered by SciNet over the years. One sees a general
increasing trend from about 100 course hours in 2012 to over 250
course hours in 2018. One can also see a levelling off of this trend
in the last two years. This can be attributed mostly to limits in
available human resources.

The same figure also shows how many of these training hours
were devoted to the three main categories of topics that are taught:
data science, high performance computing, and scientific comput-
ing. It may seem that no data science was taught before 2015, but
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Figure 2: Break-down of the attendance for the years 2012-
2018 by the three high-level categories of SciNet courses: sci-
entific computing, high performance computing, and data
science.

actually the distinction between data science and scientific comput-
ing was not yet made at that time. One sees a strong surge of data
science training, which now comprises more that 50% of SciNet’s
training effort.

Figure 2 shows the overall growth of the number of attendance
hours over the years. Oncemore, one sees a general increasing trend
from about 1000 attendance hours in 2012 to over 8000 in 2018. The
latter number is an underestimate, as the attendance of our fall
classes has not yet been counted. A rough estimate based on the
enrollment numbers suggests that the final number of attendance
hours in 2018 will be closer to 10,000. There is no sign of attendance
levelling off, from which we may conclude that the demand for
training continues to increase.

As in the previous figure, the breakdown by high-level category
(data science, high performance computing, and scientific comput-
ing) is also shown. Overall, all topics see increasing attendance
numbers, but data science is the fastest growing category,

5.2 Trends in Participation by Gender and
Scientific Field

Whereas the previous section looked at what is taught, we are also
interested in who is taking SciNet’s courses.

Of particular interest is the gender balance. Figure 3 shows the
percentages of different genders. One must keep in mind that the
gender was in many cases inferred rather than collected. Because
of that, it was not possible to go beyond a basic binary division of
genders. The data nonetheless shows a trend from very little female
participation in 2012 to about 40% female participation in 2018.

The disciplines that require or use scientific computation are
changing as well, and the training data supports this. Table 3 shows
the relative participation of students subdivided into 11 groups
corresponding to their field of study. The largest and second largest
groups are highlighted in orange and yellow in the table. A very
striking trend is apparent here. Whereas the majority of students
previously came from engineering and physical sciences, in recent
years students in life sciences (biology and medicine) have become
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Figure 3: Division of attendance hours in SciNet training by
gender (based on an approximate gender determination –
see text).

the majority of participants in SciNet’s training. It is worth men-
tioning that in absolute numbers, the engineering and physical
science fields have not decreased, but the life sciences have simply
contributed more to the growth in demand for training.

One might expect that the increase in attendance in data science
training is correlated with the increase in attendance from biology
and medicine. Table 4 shows the division among scientific com-
puting, data science and high performance computing for each of
the fields of study in the previous table. This table confirms what
one might already expect: the life sciences are more concerned
with data science, while the physical sciences and engineering have
a greater interest in scientific computing and high performance
computing.

5.3 Summer School Statistics
The annual summer school has been highly successful and has been
growing in number of sessions (compare table 1 and table 2) and in

2013 2014 2015 2016 2017 2018
engineering 34% 14% 15% 20% 12% 17%
physics 29% 36% 30% 24% 18% 12%
earth science 10% 8.1% 8.8% 6.0% 3.4% 2.3%
chemistry 6.7% 16% 2.7% 4.4% 3.4% 4.4%
computer science 1.2% 1.4% 0.3% 1.6% 1.7% 0.8%
mathematics 0% 0% 0% 2.1% 0.8% 2.5%
medicine 10% 17% 20% 25% 35% 40%
biology 8.0% 4.8% 22% 16% 24% 18%
economics 0% 0.9% 0% 0.4% 0.4% 2.2%
social science 0% 0% 0% 0% 0.2% 0.2%
humanities 0% 0.1% 0% 0% 0% 0%

Table 3: Relative percentage of the attendance in SciNet
training by researchers from different fields, separated by
year. The two fields with most participation in a given year
are highlighted. There was not enough statistics to be able
to include 2012 in this table.

data scientific
science HPC computing

engineering 20% 46% 34%
physics 15% 34% 51%
earth science 18% 41% 41%
chemistry 25% 41% 34%
computer science 12% 72% 16%
mathematics 21% 49% 30%
medicine 65% 17% 18%
biology 58% 16% 26%
economics 26% 56% 18%

Table 4: Relative percentage of participation in training in
scientific computing (SC), data science (DS) and high perfor-
mance computing (HPC) for different fields of study. There
were too few data points for sensible results for social sci-
ence and humanities.

attendance. From 2012 to 2018, the attendance has grown from 35
people to 215.

After completing at least 3 days of the summer school, partic-
ipants in the summer school receive a certificate of attendance.
These are special summer school certificates that are separate from
the SciNet certificates. In 2012, 20 certificates were awarded, but
by 2018, this number was 135. This growth is partly due to the
inclusion of a data science stream and a biomedical stream.

The school is offered for free, but without support for travel,
lodging ormeals. It is therefore not surprising that most participants
are from the Toronto area, although there are always some who
travel to attend the event. In 2018, there was a sizable number of
attendants from outside Toronto (60), from outside of Ontario (15)
and even from outside Canada (5).

This event is in high demand: in 2018, within one day of opening
the registration, there were over 100 registrations, and just one
week later, the 200 registration mark was crossed. In the end, 304
people signed up. The fact that there is no charge for this event
means that not everyone attends; attendance rates of 70% are typical.
This helped the people on the waiting list, most of whom could be
accommodated in the end.

5.4 SciNet Certificates Statistics
As was mentioned above, SciNet issues certificates in scientific com-
puting, data science, and high performance computing to students
who have taken at least 36 hours of courses in the respective cate-
gory. As figure 4 shows, over 200 certificates have been issued so
far. The data science certificate still has the lowest number (it was
only started in 2015), but is the fastest growing category. The graph
shows a stagnation in the number of high performance computing
certificates. It is possible that this is due to a shift in demand from
HPC to data science, but it could also be related to the decrease in
the number of HPC courses that are on offer; as figure 1 shows, the
number of HPC training hours has decreased in the last two years.

5.5 Retention
The statistics of the number of certificates give an indication of
the retention of students taking SciNet courses, as one course is
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Figure 5: Histogram of the number of course hours taken
by students. The bin width is 4 hours. Gray bars include
all training activities, while blue bars exclude for-credit
courses.

not enough to earn a certificate. We can get more insight into the
retention rates by considering the number of course-hours taken
by individuals. Figure 5 shows the number of students that spent
a given number of hours in SciNet training, counted in bins of 4
hours wide (i.e., the first bin counts students that spent between 1
and 3 hours in SciNet courses, the second counts students that took
between 4 and 7 hours, etc.). It also shows those same statistics
when the graduate courses are taken out.

A few things can be observed. One is that a substantial number
of attendees (about 230/1800) come to only one to three hours
of training. Since there are very few individual training events
with a duration of more than three hours, the remaining attendees
are returning students. The second observation is that there is a
large peak at 24 hours of attendence. This peak disappears when
the graduate courses are taken out, which makes sense as all our
graduate courses have 24 hours of lectures. What then remains
is a broad distribution, centered around 16 hours. There is also a
noticeably long tail, which shows that a number of students attend
a lot of training.

6 DISCUSSION
In this paper, we have shown the growth and demand-driven change
in focus of SciNet’s training program, from the year 2012 to 2018. In
the analysis of the enrollment data, we had to infer gender and field
of study (we are exploring ways of implementing ways for users
to self-identified their gender and field of study). The data shows
a large increase in life science participation as well as in female
participation. There has been an overall growth trend both in the
amount of training offered and in the attendance. In particular,
training in the field of data science has shown remarkable growth.
The tremendous increase in participation shows the large demand
for this kind of training.

One might wonder whether or not this kind of training should be
part of the graduate curriculum [10], or whether perhaps it should
be provided by the Computer Science department. While parallel
computing and concurrency are active lines of research in computer
science, users are often interested in practical techniques and desire
training in efficient ways to enable larger scientific computations.
Other departments might want to teach courses on data science and
scientific computation, but may not have the required knowledge.
Computing centers usually have the required expertise, and can
provide much of the necessary training, but may not be in a posi-
tion to give or create for-credit university courses. At least in the
case of SciNet, through partnering with other departments, several
graduate courses in Scientific Computing have been developed.

Overall, this has been a successful program which continues to
grow.
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ABSTRACT 
There is a growing need to provide intermediate programming 
classes to STEM students early in their undergraduate careers. 
These efforts face significant challenges due to the varied 
computing skill-sets of learners, requirements of degree programs, 
and the absence of a common programming standard. Instructional 
scaffolding and active learning methods that use Python offer 
avenues to support students with varied learning needs. Here, we 
report on quantitative and qualitative outcomes from three distinct 
models of programming education that (i) connect coding to hands-
on “maker” activities; (ii) incremental learning of computational 
thinking elements through guided exercises that use Jupyter 
Notebooks;	and (iii) problem-based learning with step-wise code 
fragments leading to algorithmic implementation. Performance in 
class activities, capstone projects, in-person interviews, and 
participant surveys informed us about the effectiveness of these 
approaches on student learning. We find that students with previous 
coding experience were able to rely on broader skills and grasp 
concepts faster than students who recently attended an introductory 
programming session. We find that, while makerspace activities 
were engaging and explained basic programming concepts, they 

lost their appeal in complex programming scenarios. Students 
grasped coding concepts fastest using the Jupyter notebooks, while 
the problem-based learning approach was best at having students 
understand the core problem and create inventive means to address 
them.  
CCS CONCEPTS 
• Social and professional topics → Computing education programs; 
Computing literacy; Computational thinking; Informal education; 
K-12 education; • Applied computing → Interactive learning 
environments; 

Keywords 
Undergraduate education, informal education, computing literacy, 
Python, Jupyter notebooks, active learning, problem-based 
learning, scaffolding strategies, Raspberry Pi  

1. INTRODUCTION 
Offering incoming (freshman) undergraduates opportunities to 
learn basic computing skills is an idea that is rapidly gaining 
popularity in higher education. Due to the rapid proliferation of 
computing in science, technology, engineering, and mathematics 
(STEM) disciplines, these efforts need to be supplemented with 
intermediate level student training programs as well [6, 7]. Such 
intermediate programming experiences need to provide a solid skill 
foundation in order to help early undergraduates develop 
complexity in programming skills. Proficiency in computer science 
widely differs from student to student, depending on their previous 
experiences with computing. In this paper, we investigate how 
important previous exposure to computing concepts is to 
computing education. While a wide range of programming 
constructs are considered introductory activities, a defined standard 
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for intermediate- level proficiency is currently lacking. The Python 
programming language helps address some of these concerns. The 
language has an easy-to-comprehend syntax and can grow in 
complexity to support analysis in numerous STEM disciplines. In 
addition, inexpensive computers, like the Raspberry Pi, open 
possibilities for educators to couple makerspace activities with 
Python programming in the classroom to serve as a scalable 
platform on which students can develop an intermediate-level skill 
set in computing. Informal efforts that use well-reviewed 
pedagogical approaches to education have been found to encourage 
participation in and adoption of computational thinking [3, 13, 23, 
24]. Previous studies have shown that projects connected to greater 
societal impact or include elements of physical creativity are more 
likely to appeal to a broader audience [14, 16]. Using participatory 
technologies such as visualization, modeling, and robotics provide 
a number of opportunities in this space. By combining increasingly 
easy-to-access computing resources with a scaffolded teaching 
approach [10], the barrier to entry can be reduced [4, 20]. Reducing 
this barrier to entry is particularly relevant for informal efforts 
hosted by high performance computing (HPC) centers that support 
users who have a diverse range of research needs and computing 
prowess.  
In this study, we explore different pedagogical approaches that 
utilize these technologies to introduce learners to complex 
programming scenarios suitable for the intermediate level [2, 17, 
19].	 In the subsequent sections of this paper, we present the 
conceptual framework of our program, and describe the methods 
used to evaluate three learning approaches. The paper next 
describes our efforts toward assessing the success and pitfalls of 
these approaches using capstone exercises, interviews and 
evaluations. We finally discuss the lessons learned over the 
previous year and summarize our findings in conclusion. 

2.  EXPERIMENTAL DESIGN 
Instructing groups of students on coding practices who have a 
diverse range of skill sets and educational backgrounds remains a 
challenge in computing education. Scaffolded instruction methods 
offer avenues to support students with varied skill sets [10]. Active 
learning has been shown among high-ability trainees to produce 
significantly higher levels of metacognitive activity than 
procedural training. Here, we compare and contrast the benefits of 
well-reviewed approaches to scaffolded instruction and innovative 
active learning exercises in the context of Python programming 
over a week-long training session. The program’s goals are to (a) 
increase participant engagement (b) develop a participant’s 
understanding of complex computing concepts, and (c) pro- vide 
participants with a learning environment that employs hands-on 
exercises.  

Complex coding projects can overwhelm the new or intermediate 
learner. Such learning is best facilitated in a tiered format where 
information is provided, comprehended, analyzed and employed 
before moving to the next step. Traditional approaches utilize 
handouts for students, presenting the code on the screen, and 
perhaps provide prepared versions of the code. Jupyter Notebooks 
provide interesting avenues in this space, because they provide a 
number of useful features [8]. Unlike traditional applications, these 
notebooks run as interactive web-browser applications that allows 
users to write Python code in cells. The output from the cells is easy 
to access and visualize because of its closeness to the Python code. 
Students can see the output from each portion of code as they are 
writing it. This allows the instructor to keep students engaged 
through exercises that focus on smaller pieces of a complex code 
and demonstrate how the output from each cell combines to form 

the larger program structure. The last advantage of Jupyter 
Notebooks is that, as a web-based effort, these notebooks are 
platform agnostic and can be run on any computer! This attribute 
makes them tremendously portable. A notebook that runs on a 
Raspberry Pi can be ported to run on a supercomputing cluster with 
graphical processing units [15].  
There is a significant body of work describing the importance of 
makerspace activities and problem-solving approaches in informal 
education [22]. Specifically, here we explore three different 
approaches that use Raspberry Pi microcontrollers. We specifically 
report on the following qualitative and quantitative outcomes, 
(1)  connecting coding to sensing and control of the real world 
through hands-on maker activities [14, 16]; (2)  incremental 
learning of computational thinking elements [3, 13, 17, 23, 24] 
through guided exercises using Jupyter Notebooks [8]; and 
(3)  problem-based learning with step-wise code fragments leading 
to a complete implementation of an algorithm in which students are 
presented a “narrative” program and goal, and work through 
converting specific objectives into code to write the program and 
achieve the goal.  

To help ensure student engagement, these approaches used 
exercises in game design using the Raspberry Pi Hardware 
Attached on Top (HAT) sensor platform, image recognition using 
machine learning (ML) [11], and sharing secret messages using 
cryptography respectively. All three approaches included 
structured and unstructured components, handouts for students, and 
a number of advisors (1:4 ratio) available to assist if needed. In 
order to effectively judge the efficacy of each approach, we ensured 
that the exercises in these approaches did not build on each other. 
To avoid biases due to familiarity with an instructor, each approach 
was taught on a separate day by a different instructor (2 males and 
1 female). Participants were informed of the nature of activities and 
approaches only on the day of the activity. This ensured that the 
participants were exposed to these learning activities for the first 
time on the day of the camp, and helped reduce artifacts arising 
from the participants having previous knowledge of these activities.  
In order to create an early undergraduate environment that 
comprises of intermediate-level learners, we recruited a cohort of 
23 participants who had recently graduated from high school or 
would do so in the near future. 7 of these 23 students were female. 
In all, 13 of these 23 students be- longed to groups that are 
traditionally underrepresented in computing. Recruiting was 
performed using social media, emails to listservers, our website and 
contacts at local school districts. Participant applications were 
managed via our website. As part of their applications, applicants 
were asked to completed a pre-training evaluation in the form of 
Likert Scale and open-ended questions. These questions helped 
establish the participant’s familiarity with Python, programming, 
Linux and Raspberry Pi computers. Thanks to the exciting nature 
of offered projects, we received a number of applications from 
well-qualified participants. Selection to the training program was 
merit-based. All participants had basic Python programming skills 
defined by the ability to write scripts that employed loop constructs, 
had earned a GPA of above 3.5, and were interested in attending 
college. The participants also had some experience with the Linux 
operating system and text editors. The students belonged to two 
distinct learning groups. The first group of 12 students were self-
identified intermediate-level Python learners. The second group 
included 11 learners who had participated in our introductory 
Python programming course 2 months prior to this exercise. For the 
purpose of brevity, these cohorts of participants are henceforth 
referred to as Group 1 and Group 2, respectively, in the remainder 
of this manuscript.  
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3. PEDAGOGICAL APPROACHES 
Each participant received a Raspberry Pi that was preloaded with 
the Raspbian operating system, a Debian-based distribution of 
Linux. To ensure that all participants had a set of common Python 
programming skills, they were provided with the training material 
from our introductory programming camp. These materials 
contained information about introductory Python programming 
practices, the Linux operating system, GitHub, and the Gedit text 
editor. Trainees who had previously participated in our 
introductory camp program were taught using this material. 
Introductory computing skills were reviewed on the first day of the 
camp. Each slide in the lesson contained a small activity to allow 
for immediate application of the respective topic. To synthesize 
knowledge gained in the lesson, the students were tasked with their 
first maker activity; they performed variable assignments, basic 
arithmetic operations, and console output. The students created 
both string and integer variables to store numerical values. The 
purpose of these tasks was to teach students to explore through 
individual trial and error what actions could be executed on which 
data type. On completion of the first day, all students were able to 
successfully demonstrate the use of algorithms and loops in a 
review exercise. Surveys and in-person interviews further 
supported that all students were at a similar learning level after the 
first day’s reviews. A brief description of the activities during the 
training exercises are provided in the Reproducibility Appendix in 
the order in which they were taught. Owing to the complexity of 
the topics covered, measures were taken to reduce the complexity 
of the problem set. Sessions included the use of PowerPoint slides 
for instruction and students received handouts containing pertinent 
information and review exercises. Instructors and their assistants 
were provided with handouts that included more details about the 
exercises along with possible solution sets. 

3.1 Maker Spaces With Raspberry Pi HATs 
Raspberry Pi computers have been successfully coupled with 
sensors to create a wide range of makerspace activities. While a 
wide variety of inexpensive discrete sensors and actuators, such as 
sound-buzzers, LEDs, and touch sensors are available, the 
integrated Raspberry Pi HAT sensor platform was used for these 
activities. The Pi HAT combines discrete components nicely into a 
portable and usable package. This platform provided participants 
with numerous common utilities including an LED display. The 
maker activities in this section had the trainees explore 
cybersecurity and gaming scenarios that used the Pi HAT to present 
a visual output on the LED display. The lesson began with an 
introduction to basic programming concepts, such as variable 
nomenclature, basic operators, and basic data types. The intention 
was to develop an intuition for translating common language 
commands into Python. The next segment began with an 
introduction to the Python list, list operations, comparison 
operators, user input, classes, and scripts. Students employed Git 
repositories to exercise version control during these activities. It 
followed the structure of the previous segment, with miniature 
activities on each slide and a maker activity recursively 
consolidating the segment information. Students were provided 
with a slide showing parts of the program. New concepts were 
highlighted as they were discussed during the session. The lesson 
continued as such, with each segment scaling up in difficulty and 
building on previously-learned concepts, as per a scaffolded 
instruction approach.  
The students completed two key activities during this session. In 
the first exercise, they sequentially controlled the light pat- tern on 
an RGB LED. For the second exercise, the students created a Pi-
stacking game on the Pi HAT that required players to stack colored 

tiles on top of each other. Student’s engagement with maker 
activities throughout the lesson pro- vided opportunities for the 
instructor to manage the varied skill levels with extra focus given 
when needed. Successful completion of the coding exercises was 
used as a metric of student success. 

3.2 Jupyter Notebooks in Machine Learning 
During this session, we described a series of hands-on activities that 
introduced the participants to aspects of machine learning on the 
widely-used Keras and TensorFlow software [1, 5]. Participants 
were provided with an install script that automated most of the 
process to reduce the complications arising from having to install 
these software and their associated libraries. Students were first 
introduced to concepts in machine learning. They were taught how 
machine learning uses labels to categorize the subjects in images 
and how it predicts the subject in an image file based on what it 
learns from a training data set. Topics covered during this session 
included the need for training using established and respected data 
sets, emphasizing the need for higher levels of accuracy in terms of 
training and complexity of models, and finally envisioning 
scenarios where machine learning will make incorrect predictions. 
The introductory session was followed by interactive hands-on 
activities that introduced these learners to various aspects of ML. 
These included (i) using a training database to teach ML systems to 
recognize hand-drawn numbers in an image, (ii) accurately 
predicting the kind of flower seen in an image, (iii) improving the 
predictive ability of exercise by using convoluted neural networks, 
and (iv) identifying the objects in a given image downloaded from 
the internet [9]. As students worked through these exercises, they 
employed the popular MNIST and ImageNet data sets to explore 
logical regression models, transfer learning, Python imaging 
libraries and the scikit learning libraries [12, 18]. Hand-drawn 
images for these activities were created using the GIMP software. 
On completion of these activities, students were able to leverage 
existing modules to solve a real-world machine learning problem 
with a small training data set and computing constraints. Once 
again, student success was evaluated based on their ability to 
complete the session’s hands-on activities. As a capstone, each 
student created two trained platforms. The first platform identified 
hand-drawn numbers in the range of 0 to 9, and the second platform 
classified images. Since Jupyter Notebooks were used, additional, 
more periodic metrics could be used to evaluate student 
performance. These metrics include qualitative evaluations of the 
student’s use of programming concepts to manipulate training data 
sets and images. In our exercises, students came up with different 
ways to confuse the algorithm. One case was of particular interest: 
a trainee from Group 2 drew upon concepts from programming 
sessions to create an image distorted with static to understand how 
the ML programs would react to this data.  

3.3 Real World Problem Solving Exercises in 
Cryptography  
During the cryptography session, the instructor first presented the 
importance of cryptography in computer security. During this 
session, the emphasis was placed on discussing a relevant real- 
world problem and identifying approaches to solve it. Unlike the 
previous activities, these problems could be solved by 
implementing a number of different approaches. Much time was 
spent discussing the fundamentals of modern cryptography: 
modular arithmetic and one-way functions. Computationally 
difficult functions such as discrete logarithms and the prime 
factorization problem are not typically covered in introductory 
courses, so these concepts are worth spending more time on to 
ensure the students have a strong understanding of the underlying 
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complexity of cryptography. Additionally, the session on 
cryptography provides an opportunity to talk about how brute force 
solutions to problems are often computation- ally infeasible and 
require the problem set be compressed, a common issue in high 
performance computing. To apply the material, the instructor 
presented the Diffie-Hellman Key Exchange algorithm, an 
accessible example of cryptographic concepts. As part of 
evaluating the effectiveness of this approach, three exercises were 
completed during this activity. Each progressive exercise would 
have more possible solutions. The trainees perform an encryption 
exercise followed by a decryption exercise.  
The session was followed by a capstone exercise where students 
were challenged to decrypt the communications of others in the 
class. To demonstrate how it is critical to encrypt secure 
communications over non-secure lines, all messages, including key 
exchange negotiations, were broadcasted to the entire room. The 
students were given examples of the Diffie-Hellman algorithm 
implemented in Python. The intended recipient should be able to 
successfully decrypt the message, while unintended recipients will 
find it computation- ally infeasible. After this exercise, the students 
were able to describe the need for cryptography and apply their 
knowledge of modular arithmetic to computing problems. 

4. EVALUATIONS, SURVEYS AND 
ASSESSMENTS 
The program and the activities in the program were evaluated using 
a variety of approaches. Data collected as part of the registration 
process helped identify the participant’s base line skills. As 
described in previous sections, development of competencies is 
gauged by the student’s ability to complete in-class exercises and 
activities. To test competency on a topic, students were asked to 
complete in-class exercises. As described in the previous section, 
each of the three Python sessions included capstone projects that 
required the students to apply the knowledge gained from the 
session. Finally, surveys were completed by students at the end of 
the camp. These surveys asked questions about the activities taught 
during the camp. The survey consisted of questions that asked 
students to rate activities based on a Likert scale. The survey also 
included a number of open- ended questions that gave participants 
an opportunity to include additional details about the exercises. To 
compensate for the limited size of the sample group, surveys were 
augmented with data from in-person interviews and student 
performance in activities. Some of the open-ended questions in our 
post-program survey were:  

1. How did you learn about this camp?  
2. Why did you register for this camp?  
3. What are the difficulties that you faced in this camp?  
4. What do you think are the strengths of this camp?  
5. What specific content/concepts in the camp were particularly 

challenging for you?  
6. What specific content/concepts in the camp were particularly 

easy for you?  
7. How do you plan on using what you learn in this camp? 
8. Who would you recommend the camp to?  
Essay-style questions that allowed campers to explain their 
perceptions of the camp sessions were:  
Please add any additional comments and details about topics that 
you felt were easy or difficult to learn. What was the most enjoyable 
aspect of a given session? What else you would like to have learned 
during these sessions?  
(a) Linux review session  
(b) Python review session  

(c) Coding Games 
(d) Artificial Intelligence activities  
(e) Secret sharing activities  
(f) Virtual Reality activities  
The Likert Scale (1-5 scale) questions were:  
1. How easy was the course for you?  
2. How satisfied are you with the camp?  

3. Please rate your proficiency in Python before attending the 
Intermediate camp.  

4. Please rate your proficiency in Python after the Intermediate 
camp.  

5. How likely are you to recommend the camp to others?  

6. Please rate how likely you are to tell your teachers about this 
camp.  

7. Please rate how likely you are to participate in conferences, 
science fairs, or other STEM programs in the coming school 
year?  

These surveys provide us a rationale for why people are attending 
our classes and help with the recruiting efforts. Post-program 
surveys will be administered at the 6-month and 1-year 
anniversaries of the program. We will use these data to build a 
quantitative model  that includes a longitudinal aspect. We are 
particularly interested in understanding how the participants used 
these skills in future efforts. We hope to develop a profile of the 
kind of students or groups that are most likely to participate in 
intermediate programing efforts. In the future, we will partner with 
research groups on campus for an Internal Review Board (IRB) 
approved study to investigate whether participants in these 
programs are able to meet the stated learning objectives as well. 

5. RESULTS AND CONCLUSIONS 
All participants completed the week-long program. An important 
consideration while evaluating these data is that these students had 
self-selected themselves to participate in intermediate computing 
exercises. Our data indicates that the choice of instructors did not 
impact student learning in the three models. Each approach and the 
associated exercises were appropriate for an intermediate program 
(90%), and were found to be equally engaging (80% or higher). 
Based on the performance of capstone (and review) exercises, we 
find that students who had been exposed to computing a year or 
more ago (Group 1) were better prepared for the program as 
compared to students who had recently participated in an 
introductory-level programming camp (Group 2). There was no 
discernible difference in the academic prowess of these two groups 
of participants. We assume that students who have had previous 
exposure to computational thinking would have had more time to 
synthesize new ideas and develop an understanding of the concepts. 
Another possible rationale for this observation is that, as self-
described learners, Group 1 participants have learnt additional 
coding and computing concepts that were not taught to Group 2 
participants during the introductory camp. Some of the major 
finding from these the approaches are:  

Maker Spaces With Raspberry Pi HATs. While these activities 
scored highly in terms of processing ideas and taking ownership of 
ideas, the activities required the students to demonstrate Python 
programming skills. Students who had not previously developed 
these skills struggled in exercises that applied them to specific 
problems (30%).  
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Jupyter Notebooks in Machine Learning. Participating students 
were successfully able to manipulate the Jupyter Note- books to 
change training sets (100%), images (100%), and the number of 
epochs (100%). While all students could per- form the exercises, 
the conceptual underpinnings on ML were unclear to some (40%). 
Understanding of ML concepts was demonstrated by students 
working to confuse the model by finding images outside of the 
training data set (30%).  

Problem Solving Exercises in Cryptography. Students appreciated 
that this approach connected to real world problems. The 
interactive nature of this session provided students opportunities to 
develop hypotheses to solve problems, and validate them (100%). 
In these exercises, students had the freedom to select one of many 
approaches to solve the problem at hand. Instructors were available 
to provide assistance, but did not direct the students. The data 
shows that the trainees found this approach to be more challenging 
in scenarios where there were a large number of possible solutions 
to solving a problem (80%). As such, this approach is perhaps better 
suited where students can directly apply the gained knowledge to 
solving a problem. Throughout this experience, we have found that 
teaching students new computing concepts, such as navigating a 
Linux environment, using the command line, and writing code, is 
more productive when done through an interactive format rather 
than using a lecture format that is interspersed with a few activities. 
With an interactive format, students are more motivated to follow 
along with the instructor and other students by participating in the 
activities. The various ways in which the problem could be solved 
increased the complexity of this approach for a number of students 
(80%). In agreement with existing literature, our data indicate that 
students with varying degrees of programming are best suited with 
scaffolded learning approaches like Jupyter Notebooks for 
application specific training. A problem-solving approach, though 
slower, encourages greater interactions and deeper learning of the 
subject matter. The makerspace activities provided the least amount 
of scaffolding and were less successful than their counterparts at 
incorporating increased levels of complexity in programming. 
Throughout the exercise, we find that, while the scaffolded 
elements allowed students to complete exercises, the lower learning 
gains indicate that it is best suited for complex topics where a single 
approach is attempted. The strategies described in this work were 
found to be effective for a group of intermediate learners and can 
be adopted in undergraduate curricula. Taken together, these 
strategies can help attract students to become the next generation of 
computer scientists, especially from groups that are currently 
underrepresented in the field.  

6. SUSTAINABILITY & LESSONS 
LEARNED 
The training program was designed with sustainability in mind. 
Student training in computing is a critical area where demand 
currently outweighs supply. Post-training surveys indicate that the 
program’s format was well received by the community of students. 
Data from this training pro- gram shows that intermediate-level 
coding can be effectively combined with a number of fun activities 
that engage early undergraduate students and encourage them to 
participate in computer science. The largest challenges lie in 
presenting programming concepts at a level that can be 
comprehended and learnt by a diverse set of students. While 
certificates of attendance were provided to the participants, we are 
looking into making these efforts “transcriptable” so that employers 
can recognize them. While pre-training assessments were per- 
formed, in future iterations, we hope to assess student skills and 
competencies both pre- and post-program using evaluation scheme 

in the style of Student Assessment of Learning Gains (SALG) [21]. 
Representative samples of students and their parents will be 
interviewed. Some of the topics will include their experience in the 
camp, motivation to pursue careers in computing, STEM, and 
cybersecurity and ways to refine the offerings. The seemingly vast 
availability of Python teaching tools and the low cost of computing 
plat- forms makes the effort inherently sustainable. An abundance 
of free tutorials, educational makerspace coding activities, and 
intuitive Python interpreters have helped reduce the amount of 
programming that a user had to know prior to using large-scale 
computing or HPC resources. These approaches present exciting 
opportunities to engage students in programming, a critical step, to 
get them to learn and contribute to computing efforts.  

7. SUPPORTING INFORMATION 
All training materials developed by Texas A&M High Performance 
Research Computing (HPRC) are available for download free-of-
charge on the Texas A&M HPRC website. Future adoptees can 
access the material at https://hprc.tamu.edu/training. Surveys, 
machine learning installation scripts, and a Linux review exercise 
are included as part of the Reproducibility Appendix. Agendas, 
registrations forms, sample announcements, templates to track 
participants, Trello event-boards and other such materials will be 
made available by the authors upon request. Please send us 
feedback about your adoption experience to help@hprc.tamu.edu.  
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ABSTRACT
This work explores the applicability of Massively Open Online
Courses (MOOCs) for scaling High Performance Computing (HPC)
training and education. Most HPC centers recognize the need to
provide their users with HPC training; however, the current edu-
cational structure and accessibility prevents many scientists and
engineers who need HPC knowledge and skills from becoming
HPC practitioners. To provide more accessible and scalable learn-
ing paths toward HPC expertise, the authors explore MOOCs and
their related technologies and teaching approaches. In this paper
the authors outline how MOOC courses differ from face-to-face
training, video-capturing of live events, webinars, and other es-
tablished teaching methods with respect to pedagogical design,
development issues and deployment concerns. The work proceeds
to explore two MOOC case studies, including the design decisions,
pedagogy and delivery. TheMOOC development methods discussed
are universal and easily replicated by educators and trainers in any
field; however, HPC has specific technical needs and concerns not
encountered in other online courses. Strategies for addressing these
HPC concerns are discussed throughout the work.

KEYWORDS
Supercomputing, HPC, MOOCs, HPC Education, HPC Training

1 INTRODUCTION
Traditionally, HPC concepts have been taught in formal academic
settings as part of an undergraduate or graduate degree, or as
highly condensed one-off on-site training courses lasting anywhere
between a half-day to a few days. For students pursing research
requiring significant computing resources, HPC education may be
integrated into courses in a student’s subject domain, e.g. computa-
tional engineering or physics; however, the number of institutions
offering HPC coursework is low. The challenges associated with cre-
ating effective and personalized educational experiences for HPC
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fall into two primary areas: a limited pool of trainers leading to a
limited number of workshop offerings over a calendar year and the
diversity of the subdomains of interest within the HPC community.

Consider the diversity of subdomains. While there is some over-
lap of content and skills that HPC practitioners must learn, each
subdomain within the HPC ecosystem has a different focus. Addi-
tionally, as research applications in medicine, social science and
biology become more complex and require more extensive com-
puting power, a new cohort of students with limited computer
literacy are searching for a pathway to HPC expertise. This variety
in focus leads to a vibrant community, but it requires that HPC
educators create effective educational materials capable of speaking
to a range of disciplines and computer literacy levels. Unlike past
decades when HPC educators and trainers could assume that new
graduates had basic computer literacy upon which to build HPC
expertise, educators need to add basics to the training program,
which in turn affects the number and type of workshops that can
be held within a given year. Furthermore, for professionals in need
of training, workshops appropriate to their learning needs may not
be available in a time frame appropriate to their project and needs.
To address these challenges and diversify, the community requires
developing scalable, personalized and accessible training to provide
multiple learning paths to build HPC expertise.

2 MOOC OVERVIEW
HPC has always been about scaling, developing new technologies,
and pushing the boundaries of existing systems. One educational ap-
proach that combines these traits is Massively Open Online Courses,
or MOOCs. At the end of 2017 there were 81 million MOOC learn-
ers spread across the major MOOC providers [15] and another 13
million across 1500 individual sites running their own Open edX
platforms [14] in support of their own organizations [8]. Clearly
MOOCs offer a means of reaching diverse communities beyond the
traditional university cohort of the developed world. However, un-
like standard university courses that are part of a program, MOOC
courses are open to everyone, generally without pre-requisites, are
asynchronous, to support "Just In Time" learning, and compete
with work and life responsibilities for learner attention without the
promise of a degree or credential.

These characteristics make MOOCs notably different from other
more traditional teaching methods, and those differences require
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specific approaches in the creation and delivery of teaching ma-
terials. For example, the open nature of the courses and lack of
pre-requisites means that educators need to predict and design for
the diverse background knowledge and potential knowledge gaps
of their learners. The absence of credentialing equates to a range of
learner motivations for joining and completing courses. Adult learn-
ers, in particular, bring a broad range of experience to their learning,
need to be self-directed and are drawn to learning experiences that
address a given problem or question that they are working to un-
derstand [10]. Some MOOC learners may be interested in only the
initial overview material in order to get a glimpse of a domain;
others may want to work with a few units in order to answer their
questions or developed deeper understanding of a specific problem,
while others may desire a whole course. In this learning environ-
ment, a learner that fully is engaged with only a fraction of course
material may deem it more useful than a learner who completed
the whole course. It is possible that traditional university students
have a similar response to full courses, but until recently, when
MOOCs began "unpacking" courses into modules that allow learn-
ers to determine when and how they they engage with educational
material, this aspect of learner behavior has not been studied. As
part of the effort to design engaging learning environments, this
aspect of learner behavior is getting more attention.

With respect to educational design, MOOC courses build on ped-
agogical research demonstrating the value of segmenting content
into concise and easily digestible chunks and providing frequent
assessments to build mastery learning [5]. The fragmentation of
content allows students to access the material in asynchronous,
interruptive and often non-linear ways. Each content step should
be self-contained, to the extent possible, fit in the overall narra-
tive and bring something new, such as content or perspective, to
the narrative. By design, learners can easily navigate between con-
tent units, revisiting material as necessary, eliminating the need
for repeated content. While each step needs to be informative, it
doesn’t have to be comprehensive. Assessment questions are gener-
ally auto-graded and interspersed between units of video and text
content. The interleaving and auto-grading provides students with
immediate feedback to quickly resolve misconceptions and reaffirm
learning. Finally, to support social learning, most MOOC platforms
include a discussion forum. Many individual courses provide syn-
chronous times for course interaction via video-conference tools
and some even support smaller local gathering in a study group
format, complete with questions to prompt discussion.

To better understand how MOOCs can be used to scale HPC
education we consider two efforts. Section 3 describes a MOOC
that has been offered three times over the past few years while
Section 4 focuses on a Small Private Online Course (SPOC) that is
being converted to a MOOC. While the two studies use different
MOOC platforms, the designs rely on similar pedagogy, and the
challenges listed in Section 1 and Section 2 are common.

3 SUPERCOMPUTING MOOC
3.1 Design
A course called “Supercomputing" [3], was developed on behalf of
the Partnership for Advanced Computing in Europe (PRACE) by

EPCC at The University of Edinburgh in collaboration with SURF-
sara from the Netherlands. Similar to many HPC centers, EPCC, as
a part of the University of Edinburgh, the UK national HPC service
provider and one of the PRACE Advanced Training Centers, offers
a series of highly successful workshops and short courses to teach
parallel and distributed computing concepts to students, faculty and
researchers across the UK. However, despite years of increasing the
number of training opportunities, meeting the training demands
of the user community remains difficult. Considering these restric-
tions and the existing gaps in the available HPC training materials,
a decision was made to create a course that would serve as an
introduction to supercomputing, answering the what, why and
how questions for a target audience of newcomers up through be-
ginners in the field. The goal was to create an interesting course
with an accessible introduction for newcomers while also building
firmer foundations and fill-in the missing links for those with some
degree of supercomputing knowledge. Concurrently, PRACE was
exploring the MOOC approach to increase training accessibility and
funded this project as one of two pilot MOOCs (“Supercomputing”
and “Managing Big Data with R and Hadoop” [1]). PRACE selected
the FutureLearn [9] platform as the host for the two courses. This
discussion focuses on the former course, “Supercomputing”.

The design of the FutureLearn platform is based around a peda-
gogical concept of social learning and follows three basic principles:

• telling stories,
• provoking conversation and
• celebrating progress. [2]

The cohesive ‘story-like’ narration is maintained by segmenting
the course content into individually themed weeks. The Future-
Learn platform follows the pedagogy described in Section 2 so that
the content for a week is further segmented into a relatively large
number of bite-size steps and delivered using a variety of content
delivery modes, e.g. a mixture of videos, articles, discussions, ex-
ercises, quizzes and tests. Furthermore, the learning material for
a week supports the learning outcomes through a set of activities
with clearly defined learning goals associated with each unit or step.
To help learners track their progress, work toward their goals and
stay motivated, the FutureLearn platform presents clear progress
updates in the student dashboard.

One of the key differentiators of the FutureLearn Platform is the
emphasis on learning through social interactions and discussion.
To encourage discussion, each step (video, text, exercise) includes
space for learners to post comments and most steps include explicit
calls to action to encourage conversations among learners and with
educators. These discussion components allow learners to exchange
opinions and verify their understanding of the covered material
by providing learners the opportunity to reflect on their learning
and share their insights with others. The importance and value of
learners’ contributions cannot be over-emphasized as they provide
perspectives and motivation for other learners, prompting other
students to join the discussion and share their own opinions on
each topic. Equally, if not more important, are contributions from
the educators. Once a course has begun, the instructor roles include
replying to comments and questions and prompting discussions that
share experiences, perspective and knowledge among the entire
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cohort. The impact of this design element in the “Supercomputing"
MOOC is presented in Section 3.3.

3.2 Conversion Challenges
Conversion from traditional course designs to a MOOC model
generally requires a major effort to segment the material into bite-
size steps that when combined provide a clear narrative. Similarly,
the structure of the material typically covered during a two-day
course was not easily aligned with any MOOC model. One key
takeaway from this re-design effort was the amount of content from
previous courses and workshops that could be trimmed because
it didn’t add new insight or deeper exploration into the concepts
being presented within a section. Significant attention is paid to
the idea that variety in delivery modes makes the content more
accessible and easier for learners to absorb, but another takeaway is
recognizing that content shouldn’t be made to fit a specific delivery
type but rather be presented in the simplest way that convenes
the greatest meaning. In reaching a balance, experience suggests
variety is good but simplicity is even better.

3.3 Results and Lessons Learned
One of the benefits of the segmented model used by MOOC plat-
forms is that small content chunks are easy to modify and new
content can be inserted into the narrative seamlessly. This course
used this feature, and after each run of the course a number of
small changes were made. Most were motivated by either the need
to clarify or explain specific topics, or in response to suggestions
made by learners or fellow educators. For example, we were sur-
prised by the number of learners who confused supercomputing
with Artificial Intelligence, AI. This lead to a new step titled “What
supercomputing is not" introduced early in the course to clarify this
misconception. Similarly, between runs of the course additional for-
mative exercises, auxiliary content and “useful links", a collection
of all the links referenced in discussions, were added to provide
deeper experiences for the learners.

The discussions in which educators participate tend to be more
animated than others and give learners certainty of being on-track
with their understanding of the subject. The instructor team was
pleasantly surprised by how well the discussions played out during
the various course runs. The diverse background and different levels
of familiarity with the topic led to many thought-provoking conver-
sations. One compelling observation was that steps not containing
any explicit questions or discussion topics had a much smaller num-
ber of comments. Figure 1 shows a number of discussion comments
from the first run of the course for each step within week 3. The
steps 3.1, 3.10 and 3.23, shown along the x axis in Figure 1 did not
include any calls to action, which directly affected the number of
learners who engaged in discussions. Including additional discus-
sion prompts was one of the first modifications made between the
first and second run of the course.

Table 1 presents the enrollment and engagement statistics col-
lected by FutureLearn for the three runs of the Supercomputing
MOOC. The term joiners is used to describe anyone who signed up
for the course, learners are those people who actually accessed the
content, active learners are those who track their progress through

the content (i.e. mark steps are completed) and finally, social learn-
ers are those who are active in comment sections. Although, the
numbers from the first two runs were relatively low by the Future-
Learn and MOOC standards, they were not a source of concern for
the educator team because the classes were significantly larger than
a similar workshop. Additionally, lower numbers facilitated direct
engagement between educators and students, increasing the oppor-
tunity for social learning. The third run showed that reaching out
and attracting the right audience was one of the biggest challenges
of the course. The enrollment numbers a week prior to the start
of the fourth run, were even smaller. It seems that the active Fu-
tureLearn participants interested in the course have already taken
it and advertising the conceptual no-programming introductory
course within the HPC community has not brought the desired
effects.

From the very beginning the number of students participating in
the Supercomputing course was low by MOOC standards. However,
it never was the primary indicator of course success. It has been
shown that on average only about 5 percent of joiners actually
complete massive open online courses [11]. Most of the time this is
not a reflection of the course quality or learners’ satisfaction with
it. Due to the nature of adult online learning, taking place after
hours and competing with life obligations, and the wide spectrum
of learner motivations, it is hard to evaluate the success of an
online course offering. Just because a learner did not go through
the entire course does not mean they did not meet their learning
objective, find the information they needed or fully engage with
the content they completed. Also, not every learner likes or feels
the need to engage socially so the number of comments is not a
clear indicator of success. Although MOOC platforms collect data
on student performance, engagement and demographics, this is
only part of the impact story. Being able to reach learners from over
140 countries is a fantastic achievement in itself and being able to
hear or meet someone who was inspired by it is even better. One
success story was a Nepalese woman whose participation in the
Supercomputing course motivated her to attend ISC’18.

4 UNDERSTANDING HPCWORKFLOWS AND
HOW TO EXPLOIT THEM

4.1 Design
The Lincoln Laboratory Supercomputing Center (LLSC) Team pi-
oneered an on-boarding process for professional engineers and
scientists that flattens the HPC learning curve. As part of this on-
boarding process, a Computational Science and Engineering (CSE)
Team member meets with each new user to provide a targeted in-
troduction to HPC and discussion of strategies for scaling the user’s
workflow. While this form of consulting is highly effective, it is not
scalable, especially as support needs expand to include members of
the MIT campus community. To scale the on-boarding process, the
team leveraged the Open edX platform for the delivery of a MOOC
course. The Open edX platform was selected because as an open
source product it affords

• the ability to modify and extend the platform to provide tools
that support the our teaching

• access to all of the student data which is used for
– continuous course improvements

Journal of Computational Science Education Volume 10, Issue 1

January 2019 ISSN 2153-4136 69



Figure 1: Comments for steps within Week 3 of the first run of Supercomputing.

Table 1: Enrollment and engagement statistics for the first three instances of the Supercomputing MOOC. The percentage of
leaners is calculated using joiners as a basis, active learners using learners as a basis, and social learners and step completion
using active learners.

Run Joiners Learners Active Learners Social Learners Learners completing ≥ 50% Learners completing ≥ 90%

1 ( 6 Mar 2017) 3,263 1,722 (52.8 %) 1,138 (66.1 %) 379 (22 %) 337 (19.6 %) 211 (12.3 %)

2 ( 28 Aug 2017) 3,100 1,910 (61.6 %) 1,285 (67.3 %) 403 (21.1%) 362 (19 %) 186 (9.7 %)

3 (15 Jan 2018) 1,825 1,218 (66.7 %) 761 (62.5 %) 219 (18 %) 207 (17 %) 115 (9.4 %)

– learning analytics

The initial pilot included in the on-boarding process was in-
tended to teach users how to map their serial or small scale appli-
cation onto a set of common HPC workflows, e.g. high throughput,
MapReduce, Leader-Worker and full MPI based parallel applications.
Once students understand where their applications fit in a set of
canonical workflows, they can focus on techniques to effectively
refactor or extend their application to make it suitable for an HPC
system [12, 13].

Within the user population the domains of interest ranged from
those traditionally associated with computing andHPC, e.g. physics,
engineering, math and computer science, to more recent adopters in
the biological and social sciences. One consequence of this domain
range is a significant range of computational experience, from
researchers with minimal experience developing computational
workflows to researchers running commercial parallel codes to
those comfortable developing new parallel solutions. Reviewing
the on-boarding requirements for these professionals and campus
researchers, the instructor team recognized the common concerns
of both populations, namely:

• deep domain knowledge but lack of HPC specific training
• computational experience ranging from novice to advanced
• need for strategies rather than HPC tools

The first design challenge was to create a course that addressed
the three concerns listed above by providing enough theory and
practice to enable users to accomplish their HPC goals: faster time
to solution and more research turns in a day. Considering the range
of computational experience, the expectation was that advanced

users needed a simple refresher on how to use the Laboratory HPC
system combined with an understanding of updated best practices
and techniques. Novice users needed a bootcamp whose learning
outcomes included understanding their application type in the
context of HPC and how to effectively use the HPC system for their
application. Intermediate users fell between these two, and their
needs, while more fluid, were covered by thematerial created for the
other two user cohorts. The design challenge centered on creating
multiple learning paths through the course, including sufficient
content and guidance so that each user could "build their own
adventure".

The second design challengewasmapping a decade of experience
providing individual consultation to users, tutorials on pMatlab
at numerous conferences, and presentations about interactive su-
percomputing, to the Open edX platform. The pedagogy of the
Open edX platform centers on mastery learning through the join-
ing of theory and practice. The theory is provided in small content
chunks followed by practice in the form of quizzes, problems, es-
says or discussions. Aligning the existing material to address both
design challenges resulted in a complete redesign of existing tutori-
als and presentations. The refactoring was accomplished through
the use of the Cmap [6] concept mapping tool, to create a map of
the concepts necessary to understanding and executing successful
HPC strategies for a given application type. The concept map for
the full course is shown in Figure 2. Concept maps, also known as
knowledge graphs, are driven by a major question, and the concepts
required to answer the question form a hierarchy of material that a
student needs to understand in order to answer the major question.
The major question for the pilot Introduction to HPC course was
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"How do I convert my application to an HPC workflow and exploit
concurrency?" The map in Figure 2 was designed to include all
of the concepts that a novice user would need to understand in
order to answer the question. The map is developed by considering
questions that follow from the major question, e.g. “What is Scien-
tific Computing?", “What is HPC?", “How do I get started using the
supercomputing system?” and “How do I parallelize my application
code?”. Each of these questions corresponds to a topic area in a
more traditional syllabus and yields additional concepts as illus-
trated by the hierarchy of concepts associated with “What is High
Performance Scientific Computing?" The authors note that each
of the other major topics has a similar set of hierarchical concepts
that have been minimized in Figure 2 to provide clarity.

The creation of concept maps to visualize related topics offers
advantages not seen in traditional linear syllabi

• links between concepts highlight interconnections that novices
often miss but are usually important to the discipline

• concepts that do not link to other concepts highlight material
that is not necessary for understanding

• the knowledge graph provides a starting point for crafting
personalized learning paths for students

• the creation of the concept map automatically segments the
material into bite-sized chunks

For the instructor team, the creation of the concept map for the HPC
course addressed both the second design challenge, segmenting
existing material in a coherent manner and the first design chal-
lenge, building a course appropriate to a range of experience levels
and goals. As an example, consider the educational needs for a user
with HPC experience who has not used the supercomputing system
in years and brings an application that is new to him or her. This
student needs to learn the strategies associated with parallelizing
and running the new application on the HPC System. Reviewing
the full concept map, it is clear that this student only needs two
topic areas as illustrated in Figure 3.

4.2 Lessons Learned
Among the key benefits of MOOCs are

• the ability to track student activities
• insight into problem areas of the course
• ease of updating, modifying and extending content

These benefits allow instructor teams to better understand levels
of student engagement with the material and to gain insight into
potential content gaps or problems that need clarification. The
combination of the platform design and the segmented content
make it easy to close content gaps by adding and extending material.
With an eye toward redesigning the pilot SPOC and creating a
MOOC, there are three primary lessons that are being used to
inform the new design; tracking student learning paths, modifying
hands-on exercises to support open courses and building exercises
for a student population that prefers web-based portals.

While designing a course where students can build their own
path has great educational value, the basic premise renders it dif-
ficult to apply traditional academic metrics when attempting to
determine the success of the course. By design each student should
touch on the material that is appropriate to their situation. Even
novice students aren’t encouraged to consider all of the use cases,

but rather to focus on the use case that best fits the application
they are working with at the present time. The result is limited data
on completion rates leaving the team to develop other approaches
to evaluating success and recognizing gaps. Based on anecdotal
data, the sections providing an overview of scientific computing,
HPC and interactive computing are successful but student’s un-
derstanding of the role and importance of the scheduler are less
well understood. Students recognize the components of the super-
computing system but seem to have difficulty recognizing how
different they are from the system on their desks, or why these
differences are important. Finally, crafting personalized learning
paths within a course offering is not fully supported within the
standard Open edX platform. The pilot incorporated hands-on expe-
rience through programming assignments that could be developed
and run on the LLSC and MIT supercomputing systems. While
this is possible with a SPOC, providing access to supercomputing
resources renders hands-on HPC experience difficult to include at
the MOOC scale. Additionally, the hands-on components included
instruction on how to run the applications on the local systems,
using specific scheduler, file system and user account specifications.
While videos demonstrating correct responses to job submissions
and explanations of scheduler behavior are helpful for students,
example application snippets that are too tightly coupled to a given
system not only suffer from lack of portability but they quickly
become outdated.

Finally, while the LLSC and Supercloud have pioneered interac-
tive supercomputing and emphasize alternatives to batch process-
ing, new users have a distinct preference for web-based portals to
compute systems and application codes. The trend towards web-
based access to systems is so ubiquitous that a Jupyter Notebook
viewer and grader have been built for the Open edX platform. [4]
As these students join the HPC environment, the LLSC and Super-
cloud CSE Teams have begun leveraging Jupyter Notebooks for
both teaching and application development and recognize the need
to integrate the notebooks into the next generation of the HPC
MOOC.

4.3 New Design
Building on the lessons learned and the changes in student prepa-
ration described in Section 4.2, the MIT Supercloud HPC SPOC
is being redesigned to separate the understanding of HPC from
the job submission and monitoring concerns. Additionally, because
the current state of the Open edX platform does not fully sup-
port personalized learning, the new design focuses on a set of
“short courses". Short courses have the added benefit that they more
closely align with the needs and time constraints of adult learners,
described in Section 2, by providing the student with the material
they need in a small bundle. Furthermore, the development of short
courses follows a trend within edX, where there has been increased
focus on micro-masters programs and an increase in the number of
courses meant to run for three to four weeks rather than the ten to
twelve weeks of earlier offerings [7]. TheMIT Supercloud team split
the course into two short courses “Understanding HPC Workflows
and How to Exploit Them" and “Using the MIT Supercloud". The
former covers the introduction to HPC concepts, and overview of
the canonical workflows and short hands-on examples to explore
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Figure 2: Concept Map for Introduction to HPC Pilot MOOC.

Figure 3: Concept Map for Expert Student in Introduction to HPC Pilot MOOC.
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HPCworkflows. The hands-ons examples include thought exercises
and small programming exercises contained in Jupyter Notebooks
that can be run on any system with multiple cores. The latter mini-
course, “Using the MIT Supercloud" provides training on how to
use the HPC system, including how to launch and monitor jobs,
and Best Practices for using each system. The hands-on exercises
using the MIT Supercloud provide students a chance to develop
their competencies. This modular development maximizes re-use
for both the LLSC team and the larger HPC education and training
community.

5 CONCLUSIONS
It is clear that though MOOCs provide a means for scaling and
expanding the accessibility of HPC education and training, there
are significant challenges that need to be addressed. MOOCs cannot
be viewed as an inexpensive alternative to face-to-face training,
because of the time and effort required to develop and facilitate a
course. There are best practices for segmenting content into small
concept sized chunks which can reduce the effort and the long range
benefit is a collection of small teaching units that can be recombined
and reused for a range in a range of educational contexts..

In addition, HPC has unique requirements for access to parallel
and distributed systems for courses where hands-on activities are
to be included. The case studies presented here addressed this chal-
lenge by re-factoring the hands-on components to engage learners
in thought experiments. In each case the expectation is that the
student will be better prepared to utilize site and system specific
training to develop and execute their applications. The benefit of
creating a general course or series of mini-courses is that the mate-
rial is accessible to a wider audience, e.g. a group of researchers who
are beginner programmers, pre-university students, teachers and
corporate and government decision makers. An additional benefit
of segmenting the theory and thought exercises from the system
details is that the resulting course components are general and
can easily be reused by other centers, universities and laboratories.
For example, new learners could take the Supercomputing MOOC
described in Section 3 and follow that up with the MOOC described
in Section 4 so that when they have access to an HPC system they
are familiar with the basics of supercomputing, understand where
their application fits in the larger HPC application landscape and
know what questions to ask in order to get an efficient solution.

A REPRODUCIBILTY
This paper has examined methods of designing and developing
MOOC courses for HPC education and training. All of these meth-
ods are reproducible by using standard instructional designmethods
for designing courseware and can easily be implemented on any
online course platform. The key discussion here is re-use and each
of the MOOC courses is modular such that it can be re-used either
in full or part.
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ABSTRACT
High performance computing training and education typically em-
phasizes the first-principles of scientific programming, such as
numerical algorithms and parallel programming techniques. How-
ever, many computational scientists need to know how to compile
and link to applications built by others. Likewise, those who create
the libraries and applications need to understand how to organize
their code to make it as portable as possible and package it so that it
is straightforward for others to use. These topics are not currently
addressed by the current HPC education or training curriculum
and users are typically left to develop their own approaches. This
work will discuss observations made by the author over the last 20
years regarding the common problems encountered in the scientific
community when developing their own codes and building codes
written by other computational scientists. Recommendations will
be provided for a training curriculum to address these shortcomings

KEYWORDS
Open-source Software, Computational Science, Training

1 INTRODUCTION
It has been observed that physical scientists and engineers often
do not have the basic computing skills necessary to use computers
effectively. This even includes computational scientists engaged in
parallel computing.[15] This observation has lead to training ef-
forts such as Software Carpentry[13], Data Carpentry[12], and HPC
Carpentry[8]. These "carpentry" programs, collectively known as
"The Carpentries," are workshops designed to provide training for
physical scientists and engineers, data scientists, and computational
scientists, respectively, in practical computer skills relevant to these
groups of scientists to help them use computers effectively in their
work. The purpose of these workshops is not to make the partici-
pants experts on any of the topics covered in these workshops, but
to give them "good enough" skills.[14]

In the spirit of this observation and these workshops (and others
like them), the author recommends training programs for computa-
tional scientists consider including training for two skills that, based
on the author’s experience, would be valuable to computational
scientists:
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(1) How to compile open-source software packages
(2) How to package open-source software for others to use

Not all computational scientists need to be proficient in both
skills. All should be proficient in (1), but only those computational
scientists developing codes to be used by others need to know (2).

The author basis these recommendations on his experience. The
author has been a Linux system administrator and high-performance
computing (HPC) specialist for the past 20 years. During this time,
he has supported computational scientists in a variety of fields
including plasma physics, engineering, chemistry, computational
biology, astrophysics, particle physics, and weather modeling.

Most of this experience has been in smaller departments or
institutions where there author was the sole HPC specialist, respon-
sible for every aspect of HPC operations, including installing the
computational software needed by the users, and providing tech-
nical support to those users. As a result, he has built and installed
open-source scientific packages thousands of times, and has helped
numerous users trying to compile software themselves.

For example, in the summer of 2009, the author provided HPC
support for a two-week long summer program for graduate stu-
dents and postdoctoral fellows in Astrophysics[9]. The instructors
were accomplished computational astrophysicists from the United
States and Europe. Despite the author setting up a parallel comput-
ing cluster specifically for this for this program, and installing all
the computational software that the students would need for this
program, which was all open-source, the instructors perferred that
the students try to install all the need software themselves on their
own laptops. They felt the ability for these aspiring computational
scientists to install opens-source tools like this was an essential
skill for their careers as computational scientists.

In order to facilitate discussion, the organizers of the program
set up a group mailing list where the students could discuss the
course content and ask each other for help with their homework
assignments. The discussion on this list centered almost exclusively
on how to compile and install the open-source tools needed for
the for the program. The author was part of this mailing list, and
estimates he sent over 200 hundred emails to the list during the
2-week program providing the students with assistance debugging
their installations issues, and explaining the configuration and build
process.

This intensive experience provided considerable insight into
what practical computer skills and knowledge computational scien-
tists are lacking at the graduate and postdoctoral levels, as well as
the areas of building open-source software where most errors occur.
Many of the recommendations how to teach building open-source
software are based on this experience in particular.
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Even most though computational scientists can rely on the IT
or HPC support staff at their home institution to provide most
of the software they need, there are a number of reasions why
computational scientists should know how to build open-source
software themselves:

• Their IT or HPC department may be short-staffed, leading to
delays in installing the software they need when they need
it.

• To keep workloads reasonable, some HPC centers limit the
software that they will support to key libraries applicable to
most users or the most performance-critical libraries, leaving
it to the scientists to manage the software specific to their
research themselves.

• As a policy, some HPC centers will only install final release
versions of a software package, so if a user needs a new
feature or bug fix in a pre-release version, they may have to
install it themselves.

• As laptops have become smaller and more powerful, the au-
thor has noticed more computational scientists using their
laptops for small computational workloads, and wanting all
the computational packages they use on their home institu-
tion’s cluster on their laptop so they can work at home or
when travelling to conferences.

For computational scientists who develop software, it is in their
best interest to learn how to package and distribute it in a way
that makes it as easy as possible for others to install and use it.
The academic research culture is often described as "publish or
perish". That is to succeed you need to publish your research often
to survive and get ahead. Related to this, many researchers who
publish are also judged by how often their research is cited. For
computational software developers, their work is often cited when
other researchers use their software in their own research. These
users are more likely to use a software packages that is easy for
them to install, so the easier a package is to install, the more likely
it is to be used, and the more it is used, the more likely it is to be
cited.

Many computational software development projects are publicly
funded through grants from agencies like the National Institute of
Health (NIH), or the National Science Foundation (NSF), or they are
developed a national lab, where they have to compete for budgeting
with other projects. To continue to be funded, these projects often
have to periodically demonstrate to the funding agency that the
projects are worthwhile. "Worthwhile" in this case usually means
that other researchers see value in this software and use it. A metric
commonly used to demonstrate this is how many times that soft-
ware has been cited. Making a software package easy to install can
help increate this citation count and help justify continued funding
of its development.

In the author’s experience, open-source computational software
packages are, on average, much harder to install than more general-
purpose open-source packages. These difficulties are generally due
to several issues with the software:

• Poor or non-existent documentation on how to build the
software, either on the software’s web page, or included in
the source code.

• No automated configuration and/or build system is pro-
vided, leaving the user to determine the proper configuration
and/or manually run the commands to compile and install
the code.

• The software does not follow follow existing standards or
current practices, requiring the builder to modify their pro-
cedures to accommodate these differences.

Any one of these deficiencies can create significant obstacles for
experienced software builders. For computational scientists with
limited experience, any one of these deficiencies can be insurmount-
able.

In the next two sections, the author will outline a curriculum for
training computational scientists in each of these skills, including
topics that should be included, and why, as well as point out top-
ics that should be omitted to prevent overwhelming the student.
Resources will be provided that provide more detail on each topic.
These outlines, combined with the recommended resources, can
then be used by the reader to create a complete training class.

In the spirit of Wilson, et. al.[14] the goal of this training should
not be to make the trainees experts in either of these skills, but
to give them skills that are "good enough" for them to to be more
productive and successful.

2 HOW TO BUILD OPEN-SOURCE SOFTWARE
In the author’s experience most open-source software, provides
a configure script created with GNU Autoconf[1]. The author
estimates 90% or more of the software he has installed falls into
this category, so he recommends that training focus exclusively on
building software that uses this tool, since this is most relevant tool
due to market share, and introducing multiple configuration tools
at once may take up too much time, or overwhelm the student.

Most of the errors encountered by running this script, or actually
compiling the software, are the result of a file not being found. This
is usually corrected by specifying the correct location of the file by
defining an environment variable, or specifying the proper path
with a command-line option to the configure script. Since the main
goal of the build process is to compile source code, the following
topics should be covered before explaining to use the configure
script:

(1) The Filesystem Hierarchy Standard
(2) Environment Variables
(3) The Compiling Process

2.1 Filesystem Hierarchy Standard
The Filesystem Hierarchy Standardard[11], or FHS, is standard that
specifies where certain types of files should go on a Linux filesys-
tem. Sofware builders do not need to know the entire standard,
but they should know about the directories listed below, which
are relevant to the configuration and build process. When creat-
ing class materials, always consult the standard itself, and not the
descriptions provided below. The descriptions below explain the
directories as the author would describe them to students, and may
not be 100% in agreement with the language of the standard.

/usr Amajor section of the filesystem. It is read-only, and holds
most of the programs, libraries, and other files used by the
users. The only time this section of the filesystem should
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be written to is when packages provided by the operating
system are added or removed by the system administrator.
3 subdirectories, important to this lesson, /usr/bin, /usr/lib,
and /usr/include, are located in this directory.

/usr/bin Contains binaries and other executable commands
(shell scripts, Python scripts, etc.) that any user can run (no
administrator privileges necessary). In general, directories
named ’bin’ anywhere in the filesystem will usually contain
programs to be run by non-root users.

/usr/include Contains header files for libraries stored in /usr/lib.
/usr/lib Contains shared and static library files. After the in-

troduction of 64-bit x86 processors, it became common to
use this location to store 32-bit libraries, and store 64-bit
libraries in /usr/lib64

/usr/lib64 Similar to /usr/lib, but contains 64-bit libraries.
/usr/share This part of the /usr filesystem contains architecture-

independent files that can be shared between systems with
different processor architectures. In practice this is where a
lot of non-executable text files are stored, including software
documentation (/usr/share/doc) andman pages (/usr/share/man)

/usr/local This directory is similar in purpose and organiza-
tion to /usr, and is meant as a place where the system ad-
ministrator can install additional software on the system
without interfering with the software provided by the oper-
ating system.

/home This directories contains subdirectories named after
each user account. These subdirectories are known as home
directories. They are owned by the user they are named after,
and the user has full read-write-execute privileges over the
entire contents of this directory. Personal settings are stored
here, and users can save their files here, and install and run
software here, too.

The main items to emphasize here are the following:

(1) Header files for libraries included with the operating sys-
tem are located in /usr/include, and others may be installed
in /usr/local/include, or possibly other places, depending
on where the system administrator decided to install addi-
tional software. Knowing the possible location of headers is
essential to building software.

(2) Library files included with the operating system are located
in /usr/lib and /lib. For 64-bit systems, libraries may also
be located in /usr/lib64 and /lib64. They may be located
/usr/local/lib or /usr/local/lib64 or other locations depending
on where the system administrator has installed additional
software. Knowing the location of libraries is essential to
building software.

(3) /usr/local is a traditional location for installing additional
software that is not included with the operating system.
Unless another location is specified, many open-source pack-
ages will try to install in /usr/local. This means header files
will be installed in /usr/local/include, library files in /usr/local/lib
or /usr/local/lib64, executables in /usr/local/bin, and man
pages and documentation in /usr/share.

(4) Users may install and run software from their home direc-
tory. The author often gets inquiries from users asking if
it’s okay or safe for them to install software they need in

their own home directories. For most users, if they are in-
stalling software themselves on a shared system, like their
departmental or campus cluster, they will want to install the
software into their home directory.

2.2 Environment Variables
When providing this training the topic of environment variables
should be discussed: what they are, and how to set and unset them.
While this may seem like a very basic topic to experience Linux
users, the author has seen even experienced users who have mis-
understandings about how environment variables work. Some mis-
conceptions he has encountered:

• Once an environment variable is set in one shell, it affects
all other shells

• Once an environment variable is set, it is persistent and
doesn’t need to be set again

Whether or not this topic needs to be included depends on the
knowledge level of students in the class, and me be skipped if the
instructor doesn’t feel this needs to be covered.

Setting certain environment variables will be helpful to the build
process, and it’s necessary to set environment variables when the
software installation is complete in order to update PATH, MAN-
PATH, LD_LIBRARY_PATH and other environment variables to
use the new software.

As stated in the previous section, knowing the location of header
files and libraries is important to the build process. If a header is lo-
cated in a standard location such as /usr/include or /usr/local/include,
or a library is located in /usr/lib, /usr/lib64, /lib or /lib64, they should
be correctly detected during the build process and no further steps
are required.

However, when software is installed in another location, builders
should know that they can set environment variables to ensure
they are detected properly. For GCC, the following environment
variables can be used to specify the location to include directories
in non-standard locations:

CPATH A list of directories to be searched for header files,
independent of the programming language

C_INCLUDE_PATH A list of directories to be searched for
header files, but only when compiling files written in C.

CPLUS_INCLUDE_PATH A list of directories to be searched
for header files, but only when compiling files written in
C++.

For library files there is only one variable to set, LIBRARY_PATH.
The values these environment variables are set to are lists of

directories, using a colon (:) as the separator, and the directories
are searched in order from left to right. For example, to look for C
include files in $HOME/include and /opt/include before the stan-
dard locations, you can set C_INCLUDE_PATH with the following
command (bash shell syntax shown).
$ export C_INCLUDE_PATH:$HOME/include:/opt/include

It’s important to note that these environment variables add to
the default search locations - they do not overwrite them, but they
do supercede them.

The export command above is needed to make that variable
available to the commands called by that shell. This is needed for
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the compiler, which will be called later, to access the values of these
variables.

2.3 The Compiling Process
The final prerequisite before discussing the configuration and build
process is to briefly explain the compiling process. Technically, the
compiling process has 4 steps:

(1) The preprocessor step
(2) The compiling step
(3) The assembly step
(4) The linking step
However, for the purpose of this instruction it might be better

to simplify to 3 steps:
(1) The processor step
(2) The compiling step
(3) The linking step
The author feels this simplication is justified, since to the user,

the assembly step is not normally visible, and any errors during
the build process typically do not occur during the compiling or
assembly steps, so no information is lost that the students would
need.

In the author’s experience most build errors occur for one of the
following reasons:

(1) A header file cannot be found by the preprocessor
(2) A library file cannot be found by the linker
(3) The linking stage results in unresolved symbol errors, caused

by libraries listed in the wrong order or a necessary library
not specified on the command-line.

Errors do not normally occur during the compiling step. And
when they do, they are normally harder to solve: the code is using
a version of the syntax that is either too new or too old for the
compiler to understand, or the code is using language extensions
supported by a compiler other than the one being used. Not only
are errors at this step relatively rare, they require knowledge of the
programming language used, and teaching programming languages
is beyond the scope of this training.

There are numerous resources that cover the compiling process,
so the details of the different steps will not be discussed here, instead
let’s focus on how to address those 3 common errors mentioned
above:

If a header file cannot be found, determine the correct location of
the header file, then specify it’s location on the compiler command
line with the -I switch. For example, if the correct header is in
$HOME/include you would specify that like this:
$ gcc -I $HOME/include ... ...

This additional directory can also be added to the preprocessor
environment variables (CPATH, C_INCLUDE_PATH, etc.) as de-
scribed in the previous section. However, the author recommends
using the command-line whenever possible, since that consolidates
all your settings in a single command. Since environment variables
only affect the shell they’re issued in, if a user has a lot of terminal
windows open, it’s very easy to type the command in a terminal
window where the environment variables are not set correctly
leading to unexpected errors.

For a library that cannot be found by the linker, the solution is
almost the same as for a missing header file: determine the correct
location of the library file using the -L switch. Assuming the library
file is located in $HOME/lib, that would look like this:
$ gcc -L $HOME/lib ... ...

The LIBRARY_PATH environment variable can also be set as
decribed in the previous section.

The linker can also report unresolved symbol errors. This means
that either the file being compiled makes references to a function
that is not provided by one of the libaries, or one of the libraries
being linked to relies on a function provided by another library that
is not included. There are two possible causes for this:

The first is that the libraries are not listed in the compiler com-
mand with the -l switch in the correct order. The libraries must
be listed in the correct order for the linker to resolve the symbols
correctly. The libraries are searched in order from left to right as
they appear on the command-line specified with the -l switch. The
library needing the function needs to be listed before the library pro-
viding the function. This issue can be tested easily be changed the
order of the -l options and seeing if that eliminates the error. Some-
time you can do an Internet search of the unresolvable symbols to
determine which library provides it, and use that information to
correct the order of the libraries.

Unresolvable symbol errors can also occur during linking if the
library providing a symbol is omitted from the list of libraries to link.
If you’re not sure what library needs to be added to the command,
an Internet search can often provide useful clues.

For instructional purposes, it is helpful to create simple examples
to illustrate these errors, and show the student how to fix them in
real time.

2.4 The Configure Script
Now that we have covered some important prerequisites to help
the students understand the build process, we can take a look at
how to use the configure script to configure the software with the
correct settings for building.

As stated earlier, this configure script is created by the soft-
ware’s developer using GNU Autoconf[1]. When the source archive
is uncompressed, this script will usually be located at the top level
of that resulting directory.

When executed, this script will run a number of small tests to
probe the environment the software is being built it to determine
if the prerequisites for mandatory features and optional features
are present, as well as determine how to optimize the code for
the environment. For example, if it detects the processor supports
FMA4 or AVX2 instructions, it may enable optimization to take
advantage of those processor features.

An example of an optional feature would be a command-line
program that has an optional GUI interface that uses X11. The
program can still perform all of it’s functions from the command-
line, without the GUI. If configure can’t detect the X11 headers or
libraries on the system, it will print out a brief message stating that,
and continue on. On the other hand, if the user specified the option
to build the GUI using the appropriate switch to the configure
script, and the X11 libraries were not found, configure would halt
with an error, since configure would cosider this an error.
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When configure runs, it executes a number of small, simple
tests and uses the results of those tests to determine if certain
features are present on the operating system. These tests include
attempting to execute a command to see if it’s present, trying to
compile a simple program to see if the header file in the program is
found by the processor, and so on.

The details of how configure works under the hood aren’t critical
to computational scientists at this level. What is important is how
to invoke it with the correct options to build the application to
meet their needs, so most of the instructional time should be spent
focusing on this.

Every configure script has a number of options. These options
will be unique to the package being built. The best way to see what
configuration options are available is to run the configure script
with the --help switch, like this:
$ ./configure --help | less

In the above example, the output of the command is piped into
less in order to facilitate scrolling through the output, since most
configure scripts will print out a lot of options. In general there are
three types of configuration options available:

(1) Options to specify where the software is installed. Where
library and header files will be installed, for example.

(2) Options that specify how the software is built and what
features are enabled or disabled, like whether to build shared
libraries or not.

(3) Environment variables that control the behavior of the con-
figure script. These variables can be used to specify what
compiler to use, or what flags should be passed to the pre-
processor.

In a classroom environment, this would be a good time to display
the output of a configure --help command for some open-source
package, and discuss what some of them mean. Due to the amount
of output, it’s not really possible to show an example of this output
in this article.

There are some configuration options that are common to all
configure scripts. The most important of these is the --prefix
option. This option tells configure in what directory the software
should be installed. If this is not specified, the default is used, which
is usually /usr/local. All other directories and files are then installed
under here. For example if the default is used, all header files will
be installed in /usr/local/include, all libraries will be installed in
/usr/local/lib, and all executables will be installed in /usr/local/bin.

This is typically not what you want, since this will make it harder
to keep track of what files in those directories belong to which
application, and prevents having multiple versions of an application
installed, since the files from whatever version is installed last will
overwrite the versions installed earlier.

For software that’s installed manually like this, it’s much easier
to put each application in it’s own directory, in a path that makes it
easy to understand what application is installed where. For example,
if you want to install versions 1.1 and 2.2 of an application named
"example", you might install them in /usr/local/example-1.1 and
/usr/local/example-2.2, respectively, or /usr/local/example/1.1 and
/usr/local/example/2.2, respectively.

For users installing software in their home directory, it is rec-
ommended they create a directory named ’apps’ or ’software’ in

their home directory, and then install everything under that. For
example, using the previous example but installing it in $HOME,
those versions could be installed in $HOME/apps/example-1.1 or
$HOME/apps/example/2.2.

Some other common options that the author likes to set are:
–disable-silent-rules This enables verbose output from the

make process, whichmakes debugging problemsmuch easier
–enable-shared Build shared libraries. This is usually the de-

fault, but not always, so it’s easier to be explicit every time.
–enable-static Build static libraries. This is usually not the

default. Since the author often build libraries for a number
of users, some of whom may need/prefer static libraries, he
always specifies this.

It’s not possible or practical to discuss all the options specific to
any software package, such as what features to enable or disable,
but it would be good in a classroom environment. For example
here’s some of the options from the configure script for FFTW
3.3.8[6]

–enable-single compile fftw in single precision
–enable-float synonym for –enable-single
–enable-long-double compile fftw in long-double precision
–enable-quad-precision compile fftw in quadruple precision

if available
–enable-sse enable SSE optimizations
–enable-sse2 enable SSE/SSE2 optimizations
–enable-avx enable AVX optimizations
–enable-avx2 enable AVX2 optimizations
–enable-avx512 enable AVX512 optimizations
–enable-avx-128-fma enable AVX128/FMA optimizations
–enable-kcvi enable Knights Corner vector instructions opti-

mizations
–enable-altivec enable Altivec optimizations
–enable-vsx enable IBM VSX optimizations
–enable-neon enable ARM NEON optimizations
At the end of the --help output environment variables will be

listed that can be used to influence the behavior of configure. This
list will be different for every package, but ther are some that are
common to just about every package, such as these:

CC C compiler command
CFLAGS C compiler flags
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in

a nonstandard directory <lib dir>
LIBS libraries to pass to the linker, e.g. -l<library>
CPP C preprocessor
CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include

dir> if you have headers in a nonstandard directory <include
dir>

It is always a good idea to use these environment variables to
specify which compilers you want to use, such as a C compiler with
CC. This makes sure you are using the desired compiler. This is
especially critical in environments where you have more than one
compiler installed (Intel and GCC, for example). If you have differ-
ent versions of the same compiler, specify the full path to the correct
version in CC to make sure you are using the correct version. To in-
stall version 2.2 of package "example" in $HOME/apps/example/2.2,
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using the gcc compiler in /usr/local/bin, and enabling some of the
common options the author recommends, the configure command
would look like this:
./configure \
--prefix=$HOME/apps/example/2.2 \
--disable-silent-rules \
--enable-shared \
--enable-static \
CC=/usr/local/bin/gcc

Please note in the above example the backslashes at the end of
each line are to escape the newline character at the end of each line.
This enables the shell to treat those multiple lines as if they are one
line. There can be nothing after those backslashes other than the
newline character for this to work. The author prefers this syntax,
since it allows long configure lines with many options to be easier
to read.

CC can be defined as an environment variable before running
configure, or put on the command-line before the configure com-
mand instead of after it, but the style shown above, where CC (and
other environment variables) are defined on the command-line after
the configure command, is actually recommended in Section 7.1 of
the GNU Coding Standards[4]

Actually running configure can take several minutes, depending
on how large and complicated the package being configured is.
When configure completes, it will create a number of makefiles
which will the guide the actual compiling and installation of all the
files with the correct settings as determined by configure.

2.5 Make
The actual command that compiles and installs the software is
make[3]. Make is tool that automates the compiling of software
based instructions provided to it in makefiles. Make is a very pow-
erful tool that deserves it’s own training session. Knowing how it
works is not really relevant to students in this training, but they
should have a basic understanding of what it does at a high-level,
so they have an idea of what they are doing when they run the
make commands below.

To actually build the software, at this point, simply run the make
command:
$ make

When the above command completes, the next step is to actually
install the software, which means to copy the files to the correct lo-
cations and make sure ownership and permissions are set correctly.
That is done with the make install command, like this:
$ make install

2.6 Post-install tasks
make install is the final step in installing an open-source soft-
ware package, but there are couple steps that need to be completed
before this software can actually be used. Environment variables
such as PATH and LD_LIBRARY_PATH may need to be updated
to include the installation locations of the the executables and
libraries. Other variables thay may need to be updated include
CPATH, C_INCLUDE_PATH, and MANPATH

2.7 Resources
The Filesystem Hierarchy Standard[11] is the definitive document
for where files and directories should be located on any Linux
operating system. As far as standards go, it’s relatively brief, and
easy to understand. Since it’s freely available in PDF from from the
FHSwebsite, it’s recommended to distribute it to students when this
topic is covered in training as part of the instructional materials.

Environment variables are a feature of the shell. The bash is the
most commonly used shell on Linux. There are numerous resources
online and in print covering the bash shell, but the author is not
familiar enough with any of them to recommend them as a resource.

Brian Gough’s Introduction to GCC[7] provides an excellent
overview of how to use the GCC compilers with many easy to
understand examples, including how to use -I, -L and -l flags as
mentioned above. For an instructor preparing a course on building
open source software, this is a good resource for refreshing their
knowledge of GCC if necessary. It is also suitable for distributing
to the students as an instructional material.

Chapter 7 of the GNU Coding Standards[4] includes a section
"How Configuration Should Work" which supplements the infor-
mation provided here. It provides more detail than what is provided
here, which could be useful to an instructor preparing to teach this
topic. This same chapter includes information on make, which may
be useful if an instructor would like to cover make as part of this
curriculum.

GNU’s Autoconf Manual[2] provides some introductory material
that an instructor might find helpful when preparing their curricu-
lum. Since GNU Autoconf is a tool for developers more than users,
there is no need to be an expert on using GNU Autoconf to teach
this material.

While the author chose not to discuss make in this curriculum,
other instructors may feel differently, GNU’s online documenation
for make[3] is an excellent source for information about make.

3 HOW TO PACKAGE OPEN SOURCE
SOFTWARE

The author is admittedly not an expert on packaging open-source
software himself. In fact, he’s never done it, but as someone who has
built many open-source packages over the years, he has seen what
makes one package easier or harder to install than another. In the
remainder of this section, he recommends some best practices that
should be employed by computational scientists when developing
software to make it as easier as possible for other to use their
software to make its use as widespread as possible.

All packages should have a clearly defined version number. This
version information should be easily identifiable on the website
for the software, in the source code archive, and after installation
by running some command with the --version option. It is very
difficult for users to know if they’re using the latest version or not
without this information. This information is often necessary when
reporting a bug or determining if the current version in use has
certain features. There are different version numbering conventions
in use, and pros and cons of each convention could be a topic of
discussion in the training.

Software developers should make sure the files from their soft-
ware packages are put in locations that are consistent with with
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current standards and conventions. The FHS[11], discussed in the
previous section, is the definitive source for this information.

How to properly build the software package should be well
documented both on the website for the software, as well as in a
README or INSTALL file included in the source code archive. It
should never be assumed that it is obvious how a package should
be built.

Adhering to standards or commonly used conventions can make
maintaining code easier, and make collaboration easier. If respon-
sibility for maintaining the code is ever transferred to someone
else, adhering to well-known conventions or standards will make
that transition easier. The GNU Coding Standards[4] is one set of
standards that could be used for this.

Automatic configuration tools like GNU Autoconf[1] should em-
ployed to make it easier for users to build the software correctly
and as easily as possible. The previous section of this paper focused
on building code with an GNU Autoconf-generated configure script
because it is by far the most common tool for doing this. How-
ever, there are other tools out there that serve the same purpose,
such as CMake[10] and Scons[5]. These tools can be discussed, but
the author recommends focusing on GNU Autoconf, since that is
currently the de facto standard for this.

4 CONCLUSION
This paper has identified building open-source software as a skills
gap for computational scienists. It has provided an outline of what
topics need to be taught to computational scientists in a logical
order to train them to do this. The author has provided references to
some of the topics discussed that could be used to develop training
materials, or distributed directly to students as part of the training
materials.

For computational scientists developing software, packaging this
software in away thatmakes it easier for users to build that software
has also been identified as skills gap. Although the author is not an
experienced software developer himself, he provided several best
practices that should be taught to make it easier for others to build
and use their software.

The author has successfully used the outline presented here to
teach building of open-source software to junior coworkers. He
hopes to continue refining this instruction and eventually include
it HPC training workshops, such as the Software or HPC Carpentry
programs mentioned here.
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ABSTRACT
The Cyberinfrastructure Security Education for Professionals and
Students (CiSE-ProS) virtual reality environment is an exploratory
project that uses engaging approaches to evaluate the impact of
learning environments produced by augmented reality (AR) and vir-
tual reality (VR) technologies for teaching cybersecurity concepts.
The program is steeped in well-reviewed pedagogy; the refine-
ment of the educational methods based on constant assessment
is a critical factor that has contributed to its success. In its cur-
rent implementation, the program supports undergraduate student
education. The overarching goal is to develop the CiSE-ProS VR
program for implementation at institutions with low cyberinfras-
tructure adoption where students may not have access to a physical
data center to learn about the physical aspects of cybersecurity.

KEYWORDS
HPC training, summer camps, broadening participation, assessment
strategies, best practices. diversity, high school students

1 INTRODUCTION
Cybersecurity is a constantly evolving landscape. It is critical to
raise awareness of disruptive computing technologies that result
in new threats that appear on extremely short timescales. A recent
report on the state of CS curricula in Texas, entitled “Building the
Texas Computer Science Pipeline” recommended that students be
aware of prevalent threats to personal information, prevalence of
cyber-bullying, the increasing need for confidentiality [9]. In an in-
creasingly technological era, students must learn to be conscious of
digital citizenship and cybersecurity at an early age. While the soft-
ware aspects of cybersecurity get prominent attention, physical ac-
cess control to a cybersystems remains a high-priority requirement.
Poor physical security may be out of compliance with government
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regulations, but also presents an incredible risk to the integrity of
the machines in question. For this reason, software cybersecurity
is built on a foundation of good physical access control.

As such, any cybersecurity training program must have a cyber-
security training program that emphasizes the physical aspects of
cybersecurity. However, existing cybersecurity programs do not
offer much training in this area. Further, 2- and 4-year universities
alike have struggled to support sufficient faculty in computer ed-
ucation [13, 17]. As a result, certifications have become a favored
source of cybersecurity education. We have developed a system
that utilizes the emerging technology of virtual reality to enhance
cybersecurity education at the university level, particularly in the
area of physical security. In this paper, we present the development
of the CiSE-ProS virtual reality (VR) program and a pilot study with
high school students at the Summer Computing Academy at Texas
A&M University.

The rest of the paper is organized as follows. A brief survey of
government standards and regulations, as well as existing training
solutions, is presented in Section 2. The benefits and limitations
regarding the use of advanced technologies, including virtual reality,
is discussed in Section 3. We discuss the importance of advanced
computing education in Section 4, and the program to facilitate
learning is outlined in Section 5. The design of the CiSE-ProS system
is discussed in Section 6, followed by an evaluation of the system’s
effectiveness, in Section 7.

2 PREVIOUS WORK
TheNational Security Administration andDepartment of Homeland
Security consider system administration and, by extension, access
control to be a core knowledge unit, essential to any 2- or 4-year
cybersecurity education program [14]. The National Institute of
Standards and Technology publishes standards for security of data
centers in the United States, including security of physical access
controls. Its National Initiative for Cybersecurity Education empha-
sizes that “a knowledgeable and skilled cybersecurity workforce
is needed to address cybersecurity risks within an organization’s
overall risk management process” [16]. The latest standards require
organizations to verify individual authorizations for access to the
data center, to maintain audit logs of access, to escort visitors on
the premises, and to change combinations and locks when they are
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compromised, among other standards. High-sensitivity locations
are further required to demand physical access authorization to the
data center that is different than access to the surrounding facilities
[11]. However, these standards, while essential for organizations, do
not inform the physical security aspects of our practitioner training.
These standards establish organization-level expectations, which is
useful for management, rather than individual-level expectations,
which is useful for practitioners.

The Computer Technology Industry Association (CompTIA)
is a vendor-neutral certification provider that offers many ANSI-
accredited security practitioner certification programs that include
topics on physical access. The CompTIA A+ exam, an entry-level
exam, requires its participants to compare and contrast a variety
of physical security methods [5]. The CompTIA Network+ and
Security+ exams, both considered intermediate-level exams, both
require a summarial knowledge of physical security controls [7, 8].
Also, the CompTIA Advanced Security Practitioner (CASP) exam
requires participants to analyze security components, including
physical access control systems [6]. This suggests that familiarity
with physical access control is a desired skill in the IT industry.
These exams range from 90 to 165 minutes in length and cost be-
tween $211 and $439.

Texas A&M University offers a 16-hour minor field of study for
undergraduates in cybersecurity [20]. Students may select from
courses such as “Advanced Network Systems and Security” and
“Cybersecurity and Digital Ethics”. Other institutions have also im-
plemented programs in cybersecurity, with some emphasis made
on physical security. One such program is the Master of Science in
Information Assurance and Security program at Sam Houston State
University in Huntsville, Texas [19]. The 36-hour degree requires
coursework in principles of access control and physical approaches
to data protection. Graduate-level programs, while comprehen-
sive, require previous undergraduate work, as well as significant
investments of time and money. These barriers to entry reduce
the accessibility of the field of cybersecurity, and do little to re-
solve the diversity gap which exists in the professional computing
environment.

The National Security Agency and Department of Homeland
Security designate over 200 degree-granting institutions across
the country as National Centers of Academic Excellence in Cyber
Defense Education, of which Texas A&M University is one [15].
Institutions designated as CAE-CDE must provide degree programs
that equip students in a specified selection of essential cybersecurity
topics. Of these, physical security is required to be addressed in in-
troductory IT Systems Components courses, a foundational knowl-
edge unit, and physical security is an important aspect in Security
Program Management courses, a non-technical core knowledge
unit. Hardware and Firmware Security, which focuses primarily on
physical threats, is an optional knowledge unit [14].

All fields of study evolve over time, but cybersecurity chiefly
is marked by a rapidly changing nature, underscoring the need
for young cybersecurity professionals to be prepared to identify
and mitigate new threats in their daily routine. These educational
programs and government standards demonstrate a desire amidst
society at large to have a well-trained cohort of computing tech-
nology and cybersecurity professionals.

3 ADOPTING EMERGING TECHNOLOGIES
Virtual reality and augmented reality are participatory technologies
that provide the means to achieve engagement while underscor-
ing the role of computing in scientific discovery and research. VR
systems have seen increased adoption across industries since 1999,
when researcher Fred Brooks, having taken a survey of VR tech-
nologies, concluded that it “barely works” [4]. Recently, VR systems
are used to replace expensive rapid prototyping systems, perform
research on ergonomics, and communicate ideas (including the
playing of video games) [1]. More than a decade and a half has
passed since students were first described as “digital natives,” [18]
and technology has advanced even more rapidly in the 21st cen-
tury than before. Indeed, the students of today are the children of
the students that Prensky studied. Students today are not merely
proficient in emerging technologies, it is indigenous to them.

One ongoing challenge with the emerging technology is locomo-
tion within the simulation. The method of control and locomotion
can have a significant impact on the immersion and positive affect
on the part of the user [2]. Free movement in the VR environment
is restricted by the detection range of the motion sensors and the
range of the communication between the wearable technology and
the simulator, even if this communication is wireless. Addition-
ally, the simulation may include obstacles to movement that are
difficult to replicate physically in any dynamic way. VR systems
must overcome the dual challenges of preserving immersion while
allowing the user to move through an environment larger than the
dynamic range of the VR system. Any data center environment is
likely to be larger than the free movement restrictions of a VR envi-
ronment, so in our CiSE-ProS system there must be some capability
for locomotion.

Existing solutions for VR locomotion are varied, and few have
seen widespread adoption. Some solutions place the user within a
large external motion capture system and allow the floor to move
beneath them while they walk. These solutions cannot currently
create an accurate feel of a floor space and do not recreate the in-
ternal feeling of walking [3, 12]. Other solutions implement motion
in software, either by teleporting the user on their command or by
guided motion, as if fixed on a track. Of these, the teleportation,
both free and to fixed points, imparts significantly fewer feelings
of motion sickness on the user, in addition to being fast and easy
to operate [10].

4 ADVANCING KNOWLEDGE AND
UNDERSTANDING IN COMPUTING

Computing is a constantly evolving landscape. Disruptive comput-
ing technologies result in new threats that appear on extremely
short timescales. Today’s computer education curriculum must
equip students to use existing technology while preparing them to
use emerging technologies. VR and AR are likely to play important
roles in computing technology in the future, given their current
trajectory of development, so using them as part of other training
programs will accomplish both ends.

Advanced computing resources, including high performance
computing, high capacity storage, and enterprise-scale network
devices, have become common across all industries. The concept of
a data center is increasingly familiar, so training on the needs of
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a data center benefits all professions that may use these advanced
computing resources.

Physical access control to a data center is a high-priority require-
ment. The National Institute of Standards and Technology Special
publication 800-53 requires that any system of moderate-to-high
security implement an access control scheme that “allow[s] only
authorized accesses for users... which are necessary to accomplish
assigned tasks" [11]. In addition to compliance to regulations, lim-
iting physical access to data center devices reduces the number of
possible attack vectors on those machines.

If physical access to a data center is compromised, many assump-
tions that software cybersecurity systems make may be violated,
including the topology of the network, the presence of any given
machine in the data center, or even that a peripheral device is not
malicious. A physical attacker can introduce devices that deceive
the system, delivering maliciously incorrect information to other
parts of the system, causing undesired behavior. For this reason,
software cybersecurity is built on a foundation of good physical
access control. Future practitioners in STEM fields will require
exposure to advanced computing resources in order to be effective.

To that end, our CiSE-ProS system will be used at Texas A&M
University in education programs targeted at students who are on
educational tracks towards careers in STEM fields. The purpose
of these programs are to usher in the next generations of cyber-
practitioners in the country through hands-on exercises and active
learning opportunities. Modern computing and cybersecurity edu-
cation, and indeed modern STEM education, cannot simply impart
programming knowledge, but must seek to develop in its students
a well-rounded view of the computing fields.

5 PEDAGOGY
The underpinning conceptual framework implemented for train-
ing incorporates elements of active learning such as exploratory
learning via research projects where mentors provide guidance to
help focus mentees activities in productive directions and group
discussions in research seminars. Part of these guided activities
includes the use of our CiSE-ProS system. The use of the VR system
is an opportunity for the student to engage in the material being
taught in an experiential way. Active learning has been shown
among high-ability trainees to produce significantly higher levels
of metacognitive activity than procedural training, leading to the
development of higher adaptive transfer. In addition, the training
provided through the surrounding program incorporates several
elements of the experiential learning cycle in which:

• New experiences: Students are introduced to several aspects
of cybersecurity

• Processing ideas and taking ownership of ideas: Skills devel-
oped in earlier guided practice are later revisited in exercises
where students have opportunities to integrate and apply
these skills to specific problems.

• Opportunities to develop hypotheses to solve problems, and val-
idate them: Students must decide on which of their repertoire
of skills to select and apply to problems.

With a view toward broadening the learning and understanding
of students through further diversification of learning approaches,
we designed the educational process using the backward design

approach [21]. In this approach, the learning objectives are defined
in advance, and techniques are designed to support them. Such an
approach to learning mirrors typical engineering design processes,
where the goals and parameters of a product are established prior
to the design phase. This parallel marks our pedagogical process
already as a proven and effective one. In addition, STEM students
seeing the backward design approach in pedagogy may be further
encouraged to use it in their own design decisions.

We first identified the learning objectives and competencies that
participants were expected to learn and built each exercise around
them. Throughout the development process of CiSE-ProS, the focus
is on developing scenarios that facilitate learning in the user. To
develop desired capabilities, the CiSE-ProS program focuses on the
described attributes:

• Defining desired capabilities: Trainees using the CiSE-ProS
system should be able to describe physical access security
measures and use them easily.

• Operationalizing learning outcomes: The CiSE-ProS system
should provide an immersive environment where the trainee
can experience these security measures and respond effec-
tively to them. Additionally, the trainees can be observed by
other students, leading to collaborative discussions wherein
the instructor can guide students towards a better solution
than the one demonstrated.

• Evaluating learner development: The learner is evaluated at
all times while in the simulations by an operator. The learner
also completes a survey following the experience to deter-
mine short-term retention of the material.

6 CISE-PROS VR
The CiSE-ProS VR seeks to enable aspiring computer scientists,
developers, and engineers in their pursuit of computing fields by
offering cybertraining programs that focus on cybersecurity. This ef-
fort seeks to help prepare the next generation of cyber-practitioners
in the United States. The overarching objectives of the program are
to:

• Use research-based methods to develop a high-impact, high-
immersion opportunity that introduces participants to con-
cepts in computing including software, hardware, network-
ing, cybersecurity and data management practices,

• Reinforce and develop further knowledge of cyber skill sets
through exercises,

• Retain participant interest after the camp by offering access
to series of free in-person and online cybertraining-themed
short courses and seminars at Texas A&M.

The CiSE-ProS VR program was developed to support users to
learn cybersecurity principles through immersive and embodied
tasks in the virtual data center environment. It offers a blend of cy-
bersecurity and interactive visualization technologies to students in
an innovative learning environment. The CiSE-ProS VR program is
designed on the principles of engagement, training, retention, and
sustainability to promote cyberinfrastructure as a professional ca-
reer path. Virtual reality technology enables embodied/interactive
learning that allows high engagement while underscoring the role
of computing in scientific discovery and research. Simultaneously,
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Figure 1: The HTC Vive system, which contains a headset,
two handheld controllers, and twomotion tracking sensors.

the rapidly changing nature of the cybersecurity landscape under-
scores the need for young adults to be prepared to identify and
mitigate new threats in their daily lives.

6.1 Hardware
To fully utilize the potential of virtual reality, we chose an HTC
Vive (Figure 1) that allows embodied actions including selection,
manipulation and navigation within the virtual data center in the
program. The HTC Vive was chosen as the primary hardware tar-
get for running this application due to its popular use in both the
consumer market and development space for virtual reality applica-
tions. For instance, Unity 2017, the game engine used for developing
this program, offers a great amount of support for initializing and
running the HTC Vive hardware in a short amount of time. As a
result, more time was allocated in developing the user interaction
and implementing crucial elements for simulating the data center
seen here. While the hardware was able to ease development con-
straints, the HTC Vive has also proven to be a popular product
within a good portion of the target audience, making the system
more accessible and easy to use.

6.2 User Training Scenario in CiSE-ProS VR
The main user experience consists of four activities in the virtual
data center: 1) tutorial, 2) entering/exiting the data center, 3) in-
specting the data center, and 4) replacing hardware.

Tutorial Room. Although the users within the target audience
have shown to have moderately high technology literacy in using
this hardware, it is still crucial to provide guidelines and rules so
that new users are able to use the application by themselves. To
compensate for this, the program offers a quick tutorial for the users
to learn about the functionality provided and the expectations of
them to complete the provided simulation later in the program.
For instance, the user learns about how objects can be picked up
with the controllers, by holding the triggers on the back of the con-
trollers. To help introduce the concept, the tutorial stage provides
rubber balls for them to pick up and throw within the environment
(Figure 2). While this may seem fairly straightforward to some users
within this program, it is important for the tutorial stage to also

Figure 2: The first instruction monitor in the tutorial room.
The red balls on the table are used as demonstrations to fa-
miliarize the user with object manipulation in the virtual
environment.

Figure 3: Iterations in the development of the locomotion
tool, from the first iteration (A) to the current iteration (C).

account for those who may not be comfortable with the hardware
just yet. As a result, this allows the user to interact with the given
objects as much time as needed, before proceeding to the next on
their own pace.

After completing the object interaction portion of the tutorial
stage, users will learn how to navigate around the given space
through the use of teleportation. This technique has already proven
to be a popular navigational tool, and many iterations were created
to achieve a better user experience as well as minimizing visual
distractions throughout the data center (Figure 3). For instance,
we used 2D arrows and 3D arrows as a navigational tool in the
environment (Figure 3A). In this iteration, the user would simply
point and click towards these objects above the ground and teleport
the user to these points in space. When presenting this to users,
there seemed to be frustration of not being able to see them clearly
in the space, as well as not having enough feedback of where the
controller was being pointed to. From these initial observations, it
was decided that utilizing the SteamVR’s teleportation tool was the
better direction, in order to reduce these issues in a timely manner
(Figure 3B). The next iteration of the teleportation tool used a grid
on the ground for each teleportation point, allowing the user a larger
degree of freedom of teleporting around the space (Figure 3C). In
addition, the tool provided better visual feedback for the pointing
and clicking portion of the program, as colors and trajectory of
the cursor on the controllers were introduced. Although it showed
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Figure 4: The user’s tool belt in the VR simulation, contain-
ing (A, from left to right) a tablet, an ID card, and a rack key.
(B) The tablet contains the last instructions given, so that the
user can refer to it.

promises in improvement, the rendered grid for each teleportation
point created more visual clutter in the data center. This also proved
to be somewhat counter-intuitive for setting teleportation points,
as tight corridor spaces created overlaps of these points, leading to
less efficiency in navigating around the environment. As a result,
the current iteration of this tool uses a similar approach with the
arrows, but with better visual feedback through the use of colors
and additional objects, such as having a circle below the arrow
to show where exactly the point is located in the environment.
In addition, the visual elements of the cursor was kept from the
previous iteration, to prevent any recreation of the initial problems
found earlier in the development process. With the combination of
these elements in the tool, teleportation around the environment
have shown to have better ease of navigation, based on a set of
preliminary observations.

After users have learned how to use the locomotion tools, they
make their way towards the other side of the room, where they pick
up a tool belt before proceeding further into the level (Figure 4A).
The tool belt is the most important aspect of the program, as users
will need to be versatile and resourceful in completing tasks with
the given items. The belt contains a card swipe and a regular key
in this program, which are typical elements found in this type of
profession. Users will need to use these items to gain access to
secured areas, in a manner very much like how the average data
center secures their resources and implements access control. In
addition, the tool belt also features a tablet for the user to interact
with. Since this type of tool is often used by those in this profession
to understand the protocols of a particular data center, the tablet is
used a guide for the users, in case they ever feel lost or confused
about what needs to be completed next (Figure 4B). After the user
has learned about the functionalities of all of the given items on
their tool belt, they have successfully completed the tutorial stage
and can proceed to the main areas of the data center to test their
abilities.

Entering/Exiting Data Center. Users will next be brought into a
lobby area, from where they can explore the data center. While in
the lobby, users will receive instructions about the the main task at
hand. The user will first need to navigate from the lobby area to
the server room on the second floor of the building. To successfully
accomplish this, they will need to gain control access of the elevator.
In this virtual data center, access is granted by the use of a key card
reader. The user can get access by swiping the card provided in the

Figure 5: Tools to enter and exit the data center. (A) Using the
ID card to operate the elevator. (B) Using the thumb scanner
in the mantrap room.

Figure 6: Inspecting the data center. The rows of racks are
lettered, and the positions within the rows are numbered.
The user is instructed to navigate to rack B5.

tool belt (Figure 5A). Once the user has successfully passed the key
card reader, he/she will be able to select buttons to move between
different floors.

After selecting the “Data Center” button in the elevator, the eleva-
tor opens up to a “mantrap” room, a security clearance checkpoint
before reaching the main server room. Here, users will approach
the security guard behind the glass and scan his/her thumb on
the thumb scanner in order to proceed to the main data center
(Figure 5B).

Inspecting Racks. The user now can navigate the data center by
teleporting to different areas of the room (Figure 6). While navigat-
ing, the user can find problematic nodes on the racks.

Replacing Hardware. One of the main tasks in this application is
replacing a RAM on one of the server nodes within the area of the
data center, while also following security protocols. To replace a
RAM module, they will reach the main area of the program, where
the broken node is located. Once they figure out its location, based
on its given row number, they will start the process of removing
and repairing a node.

First, they will need to remove the two cable attached in the
front of the node (Figure 7). While it may vary on the amount of
cables for certain data center, for the sake of this simulation, this
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Figure 7: Removing Cables from the Node

Figure 8: Placing the node on a cart for transport.

node only features two cables with their own distinct colors. Next,
the node can be taken out, but it must be placed on the cart near
the node (Figure 8). The reason for this is that these types of nodes
are known to be extremely heavy, which is both difficult and not
desirable to simulate accurately for this program. To help reinforce
this idea, the program forces the user to place the node on a cart to
transport it around the server room. After the node has been placed
on the cart, they are able to move the cart into the workplace area
to begin the repair process.

The repairment of the node begins with the user removing the
top cover to view the computer parts and seeking for the broken
RAM. For this program, the broken component is marked as red,
while the rest of the computer parts are marked as green. The
users will need to use their controllers to detach this part and
replace it with the newRAM,which is provided on their workstation
(Figure 9). Once they successfully replace the RAM, they will need
to put the cover back on the node and return it to its server through
cart transportation once more. From there, users will place the
node back to its original spot, and reconnect the cables that were
detached from earlier. After accomplishing this task, they will be
able to exit the data center.

7 EVALUATIONS AND ASSESSMENTS
The earlier prototype of the CiSE-ProS VR simulator was demon-
strated at the TAMU HPRC booth SuperComputing 17 Conference

Figure 9: Replacing a defective RAM card.

in Denver, CO. The current version was tested with students who
participate in the Summer Computing Academy at Texas A&M
University. We collected participants’ feedback using question-
naires. In addition, we collected background information to identify
high-achieving or highly knowledgeable students who might need
additional frameworks or scaffolds of instruction to be available.
Evaluations and assessments are critical aspects of program re-
finement. Twenty-five students’ virtual reality experiences were
assessed using a post-experience survey. 80% of the participants
had prior virtual reality experience: Google cardboard, HTC Vive,
or Oculus Rift. They have used VR for mostly games and science ed-
ucation programs. They experienced the CiSE-ProS VR in a typical
HTC Vive setting. Each student spent about 5 minutes in the pro-
gram and filled out the survey afterwards. Their experiences with
the CiSE-ProS VR application were very positive. 90% of students
remembered the layers of data center physical security and the pro-
cedure of fixing a node with a broken RAM in the VR application.
In addition, students acknowledged that virtual reality technology
would be beneficial to education and were fascinated by interactive
and immersive qualities of the virtual reality technology. The stu-
dents’ experiences were also assessed one week after the initial VR
session. 80% of the participants still remembered the details of the
data center security checkpoints and the procedure of replacing
hardware in the node. Students acknowledged that virtual reality
technology would be beneficial to education and were fascinated
by interactivity, realistic simulation, and immersion. Some of their
written responses include:

“VR is very interactive so it would be a good way to teach students
that will keep them engaged,” (ID03)

“It is very easy and fun to use and make, it’s very easy to remember
information.” (ID05)

“You can explore places rather than read them in the text book.”
(ID18)

“Great for visual learners” (ID22)

8 CONCLUSION AND FUTURE
DEVELOPMENT

Based on observations and feedback given on the current version of
CiSE-ProS VR, we learn that embodied interaction in a virtual reality
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training program can benefit students with short term and long
term memories in engaging and playful ways. We also learn that
there are a few elements that can be improved upon to help further
build a more effective and engaging version of this application. For
instance, during the tutorial stage, it appeared that some users were
confused about how to use the controls, despite our efforts of using
audio, text, and even visual cues on the controller to teach them
this information. As a result, it is expected that visual graphics that
vividly depict the motion and button presses in front of the user
will have better results for users retaining and understanding this
information. It also appeared that users weren’t able to differentiate
when to use the card swipe and key, based on the wording of
the directions given to them. By establishing clear definitions and
wording of these item’s uses, this should be able to help mediate
this problem.

In addition to improving these elements, the inclusion of new
areas or components of this program is also being heavily con-
sidered as long-term goals. For instance, the current iteration of
this program only focuses on one particular scenario. In the future,
the implementation of more scenarios to choose from that tests
either or both routine maintenance or emergency situations would
make the program more applicable for others to utilize its potential
in learning. To further build upon this mentality, it has also been
suggested to allow users to customize the layout of a data center,
security levels, and scenarios to mimic closely to a particular data
center, to help better retain information in a similar environment.
While this direction is tailored for those interested in expanding
the learning potential, the cognitive effects of using this application
is also being considered as well, as interests has been shown in
analyzing the effectiveness and the outcomes of using this program,
in comparison to other learning methods offered.

ACKNOWLEDGMENTS
The authors would like to thank staff, student workers and re-
searchers at Texas A&M HPRC, Department of Visualization, the
Laboratory for Molecular Simulation, TexGen, Division of Research
and Provost IT for supporting the HPRC short course program at
Texas A&M University. Portions of this research were conducted
on the Ada and Terra clusters, and virtual machines provided by
TAMU HPRC. We gratefully acknowledge support from the Na-
tional Science Foundation Abstract 1730695 (https://www.nsf.gov/
awardsearch/showAward?AWD_ID=1730695) “CyberTraining: CIP:
CiSE-ProS: Cyberinfrastructure Security Education for Profession-
als and Students.” We also appreciate Dell for providing VR laptops.
Special thanks to the instructors of each course: Dylan Rodriguez,
Michael Dickens, RickMcMullen, Lisa Perez, Mark Huang, Ping Luo,
Jian Tao, Yang Liu, Marinus Pennings, Keith Jackson, Noushin Ghaf-
fari, and Shichen Wang. We also gratefully acknowledge support
from Francis Dang, Mark Huang and Jack Perdue for maintaining
the clusters and virtual machines used in these efforts.

REFERENCES
[1] Leif P. Berg and Judy M. Vance. 2017. Industry Use of Virtual Reality in Product

Design and Manufacturing: A Survey. Virtual Reality 21, 1 (2017), 1–17.
[2] Max Birk and Regan L. Mandryk. 2013. Control Your Game-self: Effects of Con-

troller Type on Enjoyment, Motivation, and Personality in Game. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’13),

Wendy E. Mackay, Patrick Baudisch, and Michel Beaudouin-Lafon (Eds.). ACM,
Paris, France, 685–694. https://doi.org/10.1145/2470654.2470752

[3] Ian Bishop and Muhammad Rizwan Abid. 2018. Survey of Locomotion Systems in
Virtual Reality. In Proceedings of the 2nd International Conference on Information
System and Data Mining (ICISDM ’18). ACM, Lakeland, FL, USA, 151–154. https:
//doi.org/10.1145/3206098.3206108

[4] Frederick P. Brooks. 1999. What’s Real About Virtual Reality? IEEE Computer
Graphics and Applications 19, 6 (1999), 16–27.

[5] Computer Technology Industry Association. 2018. CompTIA A+ Certifica-
tion Exam Objectives. https://certification.comptia.org/docs/default-source/
exam-objectives/comptia-a-220-902-exam-objectives.pdf

[6] Computer Technology Industry Association. 2018. CompTIA Ad-
vanced Security Practitioner (CASP) Certification Exam Objectives.
https://certification.comptia.org/docs/default-source/exam-objectives/
comptia-casp-objectives-(cas-002).pdf

[7] Computer Technology Industry Association. 2018. CompTIA Network+ Certifi-
cation Exam Objectives. https://certification.comptia.org/docs/default-source/
exam-objectives/comptia-network-n10-007-v-3-0-exam-objectives.pdf

[8] Computer Technology Industry Association. 2018. CompTIA Security+ Certifi-
cation Exam Objectives. https://certification.comptia.org/docs/default-source/
exam-objectives/comptia-security-sy0-501-exam-objectives.pdf

[9] Carol L. Fletcher. 2014. Building the Texas Computer Science Pipeline: Strategic
Recommendations for Success. Technical Report. Texas Regional Collaboratives.
https://www.thetrc.org/web/assets/files/pdfs/Building-the-Texas-CS-Pipeline_
Fletcher.pdf

[10] Julian Frommel, Sven Sonntag, and Michael Weber. 2017. Effects of Controller-
Based Locomotion on Player Experience in a Virtual Reality Exploration Game.
In Proceedings of the 12th International Conference on the Foundations of Digital
Games (FDG ’17). ACM, Hyannis, Massachusetts, USA, 30.

[11] Joint Task Force Information Initiative. 2013. Security and Privacy Controls
for Federal Information Systems and Organizations. Technical Report. National
Institute of Standards and Technology. https://doi.org/10.6028/nist.sp.800-53r4

[12] William E. Marsh, Tim Hantel, Christoph Zetzsche, and Kerstin Schill. 2013. Is
the User Trained? Assessing Performance and Cognitive Resource Demands in
the Virtusphere. In Proceedings of the 2013 IEEE Symposium on 3D User Interfaces
(3DUI), Anatole Lécuyer, Frank Steinicke, and Mark Billinghurst (Eds.). IEEE
Computer Society, Orlando, Florida, USA, 15–22. https://doi.org/10.1109/3DUI.
2013.6550191

[13] National Academies of Sciences, Engineering, and Medicine. 2018. Assessing and
Responding to the Growth of Computer Science Undergraduate Enrollments. The
National Academies Press, Washington, DC. https://doi.org/10.17226/24926

[14] National IA Education and Training Programs. 2018. Centers of Acacdemic Excel-
lence in Cyber Defense 2019 Knowledge Units. Technical Report. National Security
Agency and Department of Homeland Security. https://www.iad.gov/NIETP/
documents/Requirements/CAE-CD_2019_Knowledge_Units.pdf

[15] National Security Administration. 2018. Information Assurance Directorate at
the NSA. https://www.iad.gov/NIETP/reports/cae_designated_institutions.cfm
Retrieved December 12, 2018.

[16] William Newhouse, Stephanie Keith, Benjamin Scribner, and Greg Witte. 2017.
National Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce
Framework. Technical Report. National Institute of Standards and Technology.
https://doi.org/10.6028/nist.sp.800-181

[17] One Hundred Fifteenth Congress of the United States of America, First Session
2017. Public-Private Solutions to Educating a Cyber Workforce: Joint Hearing
Before the Subcommittee on Cybersecurity and Infrastructure Protection of the
Committee on Homeland Security, House of Representatives and the Subcommittee
on Higher Education and Workforce Development of the Committee on Education
and the Workforce, House of Representatives. One Hundred Fifteenth Congress of
the United States of America, First Session, U.S. Government Publishing Office,
Washington. http://purl.fdlp.gov/GPO/gpo90199 pp. 42-43,66.

[18] Marc Prensky. 2001. Digital Natives, Digital Immigrants Part 1. On the Horizon 9,
5 (2001), 1–6.

[19] Sam Houston State University. 2018. Academic Catalog 2018-2019. https:
//catalog.shsu.edu/

[20] Texas A&M University. 2018. Cybersecurity–Minor. http://catalog.tamu.edu/
undergraduate/engineering/cybersecurity-minor/cybersecurity-minor.pdf

[21] Grant P. Wiggins and Jay McTighe. 2005. Understanding by Design (expanded
2nd ed.). ASCD, Alexandria, Virginia, USA.

Journal of Computational Science Education Volume 10, Issue 1

January 2019 ISSN 2153-4136 87

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1730695
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1730695
https://doi.org/10.1145/2470654.2470752
https://doi.org/10.1145/3206098.3206108
https://doi.org/10.1145/3206098.3206108
https://certification.comptia.org/docs/default-source/exam-objectives/comptia-a-220-902-exam-objectives.pdf
https://certification.comptia.org/docs/default-source/exam-objectives/comptia-a-220-902-exam-objectives.pdf
https://certification.comptia.org/docs/default-source/exam-objectives/comptia-casp-objectives-(cas-002).pdf
https://certification.comptia.org/docs/default-source/exam-objectives/comptia-casp-objectives-(cas-002).pdf
https://certification.comptia.org/docs/default-source/exam-objectives/comptia-network-n10-007-v-3-0-exam-objectives.pdf
https://certification.comptia.org/docs/default-source/exam-objectives/comptia-network-n10-007-v-3-0-exam-objectives.pdf
https://certification.comptia.org/docs/default-source/exam-objectives/comptia-security-sy0-501-exam-objectives.pdf
https://certification.comptia.org/docs/default-source/exam-objectives/comptia-security-sy0-501-exam-objectives.pdf
https://www.thetrc.org/web/assets/files/pdfs/Building-the-Texas-CS-Pipeline_Fletcher.pdf
https://www.thetrc.org/web/assets/files/pdfs/Building-the-Texas-CS-Pipeline_Fletcher.pdf
https://doi.org/10.6028/nist.sp.800-53r4
https://doi.org/10.1109/3DUI.2013.6550191
https://doi.org/10.1109/3DUI.2013.6550191
https://doi.org/10.17226/24926
https://www.iad.gov/NIETP/documents/Requirements/CAE-CD_2019_Knowledge_Units.pdf
https://www.iad.gov/NIETP/documents/Requirements/CAE-CD_2019_Knowledge_Units.pdf
https://www.iad.gov/NIETP/reports/cae_designated_institutions.cfm
https://doi.org/10.6028/nist.sp.800-181
http://purl.fdlp.gov/GPO/gpo90199
https://catalog.shsu.edu/
https://catalog.shsu.edu/
http://catalog.tamu.edu/undergraduate/engineering/cybersecurity-minor/cybersecurity-minor.pdf
http://catalog.tamu.edu/undergraduate/engineering/cybersecurity-minor/cybersecurity-minor.pdf


Towards an HPC Certification Program
Julian Kunkel

University of Reading
Reading, United Kingdom
j.m.kunkel@reading.ac.uk

Kai Himstedt
Nathanael Hübbe
Hinnerk Stüben
Sandra Schröder
Michael Kuhn

Matthias Riebisch
Stephan Olbrich
Thomas Ludwig
Universität Hamburg
Hamburg, Germany

Weronika Filinger
EPCC, The University of Edinburgh

Edinburgh, United Kingdom

Jean-Thomas Acquaviva
DDN

Paris, France

Anja Gerbes
Goethe-Universität

Frankfurt am Main, Germany

Lev Lafayette
University of Melbourne
Melburne, Australia

ABSTRACT
The HPC community has always considered the training of new and
existing HPC practitioners to be of high importance to its growth.
This diversification of HPC practitioners challenges the traditional
training approaches, which are not able to satisfy the specific needs
of users, often coming from non-traditionally HPC disciplines, and
only interested in learning a particular set of competences. Chal-
lenges for HPC centres are to identify and overcome the gaps in
users’ knowledge, while users struggle to identify relevant skills.

We have developed a first version of an HPC certification pro-
gram that would clearly categorize, define, and examine compe-
tences. Making clear what skills are required of or recommended
for a competent HPC user would benefit both the HPC service
providers and practitioners. Moreover, it would allow centres to
bundle together skills that are most beneficial for specific user roles
and scientific domains. From the perspective of content providers,
existing training material can be mapped to competences allowing
users to quickly identify and learn the skills they require. Finally,
the certificates recognized by the whole HPC community simplify
inter-comparison of independently offered courses and provide
additional incentive for participation.

1 INTRODUCTION
There is a generally accepted set of skills and competencies nec-
essary to efficiently use HPC resources. This skill set depends on
the role and domain of the practitioner but also on the available
infrastructure of the center providing the computing resources.
For example, a scientist needing to run an application on a spe-
cific machine may need basic skills in Linux, MPI, environment
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modules, and knowledge about the batch scheduler, e.g., SLURM.
Understanding SLURM is a good example of a very fine-grained
skill, indeed we can identify "resource management" as a generic
skill that illustrates concepts across the rich variety of available re-
source managers. Institutions which operate HPC systems typically
offer regularly teaching events about general aspects of their super-
computer’s hard- and software architecture and about the software
environment around parallel programming and optimization. The
learning material provided by an HPC center, however, is geared to
the special demands of the institutions they support and its specific
HPC environment. This content typically covers a small part of
basic HPC skills which are necessary to use other HPC systems.
Moreover, they do not attest the users to have a certain competence.
Certificates are widely used in industry to attest certain knowledge
but, so far, there is no similar approach for HPC training.

This lightning talk describes the current status of the certification
program and the effort to create an independent body that curate
the competences and issue certificates for the users.

The foundation for this work was laid with the Performance
Conscious HPC (PeCoH) project, which among other goals, aims
to establish an HPC certification program. A white paper about the
approach containing technical details is provided in [1]. Within the
project it become quickly apparent that the local effort is useful for
the wider HPC community and could be extended to a global effort.

2 RELATEDWORK
Relevant work can be classified into approaches to establish a cur-
riculum or the creation of teaching material. In academia, individual
universities offer their own curriculum around scientific computing
and HPC, covering theoretical aspects like the software develop-
ment of numerical applications. They are not tailored to the needs
of a practitioner to actually use HPC systems effectively. Data cen-
ters offer their own material and courses to support their own users.
Several projects address the generation and sharing of teaching
material for HPC. The EuroLab-4-HPC project establishes training
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Figure 1: Top Level Competences

in form of (online) courses1. The Barcelona Supercomputing Centre
(BSC) aims to develop a professional training curriculum [2]. The
virtual organization XSEDE2 provides an online system to train the
usage of an HPC system, structuring the corresponding information
on their website into major topics like “Getting Started”. The user
can navigate the topics and receive further information.

3 CERTIFICATION PROGRAM
The certification program serves two purposes: 1) the definition
and organization of fine-grained competences (skills); 2) the estab-
lishment of certificates and (online) exams that confirm that users
possess a certain skill. Note that the certification program does
not regulate the content – the definition of skills and certificates is
separated from content creation. This allows the re-use of existing
content but also allows to create a new ecosystem in which HPC
centers or commercial companies could offer the best teaching ma-
terial. Teaching material should be marked to indicated which skills
it covers. In the future, the program may provide means to register
and reference existing content of third-parties allowing users to
browse the skills and navigate to teaching material. We assume
that the collaboration of scientific institutions will complement
each other in producing a rich variety of content for the different
learning styles.

3.1 Skills
The skills represent competences in a fine-grained fashion. A skill
is defined by a unique key, short name, background, level, and a
description of what it encompasses. This model can be compared to
the classification of school knowledge, for example, the skill with
the short name "addition" could describe the math skill of being
able to add numbers successfully. The level serves the purpose of
distinguishing the expertise further, a basic level, for example, may
mean to be able to add two numbers between 1-20 while the expert
level of that skill could indicate to be able to add any numbers.

The individual skills are organized into a tree that shows generic
competences close to the root and refined skills on the leafs. The two
top-levels of the skill tree are shown in Figure 1; we have identified
more than 35 skills. In respect to the granularity, we expect the basic
level of a leaf like “Bash programming” can be acquired by novel
users in a workshop day. The tree serves the purpose of navigating
across the skills, and at the same time a parent node defines the
scope of its children. For example, the USE competence provides
means of using the HPC environment to perform various tasks,
such as running parallel applications, using core services of the
1https://www.eurolab4hpc.eu/
2https://portal.xsede.org/web/xup/training/overview

operating system. While the tree structure has been chosen as a
graphical representation, some competences are cross-referenced,
particularly in the skills of the USE branch. The tree is managed in
an XML file and we offer tools to visualize the skills as mindmap or
embed them into a webpage – more information are found in [1].

3.2 Certificates
Certifying users with a certain competency is a core element of
the program. Since we identified so many skills, it is not useful to
perform an exam on a single competence like “SLURM”. Therefore,
initially, we aim to group sets of skills into certificates and establish
an online examination that attests users that theymastered a certain
skill. To be meaningful these tests must prevent cheating to some
extent. However, as any examination can be cheated with sufficient
effort, we focus on practical aspects like a huge corpus of questions
and some instantiated questions like how would you start ProgramX
with 4 MPI processes?

4 CONCLUSIONS
The HPC Certification program offers a strategy to classify and
organize HPC competences. While the idea started with the PeCoH
project, we are supporting the HPC Certification Forum3 which is
an independent international body that aims to sustain the work.
The certification forum has the role of a (virtual) central authority
to curate and maintain the skill tree and certificates. Moreover, the
forum supports tools and an ecosystem around the competences.
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ABSTRACT 
A course on high performance computing (HPC) at Case Western 
Reserve University included students with a range of technical and 
academic experience. We consider these experiential differences 
with regard to student performance and perceptions. The course 
relied heavily on C programming and multithreading, but one third 
of the students had no prior experience with these techniques. 
Academic experience also varied, as the class included 3rd and 4th 
year undergraduates, master’s students, PhD students, and a non-
degree student. Results indicate that student performance did not 
depend on technical experience. However, average overall 
performance was slightly higher for graduate students. 
Additionally, we report on students’ perceptions of the course and 
the assigned work.   

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education - Computer Science Education, Curriculum 

General Terms 
Education. 

Keywords 
Undergraduate, graduate, education, high performance computing. 

1. INTRODUCTION 
Graduate level courses at universities are typically open to 
undergraduate students with significantly less academic 
experience. Additionally, such courses can attract students from 
multiple disciplines and departments due to a shared interest in a 
particular topic. The potential for a high diversity in backgrounds 
and experience levels poses challenges for instructors. Previously, 
we investigated the potential influence of technical and academic 
experience levels for a single homework assignment in a class on 
high performance computing (HPC) at Case Western Reserve 
University in Cleveland, Ohio [1]. In that study, it was found that 
prior experience was not a significant predictor of a student’s 
performance with regard to implementing a successful 
programming solution. In the present study, we look at the student 
outcomes for the course as a whole, and we consider how students’ 
backgrounds may influence perceptions of the course. 

2. METHODS 
The class was taught during the Spring semester of 2018 at Case 
Western Reserve University in Cleveland, Ohio. The total 
enrollment was 23 students, including undergraduate, graduate, and 
non-degree students. The course had been offered twice before, and 
course evaluation statistics were available to prospective enrollees. 
At the beginning of the course, survey data was collected to 
determine whether students had prior experience with C 
programming and multithreading. Six main HPC techniques were 
covered in the course and are listed below: 

• Batch job processing 
• General optimization for sequential programming 
• Parallel programming using spawned (forked) processes 
• Parallel programming using OpenMP and multithreading 
• Parallel programming using OpenACC and GPUs 
• Parallel programming using message passing and MPI 

 
All students were graded using the same criteria and rubrics. 
Assignments consisted of seven programming projects on required 
topics and a three-week course project that focused on an 
application of the student’s choice. The seven programming 
assignments were designed to apply the above HPC techniques to 
four different applications. Assignments generally focused on 
either introducing an application or comparing different HPC 
techniques. The four applications covered in the programming 
assignments are listed below: 

• Sorting algorithms (e.g. merge sort) 
• Matrix multiplication (iterative and recursive) 
• Prime number discovery 
• Numerical integration of Laplace’s equation 
 

Assignments generally included 3 or more separate problems to be 
solved. Below is an example of a typical problem statement that 
requires parallel processes for the discovery of prime numbers: 

Count the number of prime numbers up to two different maxima N1 
and N2. Choose maxima such that the serial-version run time for N1 
is at least 5 seconds and for N2 is at least 10 seconds. For parallel 
versions, using 2 and 4 processes respectively, each process should 
do an approximately equal amount of work (same approximate run 
time). For parallel versions, report the speedup as a ratio of the 
serial-version run time to the parallel-version run time. In your 
report, explain how you equalized the work, and briefly discuss how 
the speedup compares to the number of processes. 

Prior to each assignment, lectures were provided on the requisite 
material, including discussion of all sample programs. For the 
example problem statement above, sample C programs were 
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provided to demonstrate the use of the fork() instruction and a serial 
algorithm for discovering prime numbers (see APPENDIX for 
sample programs). 

Assignments were designed to provide explicit instructions that 
would be understandable to typical undergraduates. The 
instructions had stringent reporting requirements that included a 
thorough explanation of methods, highly detailed timing results, 
and a careful discussion of results. The primary requirement of the 
discussion section of each report was a textual observance of any 
trends in the results and whether the student found the results to be 
as expected. Students were not required to accurately explain any 
anomalies. 

3. RESULTS 
Table 1 shows the distribution of students by level, including 
subcategories for undergraduate and graduate students. Graduate 
students include Doctoral and Master’s. Undergraduates include 
juniors (3rd year) and seniors (4th year). Results also include one 
student who was of non-degree status but had bachelor’s degrees in 
two related fields.  

Table 1. Distribution of students by level. 

Level Number Portion 

Doctoral 4 17% 

Master's 6 26% 

Senior 10 44% 

Junior 2 9% 

Non-degree 1 4% 

Total 23 100% 

 
In the following analyses, we organized students into three 
categories: doctoral, master’s + non-degree, and undergraduate. 
The non-degree student is included in the same group as the 
master’s students because their academic backgrounds were 
equivalent. For the undergraduate category, we combined the 
seniors and juniors because there were only 2 juniors, and their 
performances fall within the bounds of the distribution for the 
seniors.  

 

Figure 1. Course scores by academic experience. Left: 
Doctoral. Middle: Master’s + non-degree. Right: undergraduate. 
In this box-and-whisker plot, horizontal bars indicate quartiles, 
and the X indicates the mean. 

We used the final score for the course (maximum of 100) and 
compared the three categories of students. The scores for the three 
categories are analyzed in Figure 1. The mean scores are 96.5 for 
Doctoral students, 94.9 for Master’s students, and 93.7 for 
undergraduates. It can be seen in Figure 1 that the mean score 
decreases as the level of academic experience decreases. 

All students had significant programming experience, but 35% (n 
= 8) reported having no significant experience with C programming 
or multithreading. We analyzed the course scores  (maximum of 
100) based on whether or not students had this prior technical 
experience. The results are shown in Figure 2.  

 
Figure 2. Course scores by technical experience. Left: No prior 
experience with C programming or multithreading. Right : Prior 
experience. In this box-and-whisker plot, horizontal bars indicate 
quartiles, X indicates the mean, and the circle indicates an outlier. 

The mean scores are 96.5 for technically inexperienced students 
and 93.0 for technically experienced students. It can be seen in 
Figure 2 that the mean score for the inexperienced students was 
higher than that of the experienced students. These results can be 
understood by looking at the levels of academic experience within 
these groups. The graduate students were more likely to lack 
technical experience, having come from other programs at other 
institutions. In fact, the inexperienced students were comprised of 
87.5% graduate students, while the experienced students were 
comprised of only 33.3% graduate students. Because graduate 
students generally had higher scores (see Figure 1), this accounts 
for the negative correlation with technical experience, indicating 
that academic experience is more important in predicting success 
in the course. 

We also considered students’ perceptions of the course in an effort 
to characterize the appropriateness of graded work. Anonymous 
course evaluations were submitted by 11 students. As the 
evaluations were entirely anonymous, it is not possible to separate 
them according to academic experience. Overall, students gave the 
course a rating of 4.09 on a scale of 1 – 5. Students were asked to 
provide anonymous comments on the assigned work, and all 
comments were positive in this regard. We provide only one 
example below that was similar to the other student comments: 

“The assignments he gave really helped me understand the content 
of this course and help me to understand how to implement it to any 
other algorithm out there. He also tells you what he expects to see 
in the report for each assignment.” 

All comments regarding graded work indicated that the problems 
were relevant and instructions were clear. 

4. DISCUSSION 
We have presented a course comprised of both graduate and 
undergraduate students. Because the course required a high degree 
of technical competence, we expected that technical experience 
might be an advantage to students and be reflected in student 
performance. To the contrary, however, we found that academic 
experience was correlated to performance, and technical experience 
may have no correlation at all, assuming adequate coverage in class 
is provided. 

Different reasons are possible for the correlation between 
performance and academic experience. In the most general sense, 
graduate students may simply be more capable of working with 
larger projects and report writing, as compared to undergraduates. 
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Though we did not track requests for help from the instructor, we 
did perceive that graduate students appeared more likely to seek 
help and request clarifications regarding the instructions. 

In the future, we will consider two changes to our course design to 
improve relative performances of graduate and undergraduate 
students. First, we will consider requiring graduate students to do 
additional project work and reporting, as compared to 
undergraduates. This is a well known practice, and it is clearly 
appropriate in our course. A second consideration in the future will 
be to administer post-assignment surveys that allow students to 
reflect on their performance and possible influences. Survey results 
could be used to identify challenges common to undergraduates. 
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7. APPENDIX: Sample Code 
Figure 3:  C program that demonstrates fork instruction: 

pid_t pid; 
/* fork a child process */ 
pid = fork(); 
if (pid == 0) { /* child process */ 
  printf("Child pid = %d\n", pid); 
} 
else { /* parent process */ 
  printf("Parent pid = %d\n", pid); 
  /* wait for the child to complete */ 
  pid = wait(NULL);  
  printf("Child %d is done.\n", pid); 
} 
 

Figure 4: C program for discovering prime numbers: 

int nMax = 100; // Upper limit 
int n, d, isPrime; 
for (n = 2; n <= nMax; n++) { 
  isPrime = 1; 
  for (d = 2; d < n; d++){ 
    if (n % d == 0){ 
   isPrime = 0; 
   break; 
    } 
  } 
  // Print each prime number 
  if (isPrime == 1) 
    printf("%d ", n); 
  } 
} 
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ABSTRACT
Over the past two decades, High-Performance Computing (HPC)
communities have developed many models for delivering educa-
tion aiming to help students understand and harness the power of
parallel and distributed computing. Most of these courses either
lack a hands-on component or heavily focus on theoretical charac-
terization behind complex algorithms. To bridge the gap between
application and scientific theory, NVIDIA Deep Learning Institute
(DLI) (nvidia.com/dli) has designed an on-line education and train-
ing platform that helps students, developers, and engineers solve
real-world problems in a wide range of domains using deep learning
and accelerated computing. DLI’s accelerated computing course
content starts with the fundamentals of accelerating applications
with CUDA and OpenACC in addition to other courses in training
and deploying neural networks for deep learning. Advanced and
domain-specific courses in deep learning are also available. The
online platform enables students to use the latest AI frameworks,
SDKs, and GPU-accelerated technologies on fully-configured GPU
servers in the cloud so the focus is more on learning and less on
environment setup. Students are offered project-based assessment
and certification at the end of some courses. To support academics
and university researchers teaching accelerated computing and
deep learning, the DLI University Ambassador Program enables
educators to teach free DLI courses to university students, faculty,
and researchers.

KEYWORDS
Hands-on learning, HPC Education, Open edX, Deep learning, Pro-
fessional education

1 INTRODUCTION
With an increasing emphasis on using computing as the new sci-
entific experimentation method, computer science has become an
interdisciplinary academic area. Deep Learning (DL), an emerging
and powerful tool for machine learning, has gained attention in re-
cent years due to its potential to reshape the future of computational
research. Many ground-breaking results rely on DL, such as image
classification[11], Atari game bots[10], and medical diagnosis[9],
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and have achieved superhuman levels of performance. One reason
for this recent quantum leap in research has its roots in the growing
prevalence of High-Performance Computing (HPC).

HPC provides the parallel and distributed computing power
that allows deep learning to excel. NVDIA CUDA-powered GPUs
have several times enabled the title of the fastest supercomputer
in the world since 2010[2]. Since then, the new setup for most
HPC research has been parallel systems incorporating CPUs with
GPUs[7].

Despite decades-long efforts in HPC education, HPC and DL
are still understood and used by only a small portion of the sci-
entific and engineering community[6]. There two main problems
contributing to the low rates of adoption: 1. the material requires
a certain amount of computational and statistical literacy; and 2.
HPC programming environments are difficult to set up due to the
variety of hardware and OS system types. Overcoming these two
concerns requires curating learning material for a broad range of
audiences that includes practical cases, as well as abstracting the
system implementation to simplify the use of HPC resources.

Combing current online learning andragogy with a cloud com-
puting platform consisting of a VM and Docker containers, we il-
lustrate a new educational platform designed by the NVIDIA Deep
Learning Institute as showing in Figure 1. This platform provides
hands-on experience with DL and facilitates practical DL and HPC
education.

1.1 High Performance and GPU Accelerated
Computing Education

High Performance Computing and GPU acceleration used to be
accessible only to scientists and engineers to fulfill their desire to
better model realistic physical systems. As computing hardware
becomes cheaper and its performance improves, these resources
are no longer found only in mega research centers. Major tech
companies such as Microsoft, Google, and Amazon now provide
low-cost HPC instances in the cloud, and major academic programs
have gradually embraced the convenience and efficiency of HPC
because of it. Despite these efforts there is still a large unmet need
for new, powerful, HPC-enabled tools and curricula for education.

To extend exposure and build a larger base within the HPC
research community, many government agencies have initiated
programs aimed to develop awareness at all stages of the education
pipeline. These include the Education, Outreach and Training (EOT)
program from the National Science Foundation (NSF), the Advanced
Scientific Computing Initiative (ASCI) funding program, and the
High-Performance Computing Modernization Program (HPCMP)
from the U.S. Department of Energy (DOE), among others. Such
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Figure 1: CUDA C/C++ course on DLI online platform. The
Navigation Bar allows students navigate across different sec-
tions of the platform. Courses that contain multiple sub-
sections will list all course titles as url links to navigate to
the course content.

initiatives have a huge effect in developing awareness of HPC at
all stages of the education system.

While waiting for these efforts to pay off, and in response to
the immediate need for HPC, hundreds of modules and online
training sessions have been created for users from the world’s
supercomputing centers. While these approaches are widespread
and effective, they cannot be scaled to reach a larger audience as
they are centered around a set of one-to-one tutorials and are only
available for certain infrastructures. In addition, due to the high
demand of research needs, only limited HPC resources from these
computing centers are allocated for education and experimentation
by the beginning learners and students.

1.2 Abstractions through CUDA
CUDA, in essence, is a minimal extension of the C and C++ pro-
gramming language. As a scalable parallel programming platform,
it allows sophisticated HPC programing to be expressed in an easily
understood abstraction. After its release in 2007, CUDA rapidly
evolved into a popular Application Programming Interface (API)
model that facilitates a wide range of research and applications[5].

CUDA provides three key abstractions: a hierarchy of thread
groups, shared memories, and barrier synchronization. The CUDA
paradigm allows programmers to partition a "problem into coarse
subproblems that can be solved independently in parallel, and then
into finer pieces that can be solved cooperatively in parallel"[7]
while hiding memory management and thread synchronization
behind the scenes. In addition, NVIDIA provides a CUDA profiler
to help programmers further understand and debug each parallel
process to achieve the best possible performance (Figure 7).

(a) To start a course, click the
"Start" button.

(b) How to access Jupyter
Notebook. To stop GPU
server and end a course,
click "Stop Task."

Figure 2: Individual course landing page.

1.3 NVIDIA’s Deep Learning Institute for HPC
and DL Education

NVIDIA’s Deep Learning Institute (DLI) aims to lower the barrier
of entry for HPC education and develop novel ways of enabling sci-
entists and engineers in their own research through the use of HPC
resources [www.nvidia.com/dli]. Based on the experience from pre-
vious instructor-led courses via DLI’s University Ambassador Pro-
gram, cloud-based computing solutions for training and education
reduces the learning curve and allows students to gain hands-on ex-
perience with parallel computing systems without getting bogged
down setting up programming environments. Participants can earn
certification to prove subject matter competency and support pro-
fessional career growth. Certification is offered for select online
courses and instructor-led workshops. [www.nvidia.com/dli] All
students need to participate in the hands-on training is a computer
with a modern browser installed and a reliable internet connection.
DLI is currently using GPU virtual instances in combination with
Jupyter Notebooks to implement a hands-on, project-based expe-
rience in DL and accelerated computing. Participants can easily
click a "Launch Task" or "Stop Task" button to begin and end their
learning tasks as part of a full course, as showing in Figure 2. If a stu-
dent has issues or questions about the course material at any point,
they can participate in a MOOC-style discussion session to post
their questions or search for solutions, as showing in Figure 3. For
programming questions beyond the scope of the course, NVIDIA
provides online forums and documentation that allow students to
find answers to more complex questions.

DLI offers five full-day, hands-on "Fundamentals" courses for
those who may be new to accelerated computing or deep learning.
Two of DLI’s most popular courses with project-based certifica-
tion are Fundamentals of Deep Learning for Computer Vision and
Fundamentals of Accelerated Computing with CUDA C/C++. To
prepare learners with more practical knowledge, DLI also provides
application-specific content in the following disciplines:

• Deep Learning for Autonomous Vehicles
• Deep Learning for Healthcare
• Deep Learning for Digital Content Creation
• Deep Learning for Finance
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(a) Users can post a topic (A),
search existing topics (B), and
browse all topics (C). The in-
struction of how to use Discus-
sion (D).

(b) Individual topic layout: (A)
Title and content of the topic,
and (B) responses frommembers
or course staff.

Figure 3: Discussion panel layout.

Figure 4: Inside the DLI CUDA C/C++ course - Managing Ac-
celerated Application Memory with CUDA C/C++ Unified
Memory and nvprof. Course content including links that al-
low students open browser-based code editors.

In this article, we present a hands-on, online course provided by
DLI: Fundamentals of Accelerated Computing with CUDA C/C++
(Figure 4). This course provides a path that allows learners with
little or no knowledge of HPC GPU acceleration to harness the
power of parallel computing and possibly achieve an official CUDA
certification based on project-based assessments.

The rest of the article is organized as follows: In Section 2, we
present the technologies used in the design of the course. Section
3 highlights the University Ambassador Program, and Section 4
demonstrates the results of teaching events across the globe. We
conclude with a summary of the work.

2 METHODS
When developing courseware, DLI combines the primary design
elements of HPC abstraction and hands-on experience with deep
learning. Before DLI courses, the vast majority of learners were us-
ing personal computers or relying on traditional batch-processing
application programming interfaces (APIs) to manage a HPC en-
vironment. Instead of convincing participants to follow the tradi-
tional HPC education paradigm, DLI focused on providing access to
fully-configured GPU servers in the cloud that abstract complicated
environment setup, HPC project-based courses and tasks available

Figure 5: By combining teaching and interaction with in-
structor and hands-on practice, learning promotes self-
discovery and self-appropriate. which leads to future appli-
cation.

to students perpetually after training for students to refer back to
course materials at any time.

Since NVIDIA’s 2007 introduction of CUDA, a parallel computing
platform API, and the emergence of many open source software li-
braries extended from CUDA such as TensorFlow, TensorRT, Torch,
Caffe, CNTK, etc., access to high-performance computation has
given researchers the scientific and parallel computing abstractions
they need to utilize HPC resources. Therefore, all DLI courses and
labs provide CUDA-powered GPU acceleration. NVIDIA also pro-
vides cloud-computing support through the NVIDIA GPU Cloud
(NGC): GPU-accelerated containers available on-demand on all ma-
jor cloud platforms for accelerating deep learning and scientific
research.

2.1 Reflection-in-action Model
From the very beginning of DLI’s course development, the em-
phasis has always been on hands-on experience and a journey of
reflection-in-action. For participants of all backgrounds, learning
by doing provides the ultimate method to master a skill, especially
in the case of continuing learning throughout a professional career.
For live, instructor-led courses, students receive active coaching and
participate in a transparent teaching experience with a instructor
which helps students understand how and why they are learning
course content in particular ways. A similar experience is provided
by DLI online self-paced courses. By presenting students with real-
world problems, feedback and project-based assessment, students
develop amuch better grasp of the coursematerial. A trial-and-error
approach to solve in-lecture tasks provides students with opportu-
nities for self-discovery and self-appropriate learning [Schon 1987]
(Figure 5). We believe a hands-on andragogy encourages students
to go beyond what the course work provides and makes it more
likely that they will later apply what they have learned in their
own disciplines.
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If students are enthusiastic and want to immediately apply what
they have learned, NVIDIA also provides documentation webpages,
FAQs, and expert support to facilitate the efforts of course partici-
pants.

2.2 OpenEdX MOOC and Cloud Delivery
Method

Massive Open Online Courses (MOOCs) are no longer a new con-
cept in the educational landscape. Open edX, a non-profit MOOC
platform, emerged in 2012 [Porter et al. n.d.]. The main aim behind
it is to provide essential education for a particular topic to anyone,
and sometimes at any time,either toward a degree or just to sat-
isfy one’s own personal learning desires. One advantage of this
approach is the ability to reach many attendees across geographical
location and technology barriers. The Open edX platform includes
both a Content Management System (CMS) and a Learning Manage-
ment System (LMS)[8]. DLI has adopted this platform and delivers
courses to help address the pressing educational needs in the HPC
and communities.

Unlike traditional education, MOOC-style platforms provide an
immediate feedback assessment technique (IF-AT) that allows stu-
dents to receive immediate results that assess their knowledge[4].
IF-AT encourages students to self-discover and self-explore new
knowledge, provides an enjoyable learning experience, and evi-
dently improves students’ retention of the course content[3].

To date, DLI have planned and delivered hundreds of instructor-
led trainings, created more than 50 courses and labs across the
globe, and have fully embraced the MOOC paradigm.

One obstacle that many HPC and parallel computing beginners
face is the environment setup. To learn from a hands-on program-
ming project, students need a clean and functional setup so the
debugging process can focus on coding problems instead of HPC
environment issues. DLI uses a cloud container solution to allow
students to focus more on learning and less on environment set-
up. DLI uses fully-configured GPU servers in the cloud to provide
this immersive programming environment. Cloud containers are
a lightweight technology to virtualize applications in the cloud.
They allow elastic and rapid resource pooling to provide a fully
functional parallel CPU and GPU programming environment[1].
The average setup time is below 5 minutes for most DLI courses.
To further simplify the process for students, DLI uses an automated
script to abstract the whole process behind the scenes as showing
in Figure 2.

2.3 Interactive Course Interface
Here we illustrate the DLI interface using the Fundamentals of
Accelerated Computing C/C++ course as an example. Students nav-
igate through the course via a series of links. Each course page links
to areas within four subgroups: Home (the landing page), Course,
Discussion, and Progress (Figure 1). The actual training content
is located in the course section and developed into modules using
flecture videos and practical/programming sessions to reinforce the
key concepts, as shown in Figure 1. Navigating between units and
modules is as simple as clicking on the links, completing assess-
ments, and leaving the interactive assessment lab by clicking the
start/launch and stop buttons (Figure 2).

Figure 6: Remote Nvidia Visual Profiler captures all of the
GPU metrics.

As part of the LMS, a progress page keeps track of all the ques-
tions and projects that a student has completed as well as the cor-
responding assessment results for each module. This allows both
students and instructors have an at-a-glance grasp of the students
performance to date. The hands-on assignments (Figures 4) were
developed using Jupyter notebooks allowing students to receive
immediate feedback while working though the content. In the case
of the CUDA C/C++ course, the remote NVIDIA Visual Profiler (Fig-
ure 6) enabled students student a deep understanding from the GPU
visual metrics allowing them to better determine the bottlenecks
in a GPU function.

3 DLI UNIVERSITY AMBASSADOR
PROGRAM

3.1 DLI Mission
The mission of the DLI is to help engineers and researchers solve
extremely challenging problems using AI and deep learning. To
achieve this end, it is necessary to utilize HPC platforms. DLI pro-
vides the education essential for using such platforms leveraging
massively parallel GPUs. DLI helps "developers, data scientists and
engineers to get started in architecting, optimizing, and deploying
neural networks to solve real-world problems in diverse indus-
tries such as autonomous vehicles, healthcare, robotics, media &
entertainment and game development." [nvidia.com/dli]

As stated above, one of the most important elements of the
DLI course design is the hands-on experience, which is integrated
into both the self-paced and instructor-led versions of the courses.
Course materials are currently available across many disciplines
ranging fromfinance to biology, from computer vision to autonomous
vehicles, and from game development to accelerated computing
[nvidia.com/dli]. More industry-specific content is coming soon.

3.2 Bringing DLI to Campus: University
Ambassador Program

DLI recognizes and awards qualified academics as applied deep
learning experts. "DLI University Ambassador" is an additional
status academics and researchers can achieve on top of a DLI in-
structor certification. The University Ambassador Program enables
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educators to teach free instructor-led DLI courses exclusively to uni-
versity students and staff. This program is free to join and provides a
wealth of benefits to academic communities looking to bring AI and
deep learning to their campuses. The Ambassador Program offer
free DLI instructor certification. provides ready-made, world-class
educational content to universities, and offers expense reimburse-
ment for travel and catering expenses for instructor-led workshops.
Ambassadors leverage DLI content in their university curriculum
courses, campus-wide workshops, and to satisfy workshop and
tutorial submissions at academic conferences around the world. For
more information about this program visit www.nvidia.com/dli.

3.3 DLI Teaching Kits
In an effort to extend the HPC community and encourage students
to harness the power of DL, DLI offers downloadable Teaching
Kits co-developed with well-known academic experts and univer-
sities. Each kit includes curriculum materials for a semester-long
university course. Complementing DLI’s application and hands-on
approach, Teaching Kit content integrates more academic theory
to satisfy the needs of traditional university coursework. Albeit,
in addition to lecture slides, video, and textbook materials, there
is at least one accompanying hands-on lab with full source code
solutions found in private Git repositories. Many Teaching Kit mod-
ules offer multiple labs and solutions. The Teaching Kit program
also enables educators to give free access to online, self-paced DLI
courses and student certification by way of promotional codes on
the MOOC-style platform. To learn more about these resources
please visit developer.nvidia.com/teaching-kits. The current Teach-
ing Kits and academic co-authors includes:

• Machine/Deep Learning (NYU/Yann LeCun)
• Accelerated/Parallel Computing (UIUC/Wen-Mei Hwu)
• Robotics (CalPoly)

Most Teaching Kits contain:
• Lecture slides
• Lecture videos
• Hands-on labs with solutions
• Larger coding projects with solutions
• Quiz/Exam questions with solutions
• Electronic textbooks
• DLI online self-paced promotional codes
• Syllabus with specific DLI online labs interleaved

3.4 Fundamentals of Accelerated Computing
with CUDA C/C++

In the Fundamentals of Accelerated Computing courses, DLI intro-
duced CUDA parallel computing platform that aims to accelerating
computing in terms of impressive performance and ease of use.
CUDA supports many popular programming languages such as
C, C++, Fortran, Python and MATLAB and expresses parallelism
through extensions in the form of basic keywords. CUDA has an
ecosystem of highly optimized libraries for DNN, BLAS, graph ana-
lytics, FFT, and more, and also ships with powerful command line
and visual profilers. Here we present a glimpse of the course to help
readers have a better understand of the structure and contents of
the course on how to use CUDA to accelerate computing in C/C++.

Figure 7: Slides on differentiating GPU-accelerated vs. CPU-
only applications.

Figure 8: Hands-on experience reinforces learning. Through
hands-on coding practice, students have chance to learn
though doing. It also opens opportunities to interact with
instructor.

To help students ease in the parallel programming paradigm, the
CUDA course first differentiates the GPU-accelerated vs. CPU-only
applications through a series of animation as showing in Figure 7.
Then after CUDA syntax and keywords introduction, a hands-on
task follows: students need to modify a CPU C/C++ function into a
GPU kernel as showing in Figure 8. (Due to the space limitation,
we will not further include detailed and exciting course contents.)
For every hands-on task, comments in the code will assist student
work and the solutions are available in case they get stuck.

Following the CUDA design cycle: Assess Parallelize, Optimize,
Deploy (APOD), in the second and third labs of the course, stu-
dents will learn how to use command line and visual profilers to
further optimize their CUDA code. Along the way, CUDA course
will also introduce concepts such as Unified Memory, Streaming
Multiprocessors, asynchronous memory prefetching, manual mem-
ory allocation and copying, Streams and so on. All in the efforts
to help students to have a better grasp of the HPC programming
bottle-necks in real-world scenario and to offer solutions on how
to toggle them. In Figure 9 we showed that using the command-
line and visual profilers one can quickly and qualitatively measure
the performance of a application, and to identify opportunities for
optimization.
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Figure 9: Command line and Visual Profilers. In second and
third lab, students will learn how to use profiler to measure
the performance and identify opportunities for optimiza-
tion.

Figure 10: Certificate of Competency. After completing the
course and passing the project-based assessment, students
receive a certificate of course competency.

After students finish the course and pass the assessments, they
will receive a certificate of course completion, as shown in Fig-
ure 10. Every certification has a unique identification number and
online hyperlink, and is tied directly to the student. Students are
actively linking their certifications from their resumes and LinkedIn
profiles. At the time of this writing, there are no other hands-on,
project-based assessment and certification programs in applied
deep learning.

4 RESULTS
DLI has awarded over 150 certified University Ambassadors across
the globe, and they have delivered over 150 instructor-led work-
shops in less than a year’s time since 2017. Many academics have
included DLI course materials in their own syllabi to prepare their
students to solve real-world problems using AI and parallel com-
puting.

4.1 Reaching Students Globally
At UC Berkeley, Prof. Rekesha and Prof. Arias have modified the
content of their courses to include a full life-cycle example from
the DLI of how Deep Learning can be used, and to illustrate the
relationship between Deep Learning and CPU/GPU-powered hard-
ware. At National Tsing Hua University, Prof. Lee has integrated
DLI course materials into teaching activities. His team, NVISION,
won the 2016 NVIDIA Intelligent Robotics challenge.

In India, Prof. Chickerur of KLE Technology University has con-
ducted several DLI training events training thousands of students.
The feedback from students continues to be positive and favorable,

especially due to the fact that some courses offer certification they
can use to bolster their professional career in the future.

4.2 Feedback from University Ambassador
Instructor

DLI content primarily focuses on the hands-on application of deep
learning and parallel computing. This creates a good complement
to the theoretical approaches of traditional academic curricula. DLI
courses enable students who are new to deep learning quickly jump-
start their journey of solving real world problems. The content is not
designed to provide a low-level explanation on the core components
of deep learning such as mathematics and statistics.

At Tokyo Institute of Technology, Prof. Gutmann (author of the
paper) conducted a pilot workshop using the CUDA course and
online platform described in this paper, and there were no reported
issues of students using the online learning platform despite the use
of various host machines and operating system types. At the start
of each topic within the course Prof. Gutmann would give a very
brief introduction to the concepts, then the students were able to go
through the material and solve the exercises that were correspond-
ing to each topic. Unlike traditional lectures where students have
little interactivity with the content and tend to easily lose interest
and not be actively engaged, Prof. Gutmann’s students remained
enthusiastic with the hands-on materials and teaching instructions.
At the end of the course, many students were able to use what they
learned from the course and their hands-on exercises to solve the
assessment task of accelerating a particle system code, resulting
in their individual certificate of competency. Students who did not
finish on-sight were able to finish over the next couple days on
their own, as the course platform conveniently provides students
perpetual access to the online version of the course.

At University of Kentucky (UK), students from the Association
for Computing Machinery organization also conducted the DLI
CUDA C/C++. DLI Certified University Ambassador Xi Chen (au-
thor of the paper) taught the workshop paving the way for students
to have a better understanding of how to accelerate and parallelize
applications using GPU computing. UK students were very excited
about learning the concepts from the course materials, and also
from each other, since Xi Chen himself happens to be a PhD student.
The CUDA course demystified GPU programming for the students,
and the hands-on exercises provide a platform that allows students
to challenge each other with positive reinforcement. Many students
expressed how the course made it simple to quickly learn how to
harness the power of CUDA and GPUs, and they were interested
in future DLI courses.

4.3 Feedback from Students
The feedback from students who attended the DLI CUDA C/C++
course was quite positive and encouraging, shown in Figure 11.
None of the students had difficulty navigating the course platform,
and all of them expressed interest in future DLI workshops in AI
and accelerated computing. The feedback survey showed that al-
most all of the students thought the instructors were helpful during
the learning path, with 86% of them indicating the instructors were
extremely helpful. Part of this can be attributed to DLI’s rigorous in-
structor certification process consisting of a collection of instructor
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Figure 11: Summary of the Student Feedback Survey for Fun-
damentals of Accelerated Computing with CUDA C/C++.

assessments and in-person interviews with DLI master instructors.
When asking how useful the information provided by the course
might be for solving real-world problems and science, 71% of the
students suggested the information is extremely useful, while 29%
indicated moderately. Regarding the question about how helpful
the course was for sharpening their HPC programming knowledge
in general, 72% suggested it was extremely helpful, 14% expressed
moderately helpful, and 14% indicated slightly helpful.

We also askedwhat percentage of the course should be instructor-
led vs. self-paced, and students suggested they should be roughly
50% versus 50%. There were a few suggestions on how to improve
the course delivery: 66% expressed a desire to addmore low-level de-
tails and theory in the course, and 17% wish the course content was
easier to understand. Other free-form comment responses from the
survey included more time was needed for the exercises and more
practical examples and less number crunching would be beneficial.

5 CONCLUSIONS
Like the discovery of the electricity, Deep Learning is fundamentally
changing the world using scalable HPC platforms as the medium of
education for this technology. Major breakthroughs in computer vi-
sion, Natural Language Processing (NLP) and autonomous driving
go hand-in-hand with the growth of HPC. Three related goals form
the foundation of DLI course design: (1) to provide training to assist
the AI and HPC communities in fulfilling its educational needs; (2)
to help researchers transition to using the technologies future HPC
will build upon; and (3) to explore novel learning and application-
based teaching paradigms. We present the platform, content and
programs from NVIDIA’s Deep Learning Institute, which aims to
train researchers, scientists and professional engineers how to solve
real-world problems with AI and accelerated computing. We be-
lieve that deeper hands-on experiences provide the most rapid and
effective style of technology education.
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ABSTRACT
A significant challenge in teaching cluster computing, an advanced
topic in the parallel and distributed computing body of knowledge,
is to provide students with an adequate environment where they
can become familiar with real-world infrastructures that embody
the conceptual principles taught in lectures. In this paper, we de-
scribe our experience setting up such an environment by leveraging
CloudLab, a national experimentation platform for advanced com-
puting research. We explored two approaches in using CloudLab
to teach advanced concepts in cluster computing: direct deploy-
ment of virtual machines (VMs) on bare-metal nodes and indirect
deployment of VMs inside a CloudLab-based cloud.

CCS CONCEPTS
• Applied computing → Education; • Computer systems or-
ganization→ Cloud computing; • Software and its engineer-
ing → Distributed systems organizing principles;

KEYWORDS
experimental platform, distributed computing, hands-on learning

1 INTRODUCTION
Within a parallel and distributed computing undergraduate cur-
riculum, advanced topics are defined as those carrying significant
current or emerging interests [15]. Among these topics, cluster com-
puting remains an advanced yet fundamental subject that provides
the background information for other topics such as cloud/grid
computing and big data computing. Since the early adaptation of
cluster computing into the undergraduate curriculum [2], a large
body of materials has been developed to support in-class lectures.
The challenge is providing a hands-on environment for students to
connect these materials to real-world technical problems and skill
sets.

To address this challenge, institutions have turned to virtual
technology as an economical and scalable platform. Previous work
has shown the applicability of virtual machines in teaching com-
puter networking, operating systems, security, and databases [4, 19].
More recent work has seen virtual machines used in courses for
big data [7] and cloud computing [8]. Even with virtual technology,
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many technical hurdles remain. Most notable is the necessary in-
vestment of time, money, and effort from both the instructors and
the institutions into setting up and maintaining the virtual machine
images and hardware infrastructure as well as the accompanying
lecture materials.

In this paper, we present our approach in leveraging Cloud-
Lab [16], a publicly available computing resource as a platform
to develop and host materials to support teaching topics in clus-
ter computing. Using CloudLab, we demonstrate how instructors
can develop scalable, maintainable, and shareable contents that
minimize technical hurdles while still exposing students to critical
concepts in cluster computing. The remainder of this paper is orga-
nized as follows. Section 2 provides an overview about the CloudLab
platform. Next, we describes in details our gradual integration of
CloudLab into materials for a distributed and cluster computing
course over several semesters in Section 3. Lessons learned are
discussed in Section 4. We examine related work in Section 5, in-
cluding those that leverage CloudLab in general computer science
education and those that leverage other resources besides CloudLab
specifically for high performance computing education. Section 6
concludes the paper and discusses future work.

2 CLOUDLAB
Funded by the National Science Foundation in 2014, CloudLab has
been built on the successes of the Global Environment for Net-
work Innovations (GENI) [3] in order to provide researchers with
a robust cloud-based environment for next generation computing
research [16]. These resources are distributed across several U.S.
institutions. As of Summer 2018, CloudLab boasts an impressive
collection of hardware. At the Utah site, there is a total of 785 nodes,
including 315 with ARMv8, 270 with Intel Xeon-D, and 200 with
Intel Broadwell. The compute nodes at Wisconsin include 270 Intel
Haswell nodes with memory ranging between 120GB and 160GB
and 260 Intel Skylake nodes with memory ranging between 128GB
and 192GB. At Clemson University, there are 100 nodes running
Intel Ivy Bridges, 88 nodes running Intel Haswell, and 72 nodes
running Intel Skylake. All of Clemson’s compute nodes have large
memory (between 256GB and 384GB), and there are also two addi-
tional storage-intensive nodes that have a total of 270TB of storage
available. CloudLab is currently expanding under a follow award
from the National Science Foundation which will include more net-
work interfaces, new CPU architectures, and the ability to interface
with other cloud services including Amazon Web Services and the
Massachusetts Open Cloud [17].

In order to provision resources using CloudLab, a researcher
needs to describe the necessary computers, network topologies,
startup commands, and how they all fit together in a resource
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Figure 1: CloudLab’s GUI for designing experimental pro-
files

description document. CloudLab provides a graphical interface,
as shown in Figure 1, inside a web browser that allows users to
visually design this document through drag-and-drop actions. For
large and complex profiles, this document can also be automatically
generated via Python in a programmatic manner as demonstrated in
Listing 1. Starting Fall 2017, CloudLab supports a direct integration
between publicly readable git repositories and their profile storage
infrastructure. This significantly minimizes the effort needed to
modify existing profile while still maintaining a complete history
of previous changes.

Listing 1: A CloudLab profile written in Python to describe
a 6-node experimental profile
import geni.portal as portal
import geni.rspec.pg as pg
import geni.rspec.igext as IG

pc = portal.Context()
request = pc.makeRequestRSpec()

link = request.LAN("lan")
for i in range(6):
if i == 0:
node = request.XenVM("head")
node.routable_control_ip = "true"

elif i == 1:
node = request.XenVM("metadata")

elif i == 2:
node = request.XenVM("storage")

else:
node = request.XenVM("compute-" + str(i))
node.cores = 2

node.ram = 4096

node.disk_image = "urn:publicid:IDN+emulab.net+
↪→ image+emulab-ops:CENTOS7-64-STD"

iface = node.addInterface("if" + str(i-3))
iface.component_id = "eth1"
iface.addAddress(pg.IPv4Address("192.168.1." + str(

↪→ i + 1), "255.255.255.0"))
link.addInterface(iface)

pc.printRequestRSpec(request)

The resource description document provides the blueprints for
CloudLab to provision resources and instantiate the experiments.
Once the resources are allocated and images for the computing
components are booted on top of bare metal infrastructure, Cloud-
Lab users are granted complete administrative privilege over the
provisioned infrastructure. Like XSEDE, CloudLab allows instruc-
tors to apply for educational projects and to add students to these
projects.

3 USING CLOUDLAB TO TEACH CLUSTER
COMPUTING CONCEPTS

AtClemsonUniversity, the distributed and cluster computing course
is intended to present students with a broad overview of key compo-
nents and concepts in distributed and cluster computing. The topics
covered include the Beowulf model of networked computers, dis-
tributed file systems, the message-passing programming paradigm,
scheduling on a cluster of computers, big data and data-intensive
computing, and the map-reduce programming paradigm. The goal
of this course is to provide students with the fundamental concepts
in distributed and cluster computing and hands-on exposure to
latest real world technologies and platforms built and expanded on
these concepts.

3.1 Course History
The distributed and cluster computing course is at junior level, but
most students in the class wait until the first or second semester
of their senior year before registering. Typically, the enrollment
ranges between 35 and 40 students. With the availability of Clem-
son University’s centralized supercomputer with more than 2000
compute nodes, early offerings of the course in 2012 through 2014
had focused primarily on the large-scale programming aspects for
both high performance and big data/data-intensive computing. This
includes MPI-based concepts such as pleasantly parallel, divide-and-
conquer, and synchronous computing and the MapReduce program-
ming paradigms for big data. While the course covered distributed
infrastructure knowledge such as the Beowulf cluster architecture,
parallel and distributed file systems, and the Hadoop Big Data infras-
tructure, students’ understanding of these concepts were assessed
only through in-class examination. All take-home assignments were
designed to be programming-based.

Over time, we had begun to realize several short-comings of the
course regarding its practicality for students. There exists other
courses that focus primarily on parallel programming in MPI and
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Figure 2: A 3-node cluster using XenVM on CloudLab for As-
signment 2, Fall 2015

CUDA that can provide students with a more in-depth program-
ming knowledge. While students can pick up some Linux skills by
working with the supercomputer for programming assignments,
these interactions are limited in user space and are barely on-par,
if not less than, the amount of knowledge gained from a Linux ad-
ministration course. To improve the course, we need to find a way
to enable students to gain hands-on experience for the core system
concepts regarding distributed infrastructures. Prior to CloudLab,
several approaches had been explored including accessing virtual
machines and creating a special dedicated cluster from a subset of
the supercomputer. While they provided students with more ac-
cess to the system aspects of distributed infrastructure, significant
technical overhead remains [13].

3.2 First CloudLab Interaction: Fall 2015
CloudLab was first incorporated into the course’s materials in Fall
2015, immediately after it became publicly available. For lecture
materials, CloudLab was first used as a direct example of how
a network of computers can be deployed such that it presents
a transparent and unified interface to the users, yet is consisted
of compute nodes placed at geographically distributed locations.
This is to emphasize the development of distributed computing
infrastructures, starting from on-site computer clusters, moving to
grid computing, and then to cloud computing.

CloudLab was also incorporated in the second individual assign-
ment whose purpose is to help students to become more familiar
with working in distributed environments and moving between
computing sites through a command-line terminal. The assignment
was divided into two parts. In the first part, students learned how
to log into the local supercomputer, write a job script, and submit
this job to the scheduler for execution. The job requests three nodes

Figure 3: Public Web-UI of the Hadoop cluster deployed in-
side CloudLab

from the supercomputer and then runs the pbsdsh command which
would in turn execute the hostname command on each of these
nodes and return the domain names. In the second part, students
first deployed a 3-node cluster on CloudLab and acquired their IP
addresses manually. Next, they modify their job script from part 1
so that each local compute node would contact a CloudLab node via
SSH and request the CloudLab node’s host name. The deployment
and instruction to access these nodes are displayed on CloudLab’s
web interface as shown in Figure 2.

Later in the semester, CloudLab was utilized once again as part of
a hands-on learning lecture about Hadoop Distributed File System
[18]. After students learned about the principles behind Hadoop’s
architectural design and implementation, they spent one class to
practice setting up and deploying a 3-nodeHadoop cluster on Cloud-
Lab and also observing how data placement and data movement
processes happened. This process is performed as a team exercise.
Each member of the team will be responsible to log in and set
up appropriate Hadoop components (NameNode or DataNode) on
each CloudLab node. In Figure 3, the Web-UI of a Hadoop cluster
is shown accessible via a normal browser. This is due to Cloud-
Lab’s availability of public IP addresses that can be requested and
attached to nodes in an experiment.
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Figure 4: Public interface using Apache Ambari of the Hortonworks Hadoop Distribution cluster deployed inside CloudLab

3.3 CloudLab and On-site Computing Resource:
Fall 2016

By Fall 2016, a new dedicated Hadoop cluster was deployed on site
at Clemson University. To further expose students to the difference
between the core open-source version of Hadoop and its industrial
counterpart, another assignment has been added to the course. In
this assignment, students were asked to once again deploy Hadoop
on CloudLab. However, they were to use an open-source variety
of Hadoop that was offered through Hortonworks [11], whose
Hadoop distribution is used in the deployment Clemson Univer-
sity’s Hadoop cluster. This distribution of Hortonworks is open
source, and the complex deployment and management process is
performed through Apache Ambari [21], another open source prod-
uct fromHortonworks. Once the Hadoop cluster had been deployed,
students were to deactivate one of the DataNodes and observe the
behavior of the Hadoop Distributed File System in the event of
failure. Through the process, the students would also have a chance
to see how Apache Ambari helps providing a user-friendly interface
to help managing all components of a Hadoop infrastructure, as
shown in Figure 4.

3.4 CloudLab Bare-metal: Spring 2017
Starting in Spring 2017, efforts have been made to introduce project-
based learning to the course, with the goals of tying all knowledge
units taught in the course to a comprehensive picture. To this end,
most of the previous semesters’ assignments were taken a way
and replaced with a semester-long, team-based project, in which
students are required to develop a mini-cluster that has all the
relevant components including a head node, compute nodes, a
scheduler, and a parallel file system. Three individual assignments
preceded the project to prepare students for the upcoming work
in Linux environment. The CloudLab assignment using XenVM in

Fall 2015 was among these assignments. Programming assignments
were no longer assigned individually for grading purposes but
offered first as in-class activities and later as validation mechanisms
for various stages of the project.

The project was divided into five stages, built upon one another
and scattered throughout the semester. In the first stage, students
created the architecture design for their CloudLab-based research
cluster. In the remainder of the stages, they implemented and de-
ployed various cluster components, which correspond to the pro-
gression of the lectures [12]. The detailed descriptions for the stages
are as follows:

• Stage 1 (2 weeks): Each team was tasked with first research-
ing the various XSEDE sites to find a computing cluster site
to be used as a motivation for their projects. To avoid conflict,
each team must report on three different sites, ranked based
on the team’s preference. Subjects to be investigated includ-
ing topological design, hardware configuration, selection
of scheduler and file systems, and selection of open source
scientific software.

• Stage 2 (2 weeks): Once a motivation site was selected, each
team would first develop a similar (does not have to be exact)
topological design and map this design to the corresponding
CloudLab resources. An example of such design is shown in
Figure 5. Based on this design, each team deployed their com-
puting component, which is consisted of a network of three
to four computers. OpenMPI was installed on each node and
a demonstration using in-class programming materials was
required to show that the nodes were properly connected.
Unlike the XenVM-CloudLab assignment, the deployment
process was completely done using CloudLab’s scripting
approach. The selection, configuration, and connection of
the compute nodes as well as the installation of software on

Journal of Computational Science Education Volume 10, Issue 1

January 2019 ISSN 2153-4136 103



Figure 5: Example of a topological design based on the
Bridges Supercomputer from Pittsburgh Supercomputing
Center

each node were expressed using the Python programming
language.

• Stage 3 (1.5 weeks): In this stage, the computing cluster was
to be augmented with a network file system. A new node
was to be added to the cluster, and the deployment code was
also modified so that OpenMPI was reinstalled on this node
and mounted across the compute nodes. In addition, this
node also hosted a shared scratch file system. To validate
this stage, a MPI heat-exchange programming example that
write (in a non-parallel manner) to this scratch location was
used.

• Stage 4 (3.5 weeks): Several additional nodes hosting a paral-
lel file system were added to the cluster. This stage was when
the teams began to pursue different technical paths due to
the variety in parallel file system selections at the XSEDE
sites. The options we had included LustreFS, CephFS, and
OrangeFS (PVFS2). In-class MPI-IO demos from the lecture
was used to validate this stage.

• Stage 5 (2 weeks): In the last stage, a scheduler was added to
the node hosting the networked file system. Like the previous
stage, different teams would work on different software,
which could be one of PBS’ varieties, Moab, or SLURM. For
validation, each team had to provide a submission script that
run one of the examples from the previous stages and can
be submitted to their cluster’s scheduler.

After the project was completed, the final cluster had an average
of six to eight nodes, and each node was deployed directly on a bare-
metal CloudLab node. Students were to submit a project report and
their final CloudLab deployment script and any other installation
and configuration scripts that were needed.

3.5 CloudLab’s Openstack Profile: Spring 2018
The contents and target platform for the project was further mod-
ified for Spring 2018. In this semester, CloudLab’s default experi-
mentation cloud profile which uses Openstack [5] was leveraged.
This allowed each team to launch a cloud environment using only

three physical CloudLab nodes. Given the relatively large amount
of resources available on physical CloudLab nodes, it was possible
to launch smaller virtual machines inside this cloud environment,
enabling the deployment of a full-scale cluster using fewer physi-
cal nodes. Furthermore, an update during Fall 2017 to CloudLab’s
user interface enabled direct linking between a Github repository
containing the CloudLab resource description document and Cloud-
Lab’s experimentation deployment interface. This significantly re-
duced the turn-around time for students’ projects.

Instead of having each group model their cluster after a distinct
XSEDE site, the Spring 2018 project used a single model, Clemson
University’s Palmetto Cluster, which used Oracle Linux 7 (OL7).
This enabled a common required knowledge base, allowing various
groups to collaborate and share their expertise. Another pre-project
individual assignment was added, in which students first tasked
with developing a baseline virtual image running OL7 inside Vir-
tualBox on their personal computers. This assignment served as
a preliminary training stage to further prepare students for the
necessary Linux administrative tasks for the project, in addition to
the XenVM/CloudLab assignment. From a architectural perspective,
this did not significantly change how the computing cluster for
the project was designed. If anything, restricting the model cluster
to Clemson’s supercomputer provided a uniform set of software
selection, including OrangeFS for the parallel file system and PBS
Pro for the scheduler.

On the other hand, the transition to using an Openstack profile
on CloudLab to deploy the nodes significantly changed the techni-
cal approaches to this project. With Openstack, the entire project
became more modularized, with the two processes, installing and
configuring individual nodes and deploying them on CloudLab, are
clearly separated. These changes are can be captured as follows:

• From the baseline (OL7) image from the initial assignment,
students were to develop different images: a) a compute
image for the computing nodes, b) a metadata server for
OrangeFS, c) an I/O server for OrangeFS, and d) a login
node that also server as the metadata server for the PBS Pro
scheduler.

• Network topologies were determined prior to the installa-
tion and configuration of the images. Domain names and IP
addresses were hard-coded into the images.

• Configured images were uploaded to file sharing servers
(Dropbox, Box, or Google Drive). The default Openstack pro-
file from CloudLab were modified to enable the downloading
and instantiating of these images. For cluster components
that had multiple nodes (computing or parallel file system),
the same base image was reused for additional instantiation.

Two in-class technical sessions were hosted after the fourth and
final stages, in which groups who passed specific technical hurdles
shared their experience with others. The amount of computing
nodes for the final cluster were six nodes, but most project submis-
sion required only two bare-metal CloudLab nodes to run. Figure 6
shows example of a successful project submission.

4 DISCUSSION
While CloudLab has been used in the course described in this paper
since 2015, the extensive usage of the computing environment in
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Figure 6: Example of a topological design deployed through
CloudLab’s default Openstack profile

a semester-long class project only started in Spring 2017. For this
semester, there were 60 students in the class, divided into 15 teams.
The group number decreased to 14 later during the semester due
to students dropping from the course. In the next offering of the
course and the class project, there were 33 students, divided into 11
teams. The nature of the project enables students to have extensive
experience interacting with the Linux environment. This has led
to overwhelmingly positive feedback from students, particularly
regarding the hands-on and collaborative nature of the project, as
well as the applicability of the course’s content. However, there
remains several challenges in using CloudLab in a project-based
learning environment.

The largest issue that we noticed in using CloudLab, as with any
remote and shared resources, was the potential competition with re-
searchers and students from other institutions for computing hours.
We experienced this issue in Spring 2017, since each team deployed
directly on bare-metal CloudLab nodes. As a result, provisioning
enough resources for the entire class became a challenge, and this
hindered students’ ability to complete some stages of the project in
a timely fashion. The changes to the project made in Spring 2018
had been done partly to address this issue. By deploying virtual
nodes inside fewer physical nodes, students could request adequate

resources for their work. Furthermore, they could work offline to
develop the baseline images and only used CloudLab for large-scale
testing and validation. A minor issue is the amount of time it took
to fully instantiate a complex CloudLab experiment. In both ver-
sions of the project (Spring 2017 and Spring 2018), the average time
required to have the project ready ranged between 45 minutes to
one and a half hours. This reduced the effectiveness of in-class
sessions.

In our first version of the project in Spring 2017, we observed
several pedagogical challenges to our learning approach. Firstly,
a significant portion of students lacked the fundamental Linux
skills to get started. A single XenVM CloudLab assignment was not
enough to equip students with the necessary Linux administration
skill to meaningfully contribute to the team. Secondly, since each
group used a different XSEDE site as a model for their mini-cluster,
this led to different software stacks and network topologies. As a
result, in-class collaboration between the groups was not fruitful.
The second version of the project in Spring 2018 had been modified
to address these challenges.

5 RELATEDWORK
There exists previous work describing the usage of local com-
puting resources to teach distributed and cluster computing. In
this section, we focus on related work that uses publicly avail-
able resources. The Extreme Science and Engineering Discovery
Environment (XSEDE) is the largest and most popular resource
for computationally-enabled sciences [20]. In addition to support-
ing scientific computing, XSEDE also makes resources available
for computer science education. As XSEDE is a research produc-
tion environment, the majority of its computing sites support pro-
gramming topics in distributed and parallel computing rather than
system-related topics [6, 10, 22]. Jetstream is another large-scale
resource that is part of XSEDE. However, unlike the traditional
HPC model of XSEDE, Jetstream offers users the ability to launch
custom virtual machines images on bare-metal nodes for extended
amount of time. Educational workshops and courses have leverage
this capability of Jetstream to support topics in large-scale data-
enabled sciences such as genomics, neuroimaging, and big data
management [9]. CloudLab has also been used in a number of com-
puter science education courses, but they primarily focus on areas
such as computer and network security, networking, and cloud
computing [1, 14].

6 CONCLUSIONS
In this paper, we have discussed our experience in using Cloud-
Lab to teach cluster computing topics. Between the two modes
of deployment, bare-metal and cloud-based, we were able to pro-
vide students with a computing environment that enabled both
hands-on and project-based learning. The flexibility, availability,
and scale of CloudLab bring significant applicability to other topics
in computer science, including operating system, networking, and
cyber-security.
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ABSTRACT
Cloud computing is growing area for educating students and per-
forming meaningful scientific research. The challenge for many
educators and researchers is knowing how to use some of the unique
aspects of computing in the cloud. One key feature is true elastic
computing - resources on demand. The elasticity and programma-
bility of cloud resources make them an excellent tool for educators
who require access to a wide range of computing environments.
In the field of HPC education, such environments are an absolute
necessity, and getting access to them can create a large burden on
the educators above and beyond designing content.

While cloud resources won’t replace traditional HPC environ-
ments for large research projects, they are an excellent option for
providing both user and administrator education on HPC envi-
ronments. The highly configurable nature of cloud environments
allows educators to tailor the educational resource to the needs of
their attendees, and provide a wide range of hands-on experiences.
In this demo, we’ll show how the Jetstream cloud environment can
be used to provide training for both new HPC administrators and
users, by showing a ground-up build of a simple HPC system.While
this approach uses the Jetstream cloud, it is generalizable across
any cloud provider. We will show how this allows an educator to
tackle everything from basic command-line concepts and scheduler
use to advanced cluster-management concepts such as elasticity
and management of scientific software.
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ABSTRACT
In this contribution, we discuss our experiences organizing the Best
Practices for HPC Software Developers (HPC-BP) webinar series,
an effort for the dissemination of software development methodolo-
gies, tools and experiences to improve developer productivity and
software sustainability. HPC-BP is an outreach component of the
IDEAS Productivity Project [4] and has been designed to support
the IDEAS mission to work with scientific software development
teams to enhance their productivity and the sustainability of their
codes. The series, which was launched in 2016, has just presented
its 22nd webinar. We summarize and distill our experiences with
these webinars, including what we consider to be “best practices” in
the execution of both individual webinars and a long-running series
like HPC-BP. We also discuss future opportunities and challenges
in continuing the series.

1 INTRODUCTION
The Best Practices for HPC Software Developers (HPC-BP) we-
binar series is a major component of the outreach efforts of the
IDEAS Productivity Project1. Since its inception, the project has
∗This manuscript has been authored by an author at Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-05CH11231 with the U.S. Department of
Energy. The U.S. Government retains, and the publisher, by accepting the article for
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irrevocable, world-wide license to publish or reproduce the published form of this
manuscript, or allow others to do so, for U.S. Government purposes.
†This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the
US government retains a nonexclusive, paid-up, irrevocable, worldwide license to
publish or reproduce the published form of this manuscript, or allow others to do
so, for US government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan (http:
//energy.gov/downloads/doe-public-access-plan).
‡Sandia National Laboratories is a multimission laboratory managed and operated by
National Technology & Engineering Solutions of Sandia, LLC, a wholly owned sub-
sidiary of Honeywell International Inc., for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-NA0003525.
1IDEAS stands for Interoperable Design of Extreme-scale Application Software.
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been addressing the confluence of trends in hardware and increas-
ing demands for predictive multiscale, multiphysics simulations.
The project has also been responding to trends for continuous
refactoring with efficient agile software engineering methodologies
and improved software design. The webinar series began when
the IDEAS Project was particularly focused on working with the
terrestrial ecosystem modeling community within the U.S. Depart-
ment of Energy (DOE), and the series has been adapted as the focus
(and sponsorship) of the IDEAS Project shifted to DOE’s Exascale
Computing Project (ECP) [5], wherein the focus is on helping teams
in both scientific applications and software technologies to be more
productive in their software development efforts and to produce
more sustainable results.

To achieve its goals, IDEAS-ECP (as we refer to this phase of the
IDEAS Productivity Project) has implemented an agenda for train-
ing and outreach, including HPC-BP. The target audience for the
series largely overlaps with the community of users of the computer
facilities under DOE’s Office of Science: the Argonne Leadership
Class Facility (ALCF) [2], the Oak Ridge Leadership Class Facility
(OLCF) [3], and the National Energy Research Scientific Computing
Center (NERSC) [1]. However, the webinars can be (and typically
are) attended by a much broader community: announcements are
done through various email lists, participation is free, and only a
simple registration is required for each event. The series may have
similarities with other efforts (e.g., [6, 7]), but it is also distinct
in many ways. For example, when the webinar focuses on tools,
it is often necessary to address differences in the corresponding
installations at the computing facilities.

In this contribution, we discuss the process, i.e., the HowTo, that
we have adopted for HPC-BP, and we describe some webinars
that we have organized and delivered in the series. We provide an
overview of the process we follow for the selection of topics, how
the webinars are executed, and the future we foresee for the series.

2 SELECTION OF TOPICS
The webinars in the HPC-BP series occur approximately once a
month and last about one hour each. Earlier in the series, the topics
were set well in advance. Currently, we maintain a dynamic pool of
potential topics (and speakers), from which we pull the ones that
we consider to be timely. This decision is based on interactions with
ECP application teams; interactions with staff at ALCF, OLCF and
NERSC; perceived trends in hardware evolution; and discussions
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among members of IDEAS-ECP. In addition, on several occasions
the series has featured presentations by “volunteers,” i.e., members
of the HPC community at large who learned about HPC-BP and
contacted us about the suitability of their topics for the series.

At the time of this writing, we have delivered 22 webinars in
the HPC-BP series. Seven webinars in 2016 were in conjunction
with an earlier phase of the IDEAS project. We relaunched the
webinar series in June 2017 as part of the IDEAS-ECP project, and
have so far delivered 15 webinars on an approximately monthly
cadence. The following is a sample of topics that have been covered:
intermediate Git (presenting Git in terms of a data structure and a
set of algorithms to manipulate that data structure); the Roofline
Model (introducing the concepts of data locality and arithmetic
intensity, and the impact of their interplay in computational perfor-
mance); the management of defects in HPC software development
(discussing the relevance of software verification as a method for
removing defects at and earlier development phase, and its impact
on productivity); scientific software development with Eclipse (fo-
cusing on the latest features that are mostly useful for scientific
applications); on-demand learning for better software development
(demonstrating how a personalized transmedia learning framework
based on on-line resources can be applied towards learning more
productively); the importance of proper citation mechanisms for
software (so software developers and maintainers can get academic
credit for their work); and software sustainability seen from dif-
ferent angles (cultural issues, software sharing, adoption of best
practices, etc.)

Usually, we select a topic at least twomonths in advance, marking
the beginning of our “formal” interactions with the presenter(s).
Speakers are asked to prepare a 45-minute presentation and include
breaks to answer potential questions from the participants. About
sixweeks before thewebinarwe ask the presenter for a title, abstract
and a short bio. About a month before the webinar we prepare a
registration page and start an announcement campaign. We also
schedule a dry-run, which is typically conducted the week prior
to the webinar. The dry-run is usually attended by a few members
of the IDEAS-ECP project, and has proven to be essential for fine-
tuning the presentation. The day before the webinar we send a link
to the event to the registrants, together with a copy of the slides to
be presented.

3 MISE EN SCÈNE
Based on our experience, we have developed a model for a number
of distinct roles and steps in the process of developing and delivering
a specific webinar event. Figure 1 provides an illustration. The
letters to the right of the figure indicate the steps, the corresponding
“actors” and their (leading or supporting) roles:

(a) Actor: meeting manager. Roles: displays introductory slide
(typically prepared by the moderator), which contains in-
formation about how participants can ask questions and
provide feedback; monitors connections and checks whether
participants are having problems with video/audio; starts
recording.

(b) Actor: moderator. Role: introduces speaker(s) and other peo-
ple that will help answer participants’ questions.

HPC Best Practices Webinar Series

video conference application turned on
display of introductory slide

welcome remarks
introduction of speaker(s)

closing remarks
announcement of next webinar

webinar

pa
rt
ic
ip
an

ts

webinar time minus 15 minutes

15 minutes

(a)

(b)

(c)

(d)

Figure 1: Steps and actors in HPC-BP webinar series.

(c) Actor: speaker. The meeting manager and the moderator
check questions submitted through chat and Google doc and
relay them to the speaker at specific breaks.

(d) Actors: moderator and meeting manager. Roles: ask audi-
ence whether there are additional questions; display slide
announcing the next webinar; end the recording and video
service.

The number of registrants for the webinars has ranged from
69 to 207, and our experience is that roughly 50% of those who
register actually attend the event. Table 1 gives the total number
of registrations, registrations affiliated with ECP, and number of
participants in the webinars of the HPC-BP series. We observe
that the number of registrations varies significantly across the 15
webinars. We believe this can be attributed to a variety of sources.
Although we haven’t attempted to analyze the variation, we believe
that the webinar topic is likely to be the most significant driver for
registrations. Speakers who are well-known in the community may
also attract more registrations. The detailed data also suggests the
possibility of seasonal variation, but we do not yet have sufficient
experience to consider this conclusive. There are also variations in
how far in advancewe are able to get our announcements out, which
may impact registration rates. In terms of timing, we have a specific
time slot (1:00–2:00pm U.S. Eastern Time, on a Wednesday) that
we have successfully held to for the vast majority of our webinars.
However the week in the month will vary, so the schedule is not
completely regular.

We note that the level of interest in the series, as measured by the
number of people registering, and the number of participants, often
significantly exceeds the typical experience that the ASCR facilities
have with HPC-oriented training. We also note that participation
of the audience has motivated us to include topics in our pool, or
to consider offering webinar topics in different formats such as
workshops or tutorials (e.g., for Eclipse and CMake).

Questions from the participants are highly encouraged, and are
accepted through the chat capability in the webinar tool and also
a shared Google Doc. While participants are muted by default, in
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some cases we allowed participants to directly ask specific questions
(by unmuting) to the presenter(s) at the end of the webinar.

Recordings of the webinars, along with the corresponding slides,
are posted about a week after the webinar, together with a revised
and curated Q&A (i.e., answers to the questions from the partici-
pants). An announcement of the “archival” copy of the webinar is
distributed to those who registered for and/or attended the webinar,
in case they wish to refer back to it or share with colleagues. All
the relevant information is available under the “Events” tab in the
IDEAS web site[4].

Table 1: Registrations and attendees in the 15 webinars of
the HPC-BP Series (June 2017 - September 2018).

Total ECP Affiliated Attendees
Registrations Registrations

Minimum 69 22 22
Average 134 42 75
Maximum 210 71 127
Std. Deviation 50 15 35

4 OVERALL CONSIDERATIONS AND NEXT
STEPS

One of the unique features of HPC-BP is that its agenda is imple-
mented in concert with three major computer facilities (i.e. ALCF,
OLCF and NERSC). This feature also poses challenges: for exam-
ple, one of our webinars focused on Python in HPC. Maximizing
performance from Python applications can be demanding on super-
computing architectures, even more so for different installations.
The approach we used for the webinar was to have it presented by
three staff, one from each facility. This exercise also presented an
opportunity for an exchange of knowledge among the facilities.

One challenge is to capture meaningful data for success metrics.
Although eachworkshop is accompanied by a survey, the number of
respondents is typically low. Tracking the number of registrants and
participants seems more appropriate and straightforward. (Some-
times, one registration corresponds to multiple people viewing the
event from a single location.) We take the number of questions in
the Q&A into consideration for potential follow-ups on the topic,
e.g., further training through tutorials.

As mentioned before, IDEAS-ECP is particularly (though not
exclusively) focused on topics relating to software productivity and
sustainability, and also works in collaboration with the Training
component of the ECP project. The training team is in the process
of compiling a list of tools, programming languages, programming
models and runtimes, etc., which will be used to construct a sur-
vey for ECP developers of applications and software technology to
gauge their needs for training, plus the optimal format(s) (webinar,
tutorial, etc.) and level(s) (novice, etc.). We anticipate that this sur-
vey will enable us to identify opportunities to further enrich the
pool of topics related to software productivity and sustainability
and further expand our outreach activities.

Looking into the future, once the early exascale computers are
in production and the ECP has completed its mission, the IDEAS
Productivity Project will need to find new ways to support and
sustain the HPC-BP webinar series.
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