
Potential Influence of Prior Experience in an
Undergraduate-Graduate Level HPC Course

Chris Fietkiewicz
Electrical Engineering and Computer

Science Department
Case Western Reserve University

Cleveland, OH 44106 USA
001-216-368-8829

chris.fietkiewicz@case.edu

ABSTRACT
A course on high performance computing (HPC) at Case Western
Reserve University included students with a range of technical and
academic experience. We consider these experiential differences
with regard to student performance and perceptions. The course
relied heavily on C programming and multithreading, but one third
of the students had no prior experience with these techniques.
Academic experience also varied, as the class included 3rd and 4th
year undergraduates, master’s students, PhD students, and a non-
degree student. Results indicate that student performance did not
depend on technical experience. However, average overall
performance was slightly higher for graduate students.
Additionally, we report on students’ perceptions of the course and
the assigned work.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education - Computer Science Education, Curriculum

General Terms
Education.

Keywords
Undergraduate, graduate, education, high performance computing.

1. INTRODUCTION
Graduate level courses at universities are typically open to
undergraduate students with significantly less academic
experience. Additionally, such courses can attract students from
multiple disciplines and departments due to a shared interest in a
particular topic. The potential for a high diversity in backgrounds
and experience levels poses challenges for instructors. Previously,
we investigated the potential influence of technical and academic
experience levels for a single homework assignment in a class on
high performance computing (HPC) at Case Western Reserve
University in Cleveland, Ohio [1]. In that study, it was found that
prior experience was not a significant predictor of a student’s
performance with regard to implementing a successful
programming solution. In the present study, we look at the student
outcomes for the course as a whole, and we consider how students’
backgrounds may influence perceptions of the course.

2. METHODS
The class was taught during the Spring semester of 2018 at Case
Western Reserve University in Cleveland, Ohio. The total
enrollment was 23 students, including undergraduate, graduate, and
non-degree students. The course had been offered twice before, and
course evaluation statistics were available to prospective enrollees.
At the beginning of the course, survey data was collected to
determine whether students had prior experience with C
programming and multithreading. Six main HPC techniques were
covered in the course and are listed below:

• Batch job processing
• General optimization for sequential programming
• Parallel programming using spawned (forked) processes
• Parallel programming using OpenMP and multithreading
• Parallel programming using OpenACC and GPUs
• Parallel programming using message passing and MPI

All students were graded using the same criteria and rubrics.
Assignments consisted of seven programming projects on required
topics and a three-week course project that focused on an
application of the student’s choice. The seven programming
assignments were designed to apply the above HPC techniques to
four different applications. Assignments generally focused on
either introducing an application or comparing different HPC
techniques. The four applications covered in the programming
assignments are listed below:

• Sorting algorithms (e.g. merge sort)
• Matrix multiplication (iterative and recursive)
• Prime number discovery
• Numerical integration of Laplace’s equation

Assignments generally included 3 or more separate problems to be
solved. Below is an example of a typical problem statement that
requires parallel processes for the discovery of prime numbers:

Count the number of prime numbers up to two different maxima N1
and N2. Choose maxima such that the serial-version run time for N1
is at least 5 seconds and for N2 is at least 10 seconds. For parallel
versions, using 2 and 4 processes respectively, each process should
do an approximately equal amount of work (same approximate run
time). For parallel versions, report the speedup as a ratio of the
serial-version run time to the parallel-version run time. In your
report, explain how you equalized the work, and briefly discuss how
the speedup compares to the number of processes.

Prior to each assignment, lectures were provided on the requisite
material, including discussion of all sample programs. For the
example problem statement above, sample C programs were

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

© 2019 Journal of Computational Science Education
DOI: https://doi.org/10.22369/issn.2153-4136/10/1/15

Volume 10, Issue 1 Journal of Computational Science Education

90 ISSN 2153-4136 January 2019

provided to demonstrate the use of the fork() instruction and a serial
algorithm for discovering prime numbers (see APPENDIX for
sample programs).

Assignments were designed to provide explicit instructions that
would be understandable to typical undergraduates. The
instructions had stringent reporting requirements that included a
thorough explanation of methods, highly detailed timing results,
and a careful discussion of results. The primary requirement of the
discussion section of each report was a textual observance of any
trends in the results and whether the student found the results to be
as expected. Students were not required to accurately explain any
anomalies.

3. RESULTS
Table 1 shows the distribution of students by level, including
subcategories for undergraduate and graduate students. Graduate
students include Doctoral and Master’s. Undergraduates include
juniors (3rd year) and seniors (4th year). Results also include one
student who was of non-degree status but had bachelor’s degrees in
two related fields.

Table 1. Distribution of students by level.

Level Number Portion

Doctoral 4 17%

Master's 6 26%

Senior 10 44%

Junior 2 9%

Non-degree 1 4%

Total 23 100%

In the following analyses, we organized students into three
categories: doctoral, master’s + non-degree, and undergraduate.
The non-degree student is included in the same group as the
master’s students because their academic backgrounds were
equivalent. For the undergraduate category, we combined the
seniors and juniors because there were only 2 juniors, and their
performances fall within the bounds of the distribution for the
seniors.

Figure 1. Course scores by academic experience. Left:
Doctoral. Middle: Master’s + non-degree. Right: undergraduate.
In this box-and-whisker plot, horizontal bars indicate quartiles,
and the X indicates the mean.

We used the final score for the course (maximum of 100) and
compared the three categories of students. The scores for the three
categories are analyzed in Figure 1. The mean scores are 96.5 for
Doctoral students, 94.9 for Master’s students, and 93.7 for
undergraduates. It can be seen in Figure 1 that the mean score
decreases as the level of academic experience decreases.

All students had significant programming experience, but 35% (n
= 8) reported having no significant experience with C programming
or multithreading. We analyzed the course scores (maximum of
100) based on whether or not students had this prior technical
experience. The results are shown in Figure 2.

Figure 2. Course scores by technical experience. Left: No prior
experience with C programming or multithreading. Right : Prior
experience. In this box-and-whisker plot, horizontal bars indicate
quartiles, X indicates the mean, and the circle indicates an outlier.

The mean scores are 96.5 for technically inexperienced students
and 93.0 for technically experienced students. It can be seen in
Figure 2 that the mean score for the inexperienced students was
higher than that of the experienced students. These results can be
understood by looking at the levels of academic experience within
these groups. The graduate students were more likely to lack
technical experience, having come from other programs at other
institutions. In fact, the inexperienced students were comprised of
87.5% graduate students, while the experienced students were
comprised of only 33.3% graduate students. Because graduate
students generally had higher scores (see Figure 1), this accounts
for the negative correlation with technical experience, indicating
that academic experience is more important in predicting success
in the course.

We also considered students’ perceptions of the course in an effort
to characterize the appropriateness of graded work. Anonymous
course evaluations were submitted by 11 students. As the
evaluations were entirely anonymous, it is not possible to separate
them according to academic experience. Overall, students gave the
course a rating of 4.09 on a scale of 1 – 5. Students were asked to
provide anonymous comments on the assigned work, and all
comments were positive in this regard. We provide only one
example below that was similar to the other student comments:

“The assignments he gave really helped me understand the content
of this course and help me to understand how to implement it to any
other algorithm out there. He also tells you what he expects to see
in the report for each assignment.”

All comments regarding graded work indicated that the problems
were relevant and instructions were clear.

4. DISCUSSION
We have presented a course comprised of both graduate and
undergraduate students. Because the course required a high degree
of technical competence, we expected that technical experience
might be an advantage to students and be reflected in student
performance. To the contrary, however, we found that academic
experience was correlated to performance, and technical experience
may have no correlation at all, assuming adequate coverage in class
is provided.

Different reasons are possible for the correlation between
performance and academic experience. In the most general sense,
graduate students may simply be more capable of working with
larger projects and report writing, as compared to undergraduates.

Journal of Computational Science Education Volume 10, Issue 1

January 2019 ISSN 2153-4136 91

Though we did not track requests for help from the instructor, we
did perceive that graduate students appeared more likely to seek
help and request clarifications regarding the instructions.

In the future, we will consider two changes to our course design to
improve relative performances of graduate and undergraduate
students. First, we will consider requiring graduate students to do
additional project work and reporting, as compared to
undergraduates. This is a well known practice, and it is clearly
appropriate in our course. A second consideration in the future will
be to administer post-assignment surveys that allow students to
reflect on their performance and possible influences. Survey results
could be used to identify challenges common to undergraduates.

5. ACKNOWLEDGMENTS
This work made use of the High Performance Computing Resource
in the Core Facility for Advanced Research Computing at Case
Western Reserve University.

6. REFERENCES
[1] Fietkiewicz, C. (in press) Student Outcomes in Parallelizing

Recursive Matrix Multiply. Journal of Computational
Science Education.

7. APPENDIX: Sample Code
Figure 3: C program that demonstrates fork instruction:

pid_t pid;
/* fork a child process */
pid = fork();
if (pid == 0) { /* child process */
 printf("Child pid = %d\n", pid);
}
else { /* parent process */
 printf("Parent pid = %d\n", pid);
 /* wait for the child to complete */
 pid = wait(NULL);
 printf("Child %d is done.\n", pid);
}

Figure 4: C program for discovering prime numbers:

int nMax = 100; // Upper limit
int n, d, isPrime;
for (n = 2; n <= nMax; n++) {
 isPrime = 1;
 for (d = 2; d < n; d++){
 if (n % d == 0){
 isPrime = 0;
 break;
 }
 }
 // Print each prime number
 if (isPrime == 1)
 printf("%d ", n);
 }
}

Volume 10, Issue 1 Journal of Computational Science Education

92 ISSN 2153-4136 January 2019

