Volume 10, Issue 1

Journal of Computational Science Education

Training Computational Scientists to Build and Package
Open-Source Software

Prentice Bisbal
Princeton Plasma Physics Laboratory
Princeton, NJ
pbisbal@pppl.gov

ABSTRACT

High performance computing training and education typically em-
phasizes the first-principles of scientific programming, such as
numerical algorithms and parallel programming techniques. How-
ever, many computational scientists need to know how to compile
and link to applications built by others. Likewise, those who create
the libraries and applications need to understand how to organize
their code to make it as portable as possible and package it so that it
is straightforward for others to use. These topics are not currently
addressed by the current HPC education or training curriculum
and users are typically left to develop their own approaches. This
work will discuss observations made by the author over the last 20
years regarding the common problems encountered in the scientific
community when developing their own codes and building codes
written by other computational scientists. Recommendations will
be provided for a training curriculum to address these shortcomings

KEYWORDS

Open-source Software, Computational Science, Training

1 INTRODUCTION

It has been observed that physical scientists and engineers often
do not have the basic computing skills necessary to use computers
effectively. This even includes computational scientists engaged in
parallel computing.[15] This observation has lead to training ef-
forts such as Software Carpentry[13], Data Carpentry[12], and HPC
Carpentry[8]. These "carpentry” programs, collectively known as
"The Carpentries," are workshops designed to provide training for
physical scientists and engineers, data scientists, and computational
scientists, respectively, in practical computer skills relevant to these
groups of scientists to help them use computers effectively in their
work. The purpose of these workshops is not to make the partici-
pants experts on any of the topics covered in these workshops, but
to give them "good enough" skills.[14]

In the spirit of this observation and these workshops (and others
like them), the author recommends training programs for computa-
tional scientists consider including training for two skills that, based
on the author’s experience, would be valuable to computational
scientists:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2019 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/10/1/12

74 ISSN 2153-4136

(1) How to compile open-source software packages
(2) How to package open-source software for others to use

Not all computational scientists need to be proficient in both
skills. All should be proficient in (1), but only those computational
scientists developing codes to be used by others need to know (2).

The author basis these recommendations on his experience. The
author has been a Linux system administrator and high-performance
computing (HPC) specialist for the past 20 years. During this time,
he has supported computational scientists in a variety of fields
including plasma physics, engineering, chemistry, computational
biology, astrophysics, particle physics, and weather modeling.

Most of this experience has been in smaller departments or
institutions where there author was the sole HPC specialist, respon-
sible for every aspect of HPC operations, including installing the
computational software needed by the users, and providing tech-
nical support to those users. As a result, he has built and installed
open-source scientific packages thousands of times, and has helped
numerous users trying to compile software themselves.

For example, in the summer of 2009, the author provided HPC
support for a two-week long summer program for graduate stu-
dents and postdoctoral fellows in Astrophysics[9]. The instructors
were accomplished computational astrophysicists from the United
States and Europe. Despite the author setting up a parallel comput-
ing cluster specifically for this for this program, and installing all
the computational software that the students would need for this
program, which was all open-source, the instructors perferred that
the students try to install all the need software themselves on their
own laptops. They felt the ability for these aspiring computational
scientists to install opens-source tools like this was an essential
skill for their careers as computational scientists.

In order to facilitate discussion, the organizers of the program
set up a group mailing list where the students could discuss the
course content and ask each other for help with their homework
assignments. The discussion on this list centered almost exclusively
on how to compile and install the open-source tools needed for
the for the program. The author was part of this mailing list, and
estimates he sent over 200 hundred emails to the list during the
2-week program providing the students with assistance debugging
their installations issues, and explaining the configuration and build
process.

This intensive experience provided considerable insight into
what practical computer skills and knowledge computational scien-
tists are lacking at the graduate and postdoctoral levels, as well as
the areas of building open-source software where most errors occur.
Many of the recommendations how to teach building open-source
software are based on this experience in particular.

January 2019

https://doi.org/10.22369/issn.2153-4136/10/1/12

Journal of Computational Science Education

Even most though computational scientists can rely on the IT
or HPC support staff at their home institution to provide most
of the software they need, there are a number of reasions why
computational scientists should know how to build open-source
software themselves:

o Their IT or HPC department may be short-staffed, leading to
delays in installing the software they need when they need
it.

o To keep workloads reasonable, some HPC centers limit the
software that they will support to key libraries applicable to
most users or the most performance-critical libraries, leaving
it to the scientists to manage the software specific to their
research themselves.

e As a policy, some HPC centers will only install final release
versions of a software package, so if a user needs a new
feature or bug fix in a pre-release version, they may have to
install it themselves.

e As laptops have become smaller and more powerful, the au-
thor has noticed more computational scientists using their
laptops for small computational workloads, and wanting all
the computational packages they use on their home institu-
tion’s cluster on their laptop so they can work at home or
when travelling to conferences.

For computational scientists who develop software, it is in their
best interest to learn how to package and distribute it in a way
that makes it as easy as possible for others to install and use it.
The academic research culture is often described as "publish or
perish". That is to succeed you need to publish your research often
to survive and get ahead. Related to this, many researchers who
publish are also judged by how often their research is cited. For
computational software developers, their work is often cited when
other researchers use their software in their own research. These
users are more likely to use a software packages that is easy for
them to install, so the easier a package is to install, the more likely
it is to be used, and the more it is used, the more likely it is to be
cited.

Many computational software development projects are publicly
funded through grants from agencies like the National Institute of
Health (NIH), or the National Science Foundation (NSF), or they are
developed a national lab, where they have to compete for budgeting
with other projects. To continue to be funded, these projects often
have to periodically demonstrate to the funding agency that the
projects are worthwhile. "Worthwhile" in this case usually means
that other researchers see value in this software and use it. A metric
commonly used to demonstrate this is how many times that soft-
ware has been cited. Making a software package easy to install can
help increate this citation count and help justify continued funding
of its development.

In the author’s experience, open-source computational software
packages are, on average, much harder to install than more general-
purpose open-source packages. These difficulties are generally due
to several issues with the software:

e Poor or non-existent documentation on how to build the
software, either on the software’s web page, or included in
the source code.

January 2019

Volume 10, Issue 1

e No automated configuration and/or build system is pro-
vided, leaving the user to determine the proper configuration
and/or manually run the commands to compile and install
the code.

o The software does not follow follow existing standards or
current practices, requiring the builder to modify their pro-
cedures to accommodate these differences.

Any one of these deficiencies can create significant obstacles for
experienced software builders. For computational scientists with
limited experience, any one of these deficiencies can be insurmount-
able.

In the next two sections, the author will outline a curriculum for
training computational scientists in each of these skills, including
topics that should be included, and why, as well as point out top-
ics that should be omitted to prevent overwhelming the student.
Resources will be provided that provide more detail on each topic.
These outlines, combined with the recommended resources, can
then be used by the reader to create a complete training class.

In the spirit of Wilson, et. al.[14] the goal of this training should
not be to make the trainees experts in either of these skills, but
to give them skills that are "good enough" for them to to be more
productive and successful.

2 HOW TO BUILD OPEN-SOURCE SOFTWARE

In the author’s experience most open-source software, provides
a configure script created with GNU Autoconf[1]. The author
estimates 90% or more of the software he has installed falls into
this category, so he recommends that training focus exclusively on
building software that uses this tool, since this is most relevant tool
due to market share, and introducing multiple configuration tools
at once may take up too much time, or overwhelm the student.

Most of the errors encountered by running this script, or actually
compiling the software, are the result of a file not being found. This
is usually corrected by specifying the correct location of the file by
defining an environment variable, or specifying the proper path
with a command-line option to the configure script. Since the main
goal of the build process is to compile source code, the following
topics should be covered before explaining to use the configure
script:

(1) The Filesystem Hierarchy Standard

(2) Environment Variables

(3) The Compiling Process

2.1 Filesystem Hierarchy Standard

The Filesystem Hierarchy Standardard[11], or FHS, is standard that
specifies where certain types of files should go on a Linux filesys-
tem. Sofware builders do not need to know the entire standard,
but they should know about the directories listed below, which
are relevant to the configuration and build process. When creat-
ing class materials, always consult the standard itself, and not the
descriptions provided below. The descriptions below explain the
directories as the author would describe them to students, and may
not be 100% in agreement with the language of the standard.
/usr A major section of the filesystem. It is read-only, and holds
most of the programs, libraries, and other files used by the
users. The only time this section of the filesystem should

ISSN 2153-4136 75

Volume 10, Issue 1

be written to is when packages provided by the operating
system are added or removed by the system administrator.
3 subdirectories, important to this lesson, /usr/bin, /usr/lib,
and /usr/include, are located in this directory.

/usr/bin Contains binaries and other executable commands
(shell scripts, Python scripts, etc.) that any user can run (no
administrator privileges necessary). In general, directories
named ’bin’ anywhere in the filesystem will usually contain
programs to be run by non-root users.

/usr/include Contains header files for libraries stored in /usr/lib.

/usr/lib Contains shared and static library files. After the in-
troduction of 64-bit x86 processors, it became common to
use this location to store 32-bit libraries, and store 64-bit
libraries in /usr/lib64

/usr/lib64 Similar to /usr/lib, but contains 64-bit libraries.

/usr/share This part of the /usr filesystem contains architecture-
independent files that can be shared between systems with
different processor architectures. In practice this is where a
lot of non-executable text files are stored, including software
documentation (/usr/share/doc) and man pages (/usr/share/man)

/usr/local This directory is similar in purpose and organiza-
tion to /usr, and is meant as a place where the system ad-
ministrator can install additional software on the system
without interfering with the software provided by the oper-
ating system.

/home This directories contains subdirectories named after
each user account. These subdirectories are known as home
directories. They are owned by the user they are named after,
and the user has full read-write-execute privileges over the
entire contents of this directory. Personal settings are stored
here, and users can save their files here, and install and run
software here, too.

The main items to emphasize here are the following:

(1) Header files for libraries included with the operating sys-
tem are located in /usr/include, and others may be installed
in /usr/local/include, or possibly other places, depending
on where the system administrator decided to install addi-
tional software. Knowing the possible location of headers is
essential to building software.

(2) Library files included with the operating system are located
in /usr/lib and /lib. For 64-bit systems, libraries may also
be located in /usr/lib64 and /lib64. They may be located
/usr/local/lib or /usr/local/lib64 or other locations depending
on where the system administrator has installed additional
software. Knowing the location of libraries is essential to
building software.

(3) /usr/local is a traditional location for installing additional
software that is not included with the operating system.
Unless another location is specified, many open-source pack-
ages will try to install in /usr/local. This means header files
will be installed in /usr/local/include, library files in /usr/local/lib
or /usr/local/lib64, executables in /usr/local/bin, and man
pages and documentation in /usr/share.

(4) Users may install and run software from their home direc-
tory. The author often gets inquiries from users asking if
it’s okay or safe for them to install software they need in

76 ISSN 2153-4136

Journal of Computational Science Education

their own home directories. For most users, if they are in-
stalling software themselves on a shared system, like their
departmental or campus cluster, they will want to install the
software into their home directory.

2.2 Environment Variables

When providing this training the topic of environment variables
should be discussed: what they are, and how to set and unset them.
While this may seem like a very basic topic to experience Linux
users, the author has seen even experienced users who have mis-
understandings about how environment variables work. Some mis-
conceptions he has encountered:

e Once an environment variable is set in one shell, it affects
all other shells

e Once an environment variable is set, it is persistent and
doesn’t need to be set again

Whether or not this topic needs to be included depends on the
knowledge level of students in the class, and me be skipped if the
instructor doesn’t feel this needs to be covered.

Setting certain environment variables will be helpful to the build
process, and it’s necessary to set environment variables when the
software installation is complete in order to update PATH, MAN-
PATH, LD_LIBRARY_PATH and other environment variables to
use the new software.

As stated in the previous section, knowing the location of header
files and libraries is important to the build process. If a header is lo-
cated in a standard location such as /usr/include or /usr/local/include,
or alibrary is located in /usr/lib, /usr/lib64, /1ib or /1ib64, they should
be correctly detected during the build process and no further steps
are required.

However, when software is installed in another location, builders
should know that they can set environment variables to ensure
they are detected properly. For GCC, the following environment
variables can be used to specify the location to include directories
in non-standard locations:

CPATH A list of directories to be searched for header files,
independent of the programming language

C_INCLUDE_PATH A list of directories to be searched for
header files, but only when compiling files written in C.

CPLUS_INCLUDE_PATH A list of directories to be searched
for header files, but only when compiling files written in
C++.

For library files there is only one variable to set, LIBRARY_PATH.

The values these environment variables are set to are lists of
directories, using a colon (:) as the separator, and the directories
are searched in order from left to right. For example, to look for C
include files in $HOME/include and /opt/include before the stan-
dard locations, you can set C_INCLUDE_PATH with the following
command (bash shell syntax shown).
$ export C_INCLUDE_PATH:$HOME/include:/opt/include

It’s important to note that these environment variables add to
the default search locations - they do not overwrite them, but they
do supercede them.

The export command above is needed to make that variable
available to the commands called by that shell. This is needed for

January 2019

Journal of Computational Science Education

the compiler, which will be called later, to access the values of these
variables.

2.3 The Compiling Process

The final prerequisite before discussing the configuration and build
process is to briefly explain the compiling process. Technically, the
compiling process has 4 steps:

(1) The preprocessor step
(2) The compiling step
(3) The assembly step

(4) The linking step

However, for the purpose of this instruction it might be better
to simplify to 3 steps:

(1) The processor step
(2) The compiling step
(3) The linking step

The author feels this simplication is justified, since to the user,
the assembly step is not normally visible, and any errors during
the build process typically do not occur during the compiling or
assembly steps, so no information is lost that the students would
need.

In the author’s experience most build errors occur for one of the
following reasons:

(1) A header file cannot be found by the preprocessor

(2) A library file cannot be found by the linker

(3) The linking stage results in unresolved symbol errors, caused
by libraries listed in the wrong order or a necessary library
not specified on the command-line.

Errors do not normally occur during the compiling step. And
when they do, they are normally harder to solve: the code is using
a version of the syntax that is either too new or too old for the
compiler to understand, or the code is using language extensions
supported by a compiler other than the one being used. Not only
are errors at this step relatively rare, they require knowledge of the
programming language used, and teaching programming languages
is beyond the scope of this training.

There are numerous resources that cover the compiling process,
so the details of the different steps will not be discussed here, instead
let’s focus on how to address those 3 common errors mentioned
above:

If a header file cannot be found, determine the correct location of
the header file, then specify it’s location on the compiler command
line with the -I switch. For example, if the correct header is in
$HOME/include you would specify that like this:

$ gcc -1 $HOME/include ...

This additional directory can also be added to the preprocessor
environment variables (CPATH, C_INCLUDE_PATH, etc.) as de-
scribed in the previous section. However, the author recommends
using the command-line whenever possible, since that consolidates
all your settings in a single command. Since environment variables
only affect the shell they’re issued in, if a user has a lot of terminal
windows open, it’s very easy to type the command in a terminal
window where the environment variables are not set correctly
leading to unexpected errors.

January 2019

Volume 10, Issue 1

For a library that cannot be found by the linker, the solution is
almost the same as for a missing header file: determine the correct
location of the library file using the -L switch. Assuming the library
file is located in $HOME/lib, that would look like this:

$ gcc -L $HOME/lib ...

The LIBRARY PATH environment variable can also be set as
decribed in the previous section.

The linker can also report unresolved symbol errors. This means
that either the file being compiled makes references to a function
that is not provided by one of the libaries, or one of the libraries
being linked to relies on a function provided by another library that
is not included. There are two possible causes for this:

The first is that the libraries are not listed in the compiler com-
mand with the -1 switch in the correct order. The libraries must
be listed in the correct order for the linker to resolve the symbols
correctly. The libraries are searched in order from left to right as
they appear on the command-line specified with the -1 switch. The
library needing the function needs to be listed before the library pro-
viding the function. This issue can be tested easily be changed the
order of the -1 options and seeing if that eliminates the error. Some-
time you can do an Internet search of the unresolvable symbols to
determine which library provides it, and use that information to
correct the order of the libraries.

Unresolvable symbol errors can also occur during linking if the
library providing a symbol is omitted from the list of libraries to link.
If you’re not sure what library needs to be added to the command,
an Internet search can often provide useful clues.

For instructional purposes, it is helpful to create simple examples
to illustrate these errors, and show the student how to fix them in
real time.

2.4 The Configure Script

Now that we have covered some important prerequisites to help
the students understand the build process, we can take a look at
how to use the configure script to configure the software with the
correct settings for building.

As stated earlier, this configure script is created by the soft-
ware’s developer using GNU Autoconf[1]. When the source archive
is uncompressed, this script will usually be located at the top level
of that resulting directory.

When executed, this script will run a number of small tests to
probe the environment the software is being built it to determine
if the prerequisites for mandatory features and optional features
are present, as well as determine how to optimize the code for
the environment. For example, if it detects the processor supports
FMA4 or AVX2 instructions, it may enable optimization to take
advantage of those processor features.

An example of an optional feature would be a command-line
program that has an optional GUI interface that uses X11. The
program can still perform all of it’s functions from the command-
line, without the GUI. If configure can’t detect the X11 headers or
libraries on the system, it will print out a brief message stating that,
and continue on. On the other hand, if the user specified the option
to build the GUI using the appropriate switch to the configure
script, and the X11 libraries were not found, configure would halt
with an error, since configure would cosider this an error.

ISSN 2153-4136 77

Volume 10, Issue 1

When configure runs, it executes a number of small, simple
tests and uses the results of those tests to determine if certain
features are present on the operating system. These tests include
attempting to execute a command to see if it’s present, trying to
compile a simple program to see if the header file in the program is
found by the processor, and so on.

The details of how configure works under the hood aren’t critical
to computational scientists at this level. What is important is how
to invoke it with the correct options to build the application to
meet their needs, so most of the instructional time should be spent
focusing on this.

Every configure script has a number of options. These options
will be unique to the package being built. The best way to see what
configuration options are available is to run the configure script
with the --help switch, like this:

$./configure --help | less

In the above example, the output of the command is piped into
less in order to facilitate scrolling through the output, since most
configure scripts will print out a lot of options. In general there are
three types of configuration options available:

(1) Options to specify where the software is installed. Where
library and header files will be installed, for example.

(2) Options that specify how the software is built and what
features are enabled or disabled, like whether to build shared
libraries or not.

(3) Environment variables that control the behavior of the con-
figure script. These variables can be used to specify what
compiler to use, or what flags should be passed to the pre-
processor.

In a classroom environment, this would be a good time to display
the output of a configure --help command for some open-source
package, and discuss what some of them mean. Due to the amount
of output, it’s not really possible to show an example of this output
in this article.

There are some configuration options that are common to all
configure scripts. The most important of these is the --prefix
option. This option tells configure in what directory the software
should be installed. If this is not specified, the default is used, which
is usually /usr/local. All other directories and files are then installed
under here. For example if the default is used, all header files will
be installed in /usr/local/include, all libraries will be installed in
/usr/local/lib, and all executables will be installed in /usr/local/bin.

This is typically not what you want, since this will make it harder
to keep track of what files in those directories belong to which
application, and prevents having multiple versions of an application
installed, since the files from whatever version is installed last will
overwrite the versions installed earlier.

For software that’s installed manually like this, it’s much easier
to put each application in it’s own directory, in a path that makes it
easy to understand what application is installed where. For example,
if you want to install versions 1.1 and 2.2 of an application named
"example"”, you might install them in /usr/local/example-1.1 and
/usr/local/example-2.2, respectively, or /usr/local/example/1.1 and
/usr/local/example/2.2, respectively.

For users installing software in their home directory, it is rec-
ommended they create a directory named ’apps’ or 'software’ in

78 ISSN 2153-4136

Journal of Computational Science Education

their home directory, and then install everything under that. For
example, using the previous example but installing it in $HOME,
those versions could be installed in $HOME/apps/example-1.1 or
$HOME/apps/example/2.2.

Some other common options that the author likes to set are:

—disable-silent-rules This enables verbose output from the
make process, which makes debugging problems much easier

—enable-shared Build shared libraries. This is usually the de-
fault, but not always, so it’s easier to be explicit every time.

—enable-static Build static libraries. This is usually not the
default. Since the author often build libraries for a number
of users, some of whom may need/prefer static libraries, he
always specifies this.

It’s not possible or practical to discuss all the options specific to
any software package, such as what features to enable or disable,
but it would be good in a classroom environment. For example
here’s some of the options from the configure script for FFTW
3.3.8[6]

—enable-single compile fftw in single precision

—enable-float synonym for —enable-single

—enable-long-double compile fftw in long-double precision

—enable-quad-precision compile fftw in quadruple precision
if available

—enable-sse enable SSE optimizations

—enable-sse2 enable SSE/SSE2 optimizations

—enable-avx enable AVX optimizations

—enable-avx2 enable AVX2 optimizations

—enable-avx512 enable AVX512 optimizations

—enable-avx-128-fma enable AVX128/FMA optimizations

—enable-kevi enable Knights Corner vector instructions opti-
mizations

—enable-altivec enable Altivec optimizations

—enable-vsx enable IBM VSX optimizations

—enable-neon enable ARM NEON optimizations

At the end of the --help output environment variables will be
listed that can be used to influence the behavior of configure. This
list will be different for every package, but ther are some that are
common to just about every package, such as these:

CC C compiler command
CFLAGS C compiler flags
LDFLAGS linker flags, e.g. -L<lib dir> if you have libraries in
a nonstandard directory <lib dir>
LIBS libraries to pass to the linker, e.g. -I<library>
CPP C preprocessor
CPPFLAGS (Objective) C/C++ preprocessor flags, e.g. -I<include
dir> if you have headers in a nonstandard directory <include
dir>
It is always a good idea to use these environment variables to
specify which compilers you want to use, such as a C compiler with
CC. This makes sure you are using the desired compiler. This is
especially critical in environments where you have more than one
compiler installed (Intel and GCC, for example). If you have differ-
ent versions of the same compiler, specify the full path to the correct
version in CC to make sure you are using the correct version. To in-
stall version 2.2 of package "example" in $HOME/apps/example/2.2,

January 2019

Journal of Computational Science Education

using the gec compiler in /usr/local/bin, and enabling some of the
common options the author recommends, the configure command
would look like this:

./configure \
—-prefix=$HOME/apps/example/2.2 \
--disable-silent-rules \
--enable-shared \

--enable-static \
CC=/usr/local/bin/gcc

Please note in the above example the backslashes at the end of
each line are to escape the newline character at the end of each line.
This enables the shell to treat those multiple lines as if they are one
line. There can be nothing after those backslashes other than the
newline character for this to work. The author prefers this syntax,
since it allows long configure lines with many options to be easier
to read.

CC can be defined as an environment variable before running
configure, or put on the command-line before the configure com-
mand instead of after it, but the style shown above, where CC (and
other environment variables) are defined on the command-line after
the configure command, is actually recommended in Section 7.1 of
the GNU Coding Standards[4]

Actually running configure can take several minutes, depending
on how large and complicated the package being configured is.
When configure completes, it will create a number of makefiles
which will the guide the actual compiling and installation of all the
files with the correct settings as determined by configure.

2.5 Make

The actual command that compiles and installs the software is
make[3]. Make is tool that automates the compiling of software
based instructions provided to it in makefiles. Make is a very pow-
erful tool that deserves it’s own training session. Knowing how it
works is not really relevant to students in this training, but they
should have a basic understanding of what it does at a high-level,
so they have an idea of what they are doing when they run the
make commands below.

To actually build the software, at this point, simply run the make
command:

$ make

When the above command completes, the next step is to actually
install the software, which means to copy the files to the correct lo-
cations and make sure ownership and permissions are set correctly.
That is done with the make install command, like this:

$ make install

2.6 Post-install tasks

make install is the final step in installing an open-source soft-
ware package, but there are couple steps that need to be completed
before this software can actually be used. Environment variables
such as PATH and LD_LIBRARY_PATH may need to be updated
to include the installation locations of the the executables and
libraries. Other variables thay may need to be updated include
CPATH, C_INCLUDE,_PATH, and MANPATH

January 2019

Volume 10, Issue 1

2.7 Resources

The Filesystem Hierarchy Standard[11] is the definitive document
for where files and directories should be located on any Linux
operating system. As far as standards go, it’s relatively brief, and
easy to understand. Since it’s freely available in PDF from from the
FHS website, it’s recommended to distribute it to students when this
topic is covered in training as part of the instructional materials.

Environment variables are a feature of the shell. The bash is the
most commonly used shell on Linux. There are numerous resources
online and in print covering the bash shell, but the author is not
familiar enough with any of them to recommend them as a resource.

Brian Gough’s Introduction to GCC[7] provides an excellent
overview of how to use the GCC compilers with many easy to
understand examples, including how to use -1, -L and -1 flags as
mentioned above. For an instructor preparing a course on building
open source software, this is a good resource for refreshing their
knowledge of GCC if necessary. It is also suitable for distributing
to the students as an instructional material.

Chapter 7 of the GNU Coding Standards[4] includes a section
"How Configuration Should Work" which supplements the infor-
mation provided here. It provides more detail than what is provided
here, which could be useful to an instructor preparing to teach this
topic. This same chapter includes information on make, which may
be useful if an instructor would like to cover make as part of this
curriculum.

GNU’s Autoconf Manual[2] provides some introductory material
that an instructor might find helpful when preparing their curricu-
lum. Since GNU Autoconf is a tool for developers more than users,
there is no need to be an expert on using GNU Autoconf to teach
this material.

While the author chose not to discuss make in this curriculum,
other instructors may feel differently, GNU’s online documenation
for make[3] is an excellent source for information about make.

3 HOW TO PACKAGE OPEN SOURCE
SOFTWARE

The author is admittedly not an expert on packaging open-source
software himself. In fact, he’s never done it, but as someone who has
built many open-source packages over the years, he has seen what
makes one package easier or harder to install than another. In the
remainder of this section, he recommends some best practices that
should be employed by computational scientists when developing
software to make it as easier as possible for other to use their
software to make its use as widespread as possible.

All packages should have a clearly defined version number. This
version information should be easily identifiable on the website
for the software, in the source code archive, and after installation
by running some command with the --version option. It is very
difficult for users to know if they’re using the latest version or not
without this information. This information is often necessary when
reporting a bug or determining if the current version in use has
certain features. There are different version numbering conventions
in use, and pros and cons of each convention could be a topic of
discussion in the training.

Software developers should make sure the files from their soft-
ware packages are put in locations that are consistent with with

ISSN 2153-4136 79

Volume 10, Issue 1

Journal of Computational Science Education

current standards and conventions. The FHS[11], discussed in the [8] https://hpc carpentry.github.io. 2017. About HPC Carpentry. (2017). Retrieved
previous section, is the definitive source for this information. . iftpte‘/‘/lber 28, 25)1822‘5’;“;‘“1’51/ /]t“PF";"}:Pe"ttfy'gl‘g;l“b"“’/ ag"“t ational Ast
. ps://sns.1as.edu. . Frospects in eoretica. ysics: Computation; Stro-
How to properly build the software package should be well physics. (July 2009). Retrieved September 28, 2018 from http://www.sns.ias.edu/
documented both on the website for the software, as well as in a itp2/index2009final.html
3 pitp A
README or INSTALL file included in the source code archive. It [10] grlg;vare. 2018. CMake. (2018). Retrieved September 28, 2018 from https://cmake.
should never be assumed that it is obvious how a package should [11] Daniel Quinlan Rusty Russell and Christopher Yeoh. 2004. Filesystem Hierarchy
be built. Standard. (Jan. 2004). Retrieved September 28, 2018 from http://www.pathname.
. . com/ths/pub/fhs-2.3.pdf
Adherlng to Standa.rds or commonly used co.nventlc.)ns can make [12] Trace K. Teal, Karen A. Cranston, Hilmar Lapp, Ethan White, Greg Wilson,
maintaining code easier, and make collaboration easier. If respon- Karthik Ram, and Aleksandra Pawlik. 2015. Data Carpentry: Workshops to
sibility for maintaining the code is ever transferred to someone ir(l)c(rOeZaszeOl%a)ta Literacy for Researchers. International Journal of Digital Curation
else, adhering to well-known conventions or standards will make [13] Greg Wilson. 2006. Software Carpentry: Getting Scientists to Write Better Code
that transition easier. The GNU Coding Standards[4] is one set of by Making Them More Productive. Computing in Science & Engineering 8, 6
standards that could be used for this. (NoYember—December 2006), 66—62. https://doi.org/10.1109/MCSE.2006.122 Sum-
. . R marizes the what and why of Version 3 of the course.
Automatic conﬁgur ation tools like GNU AUtOCOUf[l] should em- [14] Greg Wilson, Jennifer Bryan, Karen Cranston, Justin Kitzes, Lex Nederbragt,
ployed to make it easier for users to build the software correctly «'énd Tracy K. "5"-;11 1996. ?10}:9(1 enough Prﬂczisces in Scienti;ic Compu;ing /I/ffiEE
. omputational Science and Engineering 3, 2 (Summer 1996), 46-65. https://doi.
and as easily as possible. The previous section of this paper focused org/10.1109/99.503313
on building code with an GNU Autoconf-generated configure script [15] GV. Wilson, RH. Landau, and S.McConnell. 1996. What Should Computer
because it is by far the most common tool for doing this. How- Scientist?. Teth to Physical Scientists and Engineers? II-;EE Computational Science
and Engineering 3, 2 (Summer 1996), 46-65. https://doi.org/10.1109/99.503313
ever, there are other tools out there that serve the same purpose,
such as CMake[10] and Scons[5]. These tools can be discussed, but
the author recommends focusing on GNU Autoconf, since that is
currently the de facto standard for this.
4 CONCLUSION
This paper has identified building open-source software as a skills
gap for computational scienists. It has provided an outline of what
topics need to be taught to computational scientists in a logical
order to train them to do this. The author has provided references to
some of the topics discussed that could be used to develop training
materials, or distributed directly to students as part of the training
materials.
For computational scientists developing software, packaging this
software in a way that makes it easier for users to build that software
has also been identified as skills gap. Although the author is not an
experienced software developer himself, he provided several best
practices that should be taught to make it easier for others to build
and use their software.
The author has successfully used the outline presented here to
teach building of open-source software to junior coworkers. He
hopes to continue refining this instruction and eventually include
it HPC training workshops, such as the Software or HPC Carpentry
programs mentioned here.
REFERENCES
[1] Free Software Foundation. 2009. GNU Autoconf. (2009). Retrieved September 28,
2018 from https://www.gnu.org/software/autoconf/autoconf. html
[2] Free Software Foundation. 2012. GNU Autoconf - Creating Automatic Configu-
ration Scripts. (2012). Retrieved September 28, 2018 from https://www.gnu.org/
software/autoconf/manual/index.html
[3] Free Software Foundation. 2016. GNU Make. (May 2016). Retrieved September
28, 2018 from https://www.gnu.org/software/make/
[4] Free Software Foundation. 2018. GNU Coding Standards: Configuration. (Aug.
2018). Retrieved September 28, 2018 from https://www.gnu.org/prep/standards/
[5] SCons Foundation. 2018. SCons: A software construction tool. (2018). Retrieved
September 28, 2018 from https://socns.org/
[6] Matteo Frigo and Steven G. Johnson. 2005. The Design and Implementation of
FFTWS3. Proc. IEEE 93, 2 (2005), 216-231. Special issue on “Program Generation,
Optimization, and Platform Adaptation”.
[7] Brian Gough. 2004. An Introduction to GCC. (Feb. 2004). Retrieved September
28, 2018 from http://www.network-theory.co.uk/docs/gccintro/
80 ISSN 2153-4136 January 2019

https://www.gnu.org/software/autoconf/autoconf.html
https://www.gnu.org/software/autoconf/manual/index.html
https://www.gnu.org/software/autoconf/manual/index.html
https://www.gnu.org/software/make/
https://www.gnu.org/prep/standards/
https://socns.org/
http://www.network-theory.co.uk/docs/gccintro/
https://hpc-carpentry.github.io/about
http://www.sns.ias.edu/pitp2/index2009final.html
http://www.sns.ias.edu/pitp2/index2009final.html
https://cmake.org/
https://cmake.org/
http://www.pathname.com/fhs/pub/fhs-2.3.pdf
http://www.pathname.com/fhs/pub/fhs-2.3.pdf
https://doi.org/10.1109/MCSE.2006.122
https://doi.org/10.1109/99.503313
https://doi.org/10.1109/99.503313
https://doi.org/10.1109/99.503313

