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ABSTRACT 
There is a growing need to provide intermediate programming 
classes to STEM students early in their undergraduate careers. 
These efforts face significant challenges due to the varied 
computing skill-sets of learners, requirements of degree programs, 
and the absence of a common programming standard. Instructional 
scaffolding and active learning methods that use Python offer 
avenues to support students with varied learning needs. Here, we 
report on quantitative and qualitative outcomes from three distinct 
models of programming education that (i) connect coding to hands-
on “maker” activities; (ii) incremental learning of computational 
thinking elements through guided exercises that use Jupyter 
Notebooks;	and (iii) problem-based learning with step-wise code 
fragments leading to algorithmic implementation. Performance in 
class activities, capstone projects, in-person interviews, and 
participant surveys informed us about the effectiveness of these 
approaches on student learning. We find that students with previous 
coding experience were able to rely on broader skills and grasp 
concepts faster than students who recently attended an introductory 
programming session. We find that, while makerspace activities 
were engaging and explained basic programming concepts, they 

lost their appeal in complex programming scenarios. Students 
grasped coding concepts fastest using the Jupyter notebooks, while 
the problem-based learning approach was best at having students 
understand the core problem and create inventive means to address 
them.  
CCS CONCEPTS 
• Social and professional topics → Computing education programs; 
Computing literacy; Computational thinking; Informal education; 
K-12 education; • Applied computing → Interactive learning 
environments; 

Keywords 
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1. INTRODUCTION 
Offering incoming (freshman) undergraduates opportunities to 
learn basic computing skills is an idea that is rapidly gaining 
popularity in higher education. Due to the rapid proliferation of 
computing in science, technology, engineering, and mathematics 
(STEM) disciplines, these efforts need to be supplemented with 
intermediate level student training programs as well [6, 7]. Such 
intermediate programming experiences need to provide a solid skill 
foundation in order to help early undergraduates develop 
complexity in programming skills. Proficiency in computer science 
widely differs from student to student, depending on their previous 
experiences with computing. In this paper, we investigate how 
important previous exposure to computing concepts is to 
computing education. While a wide range of programming 
constructs are considered introductory activities, a defined standard 

Permission to make digital or hard copies of all or part of this work for  
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, or 
republish, to post on servers or to redistribute to lists, requires prior specific 
permission and/or a fee. Copyright ©JOCSE, a supported publication of the 
Shodor Education Foundation Inc. 
 
© 2019 Journal of Computational Science Education 
DOI: https://doi.org/10.22369/issn.2153-4136/10/1/10 

Journal of Computational Science Education Volume 10, Issue 1

January 2019 ISSN 2153-4136 61



for intermediate- level proficiency is currently lacking. The Python 
programming language helps address some of these concerns. The 
language has an easy-to-comprehend syntax and can grow in 
complexity to support analysis in numerous STEM disciplines. In 
addition, inexpensive computers, like the Raspberry Pi, open 
possibilities for educators to couple makerspace activities with 
Python programming in the classroom to serve as a scalable 
platform on which students can develop an intermediate-level skill 
set in computing. Informal efforts that use well-reviewed 
pedagogical approaches to education have been found to encourage 
participation in and adoption of computational thinking [3, 13, 23, 
24]. Previous studies have shown that projects connected to greater 
societal impact or include elements of physical creativity are more 
likely to appeal to a broader audience [14, 16]. Using participatory 
technologies such as visualization, modeling, and robotics provide 
a number of opportunities in this space. By combining increasingly 
easy-to-access computing resources with a scaffolded teaching 
approach [10], the barrier to entry can be reduced [4, 20]. Reducing 
this barrier to entry is particularly relevant for informal efforts 
hosted by high performance computing (HPC) centers that support 
users who have a diverse range of research needs and computing 
prowess.  
In this study, we explore different pedagogical approaches that 
utilize these technologies to introduce learners to complex 
programming scenarios suitable for the intermediate level [2, 17, 
19].	 In the subsequent sections of this paper, we present the 
conceptual framework of our program, and describe the methods 
used to evaluate three learning approaches. The paper next 
describes our efforts toward assessing the success and pitfalls of 
these approaches using capstone exercises, interviews and 
evaluations. We finally discuss the lessons learned over the 
previous year and summarize our findings in conclusion. 

2.  EXPERIMENTAL DESIGN 
Instructing groups of students on coding practices who have a 
diverse range of skill sets and educational backgrounds remains a 
challenge in computing education. Scaffolded instruction methods 
offer avenues to support students with varied skill sets [10]. Active 
learning has been shown among high-ability trainees to produce 
significantly higher levels of metacognitive activity than 
procedural training. Here, we compare and contrast the benefits of 
well-reviewed approaches to scaffolded instruction and innovative 
active learning exercises in the context of Python programming 
over a week-long training session. The program’s goals are to (a) 
increase participant engagement (b) develop a participant’s 
understanding of complex computing concepts, and (c) pro- vide 
participants with a learning environment that employs hands-on 
exercises.  

Complex coding projects can overwhelm the new or intermediate 
learner. Such learning is best facilitated in a tiered format where 
information is provided, comprehended, analyzed and employed 
before moving to the next step. Traditional approaches utilize 
handouts for students, presenting the code on the screen, and 
perhaps provide prepared versions of the code. Jupyter Notebooks 
provide interesting avenues in this space, because they provide a 
number of useful features [8]. Unlike traditional applications, these 
notebooks run as interactive web-browser applications that allows 
users to write Python code in cells. The output from the cells is easy 
to access and visualize because of its closeness to the Python code. 
Students can see the output from each portion of code as they are 
writing it. This allows the instructor to keep students engaged 
through exercises that focus on smaller pieces of a complex code 
and demonstrate how the output from each cell combines to form 

the larger program structure. The last advantage of Jupyter 
Notebooks is that, as a web-based effort, these notebooks are 
platform agnostic and can be run on any computer! This attribute 
makes them tremendously portable. A notebook that runs on a 
Raspberry Pi can be ported to run on a supercomputing cluster with 
graphical processing units [15].  
There is a significant body of work describing the importance of 
makerspace activities and problem-solving approaches in informal 
education [22]. Specifically, here we explore three different 
approaches that use Raspberry Pi microcontrollers. We specifically 
report on the following qualitative and quantitative outcomes, 
(1)  connecting coding to sensing and control of the real world 
through hands-on maker activities [14, 16]; (2)  incremental 
learning of computational thinking elements [3, 13, 17, 23, 24] 
through guided exercises using Jupyter Notebooks [8]; and 
(3)  problem-based learning with step-wise code fragments leading 
to a complete implementation of an algorithm in which students are 
presented a “narrative” program and goal, and work through 
converting specific objectives into code to write the program and 
achieve the goal.  

To help ensure student engagement, these approaches used 
exercises in game design using the Raspberry Pi Hardware 
Attached on Top (HAT) sensor platform, image recognition using 
machine learning (ML) [11], and sharing secret messages using 
cryptography respectively. All three approaches included 
structured and unstructured components, handouts for students, and 
a number of advisors (1:4 ratio) available to assist if needed. In 
order to effectively judge the efficacy of each approach, we ensured 
that the exercises in these approaches did not build on each other. 
To avoid biases due to familiarity with an instructor, each approach 
was taught on a separate day by a different instructor (2 males and 
1 female). Participants were informed of the nature of activities and 
approaches only on the day of the activity. This ensured that the 
participants were exposed to these learning activities for the first 
time on the day of the camp, and helped reduce artifacts arising 
from the participants having previous knowledge of these activities.  
In order to create an early undergraduate environment that 
comprises of intermediate-level learners, we recruited a cohort of 
23 participants who had recently graduated from high school or 
would do so in the near future. 7 of these 23 students were female. 
In all, 13 of these 23 students be- longed to groups that are 
traditionally underrepresented in computing. Recruiting was 
performed using social media, emails to listservers, our website and 
contacts at local school districts. Participant applications were 
managed via our website. As part of their applications, applicants 
were asked to completed a pre-training evaluation in the form of 
Likert Scale and open-ended questions. These questions helped 
establish the participant’s familiarity with Python, programming, 
Linux and Raspberry Pi computers. Thanks to the exciting nature 
of offered projects, we received a number of applications from 
well-qualified participants. Selection to the training program was 
merit-based. All participants had basic Python programming skills 
defined by the ability to write scripts that employed loop constructs, 
had earned a GPA of above 3.5, and were interested in attending 
college. The participants also had some experience with the Linux 
operating system and text editors. The students belonged to two 
distinct learning groups. The first group of 12 students were self-
identified intermediate-level Python learners. The second group 
included 11 learners who had participated in our introductory 
Python programming course 2 months prior to this exercise. For the 
purpose of brevity, these cohorts of participants are henceforth 
referred to as Group 1 and Group 2, respectively, in the remainder 
of this manuscript.  
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3. PEDAGOGICAL APPROACHES 
Each participant received a Raspberry Pi that was preloaded with 
the Raspbian operating system, a Debian-based distribution of 
Linux. To ensure that all participants had a set of common Python 
programming skills, they were provided with the training material 
from our introductory programming camp. These materials 
contained information about introductory Python programming 
practices, the Linux operating system, GitHub, and the Gedit text 
editor. Trainees who had previously participated in our 
introductory camp program were taught using this material. 
Introductory computing skills were reviewed on the first day of the 
camp. Each slide in the lesson contained a small activity to allow 
for immediate application of the respective topic. To synthesize 
knowledge gained in the lesson, the students were tasked with their 
first maker activity; they performed variable assignments, basic 
arithmetic operations, and console output. The students created 
both string and integer variables to store numerical values. The 
purpose of these tasks was to teach students to explore through 
individual trial and error what actions could be executed on which 
data type. On completion of the first day, all students were able to 
successfully demonstrate the use of algorithms and loops in a 
review exercise. Surveys and in-person interviews further 
supported that all students were at a similar learning level after the 
first day’s reviews. A brief description of the activities during the 
training exercises are provided in the Reproducibility Appendix in 
the order in which they were taught. Owing to the complexity of 
the topics covered, measures were taken to reduce the complexity 
of the problem set. Sessions included the use of PowerPoint slides 
for instruction and students received handouts containing pertinent 
information and review exercises. Instructors and their assistants 
were provided with handouts that included more details about the 
exercises along with possible solution sets. 

3.1 Maker Spaces With Raspberry Pi HATs 
Raspberry Pi computers have been successfully coupled with 
sensors to create a wide range of makerspace activities. While a 
wide variety of inexpensive discrete sensors and actuators, such as 
sound-buzzers, LEDs, and touch sensors are available, the 
integrated Raspberry Pi HAT sensor platform was used for these 
activities. The Pi HAT combines discrete components nicely into a 
portable and usable package. This platform provided participants 
with numerous common utilities including an LED display. The 
maker activities in this section had the trainees explore 
cybersecurity and gaming scenarios that used the Pi HAT to present 
a visual output on the LED display. The lesson began with an 
introduction to basic programming concepts, such as variable 
nomenclature, basic operators, and basic data types. The intention 
was to develop an intuition for translating common language 
commands into Python. The next segment began with an 
introduction to the Python list, list operations, comparison 
operators, user input, classes, and scripts. Students employed Git 
repositories to exercise version control during these activities. It 
followed the structure of the previous segment, with miniature 
activities on each slide and a maker activity recursively 
consolidating the segment information. Students were provided 
with a slide showing parts of the program. New concepts were 
highlighted as they were discussed during the session. The lesson 
continued as such, with each segment scaling up in difficulty and 
building on previously-learned concepts, as per a scaffolded 
instruction approach.  
The students completed two key activities during this session. In 
the first exercise, they sequentially controlled the light pat- tern on 
an RGB LED. For the second exercise, the students created a Pi-
stacking game on the Pi HAT that required players to stack colored 

tiles on top of each other. Student’s engagement with maker 
activities throughout the lesson pro- vided opportunities for the 
instructor to manage the varied skill levels with extra focus given 
when needed. Successful completion of the coding exercises was 
used as a metric of student success. 

3.2 Jupyter Notebooks in Machine Learning 
During this session, we described a series of hands-on activities that 
introduced the participants to aspects of machine learning on the 
widely-used Keras and TensorFlow software [1, 5]. Participants 
were provided with an install script that automated most of the 
process to reduce the complications arising from having to install 
these software and their associated libraries. Students were first 
introduced to concepts in machine learning. They were taught how 
machine learning uses labels to categorize the subjects in images 
and how it predicts the subject in an image file based on what it 
learns from a training data set. Topics covered during this session 
included the need for training using established and respected data 
sets, emphasizing the need for higher levels of accuracy in terms of 
training and complexity of models, and finally envisioning 
scenarios where machine learning will make incorrect predictions. 
The introductory session was followed by interactive hands-on 
activities that introduced these learners to various aspects of ML. 
These included (i) using a training database to teach ML systems to 
recognize hand-drawn numbers in an image, (ii) accurately 
predicting the kind of flower seen in an image, (iii) improving the 
predictive ability of exercise by using convoluted neural networks, 
and (iv) identifying the objects in a given image downloaded from 
the internet [9]. As students worked through these exercises, they 
employed the popular MNIST and ImageNet data sets to explore 
logical regression models, transfer learning, Python imaging 
libraries and the scikit learning libraries [12, 18]. Hand-drawn 
images for these activities were created using the GIMP software. 
On completion of these activities, students were able to leverage 
existing modules to solve a real-world machine learning problem 
with a small training data set and computing constraints. Once 
again, student success was evaluated based on their ability to 
complete the session’s hands-on activities. As a capstone, each 
student created two trained platforms. The first platform identified 
hand-drawn numbers in the range of 0 to 9, and the second platform 
classified images. Since Jupyter Notebooks were used, additional, 
more periodic metrics could be used to evaluate student 
performance. These metrics include qualitative evaluations of the 
student’s use of programming concepts to manipulate training data 
sets and images. In our exercises, students came up with different 
ways to confuse the algorithm. One case was of particular interest: 
a trainee from Group 2 drew upon concepts from programming 
sessions to create an image distorted with static to understand how 
the ML programs would react to this data.  

3.3 Real World Problem Solving Exercises in 
Cryptography  
During the cryptography session, the instructor first presented the 
importance of cryptography in computer security. During this 
session, the emphasis was placed on discussing a relevant real- 
world problem and identifying approaches to solve it. Unlike the 
previous activities, these problems could be solved by 
implementing a number of different approaches. Much time was 
spent discussing the fundamentals of modern cryptography: 
modular arithmetic and one-way functions. Computationally 
difficult functions such as discrete logarithms and the prime 
factorization problem are not typically covered in introductory 
courses, so these concepts are worth spending more time on to 
ensure the students have a strong understanding of the underlying 
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complexity of cryptography. Additionally, the session on 
cryptography provides an opportunity to talk about how brute force 
solutions to problems are often computation- ally infeasible and 
require the problem set be compressed, a common issue in high 
performance computing. To apply the material, the instructor 
presented the Diffie-Hellman Key Exchange algorithm, an 
accessible example of cryptographic concepts. As part of 
evaluating the effectiveness of this approach, three exercises were 
completed during this activity. Each progressive exercise would 
have more possible solutions. The trainees perform an encryption 
exercise followed by a decryption exercise.  
The session was followed by a capstone exercise where students 
were challenged to decrypt the communications of others in the 
class. To demonstrate how it is critical to encrypt secure 
communications over non-secure lines, all messages, including key 
exchange negotiations, were broadcasted to the entire room. The 
students were given examples of the Diffie-Hellman algorithm 
implemented in Python. The intended recipient should be able to 
successfully decrypt the message, while unintended recipients will 
find it computation- ally infeasible. After this exercise, the students 
were able to describe the need for cryptography and apply their 
knowledge of modular arithmetic to computing problems. 

4. EVALUATIONS, SURVEYS AND 
ASSESSMENTS 
The program and the activities in the program were evaluated using 
a variety of approaches. Data collected as part of the registration 
process helped identify the participant’s base line skills. As 
described in previous sections, development of competencies is 
gauged by the student’s ability to complete in-class exercises and 
activities. To test competency on a topic, students were asked to 
complete in-class exercises. As described in the previous section, 
each of the three Python sessions included capstone projects that 
required the students to apply the knowledge gained from the 
session. Finally, surveys were completed by students at the end of 
the camp. These surveys asked questions about the activities taught 
during the camp. The survey consisted of questions that asked 
students to rate activities based on a Likert scale. The survey also 
included a number of open- ended questions that gave participants 
an opportunity to include additional details about the exercises. To 
compensate for the limited size of the sample group, surveys were 
augmented with data from in-person interviews and student 
performance in activities. Some of the open-ended questions in our 
post-program survey were:  

1. How did you learn about this camp?  
2. Why did you register for this camp?  
3. What are the difficulties that you faced in this camp?  
4. What do you think are the strengths of this camp?  
5. What specific content/concepts in the camp were particularly 

challenging for you?  
6. What specific content/concepts in the camp were particularly 

easy for you?  
7. How do you plan on using what you learn in this camp? 
8. Who would you recommend the camp to?  
Essay-style questions that allowed campers to explain their 
perceptions of the camp sessions were:  
Please add any additional comments and details about topics that 
you felt were easy or difficult to learn. What was the most enjoyable 
aspect of a given session? What else you would like to have learned 
during these sessions?  
(a) Linux review session  
(b) Python review session  

(c) Coding Games 
(d) Artificial Intelligence activities  
(e) Secret sharing activities  
(f) Virtual Reality activities  
The Likert Scale (1-5 scale) questions were:  
1. How easy was the course for you?  
2. How satisfied are you with the camp?  

3. Please rate your proficiency in Python before attending the 
Intermediate camp.  

4. Please rate your proficiency in Python after the Intermediate 
camp.  

5. How likely are you to recommend the camp to others?  

6. Please rate how likely you are to tell your teachers about this 
camp.  

7. Please rate how likely you are to participate in conferences, 
science fairs, or other STEM programs in the coming school 
year?  

These surveys provide us a rationale for why people are attending 
our classes and help with the recruiting efforts. Post-program 
surveys will be administered at the 6-month and 1-year 
anniversaries of the program. We will use these data to build a 
quantitative model  that includes a longitudinal aspect. We are 
particularly interested in understanding how the participants used 
these skills in future efforts. We hope to develop a profile of the 
kind of students or groups that are most likely to participate in 
intermediate programing efforts. In the future, we will partner with 
research groups on campus for an Internal Review Board (IRB) 
approved study to investigate whether participants in these 
programs are able to meet the stated learning objectives as well. 

5. RESULTS AND CONCLUSIONS 
All participants completed the week-long program. An important 
consideration while evaluating these data is that these students had 
self-selected themselves to participate in intermediate computing 
exercises. Our data indicates that the choice of instructors did not 
impact student learning in the three models. Each approach and the 
associated exercises were appropriate for an intermediate program 
(90%), and were found to be equally engaging (80% or higher). 
Based on the performance of capstone (and review) exercises, we 
find that students who had been exposed to computing a year or 
more ago (Group 1) were better prepared for the program as 
compared to students who had recently participated in an 
introductory-level programming camp (Group 2). There was no 
discernible difference in the academic prowess of these two groups 
of participants. We assume that students who have had previous 
exposure to computational thinking would have had more time to 
synthesize new ideas and develop an understanding of the concepts. 
Another possible rationale for this observation is that, as self-
described learners, Group 1 participants have learnt additional 
coding and computing concepts that were not taught to Group 2 
participants during the introductory camp. Some of the major 
finding from these the approaches are:  

Maker Spaces With Raspberry Pi HATs. While these activities 
scored highly in terms of processing ideas and taking ownership of 
ideas, the activities required the students to demonstrate Python 
programming skills. Students who had not previously developed 
these skills struggled in exercises that applied them to specific 
problems (30%).  
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Jupyter Notebooks in Machine Learning. Participating students 
were successfully able to manipulate the Jupyter Note- books to 
change training sets (100%), images (100%), and the number of 
epochs (100%). While all students could per- form the exercises, 
the conceptual underpinnings on ML were unclear to some (40%). 
Understanding of ML concepts was demonstrated by students 
working to confuse the model by finding images outside of the 
training data set (30%).  

Problem Solving Exercises in Cryptography. Students appreciated 
that this approach connected to real world problems. The 
interactive nature of this session provided students opportunities to 
develop hypotheses to solve problems, and validate them (100%). 
In these exercises, students had the freedom to select one of many 
approaches to solve the problem at hand. Instructors were available 
to provide assistance, but did not direct the students. The data 
shows that the trainees found this approach to be more challenging 
in scenarios where there were a large number of possible solutions 
to solving a problem (80%). As such, this approach is perhaps better 
suited where students can directly apply the gained knowledge to 
solving a problem. Throughout this experience, we have found that 
teaching students new computing concepts, such as navigating a 
Linux environment, using the command line, and writing code, is 
more productive when done through an interactive format rather 
than using a lecture format that is interspersed with a few activities. 
With an interactive format, students are more motivated to follow 
along with the instructor and other students by participating in the 
activities. The various ways in which the problem could be solved 
increased the complexity of this approach for a number of students 
(80%). In agreement with existing literature, our data indicate that 
students with varying degrees of programming are best suited with 
scaffolded learning approaches like Jupyter Notebooks for 
application specific training. A problem-solving approach, though 
slower, encourages greater interactions and deeper learning of the 
subject matter. The makerspace activities provided the least amount 
of scaffolding and were less successful than their counterparts at 
incorporating increased levels of complexity in programming. 
Throughout the exercise, we find that, while the scaffolded 
elements allowed students to complete exercises, the lower learning 
gains indicate that it is best suited for complex topics where a single 
approach is attempted. The strategies described in this work were 
found to be effective for a group of intermediate learners and can 
be adopted in undergraduate curricula. Taken together, these 
strategies can help attract students to become the next generation of 
computer scientists, especially from groups that are currently 
underrepresented in the field.  

6. SUSTAINABILITY & LESSONS 
LEARNED 
The training program was designed with sustainability in mind. 
Student training in computing is a critical area where demand 
currently outweighs supply. Post-training surveys indicate that the 
program’s format was well received by the community of students. 
Data from this training pro- gram shows that intermediate-level 
coding can be effectively combined with a number of fun activities 
that engage early undergraduate students and encourage them to 
participate in computer science. The largest challenges lie in 
presenting programming concepts at a level that can be 
comprehended and learnt by a diverse set of students. While 
certificates of attendance were provided to the participants, we are 
looking into making these efforts “transcriptable” so that employers 
can recognize them. While pre-training assessments were per- 
formed, in future iterations, we hope to assess student skills and 
competencies both pre- and post-program using evaluation scheme 

in the style of Student Assessment of Learning Gains (SALG) [21]. 
Representative samples of students and their parents will be 
interviewed. Some of the topics will include their experience in the 
camp, motivation to pursue careers in computing, STEM, and 
cybersecurity and ways to refine the offerings. The seemingly vast 
availability of Python teaching tools and the low cost of computing 
plat- forms makes the effort inherently sustainable. An abundance 
of free tutorials, educational makerspace coding activities, and 
intuitive Python interpreters have helped reduce the amount of 
programming that a user had to know prior to using large-scale 
computing or HPC resources. These approaches present exciting 
opportunities to engage students in programming, a critical step, to 
get them to learn and contribute to computing efforts.  

7. SUPPORTING INFORMATION 
All training materials developed by Texas A&M High Performance 
Research Computing (HPRC) are available for download free-of-
charge on the Texas A&M HPRC website. Future adoptees can 
access the material at https://hprc.tamu.edu/training. Surveys, 
machine learning installation scripts, and a Linux review exercise 
are included as part of the Reproducibility Appendix. Agendas, 
registrations forms, sample announcements, templates to track 
participants, Trello event-boards and other such materials will be 
made available by the authors upon request. Please send us 
feedback about your adoption experience to help@hprc.tamu.edu.  
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