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Purpose of the Journal 
It is with great pleasure that we release the first issue of the 
Journal of Computational Science Education.  The journal is 
intended as an outlet for those teaching or learning computational 
science to share their best practices and experiences with the 
community.  Included are examples of programs and exercises 
that have been used effectively in the classroom to teach 
computational science concepts and practices, assessments of the 
impact of computational science education on learning outcomes 
in science and engineering fields, and the experiences of students 
who have completed significant computational science projects.  
With a peer-reviewed journal, we hope to provide a compendium 
of the best practices in computational science education along 
with links to shareable educational materials and assessments. 

Inaugural Issue 
In this issue, we have a variety of articles that reflect the breadth 
of practices in the developing interdisciplinary computational 
science field.  The articles by Parker and Shafii-Mousavi and 
Kochanowski provide two views of mathematics education using 
computational science.  Parker describes the application of 
Computational Algebraic Geometry algorithms to teach both the 
mathematics and application of mathematics to problems in 
science and social science.  Shafii-Mousavi and Kochanowski 
show how using Excel to address a range of service learning 
projects can be successful in teaching mathematical concepts and 
engaging students while they apply mathematics to practical 
problems.   

The article by Smith et.al. provides an application of 
computational science  to the high school curriculum to help 
chemistry students visualize the chemical structure of the 
ingredients in energy drinks and compare them to fluorescent 
chemicals. 

The article by Sendlinger and Metz describes an overview of a 
series of workshops on computational chemistry and the materials 
assembled to assist faculty with introducing computational 
methods in their classrooms. 

Shiflet and Shiflet present two modules that involve high 
performance computing and their application to two biological 
modeling questions across three different classes. The module 
concepts, as well as impacts of the materials on student 
understanding of both the scientific applications, mathematics, 
and algorithms applied to the models are discussed.  
Finally, the two student articles provide their perspectives on the 
application of computational science to two very different 
problems.  They describe the results of their projects along with 
reflections of its impacts on their learning and advice for future 
students and their mentors. 
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Computational Algebraic Geometry as a Computational
Science Elective

Adam E. Parker
Department of Mathematics and Computer Science

Wittenberg University
P.O. Box 720

Springfield, OH 45501
aparker@wittenberg.edu

ABSTRACT
This paper presents a new mathematics elective for an un-
dergraduate Computational Science program. Algebraic Ge-
ometry is a theoretical area of mathematics with a long
history, often highlighted by extreme abstraction and dif-
ficulty. This changed in the 1960’s when Bruno Buchberger
created an algorithm that allowed Algebraic Geometers to
compute examples for many of their theoretical results and
gave birth to a subfield called Computational Algebraic Ge-
ometry (CAG). Moreover, it introduced many rich applica-
tions to biology, chemistry, economics, robotics, recreational
mathematics, etc. Computational Algebraic Geometry is
usually taught at the graduate or advanced undergraduate
level. However, with a bit of work, it can be an extremely
valuable course to a sophomore student with linear algebra
experience. This manuscript describes Math 380: Computa-
tional Algebraic Geometry and shows the usefulness of the
class as an elective to a Computational Science program. In
addition, a module that gives students a high-level introduc-
tion to this valuable computational method was constructed
for our Introductory Computational Science course.

Keywords: Gröbner Bases, Computational Science, Course
content, Tools for teaching, Methods of instruction.

1. INTRODUCTION
In 2003 Wittenberg University created a Computational Sci-
ence minor. This interdiciplinary minor, as with many Com-
putational Science programs, lies at the intersection of math-
ematics, computer science, and the natural sciences (broadly
defined). The goal is the application of computer technol-
ogy to improve the understanding about the world around
us. Indeed, much of the success of Wittenberg’s Compu-
tational Science program has been in using computational
software (such as Mathematica, Autodesk Maya 2008, Spar-
tan ’06, Excel, etc.) to construct and solve models in the
natural and social sciences. Up to this point, all of the upper

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright c© JOCSE, a supported publication of
the Shodor Education Foundation Inc.

level electives for our minor had been housed in natural or
social science departments.

The following course grew from a desire to provide a Compu-
tational Science elective in mathematics with the following
properties.

• This course must have few prerequisites. We don’t
want to exclude students for lack of advanced mathe-
matical experience.

• This course must not be a “black box”. We want the
student to truly understand the algorithms that are
being implemented in a computational program and
how they work.

• This course should address a modern technique. We
want to show that new mathematics can be approach-
able to undergraduates, with the hope of exciting them
about the field.

• This course should involve an in-depth mathematical
study of a computational technique. We would want
to develop the algorithm from first principles, prove
theorems, and study consequences of the technique.

• This course must have theoretical (in addition to ap-
plied) connections to mathematics itself. In our com-
putational science program, students rarely see how
the computational skills, both symbolic and numeric,
can advance abstract mathematics.

• This course should be platform independent. We don’t
want the student to learn a software package, but rather
a process.

• This course absolutely must have extensive and mean-
ingful applications to the sciences - hopefully to several
distinct fields. After all, this is the essence of compu-
tational science.

A CAG course was chosen because it satisfies all of these cri-
teria. For example, while CAG is an active area of research
in both mathematics and computer science, it can be taught
to any student with a prior introductory course in Linear Al-
gebra, hence we can keep the prerequisites at a sophomore
level. It satisfied the desire for a contemporary topic since
CAG deals with an algorithm developed in the 1960’s. The
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algorithm is implemented on every major Computer Algebra
System (CAS) so it is essentially platform independent.

But most importantly, this algorithm has major applications
across the curriculum. At its heart, CAG deals with solving
systems of polynomial equations, and as noted in the AMS
review of [18], “A classic problem in mathematics is solv-
ing systems of polynomial equations in several unknowns.
Today, polynomial models are ubiquitous and widely used
across the sciences. They arise in robotics, coding theory,
optimization, mathematical biology, computer vision, game
theory, statistics, and numerous other areas.” Indeed project
topics in this course ranged across this spectrum.

This paper shows how the Computational Algebraic Geom-
etry course was created. We begin with a quick overview of
what CAG is. We then discuss the prerequisites and orga-
nization of the course. Next we examine the computational
software that is utilized and describe the projects that stu-
dents completed, one of which resulted in a publication for
a student.

The rest of the paper concerns benefits and challenges of the
course. It is our hope to show that this class can be a valu-
able elective for a Computational Science curriculum, and
a useful module for a Computational Models or Algorithms
class.

2. THE COMPUTATIONAL ALGEBRAIC
GEOMETRY COURSE

2.1 Overview of Computational Algebraic
Geometry

While algebraic geometry can be difficult and abstract, at
its core it is merely concerned with solving systems of poly-
nomial equations. The problem of simultaneously solving a
system of polynomial equations is ubiquitous in mathemat-
ics. Undoubtedly our linear algebra students learned how
to solve a system of linear equations using a method such
as Gaussian Elimination or Cramer’s Rule. In a more ad-
vanced class they may have learned some helpful techniques
for solving a system of polynomials of arbitrary degree in
one variable such as finding a greatest common divisor (gcd)
using the Euclidean Algorithm or by computing a resultant.

These methods are classical, going back hundreds of years.
However it wasn’t until the 1960’s that Bruno Buchberger
came up with a generalization that took the “arbitrary num-
ber of variables” from Gaussian Elimination and the “arbi-
trary degree” from the Euclidean Algorithm and combined
them into one powerful method called (predictably) Buch-
berger’s Algorithm. Learning this algorithm was an essential
part of the course.

The idea is that we start with a system of s polynomials
in n variables with coefficients in a field K. We’ll call it
{f1, . . . , fs} ⊆ K[x1, . . . , xn]. By running Buchberger’s al-
gorithm one finds a different set of polynomials {g1, . . . , gt} ⊆
K[x1, . . . , xn] with many nice properties. Two of the most
essential are:

• The new set of polynomials must have an identical
set of common zeros as the original polynomials (more

specifically, they generate the same ideals in
K[x1, . . . , xn]).

• The new set of polynomials should (hopefully) be eas-
ier to solve than the original.

This new set of polynomials is called (not so predictably) a
Groebner Basis for {f1, . . . , fs} after Buchberger’s advisor,
Wolfgang Gröbner (we’ve anglicized the spelling).

As implied above, a Groebner Basis can be defined over any
field K, and indeed in this class we mathematically defined a
field and gave many examples of them. However, in practice
the course only dealt with when K was R or C. The R case
was useful when we were graphing examples and we would
use C when we needed to completely factor our polynomials.

As a simple example, suppose that you wanted to find the
intersection of a circle (x2 + y2 − 1

4
= 0) and a figure eight

((x2 + y2)2 − x2 + y2 = 0) which comes down to simul-
taneously solving both of these equations. It is tedious to
substitute and solve (and you could imagine that more com-
plicated examples make this difficult.) However, if we run
Buchberger’s algorithm, we find a Groebner basis for the
above system is {32y2 − 3 = 0, 32x2 − 5 = 0} and from
this we can immediately find the four intersecting points are

(±
q

5
32

,±
q

3
32

). (See Figure 1). For details on the actual

algorithm, please see the excellent text [4].
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Figure 1: The Four Points of Intersection

Pertinent to this paper is the fact that this method is com-
putationally intensive, though the algorithm itself is simple.
All the major CAS such as Mathematica and Maple (and
many others) contain Groebner Basis solvers, and several
free software packages such as SAGE, Macaulay2, Groebn-
erFan are available on every platform. Wolfram’s Alpha web
site will compute Groebner Bases via the internet. This par-
ticular course utilized Mathematica, though some students
downloaded SAGE or GroebnerFan onto their personal com-
puters.

In 2008, Bruno Buchberger won the Association for Comput-
ing Machinary Paris Kanellakis Theory and Practice Award,
which is awarded for theoretical advances in computer sci-
ence that significantly affect the field. The award announce-
ment states, “ACM (the Association for Computing Machin-
ery) has recognized Bruno Buchberger, a professor at Jo-
hannes Kepler University in Linz, Austria, for his role in
developing the theory of Groebner Bases, which has become
a crucial building block to computer algebra, and is widely
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used in science, engineering, and computer science. Buch-
berger’s work has resulted in automated problem-solving
tools to address challenges in robotics, computer-aided de-
sign, systems design, and modeling biological systems”. [2].

This announcement proved to the students that this was
a truly important method that had “significantly” changed
computer science as well as multiple other fields. It also
showed this was modern mathematics as compared to some
of the classical techniques they are familiar with from Com-
putational Science (such as Euler’s method for Differential
Equations or Lagrange Multipliers for Optimization).

2.2 Background of Students
Wittenberg University is a school of approximately 2000 un-
dergraduate students with no graduate program in the sci-
ences. We graduate approximately 14 math majors a year,
4 computer science majors, and 7 computational science mi-
nors. A similar course to ours is taught at many schools,
but typically geared solely to mathematics majors, and of-
ten requires a modern algebra course and / or a course in
programming. However, in an attempt to attract a broad
audience to the Wittenberg course, the only prerequisite
was a sophomore level linear algebra class. This was chosen
since Buchberger’s Algorithm is a generalization of some lin-
ear algebra algorithms presented in that class and a passing
knowledge of linear combinations and independence is help-
ful. No knowledge of programming, Mathematica, proofs,
etc. was required. This version of the course was an elective
for both the math major and the computational science mi-
nor, hence fewer prerequisites. Thirteen students enrolled
in the class, six of which were women. One faculty member
sat in regularly.

2.3 Course Process
First offered in the spring of 2008, The course covered the
first three chapters of the highly-recommended text Ideals,
Varieties, and Algorithms by Cox, Little, and O’Shea [4].
Topics covered included:

• Basic definitions, such as ideal, variety, parametriza-
tion, generators, etc.

• Basic ideal theory.

• A review of polynomials in one variable and the GCD
of a set of polynomials.

• Monomial orderings and monomial ideals.

• A division algorithm in K[x1, . . . , xn] (i.e. a division
algorithm for several polynomials with each in multiple
variables).

• Hilbert’s Basis Theorem, Groebner Basis, Buchberger’s
Algorithm.

• Applications - Ideal membership, solving equations,
elimination of variables, singular points, etc.

The first nine weeks of the semester consisted of three, hour-
long lectures a week. In the classroom, there was one in-
structor computer with a projector, but no student comput-
ers. Mathematica was illustrated in the daily lectures but

at this point much of the material lent itself to standard
blackboard lectures. Relevant Mathematica examples were
posted on the web. Weekly assignments, all which required
Mathematica for either numerical calculations (usually for
graphing) or symbolic computation (usually for polynomial
manipulation), were collected and graded. Most computers
on campus have Mathematica installed, and our site-license
allows for students to install copies on their personal com-
puters.

After we had covered Buchberger’s Algorithm, the students
chose project topics. The last six weeks of classes switched
to two lectures a week and a one-hour lab which was held in
a room with student computers so that students could work
on their projects. There were two hour-long exams and a
final. All exams consisted of an in-class portion (where all
computation needed to be done by hand) as well as a take-
home portion that required use of a computer.

2.4 Technology
While every calculation in the course could conceivably be
done by hand, Mathematica was an essential part of the
course. Not only did it save time and prevent algebra mis-
takes, it was also extremely valuable in plotting the curves
and surfaces. Commonly used commands were:

• Plot, ContourPlot, ContourPlot3D, Manipulate,

ParametricPlot, ParametricPlot3D for visualization.

• PolynomialReduce, PolynomialGCD, PolynomialQuo-

tientRemainder for long division of polynomials.

• GroebnerBasis for the implementation of Buchberger’s
algorithm.

In Mathematica, computing the example of a circle and
figure-eight is done in the following way:

GroebnerBasis[{x2 + y2 − 1

4
, (x2 + y2)2 − x2 + y2}, {x, y}]

which returns {−3 + 32y2,−5 + 32x2}.

The text has an Appendix on the GroebnerBasis imple-
mentations in AXIOM, CoCoA, Macaulay2, Magma, Maple,
Mathematica, and SINGULAR so the text can be used with
a wide variety of software packages.

2.5 Projects
Every student needed to complete an in-depth project which
either looked at the applications to Groebner Basis to an-
other field or examined a theoretical topic that we didn’t
cover in the course. Before choosing their topics, I took one
class and discussed in generalities some possible projects,
though it was clear that students were free to pick any topic
they wanted. There were several intermediate deadlines de-
signed to keep the projects on track to finish on time. Stu-
dents worked in pairs, and had to create both a poster and
a paper. The posters were presented at a class “open house”
where other faculty and students attended. We did run into
computational limitations with some of the projects, usually
concerning memory. All students were able to complete at
least modified versions of their stated projects. Since run-
ning the course in the spring of 2008, Wittenberg has placed
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Mathematica on their computing cluster, which will be valu-
able in future iterations of the course.

Below is a short description of the projects from the course,
as well as a (very) short bibliography for additional reading,
hopefully showing the breadth of applications. Computation
entered into these projects in a variety of ways, though typ-
ically the students created a model using polynomial equa-
tions, and then computed a Groebner Basis for that system.
They had to “solve” the model by extracting the relevant
information from that Groebner Basis.

2.5.1 Theoretical Projects
A Walk with Groebner A Groebner Basis is not unique,
but rather depends on a choice called the “monomial order-
ing”. It turns out that an interesting project is determining
which “monomial orderings” give the same Groebner basis
and which give distinct ones. This partitions the space of
all monomial orderings into a so-called Groebner Fan.

The run-time of the algorithm depends heavily on this choice
of ordering. It turns out that it may be faster to compute the
Groebner Basis for a “fast” monomial ordering and convert
that Groebner Basis to a second basis associated to a “slow”
ordering than to just compute the basis with the “slow” or-
dering at the outset. The algorithm involves creating a path
in the space of all monomial orderings that starts at the cur-
rent ordering and ends at the desired ordering. When trav-
eling along the path and you cross a wall in the Groebner
Fan, the Groebner Basis will change. Keeping track of these
changes will convert the original Groebner Basis to the new
one. This algorithm for converting between bases is called
a Groebner Walk, and is implemented in Mathematica and
other packages. [8] [3] [6].

Solving the Frobenius Problem Using Groebner Bases This
project dealt with a question in number theory called the
Frobenius Problem. It asks if given a set of nonnegative
numbers {a1, a2, . . . , an} with gcd = 1, then what is the
largest nonnegative number that can’t be written as a com-
bination of these numbers with positive coefficients.

For example, consider the set (4, 9). Since gcd(4, 9) = 1, any
number can be written as a combination of 4 and 9 if we al-
low negative coefficients. Obviously small numbers such as
1, 2, 3, 5, 6, etc. can’t be written as a combination with pos-
itive coefficients. The Frobenius problem asks what is the
largest such number (and there always is one). In this case it
is 23. The students that did this project were computer sci-
ence students that implemented the algorithm themselves.
They appreciated seeing how modern techniques were being
used on problems from over 100 years ago. [7] [17].

2.5.2 Biological Applications
Reverse-Engineering Biochemical Networks using
Gröbner Fans The project involved a paper by Lauben-
bacher and Stigler which uses Groebner bases to approxi-
mate the most likely dynamic model of regulatory biochem-
ical networks. This project also required learning about
Groebner Fans as it essentially ranked each of the cells in
the fan, returning the cell with the greatest score. This cell
corresponded to the most likely model. [10].

2.5.3 Chemical Applications
Molecular Modeling with Groebner Bases This pair of stu-

dents dealt with determining potential configurations of rings
of carbon atoms, if we assume that all the bond lengths and
bond angles are the same between adjacent atoms. While
there are multiple ways to model these configurations, we’ll
quickly describe the setup the students used for cyclopen-
tane.

Imagine the five carbon atoms in R3, and assume that the
bond lenghts between adjacent atoms is 1. By rotating the
system, we can assume that the five carbon atoms have co-
ordinates (read off in a clockwise direction):

(0, 0, 0), (l, m, 0), (x, y, z), (a, b, c), (1, 0, 0)

The fact that adjacent atoms are distance 1 away from each
other is encoded by polynomials such as

(l)2 + (m)2 − 1 = 0, (x− l)2 + (y −m)2 + (z)2 − 1 = 0, etc.

The students then forced the angle between any two bonds
to be the same by introducing a new variable t and requiring
the distance between two non-adjacent atoms to be t. It
is clear that if the distance between any two carbons that
have one carbon between them is the same, then the angles
formed by any three carbons is also the same. This fact is
encoded by equations such as

(x)2 +(y)2 +(z)2− t = 0, (a− l)2 +(b−m)2 +z2− t = 0, etc.

By computing a Groebner Basis for these equations, and
finding all real solutions to that system, this pair of stu-
dents was able to prove that any ring of five atoms must
be planar. This technically isn’t true for cyclopentane since
hydrogen atoms force one angle to be a bit different from
the rest. However, as a model it was very successful. Af-
ter, cyclopentane, they moved onto cyclohexane and were
able to isolate the “chair” and “boat” isomers for rings of six
carbons. [11] [5].

2.5.4 Economics Applications
Nash Equilibrium and a ‘Very Simple’ Game of Poker This
project worked through an example from Bernd Sturmfels
text Solving Systems of Polynomial Equations. [18]. In the
project, students used Groebner Bases to recover a 1950
game theoretic- result of John Nash concerning the Three
Person Poker Game. The students calculated the Nash Equi-
librium for the game, giving optimal strategies for the play-
ers. [12] [13].

This project was especially exciting for our Computational
Science program as we are working hard to create connec-
tions between computation and some of the social sciences
such as economics. Showing how Groebner Bases can inter-
act with Game Theory and Algebraic Statistics ([14] [16])
may open many new interdiciplinary connections.

2.5.5 Recreational Applications
Solving N-Colorable Graphs with Groebner Bases While

this may seem like a pure math topic, a wide variety of
puzzles can be rephrased in terms of graph colorings, and
those types of problems can be solved using Groebner Bases.
This group solved problems such as Sudokus, Magic Squares,
Latin Squares, Kakuro puzzles, etc.
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We can see how the model is created from a very simple 3×3
Latin Square. This is a 3 × 3 grid, which we want to fill in
with 1’s, 2’s, and 3’s so that no number is repeated in a row
or column. We start by labeling our entries with variables.

a b c
d e f
g h i

Our model will consist of two types of equations. Domain
equations encode the fact that every entry must be 1, 2 or
3. They look like

(a− 1)(a− 2)(a− 3) = 0, (b− 1)(b− 2)(b− 3) = 0, etc.

It is clear that these polynomials will vanish exactly when
the variables are in the desired domain. Distinctness equa-
tions encode that no entry may be repeated. These are en-
coded by introducing a “dummy” variable (we use x, y and
z here). The equations that force the first row to all be
distinct look like

(a− b)x = 1, (b− c)y = 1, (a− c)z = 1

This is done for every row and column. Notice that these
equations will only have solutions if the entries are unequal.
Otherwise, we get an equation of 0 = 1.

After creating a system of all these equations, a Groebner
Basis is calculated from it. At this point, there are tech-
niques to count the number of solutions to the system, which
in turn gives the number of 3× 3 latin squares [3] [1].

Marshall Zarecky, one of the members of this group, used
these techniques and published a paper in the Proceedings
of the Midstates Conference on Undergraduate Research in
Computer Science and Mathematics (2008). He used Groeb-
ner Bases to find all the solutions to an old Milton Bradley
game “Drive Ya Nuts” and solved Cipra’s Puzzle. [19]. An-
other student that was not in the class but worked on a
summer reserach project with me, published a paper after
writing a Mathematical Program that used Groebner Bases
to solve Ken Ken Puzzles. [9].

3. BENEFITS AND CHALLENGES
Free response questionnaires were given after each test. Upon
the completion of the course, two exit evaluations were also
administered. One was a Quantitative Course Evaluation
sheet, while the other was an open response writing (quali-
tative) evaluation. What follows is taken from these end of
the year evaluations. This isn’t intended as a scientific as-
sessment of the learning in the course, but rather as a metric
of student experience.

3.1 Challenges
Since the prerequisites were set at such a low level, there
was a wide variety of abilities in the class. The course had
Seniors, Juniors, Sophomores and one advanced High school
student (not to mention the one mathematics faculty mem-
ber who was auditing). This can be a huge challenge for
any class. However, since few students had even heard of
an ideal, and no student had ever heard of a Groebner Ba-
sis or Buchberger’s Algorithm, this mitigated much of the
difference in mathematical experience.

There were also large differences in the interests of the stu-
dents (as illustrated by the wide variety of projects). It could
have been a problem to try to satisfy the chemists, the ed-
ucators, the computer science majors, and mathematicians
that were in class. Luckily, this technique has such broad
applications, everyone was able to find a project that per-
tained to their interests.

Almost universally, people felt that this class was hard and
required a lot of work, which certainly is true. Of the 11
qualitative responses n = 9 students commented the course
was hard. This was also see on the 13 quantitative responses
where n = 12 said that the material was either “more” or
“much more” difficult than other courses and n = 11 said
they worked harder on this course than their others. I agree
that the course was challenging and therefore I needed to
overcome some frustrations on the part of the students.

3.2 Benefits
It may appear with so many students finding the course
difficult, that they would dislike it. Quite the opposite was
true. While there were two students that appeared to be dis-
satisfied by the course, by far most students ranked it as an
excellent course and enjoyed the material. On the 13 quanti-
tative responses n = 9 ranked the course at excellent, n = 10
thought the course “demonstrated the importance and sig-
nificance of the subject matter”, and n = 13 responded that
the course frequently “introduced stimulating ideas about
the subject.”

On the qualitative responses, students enjoyed learning“new”
and “modern” mathematics (n = 5) and found the projects
valuable (n = 3). All students that filled out a qualita-
tive evaluation would recommend the course to their peers
(n = 11).

Often “computation” in the context of Computational Sci-
ence refers to numerical methods. Certainly at Wittenberg,
students would have much exposure to numerical computa-
tional techniques. This class had the benefit of including
both numerical and symbolic computation. This may have
been the students’ first experience with symbolic computa-
tion as it related to computational science.

3.2.1 Module For General Computational Science
Students

After the success of this course, the author created a Math-
ematica notebook to serve as a short module for our Com-
putational Models and Methods class. As mentioned above,
this course serves as our Introduction to Computational Sci-
ence. Obviously the module didn’t go into the depth that
the course did, but it did explain how the algorithm can be
used to solve many of the mathematical models that are al-
ready studied in that course. In the module, Groebner Bases
are used to find max/mins using Lagrange Multipliers, solve
equilibrium solutions of linear differential equations, project
onto a subspace for computer graphics, and solve linear pro-
gramming problems, which are all topics covered elsewhere
in the course. This notebook, entitled “A Groebner Basis
Module for Comp 260” can be viewed at CSERD at [15].

We feel that this is a particularly important algorithm to
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highlight since many automated commands in computational
software (for example Solve and NSolve in Mathematica)
utilize Buchberger’s algorithm when called. Showing them
how to use Groebner Bases explicitly makes the program
less of a “black box”. This module is currently being used in
the course.

4. CONCLUSIONS
An undergraduate course in Computational Algebraic Ge-
ometry, while novel and somewhat challenging, has many
benefits.

At the end of the course, each student had the ability to:

• algebraically find the common solutions to an arbitrary
number of polynomials in an arbitrary number of de-
grees {f1, . . . , fr}.

• determine if another polynomial g could be written as
a combination of those fi.

• understanding how these algebraic relationships affected
the corresponding plots and geometry. In particular
they could determine equations for the union, inter-
section, and projection of geometric objects given by
the zeros of polynomials. They could also find singular
points of these objects.

• use these techniques to solve optimization, linear pro-
gramming, equilibrium, etc. problems.

• construct polynomial mathematical models of a variety
of types, and solve them using this technique.

In short, it allows for an in depth study of an extremely
useful algorithm with applications to almost every natural
science. It permits students to walk the line between theo-
retical mathematics and computational science and see how
they each benefited the other. Most importantly, it has an
extremely wide variety of applications which students find
very appealing.
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Using WebMO to Investigate Fluorescence in the 
Ingredients of Energy Drinks 

  
ABSTRACT 
With computers becoming more powerful tools, computational 
modeling can be introduced gradually to secondary students 
allowing them to visualize complex topics and gather data in the 
different scientific fields. In this study, students from four rural 
high schools used computational tools to investigate attributes of 
the ingredients that might cause fluorescence in energy drinks. In 
the activity, students used the computational tools of WebMO to 
model several ingredients in energy drinks and gather data on 
them, such as molecular geometry and ultraviolet-visible 
absorption spectra (UV-Vis spectra). Using the data they 
collected, students analyzed and compared their ingredient 
molecules and then compared them to molecules that are known 
to fluoresce to determine any patterns. After students participated 
in this activity, data from testing suggest they were more aware of 
fluorescence, but not more aware of how to read an UV-Vis 
spectrum. 

Categories and Subject Descriptors   
K.  Computing Mileux, K..3 Computer and Education, K..3.1 
Computers uses in education 
 
General Terms 
Measurement, Performance, Design, Human factor, 
Experimentation, Theory 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Keywords 
Fluorescence, Molecular Geometry, WebMO, Molecular Shape, 
Energy Drink, Computational Science, Education, Chemistry, 
High School, Absorption Spectra, UV/Visible  
 
1.  INTRODUCTION 
Students today have changed greatly in the methods that they use 
to seek and obtain information in their lives. Teachers who are 
aware of this change can adapt their methods to better serve their 
students. These adaptations should enhance students’ educational 
experience and increase their comprehension of the subjects being 
taught. An important difference between students today and those 
in the past is their use of desktop, laptop, netbook, and tablet 
personal computers (PCs). They have become well versed in the 
use of computers for information gathering and entertainment. 
These computers are capable of running programs that can create 
highly accurate simulations and models in chemistry. In an effort 
to determine the impact of computer simulations and 
computational models on student comprehension in chemistry, the 
National Science Foundation (NSF) is funding the Institute for 
Chemistry Literacy through Computational Science (ICLCS), a 
five year program hosted by the University of Illinois at Urbana-
Champaign (S.Sendlinger, personal communication, ICLCS 
workshop 2008). The ICLCS program has given rural chemistry 
teachers from all over the state of Illinois, including over ninety 
school districts, the opportunity to come together and be 
introduced to some computational tools and trained in their use. 
After the training, these teachers were asked to create an “Ice 
Cube,” which is a small unit that could take one to two class 
periods to complete and uses computational tools. The teachers 
were asked to test their “Ice Cubes” in their classes and gauge the 
effectiveness by a pre/post test system as well as qualitative 
observations. The use of computational tools in the classroom is 
believed to help students understand some of the more abstract 
and hard to visualize concepts in chemistry. It does this by giving 
students the ability to manipulate visual models of the conceptual 
aspects of chemistry.  Manipulations in these computational tools 
allow students to “see” and experiment with molecules and their 
behavior in a more concrete way. 
 

The “Ice Cube” used in this study used computational tools to 
introduce fluorescence to the students.  It incorporated real-world 
scenarios, inquiry, research, complicated modeling and molecular 
computations to further the student’s knowledge of this material.  
Students were shown the fluorescence of a common energy drink.  
This started the inquiry process of why this happens.  The students 
researched the ingredients and fluorescence to further their 
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understanding.  The teachers in leading this project introduced the 
computational tool WebMO to help the students further their 
investigation. 
 

2.  METHODS  
2.1  Instructional Design 
This particular “Ice Cube” was envisioned as a part B in a three 
part plan where A is introductory material such as Molecular 
Shape, Bonding, or Orbitals/Energy levels, etc. Part C would be a 
springboard to transition into another area of study using 
information or practices used in the “Ice Cube”.   In this study, to 
gain the attention of the students, they were given the illustration 
of common energy drinks glowing under a black light.  This 
illustration was designed to start the students on an inquiry 
investigation on the topic of fluorescence.  The students were 
encouraged to collect data and hypothesize why some molecules 
fluoresce.  They were guided using positive questioning 
techniques to explore the molecular geometry and the ultraviolet 
visible absorption spectra to collect data that may lead to an 
explanation of what causes this phenomenon.  In each classroom, 
students were split into four teams and investigated two different 
common ingredients including citric acid, vitamin B6, vitamin C, 
caffeine, vitamin B2, glucose, fructose, and vitamin A.   Students 
used WebMO (http://webmo.ncsa.uiuc.edu), a computational 
program that can be used to calculate molecular geometries and 
ultraviolet visible absorption spectra, in addition to many other 
parameters.  The program uses a powerful set of computations run 
on supercomputer-based servers to calculate the geometry, 
spectra, bond energies, and other data after the user inputs the 
basic shape of a molecule. WebMO’s optimized geometry and 
computed UV-Vis spectra of the common ingredients of energy 
drinks were analyzed by students to see if they could find any 
indications that the material might fluoresce. 
 
The total sample of ninety students had similar experiences in 
three of the classrooms, with 24 of the students being in the 
control group.  The Chemistry I students were mainly in tenth 
grade, a few students were in the eleventh and twelfth grades.  
The Anatomy and Physiology class mainly consisted of eleventh 
and twelfth grade students.   These students were first 
administered the pretest with no instruction. The pretest included 
questions on fluorescence, basic chemical symbols, graph reading, 
and emission spectra.  The questions on the pretest and post test 
were:   

1.  Define fluorescence  
2.  What causes fluorescence?     
 
 
3. What does the double line in the figure represent?  

 
  a. double strength bond 
  b. double bond 
  c. two carbon atoms present 
  d. more hydrogen present 
 
 
 

 
 
 

 
 
 
 
 
4. Does the emission spectrum above show visible                 
light? 

a.  Yes 
b. No 
c. Not enough information 

5.  Using the same graph, what energy value has the  
     greatest intensity? 

d.  a. 658.nm 
e.  b. 445 nm 
f.  c. 3.233 
g.  d. 2.227 

The students then completed the “Ice Cube.” Students were 
broken into small groups of two or three and subsequently into 
four different teams. The students were given the Student 
Instruction sheet and Student Datasheet.  Once students were 
broken into teams, they used WebMO to build an ingredient 
molecule from the energy drink using a provided structural 
formula, as in Figure 1.  

 

Figure 1 Citric acid built in WebMO 

Students recorded the UV-Vis spectrum and structure in their data 
sheet. Then students imported a completed, more complex 
ingredient molecule into WebMO from the National Institute for 
Science and Technology‘s Chemistry WebBook website 
(http://webbook.nist.gov/chemistry/) (2008).  The students then 
performed the same processes and recorded their results on the 
data sheet, as in Figure 2 and Figure 3. 
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Figure 2 Vitamin B6 imported and optimized in WebMO 

 

Figure 3 UV-Vis Spectrum of Vitamin B6 

Following these activities, students answered a series of data 
analysis questions to try to determine if there were similarities 
between the two ingredients. The students then compared their 
data to the data of chemicals that were known to fluoresce and 
commented on whether or not they thought their ingredients 
would fluoresce. Finally, the class discussed the possibility of any 
one of these ingredients being the one that caused the fluorescence 
in the energy drink.  The class also discussed why literature on the 
cause of fluorescence in energy drinks seemed to be nonexistent.  
After the “Ice Cube”, thirty-one Chemistry I students and ten 
Anatomy and Physiology students received traditional instruction 
on fluorescence and the emission spectra.  The other twenty-five 
students participating in this “Ice Cube” did not receive traditional 
instruction.  In the end of the lesson, all students took the same 
assessment that was given in the beginning of the “Ice Cube” as 
the post test.  The post test responses indicate that students may 
have greater understanding in these topics. 

2.2  Computational Tools 
After creating the model of the molecule using the editor in 
WebMO (http://webmo.ncsa.uius.edu ), students first ran the 
molecule through a geometry optimization using MOPAC/PM3 
modeling parameters. This step optimized the model into its 
lowest energy state. The students then found the ultraviolet visible 
absorption spectrum using the Hartree-Fock/Other (null) modeling 
parameters, as in Figure 4. 

 

Figure 4 UV-Vis Spectrum for Citric Acid 
 

3.  RESULTS  
The following results, in Table 1 were gained by having sixty-six 
students in three high school Chemistry I classes and one high 
school Anatomy and Physiology class participate in this activity.  
These classes were in three different rural Illinois schools.   Of the 
sixty-six students, all of them took a pretest and post test for the 
activity and had the following results.  The table also compares 
Chemistry I students who did receive traditional instruction after 
the WebMO activity versus the Chemistry I students who did not.  
Twenty-four Chemistry I students acted as a control and were 
given the pretest and post test after traditional instruction only.   
The data in Table 1 shows the overall improvements gained by 
each type of student.    
 

The control group, receiving only traditional instruction, had a 
gain of 0.65 points.  The Anatomy and Physiology group showed 
a gain of 1.7 points after using WebMO.  The Chemistry I 
students with both WebMO ice cube and traditional instruction 
showed a gain of 0.55 points and the Chemistry I students with 
just the ice cube showed a gain of 1.12 points.  The students with 
the WebMO experience also always had a higher post test score 
than the control group. This data shows   that significant gains 
were achieved with the use of WebMO.   When compared to the 
control group with traditional instruction only, it was found that 
the use of WebMO, on average, did have the most gain of 
understanding on the topic of fluorescence.  It was also noted that 
the free response answers on the pretest were more indepth for the 
students who participated in the project and did some research on 
their own.  The students receiving only traditional instruction had 
answers ranging from “no clue” on the pretest to “emission of a 
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photon” when asked to define fluorescence.  Although the final 
answer is a component of the correct answer, it was not a 
complete answer.  

Table 1 Pre/Post Test Results 

Classes Pretest average 
score out of 5 

Posttest average 
test score out of 5 

Anatomy and 
Physiology  
 
 10 students 

1.8 3.5 

Chemistry I   students 
with traditional 
instruction 
 
31 students (2 classes) 

2.85 3.4 

Chemistry I students 
without traditional 
instruction 
 
25 students 

2.08 3.2 

Chemistry I students 
with only traditional 
instruction 
 
24 students 

1.25 1.9 

All students in the classes tested made improvements from their 
pretest to the post test scores, which may indicate an increased 
understanding of what fluorescence is and how it works. Students’ 
answers on the short answer part of the assessment became more 
in depth and comprehensive.  On the pretest, examples of their 
answers  to the question “Define fluorescence.” were; blank 
answers, “a molecular process”, “the amount of energy to 
complete something”, “chemical substances made from fluorine”, 
and “I don’t know”.   Of the twenty-five Chemistry I students, 
twenty-three students were unable to properly define fluorescence.   
Most students seemed to have no prior knowledge of what 
fluorescence was before the activity. The activity seemed to 
improve their understanding of what fluorescence is and what 
causes compounds to fluoresce.  On the posttest, answers to the 
same question become more in-depth, like “the emission of light 
after an excited state”.   

4.  DISCUSSION  
Research has shown that fluorescence is best understood by 
looking deeper than just the geometry of a molecule.  Although 
double bonds may be a good reason to look deeper, the possible 
transitions that cause fluorescence are effected by not only the 
arrangement of nonbonding and bonding orbitals within the 
molecule but also the environment such as hydrogen bonding.  
Moreover because energies are effected by various conditions 
including the orientation of the p orbitals, the circumstances 
leading to fluorescence in molecules differ depending on whether 
the molecule is azoaromatic, or a carbonyl, etc (Sidman, 1958).  
Because understanding the reasons for fluorescence are so 

complex students would not be able to reach any clear answer, but 
should be able to hypothesize some generalities.  
 

Students were able to perform the energy drink activity easily. 
Most of the students had previous working knowledge of WebMO 
and the team structure allowed the inexperienced students to 
complete the lab. The directions were detailed and step-by-step 
preventing students from making many mistakes. Unfortunately, 
there was a problem in the procedure for importing molecules that 
was addressed in the student instructions. The student instructions 
failed to tell students after importing their second molecule to 
open the editor in WebMO and select "Cleanup; Comprehensive 
mechanics" to attach hydrogens where needed. This mistake 
caused numerous failures of their model runs for several groups, 
which began to frustrate some of the students until the mistake 
was found and corrected in the instructions. Students also had 
trouble building the molecules they were assigned.  However, 
with teacher guidance they were able to rebuild the molecule 
quickly and complete the lab without incident. It was also 
observed that once one student was shown how to overcome a 
technical problem in WebMO, they would help others around 
them.  This helped foster cooperative learning.  Overall, the 
instructions were well written and allowed the activity to be 
completed in a timely manner. 

The data sheet also had its pros and cons. Overall, the data sheet 
was easy for students to follow and complete. Some students 
needed clarification with a few of the questions; however, the data 
sheet was clear and concise. Unfortunately, there was a problem 
with student understanding in the questions that dealt with the 
ultraviolet visible absorption graphs. Students consistently missed 
questions dealing with the ultraviolet visible absorption graphs in 
the WebMO output and how to interpret them as evidenced in the 
post test.  More time discussing these graphs may have furthered 
understanding.  Also, some students answered some questions 
incompletely, listing only one similarity between substances. 
Overall, students were able to perform the activity in an 
acceptable time with minimal questions. The post test seems to 
indicate that this experience did allow students to gain knowledge 
of fluorescence and factors that could perhaps cause it.  

In the chemistry 1 class during the post test, out of the twenty-five 
students, sixteen consistently missed at least one of the two 
questions that referred to the emission spectrum graph. Even after 
completing the lab, they were unable to decide if the wavelength 
or the intensity indicated the visibility of light. They also were 
unable to distinguish which part of the graph, the intensity or the 
wavelength, indicated the amount of energy being released. Also, 
in the laboratory data sheets students only recognized one 
similarity in either the molecular geometry or the ultraviolet 
visible absorption spectrum. They were unable to find multiple 
similarities or find similarities in both the molecular geometry and 
ultraviolet visible absorption spectrum.  Finally, students were 
unable to draw the conclusion that using only ultraviolet visible 
absorption and molecular geometry did not give them enough 
information to determine if a molecule would fluoresce or not.  
The students tested did not understand that this is a current area of 
study and a definitive answer is not available.   After the post test, 
the control group of twenty-three students had nine students 
correctly identify if light was visible on an emission spectra 
graph.  None, however, could identify which part of the graph, the 
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intensity or the wavelength, indicated the amount of energy being 
released.  This showed that the project did allow for further 
understanding of the energy associated with the emission spectra.   

To fix the problems faced in this activity some changes should be 
implemented.  The first clear change would be to add steps in the 
instructions for importing molecules.  We need to clarify that the 
students should clean-up their molecule to add hydrogen in the 
needed places for the proper computation to take place.  The data 
from the students supports the idea that this “Ice Cube” is best 
used as a part B where A is the introductory material for the 
subject being studied that could include listing and identifying 
molecular substructures such as carbonyl, nitroso, azo, and other 
hetero groups as well as aza aromatic compounds or simply 
recognizing ring structures, double-bonds and alternating bonds.  
Other introductory material could include experience with optics, 
the electromagnetic spectrum, light intensity, emissions, 
wavelength and frequency.  Using the data from the students, the 
activity should be edited to help achieve more understanding of 
ultraviolet visible absorption and the differences in molecular 
geometry (J. Sidman, 1958). There should be more introduction 
and discussion of the ultraviolet visible absorption, and what 
wavelength can be represented and the visible spectrum. Finally, 
students should be prompted in the data sheet to look more deeply 
into similarities in geometry and ultraviolet visible absorption. 
This activity was designed to illustrate the unknown properties of 
scientific discovery.  Students have very little contact with the 
unknown in the traditional classroom setup.  Very little can be 
done to improve the frustration of the students in an activity 
where the outcome or answer is unknown.  This can only be eased 
with more exposure to this type of activity.   

Ultimately this activity allowed for the students to be active 
participants in the scientific method and in learning the 
complexity of determining a cause for fluorescence.  The students 
were asked to gather information, ask questions, submit a 
hypothesis, test this hypothesis and discuss the results.  They were 
put into a situation where they were testing a problem without a 
clear answer.  This confused most students but also gave 
experience in real-world science.  The students gained insight on 
doing research when there is no clear answer.   This model, when 
compared to the control group, showed furthered understanding of 
this topic and scientific reasoning.   

5.  CONCLUSION  
WebMO allowed students to build complex virtual molecules that 
they would have difficulty building in the classroom using other 
modeling techniques, such as ball and stick models. Also, 
WebMO allowed students to use the molecule they built to find 
new information about each molecule. Students looked at 
structure, the molecular geometry as well as ultraviolet/visible 
absorption in hopes of understanding how these features might 
affect its fluorescence. From the data collected, using WebMO 
allowed students to gain a better understanding of the concept of 
fluorescence. The experiment also allowed students to participate 
in a lab that would otherwise require some very expensive 
equipment to find the spectra of the molecules or require the use 
of literature to find the spectra. The “Ice Cube” allowed them to 
be active participants in the learning of the scientific method and 
how complex the topic of fluorescence is. WebMO allowed 
students to visualize the molecules they studied instead of just 

looking them up in reference books. WebMO is a powerful tool 
that allows students to investigate electron density, infrared 
spectra, NMR and other data. With today's students being more 
and more technologically savvy, WebMO can be used to help 
introduce complex topics that are almost impossible to visualize 
in real life. 

Ultimately, this activity did succeed in encouraging and fostering 
scientific inquiry in the students.  The students gained experience 
in taking real-world occurrences and applying the scientific 
method to understand the mechanisms behind observations.  This 
activity also allowed the students to apply learned topics in 
chemistry to their everyday experiences. This activity did improve 
student understanding.  Students, when compared to the control 
group, had a more in-depth knowledge of fluorescence, molecular 
structure, graph reading after participating in this activity.  Further 
improvements will make this an even more successful way of 
introducing these topics. 
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ABSTRACT
In the Indiana University system, as well as many other
schools, finite mathematics is a prerequisite for most majors,
especially business, public administration, social sciences,
and some life science areas. Statisticians Moore, Peck, and
Rossman [23] articulate a set of goals for mathematics pre-
requisites: including instilling an appreciation of the power
of technology and developing skills necessary to use appro-
priate technology to solve problems, developing understand-
ing, and exploring concepts. This paper describes the use
of Excel spreadsheets in the teaching and learning of finite
mathematics concepts in the linked courses Mathematics in
Action: Social and Industrial Problems and Introduction to
Computing taught for business, liberal arts, science, nursing,
education, and public administration students. The goal of
the linked courses is to encourage an appreciation of math-
ematics and promote writing as students see an immediate
use for quantitative and communication skills in complet-
ing actual service-learning projects. The courses emphasize
learning and writing about mathematics and the practice of
computer technology applications through completion of ac-
tual industrial group projects.1 Through demonstration of
mathematical concepts using Excel spreadsheets, we stress
synergies between mathematics, technology, and real-world
applications. These synergies emphasize the learning goals
such as quantitative skill development, analytical and crit-
ical thinking, information technology and technological is-
sues, innovative and creative reasoning, and writing across
the curriculum.

Keywords
Excel spreadsheet demonstrations, service-learning Projects,
linked mathematics and technology courses

1A detailed discussion of various aspects of these courses is
found in [13],[14],[15],[16],[17],[34],[35],[36]
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1. INTRODUCTION
Business and economics students generally are required

to take introductory mathematics courses, traditional finite
mathematics and calculus, as prerequisites for statistics, op-
erations research, finance, and other quantitative business
and economics offerings. Such prerequisites often are of-
fered in the mathematics department and taught with little
regard to how students will use the concepts and techniques
in their majors. O’Shea and Pollatesek [25], for example,
argue that the traditional curricular structures from ele-
mentary through junior year college mathematics courses
(algebra, geometry, pre-calculus, and calculus) do not al-
low students to encounter the range of ideas embraced by
modern mathematics. Students seldom see these ideas used
and rarely have sufficient time for real mastery. Statisticians
Moore, Peck, and Rossman [23] believe the highest priority
requirements of statistics from the mathematics curriculum
to be that students develop skills and habits of mind for
problem solving and for generalization.

Along these lines Moore, Peck, and Rossman [23]articulate
a set of goals for mathematics prerequisites:

1. Emphasize multiple presentations of mathematical ob-
jects.

2. Provide multiple approaches to problem solving, in-
cluding graphical, numerical, analytical, and verbal.

3. Adopt learning-centered instruction and address stu-
dents’ different learning styles by employing multiple
pedagogies.

4. Insist that students communicate in writing and learn
to read algebra for meaning.

5. Use real, engaging applications through which students
can learn to draw connections between the language of
mathematics and the context of the application.

6. Instill appreciation of the power of technology and de-
velop skills necessary to use appropriate technology
to solve problems, develop understanding, and explore
concepts.

7. Align assessment strategies with instructional goals.

Moore, Peck, and Rossman (hereafter MPR)[23] note that
statisticians are less concerned with specific content cover-
age but more with the development of the skills and habits of
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mind to solve problems, generalize ideas, and model service-
learning problems. In short, satisfying these goals necessi-
tates designing a freshman-level math course that exposes
students to a variety of mathematical ideas and technologi-
cal applications that prepare students to deal with statistical
topics, data, and modeling.

2. INNOVATIVELY LINKED MATHEMAT-
ICS AND TECHNOLOGY COURSES

Mathematics in Action: Social and Industrial Problem
is a project-based mathematics course, [15] and [36], which
overcomes the tension between the goals set out by statis-
ticians, the content concerns of mathematics instructors,
and weaknesses of using traditional approaches. The course
is part of a National Science Foundation sponsored grant
Mathematics and Science Throughout the Undergraduate
Curriculum awarded to Indiana University. The NSF grant
overcomes cultural impediments to reform, such as reluc-
tance by many teachers to change from traditional lecture
type teaching formats. The grant rewards risk taking in-
terdisciplinary approaches, requires reform approaches, and
encourages enrolling students who have failed traditional ap-
proaches. Mathematics in Action teaches [16] freshmen in
Business, Economics, Education, Liberal Arts and Sciences,
Nursing, and School of Public and Environmental Affairs.
Mathematics in Action uses an interdisciplinary environ-
ment in which a diverse group of students and faculty apply
learning-centered approaches and engage in discussions. The
approach taken in the course resolves the lecturing centered
weakness of the traditional approaches. In the course, stu-
dents learn mathematics by a mixture of traditional instruc-
tion and modeling applications. These skills allow students
to solve actual service-learning projects for business, indus-
try, social and governmental agencies. By using service-
learning projects, Mathematics in Action overcomes the rele-
vance weakness of the traditional freshman level finite math-
ematics course (MPR goal 5). Organizations, which supply
such projects, universally instill in students a sense of the
projects’ worth. For example, the American Diabetes Asso-
ciation informed students that their efforts would help the
organization estimate geographical locations of those in dire
need of critical health care services such as testing for di-
abetes. The relevance issue and lack of statistical content
are largely overcome as students involve themselves (MPR
goals 1 & 2) in narrowing the problem, struggling to find the
relevant data, and attempting to discover, learn, and apply
those tools that will lead towards a solution. Conceptual
understanding of the traditional core mathematical topics
takes place (to satisfy the prerequisite concerns) by

1. Teaching core topics required by replaced traditional
courses and

2. Using the tools to solve hands-on service-learning pro-
jects and individual projects designed to apply tech-
nology [35].

Students use actual data and statistical tools in solving
actual business and social problems (Goals 1, 3, 4, & 5 and
modeling concerns mentioned by MPR). Thus, the artifi-
ciality issue of the applications is resolved. Moreover, stu-
dents analyze surveys and collect data in a large real en-
gaging environment. Their learning environment extends

beyond the classroom to the library, service-learning organi-
zation, laboratory, and community. They think statistically
and practice statistical reasoning. They use elements such
as probabilities, estimations, percents, and computer tech-
nology routinely. Students develop skills, in mathematics,
statistics, teamwork, data gathering, and communications
(oral and written). (MPR goals 3 & 4). Students see the
needs for applying technological tools such as Microsoft Ex-
cel Spreadsheets to manipulate the data, solve the problem,
and present the result (MPR goal 6). This instills an ap-
preciation of the power of technology. They use appropriate
technology to solve problems that are unsolvable by more
primitive methods.

The use of real data for the projects and the ability to
find a solution has highlighted to us the necessity to use
computer technology and modern software. We had not en-
visioned this need the first time we taught the Mathematics
in Action course. Initially, we thought that students could
use graphing calculators to analyze the data sets for their
projects. This was very naive on our part. Many service-
learning projects involve large data sets or large numbers of
calculations that simply cannot be done on a hand held cal-
culator due to insufficient memory. A delinquency loan rate
project for a large financial institution, for example, had ap-
proximately 140,000 loan accounts for each of twelve months
(longer periods were also available). A routing problem us-
ing the traveling salesperson algorithm was too large even
for the computer. It had to be broken into parts, and then
reconstructed to obtain solutions. This unexpected need for
technology turned out to be a blessing in disguise (though
this is not necessarily the way we thought about it that first
year). The need to use modern day technology has led to
an awareness and appreciation by our students of the power
of merging technology and mathematics to solving service-
learning problems. This has become one of the more im-
portant learning outcomes from the use of service-learning
projects.

For five years, Mathematics in Action was taught with
instruction on technology done through class projects and
out of class tutorials. Students complained about the out of
class time demands placed on them for a three-credit hour
course. This approach also placed a tremendous burden on
the faculty teaching Mathematics in Action. Instructors in
the course had to not only teach the course, work with five
or six organization on projects, coach student teams on the
mathematics required for the projects, but on top of all of
these, teach students how to use applications software such
as Excel, Access, SPSS, Microsoft Word, etc. Prior to com-
ing into this freshman mathematics course virtually none
of the students had experience with computer applications.
Nonetheless, all students on the IUSB campus are required
to take at least one technology course.2

Linking Mathematics in Action and computer technology
solved two major problems: 1) the linkage reduced student
frustration over course time demand. Students would now
receive credit for two required courses, making time demands
placed on students commensurate with the credits received;
and 2) the linkage further lessened the burden placed on

2For a detailed discussion of linking introductory mathe-
matics and technology courses see [34]. Projects differ in
the tools needed for solutions. For example, with very large
data bases Access was first use to link various parts of those
data bases so that they could be then used in Excel.
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faculty. Each faculty member is given credit for one of the
linked courses.3 This linkage also resulted in several benefits:

1. Mathematical projects were used to illustrate and prac-
tice various computer applications;

2. Computer applications skills were used to solve various
mathematical problems;

3. The ability to use computer technology to solve large
scale problems enhanced the appreciation by students
of the power of applied mathematics; and

4. The learning environment due to the linkage provided
more opportunities for student collaboration, leading
to more effective learning and higher productivity.

These benefits satisfy recommendations made by math-
ematicians and statisticians concerning preparation of stu-
dents for entry level statistics and mathematics courses.4

In this paper, we describe spreadsheet modeling of vari-
ous finite mathematics applications designed to solve large
scale problems that more closely resemble service- learn-
ing problems. Each spreadsheet model is used to reinforce
concepts taught in the linked mathematics and technology
classes and to help student teams learn how to develop such
spreadsheet skills needed for the completion of organiza-
tional projects. Furthermore, spreadsheet modeling links
and integrates mathematics and technology courses.Through
demonstration of mathematical concepts using Excel spread-
sheets, we stress synergies between mathematics, technol-
ogy, and service-learning applications. These synergies em-
phasize learning goals such as quantitative skill develop-
ment, analytical and critical thinking, information technol-
ogy and technological issues, innovative and creative reason-
ing, and writing across the curriculum.5

3. FINITE MATHEMATICS CONCEPTS
AND SERVICE-LEARNING PROJECT
MODELING USING EXCEL

In a standard finite mathematics course offered for entry
level students, students are introduced to topics such as,
descriptive statistics and elementary data analysis; counting
methods; probabilities including simple, conditional, Baye-
sian, etc.; systems of linear equations; matrices; systems of
linear inequalities; and modeling and optimization problems
including linear programming, and the simplex method. In
teaching a topic the following sequence of steps takes place:

1. Introduce a problem;

3At Indiana University South Bend, each faculty member
receives teaching credit for his/her discipline course when
he/she teaches a linked course.
4See [3];[23] and [25].
5The organizational projects, whose scope requires the use
of computer technology skills, link the two courses. Evalua-
tion of the students’ learning consists of traditional exams in
disciplines, industrial projects, and individual projects. In
the mathematics course 44% of the student’s grade is for tra-
ditional examinations, 40% for team organizational projects,
8% for individual projects, and 8% for portfolio, attendance,
etc. In the technology course 70% of the student’s grade is
for traditional examinations, 22% for projects, and 8% for
portfolio, attendance, etc.

2. Model the problem;

3. Explore multiple approaches to solve the model;

4. Apply algebraic skills while applying a method;

5. Translate the quantitative solutions into meaningful
arguments within the context of the original problem;

6. Generalize the model;

7. Apply the method to other problems with other sub-
ject matters.

Each topic is practiced by students using small scale prob-
lems found in the textbooks and worked out manually. Such
small scale problem solving is intended to help students
learn and understand the basic principles underling the con-
cepts. However, as discussed earlier, students, in general,
consider such textbook type problems artificial and unre-
lated to service-learning problem solving. Most service-learn-
ing situations require defining the problem, data gathering,
discovering the appropriate modeling techniques sufficient
to solve the problem. Often times such sophisticated mod-
eling techniques require large scale calculations that cannot
be done manually. This is the case with the service projects
used in the finite mathematics class.6. Given that virtually
all students have access to computers and take at least one
basic computer technology course, it is beneficial to teach
linked finite mathematics and computer technology courses.
In computer technology part of the linkage, we teach various
packages including Microsoft Excel which becomes a model-
ing and technology environment that allows students to see
that with even basic computer spreadsheet skills they can
solve large scale service-learning problems. The following
demonstrations highlight how Microsoft Excel can be used to
enhance learning in both finite mathematics and technology
courses, as well as prepare students to tackle service-learning
projects involving large, complex data bases; modeling; and
cumbersome computations. In each demonstration we show
the value of the demonstration to understanding the mathe-
matics principles, the power of Excel as a data analysis and
modeling tool, and its application in solving service-learning
projects.

4. CALCULATION OF DESCRIPTIVE
STATISTICS USING EXCEL

In the Indiana University system, as well as many other
schools, finite mathematics is a prerequisite for most ma-
jors, especially business, public administration, social sci-
ences, and some life science areas. As mentioned earlier,
statisticians MPR (2002) articulate a set of goals for math-
ematics prerequisites including instilling an appreciation of
the power of technology and developing skills necessary to
use appropriate technology to solve problems. The service-
learning project orientation of Mathematics in Action neces-
sitates that student teams gather, process, analyze, and re-
port on data using various tools acquired in the mathematics
and technology courses described above. Descriptive statis-
tics provide a powerful learning tool to introduce students
to basic data analysis and presentation, as well as prepare

6See the following articles describing the use of service-
learning projects: [2]; [5]; [7]; [8]; [10]; [11]; [14]; [17]; [18];
[26]; [29]; [30]; [34]; [38]; [43]
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Table 1: Portion of Sample Data Set for Generating
Pivot Tables

Person Courier Journal
1 no no
2 yes no
3 yes no
4 yes yes
5 yes yes
6 no yes
7 no yes
8 yes no
9 no no
10 yes no

Table 2: Excel Generated Pivot Table for Newspa-
per Example

Count of Persons Journal
Courier no yes Grand Total
no 355 258 613
yes 522 365 887
Grand Total 877 623 1500

them for theoretical topics such as probability distributions
that could be used for modeling empirical data. Thus, we
have found that descriptive statistics is a useful tool for in-
troducing students to many of the upcoming topics in the
course.

The mathematics component of the linked courses intro-
duces students to central tendency, dispersion, histograms,
and charts using textbook type examples and other exam-
ples from popular media (e.g., USA Today, local newspa-
pers, Business Week, etc.) In the linked technology compo-
nent, students are instructed on how to use Excel spread-
sheets to produce the same measures using service-learning
actual data bases comparable to those they will work on
in their service-learning projects. Such data typically come
from personnel data bases that include various characteris-
tics of employees such as gender, schooling, experience, title,
salary.7 We also have generated data bases comparable to
those found in various student service-learning projects com-
pleted in previous semesters. As an illustration, for example,
we created a data set comparable to a similar data base an-
alyzed by a student-team for a local newspaper. The data
we generated refer to a situation where 1,500 individuals
were randomly called concerning whether they subscribed
to the Courier, the Journal, or both newspapers. The first
ten observations of that data set are shown in Table 1

This example was used to demonstrate the ability of Excel
spreadsheets to take a reasonably large data set and summa-
rize it into a contingency table that can be used to calculate
simple and conditional probabilities. Specifically, Excel’s
pivot table function cross classifies the 1,500 observations as
shown in Table 2.

Based on this pivot table, students answer questions such
as: What is the probability a randomly selected person sub-

7Many of these data bases are found in the textbook used
in the computer technology course.

Table 3: Portion of Loan Analysis Project Data
member no acct no balance daysdel prod code
4001026 155 8090.38 60 3
5001026 156 9999.99 37 3
3201027 145 5343.35 46 41
6601087 166 10046.19 31 60
7772032 145 7662.47 15 35
1242420 155 202.18 10 5
9722423 155 4627.82 15 6
5822551 141 672.76 31 50
3072551 155 6153.57 7 5

scribes to the Courier (887/1500)? Similarly, what is the
conditional probability that a subscriber to the Courier, also
subscribes to the Journal (365/887)? Based on this pivot
table, students are instructed how to construct tree and
Venn diagrams which are useful in describing intersection
and unions which underlie the Bayesian formula.

Excel 2007 provides a Venn diagram which helps a user
convert the Pivot table into a graphic form. The following
example converts the data in Table 2 into the Venn diagram
shown in Figure 1.

This Venn diagram helps students visualize concepts such
as union, intersection, and conditional probabilities.

As part of the instruction in descriptive statistics, stu-
dents also make frequency distributions. Most textbook ex-
amples employ relatively small data bases (e.g. usually fewer
than 50 observations) so that the frequency distributions can
be made manually using tallying methods. Service-learning
projects usually involve data sets consisting of large num-
bers of observations making manual approaches time con-
suming and subject to error. For example, in one of our
service-learning projects for a local bank concerning delin-
quent loans, each month’s delinquent loan data base con-
tained approximately 7,000 loans, all in different stages of
delinquency. A small segment of that data base is given in
Table 3.

Table 3 contains 10 of the 6904 delinquent accounts. The
first two columns represent the member number (which we
have modified for security reasons) and the loan number.
The next two columns contain the loan amount and days
delinquent, and the final column contains a product code
(e.g. auto, personal, home, etc.). Students were instructed
on how to create a frequency distribution using Excel. Part
of the instruction involved selecting meaningful intervals.
After discussions with the client-bank, intervals of 1 to 30,
31-60, etc. were selected. Excel’s Frequency function gener-
ated Table 4.

Excel requires as inputs the upper level of each inter-
val (bins) with an empty interval capturing all observations
greater than the largest interval. The format of the Ex-
cel output is not very meaningful for a general audience.
Students thus are instructed to modify the Excel generated
table to clarify the information. Table 5 represents a more
user friendly version of Table 4.

Furthermore, the same example is used to produce the
histogram shown in Figure 2.

As illustrated in Table 6, the above examples can easily be
extended to introduce basic empirical probability concepts
which can be easily computed from either the frequency dis-
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Figure 1: Excel Generated Venn Diagram Based On Pivot Table

Table 4: Excel Generated Frequency Distribution
from Loan Analysis Data

bins Number
30 3739
60 2082
90 466

120 220
150 112
180 96

189
Total 6904

Table 5: Reformatted Excel Frequency Distribution

Days
Deliquent Frequency

0-30 3739
31-60 2082
61-90 466

91-120 220
121-150 112
151-180 96

over 180 189
Total 6904

 

Figure 2:  Histogram Based On Bank Loan Frequency Distribution 

 

Figure 2: Histogram Based On Bank Loan Fre-
quency Distribution
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Table 6: Empirical Probabilities Calculated from
Excel Frequency Distribution

Days Empirical
Deliquent Frequency Probabilities

0-30 3739 0.542
31-60 2082 0.302
61-90 466 0.067

91-120 220 0.032
121-150 112 0.016
151-180 96 0.014

over 180 189 0.027
Total 6904 1.000

tribution or the histogram.
This example can be further used to illustrate generating

research questions and answering such questions with con-
tingency tables and tree-diagrams. An example based on
the loan data is given in Table 7 and Figure 3.

Contingency Table 7 was produced using the Pivot func-
tion discussed earlier to answer a research question about
whether the bank anticipates slow paying borrowers by charg-
ing a higher interest rate on the loan. The answer is clearly
yes. For instance, the simple probability of a loan being
bad (loans being delinquent more than 30 days) is .0103.
However, for customers receiving the very lowest rates, and
presumably judged to be the best credit risk, the probabil-
ity of a bad loan is virtually zero. In contrast, for customers
paying the very highest rates, and again presumably judged
to be poor credit risks, the probably of a bad loan increases
to 0.0296, almost triple the simple probability of a bad loan.
Continuing with this example, one also can produce the tree
diagram given in Figure 3.

Given information about the rate a borrower pays, Bayes
Theorem can be used in conjunction with either the above
Table 7 or the tree-diagram given in Figure 3 to find the
probability that the loan is either good or bad. For instance,
the student-team working on this service- learning project
observed that the contingency table and the calculations
from Bayes formula using information in the tree-diagram
agreed, namely that when the bank charged a rate greater
than 10 percent, the probability that the loan ultimately
would be bad was 0.0296. We found it to be very success-
ful as a teaching approach to employ multiple approaches to
illustrating complex topics, such as Bayes Theorem.

In addition to the Pivot Table function described above,
Excel’s filtering and sorting capabilities make it possible us-
ing a large data base to investigate research questions re-
lated to how customer and/or loan characteristics contribute
to defaults. In the local bank service-learning project de-
scribed above, the client was interested in the characteris-
tics of customers, loans, or both that contributed to higher
delinquency probabilities. This led the student team to sort
and filter the data. The student team used Excel to sort se-
lected data by loan size to investigate the characteristics of
delinquent loans based on whether they were large, medium,
or small. Also, the student-team filtered the data by prod-
uct type (e.g., car loans, personal loans, home mortgages,
and the like) to see whether loan delinquency probabilities
depended on loan type. Further, the student-team filtered
the data by the income of loan recipients, as well as their

credit report characteristics (e.g., credit score, number credit
cards, past delinquent accounts, and the like). This filtering
and sorting provided a powerful tool for preliminary causal
analysis of the determinants of loan delinquency rates that
might be used as a decision tool for designing future lending
products and offering loans to future potential customers.

5. PERMUTATIONS AND COMBINATIONS
As an introduction to probabilities, students are intro-

duced to basic counting methods. Combinations and per-
mutations represent a universal counting approach. The
computations for these techniques can be quite cumbersome.
Although some more advanced hand held calculators provide
options for calculating combinations and permutations, they
are, nonetheless, much easier using Excel. In addition, most
students once they start working will have more access to
Excel than to any other means of computing. Excel provides
formulas that can be inserted into a document so that repeti-
tive computations can be quickly made. Part of the teaching
in finite mathematics involves practicing the use of the for-
mulas for combinations and permutations. We use various
examples related to selecting, for example, 3 persons from a
group of 10 to serve on a committee. One type of selection
is where the order of selection is not important; the alter-
native selection makes the first person president, the next
vice president, and third treasurer. Students learn the com-
bination and permutation formulas to calculate the number
of possible selections in each case. Furthermore, these num-
bers could be used for calculating probabilities, such as the
probability that a three-person selection would have at least
one female or that a particular arrangement happens. There
are many other applications related to quality control, gam-
bling, statistical sampling, and the like.

The Excel example given in Figure 4 attempts to inter-
connect what students learn in the mathematics class and
what Excel’s spreadsheet provides in terms of a computa-
tional environment.

As shown in Figure 4, there are 254, 251, 200 permuta-
tion and 2,118,760 combinations of five items taken out of a
total 50 are calculated. By simply changing the number of
objects and number of objects to be selected in the upper
left hand box, students can quickly find permutations and
combinations. These formulas have direct application in de-
termining probabilities such as quality control problems. A
common problem (using the techniques shown in Figure 4)
given in our textbook asks the probability of having defec-
tive calculators in a sample of five chosen from a box of 30
calculators purchased by a school of which historically 10
percent are defective. The easiest way to solve this is to use
the complementary problem which calculates the probabil-
ity of no defectives in a sample of five and then subtracts
this result from one. In terms of the formulas defined in
Figure 4, the probability is obtained as:

P(at least 1 defective from a sample of 5) = 1− P(0 defectives)

= 1− C27,5

C30,5

= 1− 80, 730

142, 506
= 0.433

where C27,5 is the number of samples of size 5 with no
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Table 7: Research Questions Formulated From Excel Loan Analysis Pivot Table

Research Question: Is there a relationship between
the annual percentage rate and days delinquent?

Annual Percentage Rate
<5 >=5<10 >=10 Total

Good 24 12706 4859 17589
Days Delinquent Bad 0 35 148 183

Total 24 12741 5007 17772

P(Good) 0.989703 P(Bad) 0.0103
P(Good|<5) 1.000 P(Bad|<5) 0.000
P(Good|>=5<10) 0.9973 P(Bad|>=5<10) 0.0027
P(Good|>=10) 0.9704 P(Bad|>=10) 0.0296

 

Probability 
0.0014 

<5 0.0014 

0.7224 
0.9897 Good >=5<10 0.7149 

     0.2763 

>=10 0.2734 
Loan 

0.000 <5 0.0000 
0.0103 

0.1913 
Bad >=5<10 0.0020 

0.8087 

>=10 0.0083 

1.0000 

Tree-Diagram Based on the Above Table 

Figure 3: Tree-Diagram Based On Excel Pivot Table
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Figure 4:  Excel Calculations of Permutations And Combinations 

 

Figure 4: Excel Calculations of Permutations And Combinations

defective calculators and C30,5 is the number of samples of
size 5 from the population of 30. There are many other
similar quality control problems as well as classical examples
using decks of cards (e.g., the probability of obtaining a“full-
house” in a five card poker hand).

The use of combinatorial techniques played a role in help-
ing students understand one of our earliest service-learning
projects that dealt with finding the most efficient lunch de-
livery routing system for a local school system, a classic
Traveling Salesperson problem. Resources became routes
between school buildings, costs distances of these routes,
with the objective to minimize the total cost of the route.
Constraints required that each location be visited once and
only once. The analysis required the student-team to gather
information on distances (or travel times) between various
school buildings for the school corporation’s internal deliv-
ery system.

We created a simplified version of the problem, for in-
stance for four cities, so that they could see just what was
involved. For example, suppose a salesperson starts from a
corporation in Chicago and wants to visit the cities South
Bend, Indianapolis, and Michigan City. Distances between
these cities are found in Table 8.

Combinatorial method calculations indicate that there are
six possible paths listed in Table 9, for each path the distance
was calculated by hand from data in Table 8.

The optimal solution are the following routes with the
minimum distance 375 miles (Chicago, to Michigan City, to
Indianapolis, to South Bend, returns to Chicago. Alterna-
tively, follow this path in the reverse order).

Chicago, to Michigan City, to Indianapolis, to South Bend,
returns to Chicago. Alternatively, follow this path in the re-
verse order.

We used Excel to demonstrate to the students that as
the number of destination points increased the permutations
that would require evaluation became extremely large. For
illustration, if there are 12 points instead of 4 points, the
combinatorial solution will involve 11! or 39,916,800 possible
patterns which are too many to evaluate manually.

Our Excel demonstrations using combinatorial techniques
led students to investigate other more efficient solution algo-
rithms such as binary programming and Excel’s solver mod-
ule.

6. SIMULATION OF STOCHASTIC
PROCESSES

In teaching probability concepts, students often confuse
theoretical and empirical probabilities. For example, the
probability of a head when tossing a fair coin is 0.50 while
tossing a fair coin 100 times may lead to far more or far
fewer than 50 heads, perhaps even as many as 70 or as few
as 30. Most students perceive that a theoretical probabil-
ity of 0.5 means that nearly (if not exactly) 50 of the 100
flips should be heads. Such confusion can be dealt with by
setting up experiments that compare empirical and theoret-
ical probabilities. Prior to using Excel, we had each student
toss a coin 10 times and tallied results for all students. The
procedure is both time consuming and limited to a small
number of tosses. For efficiency and flexibility, we use the
power of Excel to simulate stochastic processes. The exam-
ple used for illustration is that of rolling a six-sided die 1000
times. Once the spreadsheet is setup we can simulate 1000
rolls (or any other number) over and over and then com-
pare the empirical outcomes to the theoretical probabilities.
The same procedure could be used for tossing coins, rolling
more than one die, dealing card hands, spinning of a roulette
wheel, and the like.8 In the illustration shown below, in ad-
dition to having Excel simulate the roll of a die 1000 times we
also construct a frequency distribution and histogram of out-
comes to facilitate comparison of empirical and theoretical
probabilities. The simulation output displayed in Table 10 is
produced by using the formulas ROUNDDOWN(6*RAND(),0)+1

and FREQUENCY(C4:C1003,F4:F9), where C4:C1003 contain
the 1000 randomly generated die numbers and F4:F9 hold
the die values 1 through 6.

By hitting the F9 key in Excel, students see how each out-
come of 1000 rolls differs from each other and from the the-
oretical probabilities. This simulation would provide tools
for more advanced discussions of stochastic processes deal-
ing with the law of large numbers, the central limit theorem,
confidence intervals, and the like.

A number of our service-learning projects involved stochas-
tic processes. In one such service-learning project, students
were asked to make recommendations on whether it would

8As the number of trials increases, the empirical probability
distributions converge to the theoretical distributions.
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Table 8: Hypothetical Traveling Salesperson Routing

1-Chicago 2-South Bend 3-Michigan City 4-Indianapolis
1-Chicago 0 90 60 150

2-South Bend 90 0 40 135
3-Michigan City 60 40 0 160
4-Indianapolis 140 130 160 0

Table 9: Possible Routing Patterns Based On Hypothetical Example

Route Total Distance
1-2-3-4-1 440
1-2-4-3-1 445
1-3-2-4-1 375
1-3-4-2-1 445
1-4-2-3-1 375
1-4-3-2-1 440

Table 10: Excel Simulation of Rolling A Die 1000 Times

Die Value Die Value Frequency Rel. Freq Theoretical Difference

6 1 191 0.191 166.67 24.33 Mean 3.425

6 2 160 0.16 166.67 -6.67 Median 3.00

1 3 166 0.166 166.67 -0.67

4 4 165 0.165 166.67 -1.67

1 5 152 0.152 166.67 -14.67

6 6 166 0.166 166.67 -0.67
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be less costly to change light bulbs in an elementary school
as they burned out or to periodically change all the lights in
the school at the same time. The hours of life of a light bulb
follows a stochastic process generally modeled with the ex-
ponential distribution. For example, a florescent light bulb,
with an expected life of 30,000 hours, has a cumulative prob-
ability distribution given in Figure 5 where the horizontal
axis represents the life of a bulb.

The student-team working on this project recognized the
tradeoff between higher maintenance costs if bulbs are re-
placed as they burn out versus higher light bulb costs if bulbs
are all replaced at the same time. The stochastic bulb life
process suggested that about 10 percent of the bulbs would
have a life of approximately 4,000 hours. If 10 percent burnt
out bulbs was an upper limit on the acceptable number of
bulbs burnt out at any one time, then about 90 percent of
the bulbs would be discarded far before they burned out.
Indeed, about one-half of the bulbs would last more than
20,000 hours. The students thus estimated the costs of the
two strategies and concluded that “Taking into considera-
tion the amount of money that would be lost with the im-
plementation of any of these total bulb-changing policies,
we recommend that the [the client] continue their current
policy of changing light bulbs on an as-needed basis.”

7. MODELING OPTIMIZATION PROBLEMS
WITH CAPACITY CONSTRAINTS

A key concept students learn in the linked finite math-
ematics and technology courses is the value of solving con-
strained optimization problems. Not only are these concepts
and solution techniques valuable to business and economics
students, but they also play important roles in several of
the service-learning projects undertaken by student teams.
As an illustration, a student-team applied constrained opti-
mization techniques to find an optimal mix of fund raising
activities for a local chapter of the American Diabetes Asso-
ciation (ADA). Basically, the local ADA director had limited
resources such as working capital, hours of volunteer time,
restrictions on her own time, frequency of certain types of
fund raising events (e.g., only so many fund raising walks
can take place in a given year), and the like. The student
team undertaking this project gathered data on estimated
revenues from each event, as well as the amount of work-
ing capital, volunteer time, etc. each event required. Af-
ter solving the problem for the optimal portfolio of events,
students then performed post- optimality sensitivity anal-
ysis influenced by weather conditions. Fundraising walks,
for example, raise much smaller amounts on cold unpleas-
ant days than under more favorable conditions. The student
team indentified three possible post-optimality scenarios: 1)
normal (average) weather conditions; 2) exceptional (above
average) weather conditions; and 3) severe (below average)
weather conditions. Other student teams also applied these
techniques to optimal land allocation for a mall parking lot,
optimal use of full-time v. part-time workers for a local
school corporation, optimal routing for a school corporation
lunch delivery program (the traveling salesperson problem
mentioned above), and the optimal keep v. replacement pol-
icy for school corporation trucking equipment.

As part of the curriculum, we teach students the mathe-
matics behind optimization with various capacity constraints
as well as how to model such problems using Excel spread-

sheetss and the Excel solver module. For example, we use
problems from our course textbook9. One such problem is
given below: Construction-resource allocation. A contractor
is planning to build a new housing development consisting
of colonial, split-level, and ranch-style houses. A colonial
house requires 1/2 acre of land, $60,000 capital, and 4,000
labor-hours to construct, and returns a profit of $20,000. A
split-level house requires 1/2 acre of land, $60,000 capital,
and 3,000 labor-hour to construct, and returns a profit of
$18,000. A ranch house requires 1 acre of land, $80,000 cap-
ital, and 4,000 labor-hours to construct, and returns a profit
of $24,000. The contractor has available 30 acres of land,
$3,200,000 capital, and 180,000 labor-hours.

A How many houses of each type should be constructed
to maximize the contractor’s profit? What is the max-
imum profit?

B A decrease in demand for colonial houses causes the
profit on a colonial house to drop from $20,000 to
$17,000. Discuss the effect of this change on the num-
ber of houses built and on the maximum profit.

C An increase in demand for colonial houses causes the
profit on a colonial house to rise from $20,000 to $25,000.
Discuss the effect of this change on the number of
houses built and maximum profit.

Prior to solving the problem, students are shown how to
model the problem in an Excel spreadsheets. Table 11 dis-
plays the organizational spreadsheet for part B of the prob-
lem.

The spreadsheet includes formulas that sum up the prod-
ucts of the decision variables and per unit resource usage
amounts as well as total profits. For example, the total usage
of land is computed using the Excel formula SUMPRODUCT(F6:

H6,$E$16:$G$16); where F6:H6 are cells containing per unit
land resources for colonial, split- level, and ranch homes, re-
spectively, and where E16:G16 represent the numbers of each
type of produced house. This model allows us to discuss trial
and error approaches to solving the feasible and optimal mix
of houses. For example, the spreadsheet in Table 12 shows
the profits and resource utilization for producing 20 of each
type of house. Although total profits are high, the solution
is not feasible since all of the capacity constraints are vi-
olated. The spreadsheet model makes it very easy to test
numerous combinations of the three types of houses and to
discuss whether or not they are feasible. Even when feasi-
ble outcomes are obtained there is no insurance that these
outcomes are optimal. Students quickly learn that a trial
and error approach which could conceivably list every possi-
ble outcome is not only time consuming but very inefficient.
Besides exploring the solution to this problem using the Sim-
plex Method and graphical techniques, we teach students in
the technology course how to use the Excel solver to find the
optimal solution.

Numerous other examples are used dealing with manu-
facturers, nutrition, portfolio allocation, and the like. An
example showing the entire Excel spreadsheets formulation
for minimizing the transportation cost taking students and
chaperones on a trip by two different means of transporta-
tion is found in Figure 6.

9See [1], problem 43, p. 314.
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Figure 5: Excel Generated Exponential Probability Distribution

Table 11: Excel Spreadsheets for Modeling Linear Programming Problem

C S R USEAGE CAPACITY
LAND PER HOUSE (ACRES) 0.5 0.5 1 0 <= 30
LABOR PER HOUSE (HOURS) 4000 3000 4000 0 <= 180000
CAPITAL PER HOUSE ($) 60000 60000 80000 0 <= $3,200,000

TOTAL PROFIT
PROFITS PER HOUSE $17,000 $18,000 $24,000 $0

ACTIVITIES NO.C NO.S NO.R
DECISION VARIABLES 0 | 0 | 0

C=COLONIAL, S=SPLIT-LEVEL,R=RANCH

Table 12: Excel Trial and Error Demonstration of the Construction Problem

C S R USEAGE CAPACITY

LAND PER HOUSE (ACRES) 0.5 0.5 1 40 <= 30
LABOR PER HOUSE (HOURS) 4000 3000 4000 220000 <= 180000
CAPITAL PER HOUSE ($) 60000 60000 80000 4000000 <= $3,200,000

TOTAL PROFIT
PROFITS PER HOUSE $17,000 $18,000 $24,000 $1,180,000

ACTIVITIES NO.C NO.S NO.R
DECISION VARIABLES 20 | 20 | 20

C=COLONIAL, S=SPLIT-LEVEL,R=RANCH
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=SUMPRODUCT(D8:E8,D13:E13) 

=SUMPRODUCT(D9:E9,D13:E13) 

=SUMPRODUCT(D12:E12,D13:E13) 

1) The solver is found under tools. 
2) The target cell is the one we are trying to 

minimize or maximize, in this case F13. 
3)  This problem requires us to select Min. 

4) The cells we want to change are those 
determining the level of the activities, in this 
case D13:E13. 

5) The resource constraints also must be 
added.  In this example, the number of 

students using bus and vans, cell F8, must 
be >= to 400, cell G8.  Also the useage of 
chaperons, cell F9, must be <= to the 

available chaperons, cell G9. 
6) The levels of the activities must be 

nonnegative.  This is the constraint, D13:E13 
>=0. 
7) Under options select AssumeLinear and 

also Assume Nonnegative. 

Solver finds these 

values for D13 and 

E13 

Figure 6: Excel spreadsheets for Solving Transportation Example

Table 13: Excel Solver Module Solution to Ada Event Mix Problem

 

Walk SB SP Wk CH SP Wk RC SP Wk GS SCH WK KS-PIG-SB KS-PIG-LP WINE TREES K L USEAGE CAPACITY

DIRECTOR'S TIME OPERATING 32 53 58 48 20 25 25 18 20 -1 0.000 = 0

DIRECTOR'S TIME SET UP 560 142 142 132 54 115 90 88 40 1 2357.000 <= 3000

VOLUNTEER TIME 50 120 120 120 48 72 72 40 -1 0.000 = 0

CAPITAL 21000 8750 5433.75 7000 1250 3450 3990 7650 31.25 73626.250 <= 75000

WALK SB CONSTRAINT 1 2 <= 2

WALK CH CONSTRAINT 1 1 <= 2

WALK RC CONSTRAINT 1 1 <= 2

WALK GS CONSTRAINT 1 0 <= 2

WALK WK CONSTRAINT 1 2 <= 2

SCH WALK  CONSTRAINT 1 2 <= 2

KISS-PG SB CONSTRAINT 1 2 <= 2

KISS-PG SB CONSTRAINT 1 0 <= 1

WINE CONSTRAINT 1 2 <= 2

TREES CONSTRAINT

REVENUE 60000 25000 15525 20000 5000 22000 26600 17000 625

COST 12175 5950 4290 5950 1140 2020 1615 6400 100

PERFORMANCE 47825 19050 11235 14050 3860 19980 24985 10600 525 0 0

ACTIVITIES Walk SB SP Wk CH SP Wk RC SP Wk GS SCH WK KS-PIG-SB KS-PIG-LP WINE TREES K L NET SURPLUS

NUMBER 2 1 1 0 2 2 2 0 2 355 724 224635

ADA EVENT MIX LINEAR PROGRAMING AFTER USING SOLVER
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The American Diabetes Association example mentioned
above provides an excellent example of how students can
generalize the Excel examples to a service-learning project.
After collecting the appropriate data and using Excel’s solver,
the student-team working on this project generated the out-
put found in Table 13.

Given the various constraints on the director’s time, vol-
unteers’ time, working capital, and the maximum number of
times an event could be held in a given period, the student-
team was able to recommend the mix of fundraising events
that would maximize the net fundraising surplus (e.g., two
SB walks, one spring walk CH, one spring walk RC, etc.).
In addition, the student-team was able to test the sensitiv-
ity of the outcomes to various assumptions about weather
conditions and therefore introduce a stochastic element into
their recommendations.

8. CONCLUSIONS
The Excel demonstrations given above promote synergies

between mathematics, technology, and applied research. We
have found that students enjoy the hands-on nature of the
Excel software and engage with it enthusiastically in work-
ing on their service-learning projects. Indeed, student com-
ments such as those given below attest to the strong appeal
this approach offers.10

“We actually got to use things like probability
and frequency tables and see that it worked. We
were not just taking a test.”

“I don’t have a fear of math now. I under-
stand where you can utilize it in everyday life.”

“I was never really good in math, this course
gave me courage; I’m not afraid of it anymore.
I felt safe and secure in coming to class... This
type of class would have a whole generation of
people loving math.”

“We got to work, every week or so, interac-
tively with the business leaders, working on an
active problem they are having with their busi-
ness.”

10The above comments are from students that were made
in the students’ course evaluation, an interview made by
a grant administrator, and newsletters. Instructors were
not present when these comments were made. Because the
course was an experimental course attempting to demon-
strate to beginning students the power of mathematics to
solving service-learning projects, the National Science Foun-
dation undertook in-depth qualitative evaluations of stu-
dents. In addition, a School of Education colleague of ours
also interviewed students concerning various aspects of their
experience. The comments provided above are typical of
these evaluations. The value of using Excel demonstrations
enhanced the service-learning project reports and made pos-
sible sophisticated data analysis. For example, because of
their acquired skills in using Excel, students were able to
successfully complete service-learning projects such as the
traveling-sales person problem, contingency table analysis
of delinquent loans and borrower characteristics, linear pro-
gramming solutions to fund-raising activities, probability
distribution analysis leading to efficient light bulb replace-
ment policies, and a host of other complex problems. Evalu-
ators of the course thought these were extraordinary accom-
plishments for entry level students.

“This was a great hand-on experience that
took my fear out of working within a business
and handling specific problems and finding a so-
lution where possible. It showed us that no mat-
ter what the problem is, there is a formula that
can help to work it out for the best of the busi-
ness and employees.”

“Having a real -life problem to handle and
solve left a more realistic impression of what the
work world has to contend with to do the best
job you can for your business, employees, and
customers.”

“I learned a lot about math as well as the
business world.”

“I like unique way of learning math and relat-
ing it to real world.”

“I enjoyed working in a group to help solve
a common problem. The hands-on experience
of working in a real-life situated problem was a
great opportunity to have. I truly appreciate the
instructors, business and the developers of the
program for allowing helping and encouraging us
to perform at a higher level.”

“I liked the hands-on, interactive projects we
had to do. Having the availability of two profes-
sors and one tutor helped immensely. Doing the
projects will solidify what I have learned.”

The Excel demonstrations also appear to help students
better grasp the mathematical principles underlying the dem-
onstrations and to better appreciate the power of applied
mathematics and statistics in investigating research ques-
tions using actual real-world data bases. The Excel applica-
tions directly achieve two of the goals mentioned earlier that
statisticians propose for introductory mathematics classes:
1) use real, engaging applications through which students
can learn how to draw connections between the language
of mathematics and the context of the application; and 2)
instill appreciation of the power of technology and develop
skills necessary to use appropriate technology to solve prob-
lems, develop understanding, and explore concepts. It is our
observation that students taking a course that links, math-
ematics, technology, and service-learning projects not only
prepare themselves to undertake service-learning projects in
their introductory mathematics course but further take away
from their experiences mathematical, technological, and re-
search skills that they then apply in their future courses in
business and economics. Equally important, students leave
the courses with a new appreciation of the power of math-
ematics and technology. This is the very outcome the Na-
tional Science Foundation hoped for when funding service-
learning courses such as Mathematics in Action.
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ABSTRACT 
In this paper we describe an ongoing project where the goal is to 
develop competence and confidence among chemistry faculty so 
they are able to utilize computational chemistry as an effective 
teaching tool.  Advances in hardware and software have made 
research-grade tools readily available to the academic community.  
Training is required so that faculty can take full advantage of this 
technology, begin to transform the educational landscape, and 
attract more students to the study of science. 
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J.2 [Physical Sciences and Engineering]:  Chemistry 
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Keywords 
Computational Chemistry Education, Workshops, Graduate, 
Undergraduate. 

 

 

 

 

 

 

 

 

 

 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee.  Copyright ©JOCSE, a supported 
publication of the Shodor Education Foundation Inc. 

1.  INTRODUCTION 
The majority of today’s students are technologically savvy and are 
often more comfortable using computers than the faculty who 
teach them.  In order to harness the student’s interest in 
technology and begin to use it as an educational tool, most faculty 
members require some level of instruction and training.  Because 
chemistry research increasingly utilizes computation as an 
important tool, our approach to chemistry education should reflect 
this.  The ability of computer technology to visualize and 
manipulate objects on an atomic scale can be a powerful tool to 
increase both student interest in chemistry as well as their level of 
understanding.  Computational Chemistry for Chemistry 
Educators (CCCE) is a project that seeks to provide faculty the 
necessary knowledge, experience, and technology access so that 
they can begin to design and incorporate computational 
approaches in the courses they teach.  We also work from the 
viewpoint that technology should enhance the educational 
experience and allow teaching of concepts in new and more 
effective ways.  In other words, just because something can be 
done computationally does not necessarily mean that it should be. 

This project takes a broad view of what computational chemistry 
entails.  In addition to molecular modeling, the general use of 
computer technology to demonstrate and help students learn 
chemical principles is included.  This includes visualization, 
animation, data manipulation and graphing, system dynamics 
software, computer algebra systems, etc. 
 

2.  DESCRIPTION 
Initial planning for a one week workshop that would provide 
hands-on instruction in the use of molecular modeling software 
began in 2002 with support from the Shodor Education 
Foundation through the National Computational Science Institute 
(NCSI) program, a project supported in large part by the National 
Science Foundation (NSF).1 Subsequent support has been 
provided by the Supercomputing (SC) Education Program2 and 
most recently by the NSF-supported Center for Workshops in the 
Chemical Sciences (CWCS) project.3 
The CCCE workshop was the first in a series of NCSI discipline-
specific computational science workshops, and provided a 
template for those that followed.4 The topics chosen for the 
molecular modeling workshop were: 
 
1.  Introduction to Computational Chemistry 
2.  Basis Sets 
3.  Choice of Theoretical Method 

Volume 1, Issue 1 Journal Of Computational Science Education

28 ISSN 2153-4136 December 2010



4.  Single Point Energies and Geometry Optimization 
5.  Electron Densities, Electrostatic Potentials, and  

Reactivity Predictions 
6.  Modeling in Solution 
7.  Computing Spectroscopic and Thermochemical Properties 
8.  Quantitative Structure Activity/Property Relationships 
9.  Transition States 
10.  Computational Study of System Dynamics  

(Chemical Kinetics) 
11.  Biochemical Applications 
 
Each session consists of a lecture followed by hands-on computer 
exercises that illustrate the lecture concepts.5  These sessions 
provide the participants with sufficient breadth and depth so that 
by the end of the week they are able to choose an appropriate 
theoretical model chemistry and basis set, and also know how to 
set up, perform, and interpret calculations.  Participants are not 
expected to become expert quantum chemists!  This is not the 
goal of the workshop.  We seek to provide faculty with a level of 
molecular modeling knowledge so that they can competently use 
the tool and have confidence in the results of their calculations.  In 
particular, we hope that the participants are able to answer the 
following questions after the workshop: 
a)  What do I want to know about a molecular or ionic system? 
b)  How accurately do I need to know it? 
c)  How long am I willing to wait for the answer to be computed? 
d)  What software/hardware can I use to accomplish the task? 

The answers to the above questions then dictate the possible 
computational approaches that should be used.  The level of 
knowledge the participants should gain is similar to that of many 
modern spectroscopic techniques that are regularly employed by 
chemists.  One does not need to be an expert in the mathematics 
and quantum mechanics involved in nuclear magnetic resonance 
(NMR) spectroscopy to be able to correctly interpret the results of 
NMR experiments.  However, we believe that the user should also 
be beyond the “black box” level of understanding, and have a firm 
grasp of what a given technique can or cannot do.  We believe that 
the topics are addressed in sufficient detail for the participants to 
attain the desired level of expertise.  

In addition to the molecular modeling-focused topics, a session on 
chemical kinetics is included.  Spreadsheet-based activities are 
incorporated, but the main hands-on portion of the exercise is 
based on systems dynamics software6 with which many faculty 
members are unfamiliar.  We also mention computer algebra 
systems (Mathcad, Matlab, Mathematica, etc.) and include 
example code so that those with access to one of these programs 
could begin to build their own chemical kinetics model. 

Other non-molecular modeling sessions focus on free or low-cost 
software, browser plug-ins such as molecular viewers, and online 
repositories of information that have proven useful for educational 
purposes.  These sessions are either hands-on or demonstrations 
that explore the use of each resource.  Examples include: 
 

Free molecular drawing programs 
ACD ChemSketch/3D:  http://www.acdlabs.com/download/  
BioRad KnowItAll:  http://www.knowitall.com/academic/  
 
Web-Based Resource Collections 
Computational Science Education Reference Desk (CSERD): 
 http://www.shodor.org/refdesk/  

Interactivate:  http://www.shodor.org/interactivate/  
Virtual Lab Simulator:   
 http://www.chemcollective.org/vlab/vlab.php  
Netlogo:  http://ccl.northwestern.edu/netlogo/  
ReciprocalNet:  http://www.reciprocalnet.org/  
Protein Data Bank:  http://www.rcsb.org/pdb/home/home.do  
Journal of Chemical Education:  http://jchemed.chem.wisc.edu/  
Proteopedia:  http://www.proteopedia.org  
 
Viewers for molecular structure 
CHIME:      
         http://www.symyx.com/support/developer/chime/index.jsp 
VRML:  http://www.parallelgraphics.com/products/cortona3d/  
Jmol:  http://jmol.sourceforge.net/  
Mercury:  http://www.ccdc.cam.ac.uk/free_services/mercury/  
 
Freely available Graphical User Interfaces, computational 
engines, and Viewers for molecular modeling 
RUNpcg:  http://www.chemsoft.ch/qc/RUNpcg.htm  
Firefly:  http://classic.chem.msu.su/gran/gamess/  
Molekel:  http://molekel.cscs.ch/wiki/pmwiki.php  
  
Workshop participants apply their new knowledge as they begin 
to develop a case study that they will use in a course that they 
regularly teach.  Time to work on the case study is included in the 
daily workshop schedule.  The workshop culminates with 
presentations of these case studies on the final day.  Some of the 
developed case studies are appropriate for use during several 
minutes of lecture time, while others are designed to occupy 
several hours during a laboratory period.  Many of these projects 
focus on the use of computation to teach old topics in a new (and 
hopefully, more effective) manner.  Others introduce students to 
molecular modeling and instruct students on how to build 
molecules, perform calculations, and interpret their own results.  
Some are designed as homework assignments that students 
complete outside of class on their own time.  One very effective 
educational approach is to use a series of computations to provide 
results that the students then must interpret, identify trends, and 
make sense of the trend using the knowledge of chemistry that 
they have gained to that point.  This discovery-mode of learning 
can help students to understand and retain the information more 
effectively.7  
Other week-long workshops have been developed and taught at 
both the Introductory and Advanced levels.  Introductory 
workshops place less emphasis on molecular modeling and focus 
more on the other topics mentioned.  The Advanced workshops 
cover molecular modeling subjects of interest to the attendees in 
more detail and provide additional time for collaboration among 
the attendees to develop classroom materials. 

A number of shorter workshops have also been provided.  These 
range from half-day sessions at local and regional ACS meetings8 
or Supercomputing Education Program events9 to full- or 
multiple-day sessions arranged with individual institutions. 
 

3.  RESULTS 
3.1  Workshops 
Since 2002, the week-long molecular modeling workshop has 
been taught eight times with ~165 attendees.  Advanced and 
Introductory workshops have been taught twice each with a total 
of ~60 participants.    Thirteen shorter workshops that cover the 
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basics of molecular modeling and other topics have also been held 
with over 200 participants attending.  Computational chemistry 
has also been included as a major part of an ongoing high school 
teacher development project in Illinois with over 120 
participants.10  Over the past seven years, the CCCE project has 
thus reached well over 500 college faculty and high school 
teachers.  We hope to continue our work and further increase 
these numbers. 

Workshop participants and instructors are active in presenting 
their work at various professional meetings11 and in appropriate 
journals.12 This is an expected outcome of workshop attendance 
and we hope that the current journal will become a popular venue 
for sharing successful activities. 

Teaching these workshops has led the authors to initiate new 
courses at their own institutions.  The College of Charleston has 
both Introduction to Modeling in Chemistry and Advanced 
Physical Chemistry: Molecular Modeling courses.  North Carolina 
Central University has an interdisciplinary, team-taught 
Introduction to Computational Science and Informatics course as 
well as a graduate-level Computational Chemistry course.  
Computational content has also been added in other courses where 
appropriate. 
 

3.2  Workshop Assessment 
Each workshop was evaluated using three different types of 
anonymous on-line evaluation forms.  A pre-workshop survey 
identified the level of current knowledge and available resources 
before the workshop began.  Daily evaluations helped the 
instructors determine participant progress and provided session-
specific feedback.  A post-workshop survey evaluated overall 
advancement in knowledge and gave an indication of the level of 
competence and confidence in using computational tools that the 
participants had gained. 
The post-workshop survey consisted of a series of questions to 
which the participant could respond with simple “yes or no” 
answers, rate the response over a numerical scale, and generate 
free-style short responses.  The following example questions and 
responses were chosen from 25 completed surveys by college 
faculty for the 2008 and 2009 molecular modeling workshops.  To 
simplify the presentation of results, numerical scores were 
assigned to the various responses as indicated below and the 
average score is given with the standard deviation noted in 
parentheses. 

Scoring for questions 1-3:  [strongly disagree = 0, somewhat 
disagree = 1, somewhat agree = 2, strongly agree = 3] 

1. Did the workshop advance the participant’s knowledge of 
computational science?  2.56 (0.90) 

2. Did the participant learn to use computational science in 
teaching?  2.52 (0.85) 

3. Did the participant learn to use models applicable to chemistry?  
2.36 (0.84) 

4. Did the participant learn to use models to demonstrate a 
concept in a course?  Affirmative for 96% of the responses 

5. Will the participant work with individual instructors at the 
home institution to assist them to learn more about computational 
science education activities?  Affirmative for 88% of the responses 

6. The self-rated confidence level on using computational science 
to enhance the learning experience of the students [not at all = 1, 
very confident = 10] of the participants was 8.24 (1.63) 

The above results combined with verbal and e-mail comments 
made by participants during and following the workshops indicate 
substantial gains in both knowledge and confidence for using 
computational approaches in the classroom. 
 

3.3  Related Accomplishments 
The authors have also become involved in several related projects.  
UNChem is an online chemistry fundamentals review course13 
designed for students who will begin freshman chemistry.  The 
site is being reviewed and updated.  Many of the resources used in 
the CCCE workshops will be incorporated into the materials.  The 
Computational Science Education Reference Desk (CSERD),14 a 
Pathways project of the National Science Digital Library15 and 
funded by the NSF, aims to help students learn about 
computational science and to help teachers incorporate it into the 
classroom.  The authors and workshop attendees have edited and 
reviewed much of the chemistry content of CSERD. 
A very useful workshop product has been the CCCE web site 
available at:  http://www.computationalscience.org/ccce/.  The 
site currently houses the molecular modeling workshop lecture 
and laboratory materials, a reference book list, a link to a glossary 
of computational chemistry terms, and links to other chemistry 
resources.  Site visitors most often utilize the Labs link (shown on 
the next page) which has a matrix of ten molecular modeling 
topics that have been translated into exercises that can be 
performed with seven different popular molecular modeling 
programs.  The exercises contain scaffolded instructions which, 
when followed in sequence, teach the user how to effectively use 
the software package and to also gain experience with different 
computational methods.  Also included are instructions in the use 
of spreadsheets, computer algebra software, and systems 
dynamics programs for the modeling of chemical kinetics. 

In the fall of 2009, Computational Chemistry for Chemistry 
Educators was awarded the Undergraduate Computational 
Engineering and Science (UCES) Award.  This award program 
was created to promote and enhance undergraduate education in 
computational engineering and science and encourages further 
development of innovative educational resources and programs, 
recognizes the achievements of CES educators, and disseminates 
educational material and ideas to the broad scientific and 
engineering undergraduate community. The UCES Awards 
Program is funded by the Department of Energy and administered 
by the Krell Institute.16 

 

3.4  Technology 
The first several years of the CCCE program used PC-based 
molecular modeling software, such as CAChe,17 Spartan,18 
Hyperchem,19 or PC Model20 for all hands-on exercises.  This 
approach necessitated loading (and troubleshooting) many 
programs and license files on multiple machines.  In order for 
participants to have software to work with when they returned to 
their home institution, a mini-grant program was used where 
participants would apply for funds to cover the cost of a software 
package, a computer RAM or HD upgrade, plus a few books.  In 
2006 we began to use WebMO21 which is a server-based GUI that 
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allows drawing molecules, setting up and submitting jobs, and 
visualizing the results.  The WebMO software interfaces to 
computational engines such as MOPAC,22 Gaussian,23 Tinker,24 
and NWChem.25  The switch to a server-based system greatly 
reduced the individual computer set-up time and also allows 
participants to have continued access to their files following the 
workshop.  This thin client model also makes it easy to provide 
the students of our workshop participants with access to the 
software as well.  It is, after all, the students and their learning 
outcomes that we want to promote. 

 

4.  FUTURE WORK 
As individual software packages undergo periodic updates, the 
exercise instructions provided on the CCCE site must be changed.  
A new and improved version of the site is being developed and 
will include new instructions where needed, along with desktop-
capture video instructions on using different software programs.  
We also hope to replace the current, static lecture materials with 
information that is more interactive and includes some video and 
voiceover. 

For the past eight years, a main thrust of CCCE has been focused 
on electronic structure calculations for single molecules.  This 

focus is largely a result of the hardware and software that has been 
readily available.  Our move to the use of server-based WebMO 
removes some of the hardware constraints and allows us to begin 
planning for the inclusion of more reaction dynamics and 
molecular dynamics calculations and exercises.  The workshops 
currently use the Odyssey software package26 for molecular 
dynamics exercises.  While this package is quite useful for 
educational purposes, it is a commercial product and many 
workshop attendees cannot afford it.   Researchers use molecular 
dynamics programs such as freely available GROMACS27 and 
NAMD.28  To extend the CCCE model in this direction will 
require a GUI, several of which are available,29 and hardware on 
which to perform the simulations.  Work to provide these 
resources in ongoing. As ever-larger computing resources come 
online, such as the Blue Waters petascale machine,30 CCCE hopes 
to assist faculty and teachers in learning how to use these systems 
in a scientifically sound and educationally productive manner.  It 
is incumbent upon the educators of today to motivate and train our 
students to become the scientists of tomorrow.  Computational 
modeling can help interest more students in science and also 
provide the skills our graduates will need to harness the power of 
future computer technology. 
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ABSTRACT 
For the Blue Waters Undergraduate Petascale Education Program 
(NSF), we developed two computational science modules, 
"Biofilms:  United They Stand, Divided They Colonize" and 
"Getting the 'Edge' on the Next Flu Pandemic: We Should'a 'Node' 
Better."  This paper describes the modules and details our 
experiences using them in three courses during the 2009-2010 
academic year at Wofford College.  These courses, from three 
programs, included students from several majors: biology, 
chemistry, computer science, mathematics, physics, and 
undecided.  Each course was evaluated by the students and 
instructors, and many of their suggestions have already been 
incorporated into the modules.   

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education - Computer Science Education, Curriculum 

General Terms 
Design, Experimentation, Measurement. 

Keywords 
Computational Science, High-Performance Computing, 
Educational Modules, Biofilms, Social Networks, Blue Waters, 
Undergraduate, Petascale. 

1. INTRODUCTION 
With NSF funding, the Blue Waters Undergraduate Petascale 
Education Program [1] is helping to prepare students and teachers 
to utilize high performance computing (HPC), particularly 
petascale computing, in computational science and engineering 
(CSE).  UPEP supports three initiatives: 
• Professional Development Workshops for undergraduate 

faculty 
• Research Experiences for undergraduates 
• Materials Development by undergraduate faculty for 

undergraduates 
The goal of the Materials Development initiative is "to support 
undergraduate faculty in preparing a diverse community of 
students for petascale computing." 

For this program, the authors developed and class tested two 
computational science modules, "Biofilms:  United They Stand, 
Divided They Colonize" and "Getting the 'Edge' on the Next Flu 
Pandemic: We Should'a 'Node' Better," which are available on the 
UPEP Curriculum Modules site [2].  This paper describes and 
discusses the modules and our experiences using them in the 
courses Modeling and Simulation, High Performance Computing, 
and Mathematical Modeling at Wofford College [3] during the 
2009-2010 academic year. 

Several of the students in these classes are obtaining Wofford's 
Emphasis in Computational Science (ECS).  Bachelor of Science 
students may obtain an ECS by taking Calculus I, Introduction to 
Programming and Problem Solving (in Python), Data Structures 
(in Python and C++), Modeling and Simulation, and Data and 
Visualization and doing a summer internship involving 
computation in the sciences [4]. Meaningful applications that 
illustrate fundamental concepts and techniques, such as those in 
the above modules, are crucial in their computational science 
education.  

2. MODULES 
2.1 Pedagogy 
Prerequisites are for the modules are minimal, requiring no 
programming or calculus background but the maturity to read the 
material.  Students who used the modules ranged from first- to 
fourth-year with majors from biology, chemistry, physics, 
mathematics, computer science, and undecided.  Both modules 
provide the biological background necessary to understand the 
applications, the mathematical background needed to develop 
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models, and references for further study. "Biofilms:  United They 
Stand, Divided They Colonize" has ten (10) multi-part quick 
review questions with answers to provide immediate feedback, 
while "Getting the 'Edge' on the Next Flu Pandemic: We Should'a 
'Node' Better" has six (6) such questions. The former module 
provides twenty-three (23) project assignments, and the latter has 
nineteen (19) projects for further exploration.   

To help with implementation, example solutions in various 
systems are available for download from the UPEP Curriculum 
Modules site [1].  Accompanying the biofilms module are a 
Mathematica implementation and high performance computing 
simulations for two and multiple processors in C/MPI along with 
an accompanying walkthrough of the code by student intern Shay 
M. Ellison.  The epidemic module has simulations in 
Mathematica for a small dataset of 18 people and for a large 
dataset of 1000 people randomly selected from Network 
Dynamics and Science Simulation Laboratory (NDSL) synthetic 
data for the population of Portland, Oregon [5]. 

2.2 High Performance Computing in Modules 
In line with the aims of UPEP, both modules have a section on 
"Computing Power" that discusses the need for high performance 
computing (HPC) within the contexts of the particular 
applications. The biofilms section on the topic points out that 
biofilms are highly complex with numerous features and the 
version in the module considers form, not function, in 2D as 
opposed to 3D.  Thus, HPC is usually necessary for more 
involved and realistic biofilms models.  The other module 
discusses how petascale computing is needed for processing large 
datasets involving millions of people and their activities and for 
more sophisticated computations, such as studying the nature of 
epidemics and the impacts of policy decisions on controlling 
epidemics in urban environments. 

With each module, the "Computing Power" section can be 
covered for information only, as a starting point for class 
discussion, or as motivation for the students' own HPC project 
development.  Moreover, students can develop sequential or high 
performance computing versions of many of the projects with 
some assignments requiring HPC and others asking for timing 
comparisons of parallel codes and their sequential counterparts. 

2.3 Class Testing 
At the end of the semester, students in Mathematical Modeling, 
which used the epidemics module, and High Performance 
Computing, which used both modules, were asked to complete a 
questionnaire about the modules, while students in Modeling and 
Simulation completed a general questionnaire about the course.  
The first author taught the latter two courses, while another 
professor taught Mathematical Modeling.   

The questionnaires for the HPC class had the students rate the 
following statements from 1 (strongly disagree) to 5 (strongly 
agree):  
• I understood the science applications in the module. 
• I understood the mathematics in the module. 
• I understood the algorithms in the module. 
• The module was readable. 

• The program helped me understand parallel processing with 
MPI. 

• My team/I could complete the C/MPI program. 

They were also asked to elaborate about the above scores, 
particularly those below 4, to indicate what they like best and 
what they found most difficult about the module, to give 
corrections and suggestions for improvement, and to list under 
what circumstances would they anticipate that high performance 
computing would be useful in modeling that application. 
The questionnaire for the Mathematical Modeling class, which did 
not use HPC, included the first four questions above along with 
the following 1-5 rated questions: 
• The modeling assignment(s) helped me understand the 

material. 
• My team/I could complete the modeling assignment(s). 

They were asked similar discussion questions to those for the 
HPC class as well as the modeling project(s) they did related to 
this module and under what circumstances would they anticipate 
that high performance computing would be useful in modeling 
social networks.  The professor completed a similar questionnaire 
and responded to a follow-up email about the module. 
Unfortunately, because the questionnaire was distributed at the 
end of the semester, only one Mathematical Modeling student and 
the professor completed the questionnaire. 
Results of the questionnaires are described below. 

3. MODULE 1: BIOFILMS 
3.1 Scientific Question 
A biofilm is a community of very small organisms that adhere to a 
surface (substratum) in an aqueous environment [6].  Examples of 
this ubiquitous phenomenon are dental plaque, the sticky 
substance covering the breathing passages of cystic fibrosis 
patients, antibiotic resistant bacterial colonies, and the microbial 
film in wastewater treatment. Because these communities have 
such important impacts, scientists are seeking to understand better 
the structure and function of biofilms [7], and the application 
provides good motivation for computational science students in 
courses such as High Performance Computing and Modeling and 
Simulation. 

3.2 Computational Models and Algorithms 
The module developed a cellular automaton simulation in two 
dimensions (2D) of the formation of the structure of a biofilm 
without regard to its function.  Each discrete time step of the 
simulation contained the following phases: 
• Diffusion of nutrients 
• Growth and death of microbes 
• Consumption of nutrients by microbes 

The module covers the basics of cellular automaton simulations 
including boundary conditions and models for diffusion, biofilm 
growth model, and nutrient consumption. Afterwards, the material 
develops generic algorithms for the models, a simulation program, 
and a visualization. 

3.3 Assessment of Simulation's Results 
A series of module figures shows several steps of a visualization 
of bacteria grids and associated nutrient grids, such as in Figure 1 
of this article.  Using the figures, a section on "Rubric for 
Assessment" examines empirically successes and shortcomings of 
this simulation of a structural formation of a biofilm.  
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Figure 1. Simulated biofilm with corresponding nutrient grid 

3.4 Class Testing in Modeling and Simulation 
With Introduction to Computational Science:  Modeling and 
Simulation for the Sciences [8] as a text, half of Wofford's 
Modeling and Simulation course (COSC/MATH 201) covers 
system dynamics modeling using a tool, such as STELLA®, 
Vensim®, or Berkeley Madonna®. The second half of the 
semester employs a computational tool, such as Mathematica®, 
Maple®, or MATLAB®, for developing cellular automata (CA) 
simulations, where the world under consideration consists of a 
rectangular grid of cells and each cell has a state that can change 
with time according to rules. We start the second part of the 
semester by considering random walk simulations and having 
projects on the formation of polymers and crystals.  Additional 
important CA algorithms involve diffusion and spreading, and 
simulation of the formation of biofilm structures provides a 
significant application of these techniques.  
With the background provided by this application and these 
concepts, over a two-and-a-half week period, the four students in 
the class (three biology majors and a mathematics major, all ECS 
students; a freshman, a junior, and two seniors) were able to 
revise the diffusion program, which was considered in detail in 
the class; in pairs to develop additional computational science 
applications, such as modeling the growth of mushroom fairy 
rings and modeling animal use of cognitive maps to find food; and 
to perform well on quiz and test questions on the material.  

Moreover, at the end of the term, students had a brief introduction 
to concurrent processing and parallel algorithms.  Consideration 
of more complex and larger biofilm arrangements, particularly in 
3D, illustrated the importance of high performance computing in 
computational science. 

3.5 Class Testing in High Performance 
Computing Course 
The High Performance Computing course (COSC 365) at 
Wofford was populated by a mixture of Emphasis in 

Computational Science (ECS) students and computer science 
majors (five students:  one biology/ECS, one chemistry/ECS, one 
computer science/chemistry/ECS, two computer science; 
sophomore to senior level).  All students had had through Data 
Structures with programming in Python and C++ and at least one 
other computer science or computational science course.   
With a week of class time devoted to the biofilms module, the 
class in teams successfully developed MPI/C programs for 
diffusion using a parallel random number generator on NCSA's 
Teragrid computer Abe, a Dell Intel 64 Linux Cluster [9].  Later, 
the students also demonstrated their understanding of the material 
with their performance on a test and an exam.   

In the course, the emphasis is on learning HPC techniques, and 
diffusion is important in many applications that require high 
performance computing.  Biofilms were particularly interesting to 
the biology and chemistry students in the class.  Moreover, the 
topic helped computer science majors make the connections of 
theory to application, which they sometimes overlook, and 
seemed to provide motivation for all the students.  For example, 
evaluation comments indicated that the module is "very easy to 
read," and the model "very useful for the real world problems." 

3.6 Blue Waters UPEP Internship 
Involvement 
During the summer of 2009, student Shay Ellison had a Blue 
Waters UPEP Internship to develop parallel versions for two and 
multiprocessors of the biofilms application and to write a ten-page 
accompanying tutorial, "Biofilms Parallel Computational Model 
with MPI and C," which are also available on the NCSI UPEP 
Curriculum Modules site [2].  Using TeraGrid resources, he 
investigated parallel random number generation, output of results, 
and speedup of the program with multiple processors.  The 
experience enhanced his understanding of HPC and undoubtedly 
is valuable to Shay as he pursues graduate studies in information 
security at Florida State University. 

3.7 Additional Outreach 
In an effort to extend the educational benefits of the module, the 
authors wrote and presented a paper, "Simulating the Formation 
of Biofilms in an Undergraduate Modeling Course" for the 
Workshop on Teaching Computational Science at the 
International Conference on Computational Science (ICCS) in 
Amsterdam [10]. 

4. MODULE 2: SOCIAL NETWORKS 
4.1 Scientific Question 
The module "Getting the 'Edge' on the Next Flu Pandemic: We 
Should'a 'Node' Better," which has the potential of making similar 
impacts, covers social networks and individual-based 
epidemiology simulations. Individual-based (or network-based) 
epidemiology simulations that track the simulated behavior of 
individuals in a community provide greater specificity and are 
easier to verify than cellular automaton simulations [11].  The 
module discussed the following important metrics for social 
networks: 

• a smallest set of locations (minimum dominating set) that a 
given proportion of the population visits, which can be 
helpful in determining sites for fever sensors or in closing of 
particular public buildings during an epidemic 
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• the distribution of the number of contacts people have with 
other people (degree distribution), which can facilitate 
targeted vaccination of individuals who have many contacts 
[12] 

• the probability that two contacts of a randomly chosen 
person have contact with one another (clustering coefficient), 
which is an indication of how rapidly a disease can spread 
through a community [13] 

• the average smallest number of contacts for a disease to 
spread from one arbitrary individual to another (mean 
shortest path length), which also indicates the rapidity with 
which a disease can spread 

4.2 Computational Models 
The basic data structure for solving this scientific problem is a 
graph, or a set of nodes with undirected or directed edges 
connecting some of the points. For a contact network or a social 
network, the nodes represent people or groups of people, such as 
members of a household that can become infected, and places, 
where the disease can spread from an infected person to a 
susceptible individual (See Figure 2). Each edge represents an 
association that can lead to transmission of the disease.  Thus, 
besides the biological background, the module covers some of the 
fundamental concepts in graph theory, such as adjacent nodes, 
degree, complete graph, and paths.  Moreover, students explore 
some of the characteristics of such social networks and of 
biological networks in general, such as the following: 

• Social networks are scale-free, where most nodes have 
relatively low degree but a few nodes, called hubs, have high 
degrees, making such networks particularly vulnerable to 
attack and failure [12]. 

• Biological networks exhibit the small world property, where 
the average length of a path between nodes is small in 
comparison to the size of the graph, so that these graphs are 
efficient communicators of information or disease. 

 
Figure 2. Contact network of households and places 

4.3 Algorithms 
For implementation of the graph data structure, the module 
employs a vector to store nodal values, adjacency matrices to 
represent edge connections and associated values, and connection 
matrices for existence of associations only.  With data of people's 

activities, we can construct a people-location graph.  The module 
covers the FastGreedy Algorithm to obtain an approximation of a 
minimum dominating set, or a smallest set of locations that a 
given proportion of the population visits.  Forming a people-
people graph of contacts that individuals have with each other by 
visiting the same locations in a day, we can also compute a 
distribution of the number of contacts people have with others and 
the clustering coefficient of each person. 

4.4 Assessment of Models 
The module and one accompanying Mathematica file showed 
computation of various metrics for 1000 people randomly selected 
from NDSSL's synthetic data for the population of Portland, 
Oregon [5].  For example, the degree distribution of this data in 
Figure 3 approximates the power law, P(k) = ck-r, common for 
scale-free networks.  The shape reveals only a few critical nodes 
have degree 6 or more. The module points out that using further 
demographic information, public health officials might target such 
people for immediate vaccination. 
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Figure 3. Degree distribution of 1000 randomly selected 

people 

4.5 Need for High Performance Computing 
NDSSL's synthetic data for the population of Portland, Oregon 
involves 1,615,860 people having 8,922,359 activities [5].  Using 
such data, computational scientists are developing high 
performance individual-based simulation models to study the 
nature of epidemics and the impacts of policy decisions on 
controlling epidemics in urban environments.  Because such 
individual-based simulations incorporate massive amounts of data 
that require extensive effort to gather and need massive 
computing power to process, such models provide excellent 
examples for HPC for the students. 

4.6 Class Testing in Mathematical Modeling 
During spring 2010, the Mathematical Modeling course at 
Wofford used this module with Mathematica for six class hours, 
half of which was formal instruction and half hands-on activity in 
which the students worked through the "base model."  Then, 
deriving their own modifications, students described the physical 
system and how it was incorporated into the model, solved the 
model with Mathematica, and interpreted the results. Students' 
learning on this topic was assessed through participation in class 
activities, journal entries about the reading, and the above 
assignment.  

Class members, typically at the junior-senior level, were two 
physics, one mathematics/physics, one mathematics/chemistry, 
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two mathematics majors, and one undecided.  The professor, Dr. 
Anne Catlla, indicated that with background of the module and 
accompanying files students were able to successfully complete 
the assignments and that overall there was more variation among 
individuals than among majors.  

A student in the class stated, "I liked the application of social 
network theory and graph theory to a disease modeling scenario."  
The professor wrote she "thought that the assignments (both the 
Quick Review problems and the projects at the end of the module) 
were excellent;" and in an evaluation she "strongly agreed" that 
she understood the science applications, mathematics, and 
algorithms in the module. Although the class did not use HPC, 
coverage of the material helped to enlighten them on the need for 
and advantages of using such power for larger data sets and 
problems. 

4.7 Class Testing in High Performance 
Computing 
Over a three-week period at the end of the spring 2010 semester, 
students in High Performance Computing at Wofford heard from 
the professor about important graph theory applications and 
techniques in HPC, studied the epidemics module, presented the 
material to the rest of the class, and in two teams developed 
C/MPI programs to calculate various metrics discussed above.  
The teams implemented their solutions on the Teragrid's NICS 
Kracken, a 99072-processor Cray XT5 computer [9].  Later, they 
completed exam questions on the material.  All students did well 
on the module, although the student with the least amount of 
programming background experienced more difficulty with the 
HPC aspects of the assignments. 

In an evaluation, one student commented, "If detailed enough 
information was provided and the data set was realistically large, 
HPC would be invaluable in modeling social networks."  Another 
stated, "I liked being able to see the relation to science in this 
module."  A third student wrote, "I particularly liked the use of a 
two-dimensional array as a connection graph.  We had not really 
used matrices in such a way before."  One of the students was 
delighted to relate the application to her own research involving 
the electrical grid in a summer internship at Oak Ridge National 
Laboratory. 

5. CONCLUSION 
The limited class sizes preclude statistical analysis at this time, 
but we are encouraged from the very positive responses from 
students and professors, alike.  We have already incorporated 
suggestions from participants in all three classes to make the 
modules more effective.  Blue Waters funding in the 
Undergraduate Petascale Education Program has been invaluable 
in high performance computing computational science module 
development, internships, conference participation, teaching, and 

learning.  This project is advancing education personally, locally, 
nationally, and internationally. 
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ABSTRACT 
The N-Body problem has become an intricate part of the 
computational sciences, and there has been rise to many methods 
to solve and approximate the problem.  The solution potentially 

requires on the order of calculations each time step, therefore 
efficient performance of these N-Body algorithms is very 
significant [5].  This work describes the parallelization and 
optimization of the Particle-Particle, Particle-Mesh (P3M) 
algorithm within GalaxSeeHPC, an open-source N-Body 
Simulation code.  Upon successful profiling, MPI (Message 
Passing Interface) routines were implemented into the population 
of the density grid in the P3M method in GalaxSeeHPC.  Each 
problem size recorded different results, and for a problem set 
dealing with 10,000 celestial bodies, speedups up to 10x were 
achieved.  However, in accordance to Amdahl’s Law, maximum 
speedups for the code should have been closer to 16x.  In order to 
achieve maximum optimization, additional research is needed and 
parallelization of the Fourier Transform routines could prove to be 
rewarding.  In conclusion, the GalaxSeeHPC Simulation was 
successfully parallelized and obtained very respectable results, 
while further optimization remains possible. 

General Terms 
Performance, algorithms, design 

Keywords 
N-Body, Message Passing Interface, Particle-Mesh, Fourier 
Transform 
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1. INTRODUCTION 
The N-body problem is an example of an algorithm that in simple 
to explain to students, but that quickly grows in complexity and 
need for resources.  Dealing with the potential interactions 
between particles in a distribution, the N-body problem would 
ideally compute all possible interactions, and if every N objects 
interacts with every other (N-1) objects, this results in N(N-1) 

total possible interactions, growing as in complexity.  This 
category of problems has applications in many fields such as 
astrophysics, molecular dynamics, fluid dynamics, and plasma 
physics.[2]  This paper applies the N-Body problem to the 
simulation of celestial bodies in space, particularly in the case of 
the “universe in a box” problem where the space being calculated 
is assumed to be one unit cell out of an infinite expansion. 

 

This research opportunity arose through my selection into the 
Blue Waters Undergraduate Petascale Education Program.  In 
order to best prepare for the experience we received two weeks of 
intensive training at the National Center for Supercomputing 
Applications (NCSA), via the University of Illinois at Champagne 
Urbana.  During the training we were exposed to the world of 
high performance computing and its architectures and 
applications.  We gained experience in shared-memory 
parallelism with OpenMP, and distributed system parallelism with 
MPI.  In addition we were exposed to modern applications in 
computing using GPU architectures.  At the time of my research I 
was a rising junior in Kean University’s Center for Science 
Technology & Mathematics program, majoring in Computational 
Applied Mathematics.  My research and study was done under the 
mentoring of my advisor, Dr. David Joiner, Kean University.  
Prior to this summer I had taken multiple mathematics courses, a 
calculus-based physics course, and a basic java computer 
programming course. 

2. BACKGROUND 
2.1 The N-Body Problem 
The N-Body problem is a classic physics problem dealing with the 
interactions of particles.  When we are dealing with more two or 
more particles, each potentially interacts with every other particle, 
and each force pair is equal and opposite giving N(N-1)/2 unique 

forces.  Unfortunately, the scaling then leans towards which 
quickly accumulates when dealing with problems of large N.  The 
initial conditions are the mass, coordinates, and 
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velocity of each particle, respectively.  Because of the singularity 
in the forces of close interactions a cutoff radius, sometimes call a 
shield radius, is typically used to reduce the computational error 
due to close interactions.  Alternatively, a softening radius can be 
added in the calculation of the potential. Both of these are options 
in GalaxSeeHPC [1] 
 
Shield Radius: 

  (2.1) 

 
Softened Potential: 

  (2.2) 

   (2.1) 

2.2 Particle-Mesh Method 
In the case of the “universe-in-a-box” problem, the N-body 
problem is solved in a system with a “wrapped” geometry, 
assuming that we are solving for a typical unit cell out of an 
infinite expanse. The wrapped geometry in gravitational dynamics 
is typically used to solve for large scale structure, where solving 
for the entire universe is not practical, and one assumes that there 
is mass immediately outside of the box that would affect the 
evolution of the system. Such methods are also used in molecular 
dynamics calculations, where it is necessary to maintain a 
consistent bath of solvent molecules around a protein being 
studied. The Particle-Particle Particle-Mesh method allows for the 
use of a spectral technique assuming a periodic solution. 
 

 
 

(2.3) Illustration of a “wrapped” world as is pertains to the code.  
The distance between particle A and B represents the “ghost” 
distance.  Particle B does not exist because we are dealing with a 
“wrapped” world.  Therefore, the “real” distance is between 
particle A and C. 

 

Poisson’s Potential Energy equation is given by: 

    (2.4) 

The algorithm for the density population first begins with 
incrementing through the array of coordinates and setting the 
initial density grid to zero at each particle.  Next we must find the 
nearest grid point for each body of mass and “wrap” if needed.  
After locating the nearest point the range around that grid point is 
then calculated and we ensure that coordinates are broken by the 
wrapping of any particles.  The final part of the density 
distribution is incremented through each of the bodies and 
updating the density array with the values for the particle mesh. 

 

Through a Fourier Transform, the solution to Poisson’s equation 
becomes:  

     (2.5) 

In practice, an additional function is used to smooth out shorter 
range forces and control the scale of the long range forces. This 
function, called the influence function, is typically taken to be the 
Fourier transform of the density function of a single particle in the 
system during the density grid population [4]. 

    (2.6) 

 
The basic procedure of the PM method is as follows: [6] 

• Transform particle mass into density distribution 
• Solve Poisson equation using FFT algorithm 
• Calculate the force fields and interpolate to find forces 
• Integrate to obtain positions and velocities 
• Update time step  

 

The Particle-Particle, Particle-Mesh (P3M) is a hybrid method for 
approximating the solution to the N-body problem.  PM methods 
suffer from an inability to predict short range forces accurately, as 
any nearby effects are “smoothed” out over nearby gridpoints. 
The P3M method adds a nearest neighbor “particle-particle” 
interaction that essentially divides the forces into short-range 
forces, and long-range forces.[7]  Short-range forces are 
calculated using the direct force method which is the brute force 
calculation using equation 1.1 from above. The longer range 
forces are then calculated using the Particle-Mesh 
approximation.[6]  Getting an accurate solution efficiently 
requires careful selection of the size scale of the density function 
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for each object in the density population, the influence function, 
and the radius used to determine nearest neighbors. The hybrid 
P3M method ideally results in a scaling of .[4] 

2.3  GalaxSeeHPC 
GalaxSeeHPC is a N-Body simulation source code.  It requires an 
UNIX-like environment, or a Cygwin-like environment for 
windows applications.  The code provides many options of 
different force calculation techniques.  You may chose the direct 
force method, the Fourier Transform based P3M method or the 
Barnes-Hut tree-based method.  For the purpose of this paper we 
will only discuss in detail the P3M method. 

 

2.4 Message Passing Interface 
With the occurrence of larger and larger problems needed to be 
solved, comes the use and application of supercomputers.  The 
most widespread accepted parallel programming language is the 
Message Passing Interface, or MPI.[8]  Users of C or Fortran can 
use MPI to pass messages between the nodes of the cluster.  This 
communication can spread out the computer’s work and 
drastically alter the overall performance.  If a code has to little 
work or data the addition of MPI could potentially hurt 
performance.  Also, one must take into consideration the amount 
of communication the nodes will have to have with each other.  
Too much communication can also produce harmful effects on a 
code.   

 

3. PROFILING AND DESIGN 
3.1 Profile 
In order to attempt to optimize the performance of the code we 
first began profiling GalaxSeeHPC under many different 
conditions.  The code was examined for various values of N, Final 
Time, and grid size (the resolution of the mesh, higher the 
resolution the more accurate).  For use of GalaxSeeHPC it is best 
to have the grid size set to a power of two; for example, 16, 32, 
64, etc.   

 

The implementation of the P3M algorithm in GalaxSeeHPC 
follows three steps in the force calculation, population of a density 
grid, FFT solution of Poisson’s equation on that grid, and 
interpolation of forces from the Poisson solution back to 
individual points, along with directly calculated nearest neighbor 
corrections. Shown below is the percentage of the wall time (as 
determined through the use of both hard coded timers and gprof) 
taken up by the density population step. Note that for smaller grid 
sizes, population of the density grid dominates the time required 
for a force calculation—compared to the time required for the 
FFT calculation for larger grid sizes. This suggests that for lower 
resolution P3M grids, speedups on the order of 20 to 50 times 
should be obtainable through parallelizing the density population 
alone. 

 

GRID SIZE N = 1,000 N = 5,000 N = 10,000 

16 .97 .97 .96 

32 .93 .94 .94 

64 .73 .88 .91 

128 .27 .56 .68 

256 .08 .18 .24 

                  

(3.1)  This figure portrays the percentage of total wall time which 
the creation of the density grid was responsible for. 

3.2 Parallelization  
By examining the code further, clearly the last part of the density 
creation loop had the highest potential for parallelization.  The 
statement we parallelized is said to embarrassingly parallel.  A 
code is said to be embarrassingly parallel if there are no channels 
between tasks and each process can perform its duties without 
communication with any other processes.[8]  These types of 
algorithms are usually the easiest to parallelize because of this 
lack this ability to do work without interaction.   

 

The next step after defining the subset of code to be parallelized is 
design.  A round-robin technique was used, where each node does 
some work, and returns to do more based on its rank and world 
size.  The rank is each processor’s own unique ID number, so that 
we have a way of distinguishing between nodes.  The world size 
is the total amount of processors initialized at run time.  The 
following three functions are the three most basic and important 
functions when using the Message Passing interface. 

 

MPI_Init (&argc, &argv); 

MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

MPI_Comm_size (MPI_COMM_WORLD, &world_size);    

   

Mpi_Init is the function initializes the use of Message Passing 
Interface.  The MPI_Comm_rank and MPI_Comm_size determine 
the processor id’s and total number of proccessors, respectively.  
Rank and world_size are arbitrary variable names which hold the 
IDs and total size.  Now that we have MPI initialized we can 
parallelize the code. 

 

The initial parameters for the loop in the density grid creation was 
as follows: 

For(l = 0; l < theModel->n;  l++) 

This is a very basic loop incrementing by one and looping through 
all the bodies of mass in the model.  In using the round robin 
technique we change the loop to the following: 

For( l= rank; l<theModel-n; l += size) 

Now each processor will begin its loop at its rank (ID) and 
increment by the world size.  The following diagram depicts the 
round robin use of MPI. 
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(3.3) Depicts the round robin technique in a group of 3 nodes.  
Each node begins at its own ID and increments by the total 
amount of nodes being used. 

 

This type of parallelization is also referred to as data 
decomposition.  This is defined as when multiple tasks have same 
responsibility but work on different sets of data.[3]  As opposed to 
functional decomposition where each task has its own set of 
responsibilities.[3]  Now the data is broken up, but we still need to 
make sure every process receives the results of every other 
process so that have the results of the entire density grid. 

 

For this we will use one of MPI’s reduction commands.  
MPI_Allreduce is a collective communication, so each processor 
will receive the reduction results.[7]  Below is the command along 
with its necessary parameters. 

 
MPI_Allreduce( 
 Void* send_buffer, // = the send buffer 
 Void* recv_buffer = the receive buffer 
 Int cnt = the number of elements to reduce 
 MPI_Datatype dtype = Element type 
 MPI_Op op =  Reduction Operator 
 MPI_Comm comm. = Communicator 
           ); 
 

After reducing to a temporary buffer we can transfer all the results 
back to each proccessors density array.  The result is all the nodes 
sharing the results of the density grid creation with each other. 

4.  RESULTS 
After successfully profiling and parallelizing the code we were 
able to see very significant results.  Below are a few graphs 
represents the increased speed up we received by running the code 
with various amounts of nodes. 

 

 

(4.1) Above are the optimization results when simulating a galaxy 
of 10,000 stars.  Below are the results when simulating 100,000 
stars. 

 

  

In the supercomputing world there exists Amdahl’s law which 
accurately predicts the maximum speedup of parallelized code.  
Amdahl’s law assumes we are trying to solve any problem of 
constant size as quickly as possible, and can determine potential 
speedup achievable as you increase the number of processors. [7] 
The equation is simply that the maximum speedup is equal to one 
over the fraction of the time spent in code that must be run 
serially.   For instance, if 10% of your compute time is from code 
which can not be parallelized, then the maximum performance 
you can achieve is 1/.10 or a speed up of 10x.  
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(4.2) Above are the Speedups of the Wall-times of GalaxSeeHPC 
as a function of the # of processors.  The speedup value is 
calculated by divided the wall-time of P processors by the wall 
time for one processor. 

  

By examining graph (4.2) we see that our parallelized code for 
10,000 bodies maxes out at around .1, which results in speedup of 
10x.  However, when we are dealing with 100,000 bodies we only 
see a max of .29 with a speedup of 3.45x.  We can take our results 
from the above table (3.1), and apply them to Amdahl’s Law.  
Therefore, for N = 10,000 bodies and a grid size of 32*32*32, the 
maximum achievable speedup = (1) / (1-.94) or 16x.  Although we 
received a very impressive speedup of 10x for N = 10,000, we 
weren’t able to totally optimize within accordance of Amdahl’s 
Law’s projected maximum speedup of 16x. 

 

If we examine table (3.1) further we notice as the grid resolution 
becomes larger and larger (which increases accuracy), the 
percentage of total time used in creating the density grid 
decreases.  This is because as the grid sizes increase so does the 
time in calculating the Fourier Transform by the FFTW algorithm.  
Therefore, our next task in fully optimizing performance of 
GalaxSeeHPC should be the profiling and parallelization of the 3 
dimensional Fourier Transform of the gravitational potentials. 

 

5. CONCLUSION 
5.1 Analysis   
Our analysis shows that the current parallelization of 
GalaxSeeHPC using the P3M method scales in accordance with 
expectations, however, limited by the time required to perform the 
FFT, which as of yet has not been implemented in parallel.  The 
results substantiate that the population of the density grid 
consumes much CPU time, and that parallelization of the 
algorithm can lead to improved performance.  

Howbeit we achieved speedups of up to 10x; we must not 
overlook that only one algorithm in the code was parallelized.  To 
obtain maximum performance we must continue to examine the 

code for potential methods possible to execute in parallel.  As 
stating above, the next step would be optimizing the FFTW 
algorithm, within GalaxSeeHPC’s PrepPPPM method.  There is 
now Message Passing algorithms available for the FFTW open 
source libraries.  Below is data which validates that in order to 
reach maximum attainable speedups, implantation of the MPI-
based Fourier Transforms would be the next sensible phase. 

#Procs 1 2 4 8 16 32 

%Total 
Time 

3% 6% 11% 17% 22% 25% 

 

(5.1) Above represents the direct proportionality of the 
percentages of total wall time spent in PrepPPPM, and the number 
of processors used in execution, for N = 10,000, and a Grid 
Resolution of 32*32*32.   

 
(5.2) The above graph is the Percentage of total time spent in 
PrepPPPM as a function of the Grid Resolution.  The time in 
computing the Fourier Transform increases as the mesh size 
increases. 

 

Use of the GalaxSeeHPC Simulation will require a significant 
amount of CPU time, and computing power. Time constraints and 
computing resources necessary will depend on the actual problem 
set.  For instance, computing a simulation of a galaxy of 100,000 
stars on one core, over the course of 15 billions years and a time 
step of .1 million years would require a tremendous amount of 
CPU time.  Our earlier results, when running 100,000 stars for 
100 time steps, required just over 6000 seconds to run.  Therefore 
running at 15 billion years with a time step of .1 would require 
approximately 1500x more CPU time, which results in over 2584 
hours! 

5.2 Reflections 
Through Blue Waters’ education program I received an invaluable 
educational experience.  This section describes the impact this 
research internship had on my learning experience, and how to 
potentially use this paper in undergraduate education so that 
others may gain knowledge in high performance computing 
applications.   
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Firstly, one must master the basic mathematics and physics 
concepts behind the simulation.  The N-Body is calculated by 
means of Newtown’s basic physics equations depicted in (2-1).   
This governing equation should not take much mathematics 
knowledge to comprehend, and I already had prior experience 
with these physics concepts.  The most abstract concept for me, 
which is most likely to be the one misunderstood by students, is 
the use of Fourier Transforms.  A Fourier Transform in a very 
basic sense is the transformation of one equation from the time 
domain to the frequency domain.  The result of the transform will 
depict the frequencies of the original equation.  Initially I had no 
knowledge of Fourier techniques, therefore in order to properly 
understand the algorithms of GalaxSeeHPC; I had to master the 
concepts behind Fourier transforms and their applications.  
Therefore, future students who wish to benefit from this paper 
must first comprehend the concepts behind the simulation. 

I also had to familiarize myself with MPI and ways of thinking 
parallel in order to formulate the best algorithm.  The training 
provided by the NCSA allowed me to efficiently discover 
algorithms in the code which would benefit by the application of 
MPI and its parallel routines.  However, before I actually 
implemented any code changes, I had to first properly model and 
profile the code.  I began executing the code for many different 
sets of initial conditions, and used Microsoft Excel and MATLAB 
in order to make sense of these results.  I also learned how to 
efficiently use gprof (GNU Profiler) which aided in shedding light 
on which method calls within the simulation actually were taking 
up the most time.  However, in order to analyze the code as 
accurate as possible, I also implemented my own timing methods 
into GalaxSeeHPC.  Students must learn how to correctly profile 
and analyze in order to locate the algorithms which are best-fit to 
parallelize. 

I was also fortunate enough to work in a team environment 
throughout my research.  During my training I had a chance to 
collaborate with the other gifted students who were chosen as 
Blue Waters Petascale interns, and continued to use them as 
resources throughout my research by using OpenStudy, an online 
study group.  I also collaborated with my professors at Kean’s 
NJCSTM and some of our graduate students.  There is always 
more than one way of implementing a problem in parallel and 
having a team environment is very useful in discovering the 
optimal solution.     

This research experience can potentially be replicated by 
professors for use in their research, as well as in undergraduate 
education.  The code itself can be used in classrooms, and can 
execute scalable N-Body simulations for different boundary 
conditions.  Using the parallelized P3M algorithm within 
GalaxSeeHPC, students and researchers can experience speedups 
of 10-20x, and will have the ability to execute simulations for 
very large N.  Also students may benefit from the research 

methods I used and how to successfully analyze algorithms, and 
implement high performance computing techniques.  There are 
many different paths one could take in furthering this research, 
depending on their field of study, and intended teaching 
application.  For instance, a computer scientist may consider 
analyzing the Barnes-Hut method for parallelization, an 
alternative N-body approximation using tree data structures.  
However, a physicist may be more interested in using the 
parallelized P3M methods in order to conduct research on the 
organization of large scale universes, and how their formation. 
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ABSTRACT
High performance computing raises the bar for benchmark-
ing. Popular benchmarking applications such as Linpack[4]
measure raw power of a computer in one dimension, but in
the myriad architectures of high performance cluster com-
puting an algorithm may show excellent performance on one
cluster while on another cluster of the same benchmark it
performs poorly.

For a year a group of student researchers at Earlham Col-
lege in Richmond, Indiana worked through the Undergradu-
ate Petascale Education Program (UPEP) on an improved,
multidimensional benchmarking technique that would more
precisely capture the appropriateness of a cluster resource
to a given algorithm. We planned to measure cluster effec-
tiveness according to the thirteen dwarfs of computing as
published in Berkeley’s parallel computing research paper
[1]. To accomplish this we created PetaKit, a software stack
for building and running programs on cluster computers.

Although not yet the benchmarking suite of thirteen pro-
grams that its creators set out to make, PetaKit has become
a framework for benchmarking any command-line based pro-
gram. In PetaKit’s construction learned about the chal-
lenges of running programs on shared HPC systems, devel-
oping techniques to simplify moving software to a new clus-
ter. In addition, we learned important time management
skills, specifially by managing our time between classes and
our PetaKit work. These skills and accomplishments have
been of tremendous benefit to us in our post-baccalaureate
careers, and we expect they will continue to be so.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures, benchmarking
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General Terms
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Keywords
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Computing, Parallel Benchmarking, Benchmarking

1. INTRODUCTION
In 2011, the University of Illinois will be home to what will
likely be among the fastest publicly-accessible supercomput-
ers in the world. This computer, Blue Waters, will reach
sustained operation speeds measured in PetaFLOPS, 1015

floating point operations per second. Supercomputers like
Bluewaters use a high degree of parallelism to achieve this
level of performance, combining the power of huge numbers
of computers to do what one computer could not. The catch
is that such a high degree of parallelism creates an entirely
new set of issues for software designers and requires an ap-
proach to programming that for many people is entirely new
and foreign.

Despite its tremendous importance, this approach to pro-
gramming is sorely undertaught in typical undergraduate
curricula. Few students are taught to think in parallel, and
even fewer are trained in the development of large-scale par-
allel applications.

The Blue Waters Undergraduate Petascale Education Pro-
gram, led by Shodor, a non-profit computational science ed-
ucation foundation based in Durham, North Carolina, aims
to teach young programmers the skills necessary to har-
ness the power of High Performance Computing (HPC), and
therefore Blue Waters and computers like it. For a year, an
accepted student works full time during the summer and
part time during the school year on a project relevant to
HPC.

This paper describes our project and experiences as two of
the six interns nationwide to participate in the first year of
the program.

2. RELEVANT WORK
Since the late ’80s the HPC community has been aware of
shortcomings in the popular methods of benchmarking as
applied to HPC. The Linpack benchmark, currently used to
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rank supercomputers in the Top500 supercomputers list[5],
has been repeatedly criticized for imprecisely representing
cluster abilities with one flat metric[2][3][8]. Network band-
width, latency, memory, number of cores on a chip, number
of chips on a node, number of nodes on a blade, blades on
a rack, all these factors have significant effect on program
performance, and certain programs are affected more than
others. Linpack, a linear algebra suite, is good for predict-
ing how linear algebra-heavy programs will run on a cluster,
but translates more poorly to other programs.

Most notable of the previous work done in multidimensional
benchmarking, or judging a cluster with many different statis-
tics rather than just one, is the High Performance Comput-
ing Challenge suite (HPCC). HPCC uses seven programs,
selected so as to measure important factors of HPC machines
such as steepness of memory hierarchy, network latency, and
network bandwidth[8]. These make for detailed analyses for
directly comparing cluster computers. A computational sci-
entist with relatively little HPC experience looking at all
these factors, however, would likely have trouble translat-
ing such statisics into an estimate of the performance of
his or her own program. Application benchmarks, such
as those suggested by the numerical aerodynamic simula-
tion benchmarks project(NAS) and the performance evalu-
ation for cost-effective transformations activity (the Perfect
benchmarks), would use programs closer to real science ap-
plications to benchmark the cluster, generating benchmark
data more relevant to real research[2][3].

Although common scientific programs have clear advantages
as meaningful benchmarks, they suffer from issues of porta-
bility. Scientific software used in professional research tends
to be large and demands careful tailoring to a specific sys-
tem for maximum optimization. Devoting a large research
task to porting scientific software generally costs more time
and money than the resulting benchmark is worth [2]. NAS
specifically mentions the absence of automatic tools to ease
porting scientific applications. Today such tools, although
far from trivializing the porting process, do make the prospect
of application benchmarking much more affordable.

3. RESEARCH PLAN
Our goal was to build a framework that made application
benchmarking feasible for evaluation of clusters’ appropri-
ateness for particular sets of scientific software. Admittedly,
automated portability for arbitrary programs is not yet a
reality, but we could make the benchmarking process much
easier nonetheless. With our system we would be able to eas-
ily make a set of applications into a set of application bench-
marks.What set of applications to use was not so simple. For
the purpose of predicting performance on clusters, programs
can be judged by their patterns of communication and ratios
of communication to computation. A group of Berkeley re-
searchers analyzed communication patterns among parallel
programs and wrote a paper describing thirteen “dwarfs,” or
computing paradigms. According to Berkeley, any conceiv-
able program may be described as a combination of one or
more of these dwarfs[1]. Our system would take representa-
tives of each of these thirteen dwarfs and collect performance
data on various clusters. Then a user would identify his or
her program using these paradigms and have the opportu-

nity to make an educated decision of what cluster to use for
his or her research.

Our system, PetaKit, would handle the entire process, from
deployment and compilation on the remote host to visual-
ization of the performance statistics in web-browser format.
After decompressing the PetaKit file on the cluster of choice,
the user proceeds into the generated folder and runs ./con-
fig to build all the necessary files with GNU Autotools, a
system for managing compilation on various different sys-
tems. Then the user runs the performance data harvester
perl script, stat.pl, which takes various parameters including
style of parallelization, problem size1, number of threads or
processes to spawn and processors on which to spawn them.
Stat.pl then runs these programs and sends various infor-
mation, including number of threads, problem size, and wall
time to a PostgreSQL database on a computer at Earlham
College. A browser-based visualization tool converts user
selections of the data into a graph.

To build the framework, we started with representatives of
two of the thirteen dwarfs[1]. These are area-under-curve
(AUC) – a definite integral approximation program based on
the Reimann sum and the MapReduce dwarf, and GalaxSee
– a galaxy simulation that serves as an n-body problem.
AUC gives each thread (in some cases each thread is in its
own process) a fraction of the area under the curve to es-
timate, they work and each sends its answer to the main
thread, which sums the answers up and prints the total area
under the curve. Computation increases linearly over prob-
lem size while communication remains constant. GalaxSee,
on the other hand, splits the stars among the threads and
each calculates the new positions based on the positions of
all the other stars. Then the new positions are collected
and redistributed and the next set of positions is calculated.
Communication and computation both increase at a rate of
O(n2) where n is the problem size. Each of these programs
was split into four“styles”of parallelism: serial, shared mem-
ory (OpenMP), distributed memory (Message Passing Inter-
face, MPI), and hybrid shared and distributed memory. The
idea of having all four styles instead of just the most effec-
tive one was to confirm that hybrid was the most effective,
and could outperform MPI under the right circumstances.
In addition to resolving that issue, our expectation was that
at the end of this project PetaKit’s graphs would teach us
something about the difference in scaling between MapRe-
duce and n-body problems on various clusters.

4. CHALLENGES AND OPPORTUNITIES
Of all the challenges our group faced, most pervasive was the
difference in the cluster environments that we came across
when attempting to build and run our code. Each of about
five clusters proved to be unique in its combination of com-
piler, network interconnect, linker, file system, scheduler,
and software stack. Each error that occurred during build-
ing or running of our code had to be pinpointed as a problem
with our code (either in its functionality or our fundamental

1Problem size is the variable in a program that has the most
significant impact on the program’s runtime. A Reimann
sum algorithm, for example, uses the number of segments
into which it splits the area under the curve as its problem
size, and a galaxy simulation uses the number of stars in the
simulation.
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Figure 1: PetaKit’s flow of data[6].

understanding of it), the compiler options we were attempt-
ing to use, a typo in the configure script, or a myriad of
other possibilities. New, unrecognized errors forced us to
perform a great deal of trial and error until we were able to
find clues as to the sources of the errors. As we encountered
more errors, however, we became more adept at recognizing
common points of failure and remedying them. We were also
able to make our package more robust by guarding against
possible error scenarios. In this way, then, we learned a
great lesson in working in new cluster environments, that
there are many errors that can arise on the new system, and
one must use the skills one has learned in the past but also
have the courage to attempt new solutions.

A particular challenge in working on a shared cluster as op-
posed to a personal device is the scheduler. On a high-traffic
cluster machine an automated scheduler, a program that
distributes many tasks among many more processors, is the
only way to share resources effectively. Because PetaKit is
a benchmarking suite with an emphasis on the effect of in-
creasing parallelism, it has to run the same program many
dozens of times to collect all its data. In order to mini-
mize the time each separate run of this program would have
to wait before executing, PetaKit submits each run as its
own job. In this manner, rather than demanding that the
scheduler find one contiguous span of time for all the runs to
complete, many small runs submitted to a scheduler could
be run one by one on whatever processors become avail-
able. Incidentally this also takes advantage of the inherent
parallelizability of benchmarking. Each individual instance
of a program has no dependencies on or need to communi-
cate with other instances, making it relatively easy to run
them in any order or at the same time. The only caveat of
running them in parallel is that the visualization program
cannot rely on data coming in in any particular order.

Of course, like everything else, schedulers vary significantly
by cluster. Designing PetaKit to work successfully with
these various schedulers sometimes proved to be more than
trivial syntax changes. For instance, The University of Okla-
homa’s supercomputer “Sooner” runs a Load Sharing Facil-
ity (LSF) scheduler, which, unlike PetaKit’s other supported
schedulers, Portable Batch System (PBS) and LoadLeveler,
prints helpful information to standard output as it runs. The
issue was that stat.pl collected its data from standard out-

put, and LSF’s messages to standard output were confusing
it. We eventually bordered the meaningful output with a
distinctive string on either side to distinguish it from the
rest of the output.

In addition to variations in schedulers, we also had to work
with a completely different staff team for every remote clus-
ter we used. Nearly every time we tried to port our code to
a new system we would have to find out little details such as
the location or version of MPI libraries. First we would look
to the cluster’s relevant website for the information. When
that didn’t work, we’d get in touch with the cluster’s system
administrators or help staff. Generally, we received prompt,
helpful replies to our questions, which greatly improved our
productivity.

Besides technical challenges, an issue we faced on a deeper
level was finding a way to balance the work of the project
with our other course work. This was particularly a chal-
lenge because of the looser deadline structure associated
with the project. Whereas classes were meeting two or three
times weekly, our group’s meeting to discuss the project only
occurred once per week, and even then there were seldom
hard deliverables. We had to develop a new level of focus
and motivation for the project to be able to stay on top
of it. Thus, we learned new ways of motivating ourselves,
for example splitting the project into small pieces, working
on small goals throughout the week rather than letting the
greater end become daunting. Through constructing our
own schedules and picking our own goals we were able to
find personal meaning in the tasks we completed, and we
made more efficient use of the time we could devote to the
project.

Throughout the program our mentor Dr. Charlie Peck, asso-
ciate professor of Computer Science at Earlham, was helpful
and available to answer questions. During our weekly meet-
ings we discussed our progress and where we’d be heading
next. Dr. Peck would look at our data and point out places
it did not make sense, such as when he helped us notice an
issue in a graph that eventually led us to a set of old data
that was being erroneously combined with recent data and
leading to bad graphs.
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5. RESULTS
At the writing of this paper, the PetaKit framework exists in
its entirety. The system is not yet public, but the steps for
a developer to benchmark a supported program on a given
cluster are as follows2 (see Figure 1):

1. Build (Computational Resource)

(a) Generate a compressed folder from the latest source
and send it to a supported cluster

(b) Decompress the folder

(c) run ./configure --with-mpi --with-omp (Au-
totools) in the folder

2. Run StatKit (Computational Resource)

(a) Run StatKit, specifying relevant options, such as
an identifying tag (see Figure 5)

(b) StatKit takes the specified parameters over which
to observe scaling and iterates over them, building
a script file for each combination of parameters

(c) As it is built, each script is submitted to the
scheduler once for each repetiton requested

3. Scripts run (Computational Resource)

(a) Run program, collect output

(b) Pipe output through secure shell to centralized
data server

4. Data Collection (Data Server)

(a) Parse meaningful performance data from raw out-
put

(b) Access PostgreSQL database and insert perfor-
mance data

5. Data Display (Web-Based Client)

(a) User selects data by tag

(b) User selects the independent and dependent data
to observe

(c) User selects a variable over which to “split” the
data into multiple lines

(d) PHP backend accesses database, averages repeated
runs, and creates a graph

(e) Page displays graph image file

PetaKit developers can generate a compressed folder from
the latest source and send it to a supported cluster, where
Autotools is run to build the files. Then StatKit takes its
parameters and generates a set of shell scripts, one for each
combination. StatKit submits these scripts to the scheduler,
resubmitting for each repetition, and when each is finished it
pipes its output through ssh to the parser.pl script on a com-
puter at Earlham College. Parser.pl parses the output into
data which it sends to a PostgreSQL relational database.

2This is one possible flow of data chosen to show every piece
of the project. By default the harvester saves its data to a
text file that can be directly visualized with the accompa-
nying plotting program PlotKit.

The data remains in the database where it can be accessed
via our web browser application which allows the user to
pick dependent and independent variables and compare the
scaling of one setup to another(see Figure 1). The most com-
mon use of the graph is to compare OpenMP performance
to MPI performance to hybrid performance by plotting the
three threads vs. walltime.

This system has collected and visualized data on over five
clusters:

• Indiana University’s Big Red, a BladeCenter JS21 Ter-
agrid resource with PPC 970 processors and a LoadLeveler
scheduler

• Pittsburgh Supercomputing Center’s Pople, an SGI
Altix 4700 Teragrid resource with Itanium 2 Montvale
9130M processors accessed via a PBS scheduler

• Univerity of Oklahoma’s Sooner, a PowerEdge 1950
Teragrid resource with Xeon E54xx processors and an
LSF scheduler

• Earlham College’s Bobsced, a decomissioned cluster
with Intel Core2 Quad processors and a PBS scheduler

• Earlham’s Advanced Computing Lab Computers (ACLs),
a group of Dell commodity workstations with Pentium
D processors and no scheduler

These visualizations have been presented at TeraGrid and
SuperComputing in 2009, and at Earlham College in its 2009
research conference[7]. The most dramatic discovery of our
benchmarking software was that the particular programs we
were using to test it had serious bugs and fell short of the
scaling one would expect of n-body and MapReduce prob-
lems, even at large problem sizes. AUC behaved as expected
except for its hybrid version. Hybrid’s failure to outperform
MPI on BigRed was understandable for AUC, a Map-Reduce
dwarf with low communication overhead. On Sooner, how-
ever, Hybrid AUC took over eight times as long to run as its
MPI counterpart even with heavy parallelization and large
problem size(see Figure 2). Even accounting for the addi-
tional overhead of a hybrid program, such a performance
penalty suggests an error. As for GalaxSee, we were still
having significant trouble running it and had not yet gotten
results. Fortunately, we realized that the tools we had devel-
oped to get our results were actually much more important
than the results themselves. A poster describing PetaKit as
a performance data collecting framework was presented at
SIGCSE and the Earlham College Annual Research Confer-
ence in 2010[6].

In the summer UPEP workshop at the National Center for
Supercomputing Application (NCSA) we presented PetaKit
to the new group of UPEP interns. We explained it to
the students and guided them through a lab where they
equipped their programs to output PetaKit-compatible statis-
tics (using supplied header files) and collected data on it.
We had modularized the harvester such that it could output
data into a text file to be graphed via gnuplot, but StatKit
was still a long way from being truly user friendly. Some stu-
dents accomplished this with relative convenience, but many
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had trouble using a PetaKit interface that was not yet de-
signed for benchmarking arbitrary programs. By the next
presentation at the University of Oklahoma (OU) the har-
vester gained improved versatility via a “template system”
where the command line into which parameters are dropped
was no longer hardcoded but defined by the user at runtime
with the command --cl. Since then, scheduler submission
scripts have also been templatized, allowing users to make
a “script template” for a given system and instruct StatKit
to use it with -t. Users can send their template scripts to
us, and we will incorporate them, expanding PetaKit’s clus-
ter compatibility. For further user-friendliness we added a
feature to PetaKit,--proxy-output, to collect minimal data
from programs that have not had PetaKit output added to
their code. To minimize visualization hassle we now include
a supplementary program, PlotKit, another Perl script that
automatically averages repeated runs, organizes the data,
and creates and runs a gnuplot script to make a visualiza-
tion according to a few simple parameters the user gives.

Using this improved PetaKit system it became simple for
us to try many different programs without wasting our time
reprogramming either them or PetaKit. With our new sys-
tem we quickly tried a few different versions of GalaxSee
until we found one that effectively used MPI to perform
faster(see Figure 4). Now we can compare the results of
AUC and GalaxSee on Sooner. While AUC shows a rela-
tively smooth asymptotic curve, GalaxSee’s heavy communi-
cation load makes it more sensitive to architecture changes.
We see this in the graphs’ bumps, the most prevalent being
in the jump from eight to nine cores where GalaxSee added
an extra node and started sending messages over a network.

6. IMPACTS
With the information we learned from our project, we will
continue to improve PetaKit as both a software scaling eval-
uation tool and a cluster evaluation tool. In terms of the
cluster evaluation our first step will be to debug GalaxSee
and hybrid AUC. Then we’ll add the other eleven dwarfs,
making sure to check the efficacy of each before committing
it. The UPEP workshop gave us the opportunity to show
other people PetaKit, people who will likely be program-
ming parallel algorithms that could very well find their way
into PetaKit itself. Collecting pre-made programs will be a
much more effective way of building PetaKit’s dwarf array
than building each one from scratch, so these contacts will
be extremely useful.

Once we’ve shown the efficacy of hybrid, continuing to make
four versions of each program is unweildy and unnecessary.
Instead we will design a program to make the best use of
the resources available, for example a hybrid MPI-OpenMP
program that, when run on a dual-core laptop computer be-
haves as plain OpenMP. At the UPEP workshop we became
acutely aware of the growing popularity of the Graphics Pro-
cessing Unit for General Purpose Computation (GPGPU),
so another version of each program may be introduced where
it is appropriate to support GPGPU, or other accelerators
as they become common on cluster systems.

Although Dr. Peck always made a point of addressing par-
allel processing in his computer science classes, we went into
our UPEP internship with only the most basic understand-

Figure 2: PetaKit visualization of AUC scaling on
Sooner and Big Red[6].

ing. Some of us were under the impression that we knew
everything there was to know about the Unix command line,
but writing Perl and shell scripts solving the complex prob-
lems PetaKit presented we learned to harness Unix’s true
capabilities, far beyond what in simple academics we had
taken for granted.

The skills we learned in UPEP translated easily to much
of our classwork. After building the statistics harvester for
PetaKit, the test automation portion of software engineering
class came as second nature to Sam. He ended up spending
most of his time helping his classmates with their automa-
tion projects. The time management skills learned during
the internship helped Aaron in his senior seminar and inde-
pendent study. Deadlines were much more spread out than
in normal classes, making a structured working schedule es-
sential for success. Where other students struggled to sched-
ule their time such that they were consistently doing work,
Aaron felt comfortable staying focused and motivated under
the looser schedule of the seminar. Both of us learned the
power of source code control, something that seldom comes
up in undergraduate computer science classes. Aaron made
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perl stat.pl

-t al-salam.sh --scheduler pbs

--cl ’mpirun -np $processes

~/area-under-curve/area-mpi -s $problem_size ’

--processes 2-4-16 --problem_size

1000000000,100000000000 --proxy-output

Figure 3: An example StatKit command line

Figure 4: StatKit and PlotKit visualization of vari-
ous problem sizes of an MPI GalaxSee program.

heavy use of Github in his senior year independent study
and Sam was quick to suggest collaboration via Github to
his group in robotics class.

Of course, besides everything else we learned, UPEP’s goal
was to teach us parallel thinking, and we have. Now the sec-
ond question after “How would we solve this problem algo-
rithmically” is always “How would we do it in parallel?” Far
from being daunting and byzantine, parallel programming is
just another tool in our repertoire. We’re now interested in
helping other people who find parallel programming intimi-
dating to learn how much they really can do with it if they
just give it a chance.

7. RECOMMENDATIONS
The UPEP program was a powerful experience. For many
of us, it was unlike any before. Between talented mentors,
open-ended project assignments, and access to a vast array
of HPC professionals and educators, scholarly HPC litera-
ture, and of course full-scale shared cluster systems that we
shared with genuine high performance scientific models, it
taught us much more than a classroom environment could.

Certainly, UPEP’s success, at least for us, was in significant
portion due to Dr. Peck, our motivated, high-energy mentor
who was not only happy to lecture us and other members
of our small Earlham College Cluster Computing group in
our weekly meetings, but gladly volunteered his time to give
each and every one the individual help he or she needed.
Even as we attempted to solve problems which no one had
before attempted to tackle, Dr. Peck guided us with a calm,

confident demeanor, not allowing a shred of doubt that suc-
cess was assured.

For the most part, Dr. Peck took a non-interfering role in
mentoring our internships. He would send us off with gen-
eral tasks at first, then later in the internship he stepped
back, remaining available for help, asking during meetings
only whether we had enough work to keep us going. Given
the opportunity to explore the project on our own terms,
we developed a sense both for how to structure our work
and what areas within HPC interested us most, whether
they be analyzing and rewriting parallel code or construct-
ing an effective, user-friendly interface for generating and
sending out large sets of performance tests. As a result, we
stayed motivated, working on what we found engaging at
our own pace: challenging, but not exhausting. Our self-
defined relationship with the project allowed us to connect
with it more closely and to feel more accomplished with the
results. Rather than some job we were doing for Dr. Peck,
the projects became our own. Encouraging future UPEP in-
terns to similarly take the lead in planning their own projects
should help them to establish a more meaningful and per-
sonalized relationship with HPC.

As we carried out our personalized projects, we did so on
actual high-end clusters that provided tools, libraries, and
challenges for developing and running parallel code. Such
access allowed us to put theory into practice and to expe-
rience the development of real parallel software on actual
computers. Continuing to provide access to high end clus-
ters through resources such as the TeraGrid and Blue Wa-
ters will help interns gain real hands-on experience with de-
veloping high end parallel code. Though much of working
with clusters and parallel code appears daunting at first, the
inherent challenges, more than simply justified by the cor-
responding educational benefit, are an integral part of the
education themselves. To paraphrase HPC educator and
system administrator Henry Neeman, “People should learn
in education to do what they will do in real life.” 1

Continuing the theme of real-life connection, Dr. Peck pro-
vided us with scholarly work in the field, and encouraged
us to communicate with experts who deal with high perfor-
mance computing in their work, whether in industry or aca-
demica. Although practical experience working with clusters
and parallel code clearly belongs at the center of UPEP, the
encounters we had with professional-level HPC people and
materials – the Berkely view paper [1], our work with Dr.
Peck, and the people we met at conferences – served as im-
portant supplements to our education, teaching us where our
work fits in the greater practice of HPC. Armed with our
understanding of our context, we could improve the qual-
ity and depth of our research, for instance using Berkeley’s
thirteen dwarfs as guides for our benchmarks. Future in-
terns will benefit from greater networking and connection
to HPC researchers and workers.

Punctuating our internship with the occasional conference
served a dual purpose: not only to allow us to see the work
of others, but to present our own work as well. Each of the
presentations we made at conferences and workshops helped
us to share our project and receive meaningful feedback from
experts in the field. Furthermore, the preparation for these
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presentations forced us to reflect on our project and shape
an informative and concise defense of it. These presentations
were so effective at getting us to evaluate our standing that,
as mentioned before, at one point in presentation prepara-
tion we actually changed our direction, going from a display
of the data collected from poorly constructed programs to
focusing heavily on the sophisticated system that we were
developing for collecting that data. Regular presentations
will encourage interns to feel comfortable synthesizing, ex-
plaining, and defending their projects, which will lead to
improved comprehension and learning.

For all its strengths, the UPEP program’s first year exhib-
ited some disorganization characteristic of a nascent pro-
gram with no preexisting documentation or buearacracy.
None of the issues were particularly troublesome, but we
were glad to find them addressed in the first official UPEP
workshop at the National Center for Supercomputing Ap-
plications at the end of our internships (and the beginning
of those of the next year’s interns).

The UPEP workshop was not only the first time we met the
next generation of UPEP interns, but the first time we met
the rest of our generation of UPEP interns. Had we been
in touch with each other from the beginning we could have
communicated and helped each other with our problems in
our projects.

Fortunately, the workshop resolved many of the human net-
working issues. The workshop was extremely informative,
and working so close to Blue Waters itself made for an ideal
beginning of the UPEP internships. Meeting so many peo-
ple with the same interests, especially well-spoken presen-
ters, was inspiring and motivating. In general, having the
previous year’s interns help teach the next year’s is an ex-
cellent strategy. It’s a cost-effective solution that solves the
networking issue while strengthening the expertise of both
parties.

8. CONCLUSIONS
Although the concept of a universal application benchmark
made up of an instance each of Berkeley’s thirteen dwarfs
is still a long way from realization, the work done on the
PetaKit project has by no means gone to waste. PetaKit’s
daughter project StatKit has come into its own and even
generated its own companion project PlotKit. StatKit and
PlotKit are currently being used in UPEP parallel education
curricula.

Our work in UPEP was extremely rewarding, as was devel-
oping and presenting curricula for the UPEP workshop at
the end of our internship. Sam has accepted a job at Shodor,
where he continues work on PetaKit and other STEM and
HPC education projects. He is looking into Carnegie Mel-
lon and University of Southern California to get his PhD
in Natural Language Processing, an often computationally
intense field that will benefit from effective parallel experi-
ence. Aaron hopes to pursue a PhD in computer science
and to have the opportunity to use the knowledge gained at
UPEP to teach and mentor others. He is currently working
as a system administrator in Earlham College’s Computer
Science department, putting to use the skills he has obtained
from working on a variety of cluster implementations.
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1H. Neeman (personal communication, August 8, 2010).
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