
An Automated Approach to Multidimensional
Benchmarking on Large-Scale Systems

Undergraduate Petascale Education Program

Samuel Leeman-Munk
Earlham College

801 National Road West
Richmond, Indiana 47374

leemasa@earlham.edu

Aaron Weeden
Earlham College

801 National Road West
Richmond, Indiana 47374

amweeden06@earlham.edu

ABSTRACT
High performance computing raises the bar for benchmark-
ing. Popular benchmarking applications such as Linpack[4]
measure raw power of a computer in one dimension, but in
the myriad architectures of high performance cluster com-
puting an algorithm may show excellent performance on one
cluster while on another cluster of the same benchmark it
performs poorly.

For a year a group of student researchers at Earlham Col-
lege in Richmond, Indiana worked through the Undergradu-
ate Petascale Education Program (UPEP) on an improved,
multidimensional benchmarking technique that would more
precisely capture the appropriateness of a cluster resource
to a given algorithm. We planned to measure cluster effec-
tiveness according to the thirteen dwarfs of computing as
published in Berkeley’s parallel computing research paper
[1]. To accomplish this we created PetaKit, a software stack
for building and running programs on cluster computers.

Although not yet the benchmarking suite of thirteen pro-
grams that its creators set out to make, PetaKit has become
a framework for benchmarking any command-line based pro-
gram. In PetaKit’s construction learned about the chal-
lenges of running programs on shared HPC systems, devel-
oping techniques to simplify moving software to a new clus-
ter. In addition, we learned important time management
skills, specifially by managing our time between classes and
our PetaKit work. These skills and accomplishments have
been of tremendous benefit to us in our post-baccalaureate
careers, and we expect they will continue to be so.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education—computer science education;
D.2.8 [Software Engineering]: Metrics—performance mea-
sures, benchmarking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright c© JOCSE, a supported publication of
the Shodor Education Foundation Inc.

General Terms
Parallel, Distributed Memory, Shared Memory, Benchmarks,
Human Factors

Keywords
Blue Waters Undergraduate Petascale Internship, Parallel
Computing, Parallel Benchmarking, Benchmarking

1. INTRODUCTION
In 2011, the University of Illinois will be home to what will
likely be among the fastest publicly-accessible supercomput-
ers in the world. This computer, Blue Waters, will reach
sustained operation speeds measured in PetaFLOPS, 1015

floating point operations per second. Supercomputers like
Bluewaters use a high degree of parallelism to achieve this
level of performance, combining the power of huge numbers
of computers to do what one computer could not. The catch
is that such a high degree of parallelism creates an entirely
new set of issues for software designers and requires an ap-
proach to programming that for many people is entirely new
and foreign.

Despite its tremendous importance, this approach to pro-
gramming is sorely undertaught in typical undergraduate
curricula. Few students are taught to think in parallel, and
even fewer are trained in the development of large-scale par-
allel applications.

The Blue Waters Undergraduate Petascale Education Pro-
gram, led by Shodor, a non-profit computational science ed-
ucation foundation based in Durham, North Carolina, aims
to teach young programmers the skills necessary to har-
ness the power of High Performance Computing (HPC), and
therefore Blue Waters and computers like it. For a year, an
accepted student works full time during the summer and
part time during the school year on a project relevant to
HPC.

This paper describes our project and experiences as two of
the six interns nationwide to participate in the first year of
the program.

2. RELEVANT WORK
Since the late ’80s the HPC community has been aware of
shortcomings in the popular methods of benchmarking as
applied to HPC. The Linpack benchmark, currently used to

Volume 1, Issue 1 Journal Of Computational Science Education

44 ISSN 2153-4136 December 2010

rank supercomputers in the Top500 supercomputers list[5],
has been repeatedly criticized for imprecisely representing
cluster abilities with one flat metric[2][3][8]. Network band-
width, latency, memory, number of cores on a chip, number
of chips on a node, number of nodes on a blade, blades on
a rack, all these factors have significant effect on program
performance, and certain programs are affected more than
others. Linpack, a linear algebra suite, is good for predict-
ing how linear algebra-heavy programs will run on a cluster,
but translates more poorly to other programs.

Most notable of the previous work done in multidimensional
benchmarking, or judging a cluster with many different statis-
tics rather than just one, is the High Performance Comput-
ing Challenge suite (HPCC). HPCC uses seven programs,
selected so as to measure important factors of HPC machines
such as steepness of memory hierarchy, network latency, and
network bandwidth[8]. These make for detailed analyses for
directly comparing cluster computers. A computational sci-
entist with relatively little HPC experience looking at all
these factors, however, would likely have trouble translat-
ing such statisics into an estimate of the performance of
his or her own program. Application benchmarks, such
as those suggested by the numerical aerodynamic simula-
tion benchmarks project(NAS) and the performance evalu-
ation for cost-effective transformations activity (the Perfect
benchmarks), would use programs closer to real science ap-
plications to benchmark the cluster, generating benchmark
data more relevant to real research[2][3].

Although common scientific programs have clear advantages
as meaningful benchmarks, they suffer from issues of porta-
bility. Scientific software used in professional research tends
to be large and demands careful tailoring to a specific sys-
tem for maximum optimization. Devoting a large research
task to porting scientific software generally costs more time
and money than the resulting benchmark is worth [2]. NAS
specifically mentions the absence of automatic tools to ease
porting scientific applications. Today such tools, although
far from trivializing the porting process, do make the prospect
of application benchmarking much more affordable.

3. RESEARCH PLAN
Our goal was to build a framework that made application
benchmarking feasible for evaluation of clusters’ appropri-
ateness for particular sets of scientific software. Admittedly,
automated portability for arbitrary programs is not yet a
reality, but we could make the benchmarking process much
easier nonetheless. With our system we would be able to eas-
ily make a set of applications into a set of application bench-
marks.What set of applications to use was not so simple. For
the purpose of predicting performance on clusters, programs
can be judged by their patterns of communication and ratios
of communication to computation. A group of Berkeley re-
searchers analyzed communication patterns among parallel
programs and wrote a paper describing thirteen “dwarfs,” or
computing paradigms. According to Berkeley, any conceiv-
able program may be described as a combination of one or
more of these dwarfs[1]. Our system would take representa-
tives of each of these thirteen dwarfs and collect performance
data on various clusters. Then a user would identify his or
her program using these paradigms and have the opportu-

nity to make an educated decision of what cluster to use for
his or her research.

Our system, PetaKit, would handle the entire process, from
deployment and compilation on the remote host to visual-
ization of the performance statistics in web-browser format.
After decompressing the PetaKit file on the cluster of choice,
the user proceeds into the generated folder and runs ./con-
fig to build all the necessary files with GNU Autotools, a
system for managing compilation on various different sys-
tems. Then the user runs the performance data harvester
perl script, stat.pl, which takes various parameters including
style of parallelization, problem size1, number of threads or
processes to spawn and processors on which to spawn them.
Stat.pl then runs these programs and sends various infor-
mation, including number of threads, problem size, and wall
time to a PostgreSQL database on a computer at Earlham
College. A browser-based visualization tool converts user
selections of the data into a graph.

To build the framework, we started with representatives of
two of the thirteen dwarfs[1]. These are area-under-curve
(AUC) – a definite integral approximation program based on
the Reimann sum and the MapReduce dwarf, and GalaxSee
– a galaxy simulation that serves as an n-body problem.
AUC gives each thread (in some cases each thread is in its
own process) a fraction of the area under the curve to es-
timate, they work and each sends its answer to the main
thread, which sums the answers up and prints the total area
under the curve. Computation increases linearly over prob-
lem size while communication remains constant. GalaxSee,
on the other hand, splits the stars among the threads and
each calculates the new positions based on the positions of
all the other stars. Then the new positions are collected
and redistributed and the next set of positions is calculated.
Communication and computation both increase at a rate of
O(n2) where n is the problem size. Each of these programs
was split into four“styles”of parallelism: serial, shared mem-
ory (OpenMP), distributed memory (Message Passing Inter-
face, MPI), and hybrid shared and distributed memory. The
idea of having all four styles instead of just the most effec-
tive one was to confirm that hybrid was the most effective,
and could outperform MPI under the right circumstances.
In addition to resolving that issue, our expectation was that
at the end of this project PetaKit’s graphs would teach us
something about the difference in scaling between MapRe-
duce and n-body problems on various clusters.

4. CHALLENGES AND OPPORTUNITIES
Of all the challenges our group faced, most pervasive was the
difference in the cluster environments that we came across
when attempting to build and run our code. Each of about
five clusters proved to be unique in its combination of com-
piler, network interconnect, linker, file system, scheduler,
and software stack. Each error that occurred during build-
ing or running of our code had to be pinpointed as a problem
with our code (either in its functionality or our fundamental

1Problem size is the variable in a program that has the most
significant impact on the program’s runtime. A Reimann
sum algorithm, for example, uses the number of segments
into which it splits the area under the curve as its problem
size, and a galaxy simulation uses the number of stars in the
simulation.

Journal Of Computational Science Education Volume 1, Issue 1

December 2010 ISSN 2153-4136 45

Figure 1: PetaKit’s flow of data[6].

understanding of it), the compiler options we were attempt-
ing to use, a typo in the configure script, or a myriad of
other possibilities. New, unrecognized errors forced us to
perform a great deal of trial and error until we were able to
find clues as to the sources of the errors. As we encountered
more errors, however, we became more adept at recognizing
common points of failure and remedying them. We were also
able to make our package more robust by guarding against
possible error scenarios. In this way, then, we learned a
great lesson in working in new cluster environments, that
there are many errors that can arise on the new system, and
one must use the skills one has learned in the past but also
have the courage to attempt new solutions.

A particular challenge in working on a shared cluster as op-
posed to a personal device is the scheduler. On a high-traffic
cluster machine an automated scheduler, a program that
distributes many tasks among many more processors, is the
only way to share resources effectively. Because PetaKit is
a benchmarking suite with an emphasis on the effect of in-
creasing parallelism, it has to run the same program many
dozens of times to collect all its data. In order to mini-
mize the time each separate run of this program would have
to wait before executing, PetaKit submits each run as its
own job. In this manner, rather than demanding that the
scheduler find one contiguous span of time for all the runs to
complete, many small runs submitted to a scheduler could
be run one by one on whatever processors become avail-
able. Incidentally this also takes advantage of the inherent
parallelizability of benchmarking. Each individual instance
of a program has no dependencies on or need to communi-
cate with other instances, making it relatively easy to run
them in any order or at the same time. The only caveat of
running them in parallel is that the visualization program
cannot rely on data coming in in any particular order.

Of course, like everything else, schedulers vary significantly
by cluster. Designing PetaKit to work successfully with
these various schedulers sometimes proved to be more than
trivial syntax changes. For instance, The University of Okla-
homa’s supercomputer “Sooner” runs a Load Sharing Facil-
ity (LSF) scheduler, which, unlike PetaKit’s other supported
schedulers, Portable Batch System (PBS) and LoadLeveler,
prints helpful information to standard output as it runs. The
issue was that stat.pl collected its data from standard out-

put, and LSF’s messages to standard output were confusing
it. We eventually bordered the meaningful output with a
distinctive string on either side to distinguish it from the
rest of the output.

In addition to variations in schedulers, we also had to work
with a completely different staff team for every remote clus-
ter we used. Nearly every time we tried to port our code to
a new system we would have to find out little details such as
the location or version of MPI libraries. First we would look
to the cluster’s relevant website for the information. When
that didn’t work, we’d get in touch with the cluster’s system
administrators or help staff. Generally, we received prompt,
helpful replies to our questions, which greatly improved our
productivity.

Besides technical challenges, an issue we faced on a deeper
level was finding a way to balance the work of the project
with our other course work. This was particularly a chal-
lenge because of the looser deadline structure associated
with the project. Whereas classes were meeting two or three
times weekly, our group’s meeting to discuss the project only
occurred once per week, and even then there were seldom
hard deliverables. We had to develop a new level of focus
and motivation for the project to be able to stay on top
of it. Thus, we learned new ways of motivating ourselves,
for example splitting the project into small pieces, working
on small goals throughout the week rather than letting the
greater end become daunting. Through constructing our
own schedules and picking our own goals we were able to
find personal meaning in the tasks we completed, and we
made more efficient use of the time we could devote to the
project.

Throughout the program our mentor Dr. Charlie Peck, asso-
ciate professor of Computer Science at Earlham, was helpful
and available to answer questions. During our weekly meet-
ings we discussed our progress and where we’d be heading
next. Dr. Peck would look at our data and point out places
it did not make sense, such as when he helped us notice an
issue in a graph that eventually led us to a set of old data
that was being erroneously combined with recent data and
leading to bad graphs.

Volume 1, Issue 1 Journal Of Computational Science Education

46 ISSN 2153-4136 December 2010

5. RESULTS
At the writing of this paper, the PetaKit framework exists in
its entirety. The system is not yet public, but the steps for
a developer to benchmark a supported program on a given
cluster are as follows2 (see Figure 1):

1. Build (Computational Resource)

(a) Generate a compressed folder from the latest source
and send it to a supported cluster

(b) Decompress the folder

(c) run ./configure --with-mpi --with-omp (Au-
totools) in the folder

2. Run StatKit (Computational Resource)

(a) Run StatKit, specifying relevant options, such as
an identifying tag (see Figure 5)

(b) StatKit takes the specified parameters over which
to observe scaling and iterates over them, building
a script file for each combination of parameters

(c) As it is built, each script is submitted to the
scheduler once for each repetiton requested

3. Scripts run (Computational Resource)

(a) Run program, collect output

(b) Pipe output through secure shell to centralized
data server

4. Data Collection (Data Server)

(a) Parse meaningful performance data from raw out-
put

(b) Access PostgreSQL database and insert perfor-
mance data

5. Data Display (Web-Based Client)

(a) User selects data by tag

(b) User selects the independent and dependent data
to observe

(c) User selects a variable over which to “split” the
data into multiple lines

(d) PHP backend accesses database, averages repeated
runs, and creates a graph

(e) Page displays graph image file

PetaKit developers can generate a compressed folder from
the latest source and send it to a supported cluster, where
Autotools is run to build the files. Then StatKit takes its
parameters and generates a set of shell scripts, one for each
combination. StatKit submits these scripts to the scheduler,
resubmitting for each repetition, and when each is finished it
pipes its output through ssh to the parser.pl script on a com-
puter at Earlham College. Parser.pl parses the output into
data which it sends to a PostgreSQL relational database.

2This is one possible flow of data chosen to show every piece
of the project. By default the harvester saves its data to a
text file that can be directly visualized with the accompa-
nying plotting program PlotKit.

The data remains in the database where it can be accessed
via our web browser application which allows the user to
pick dependent and independent variables and compare the
scaling of one setup to another(see Figure 1). The most com-
mon use of the graph is to compare OpenMP performance
to MPI performance to hybrid performance by plotting the
three threads vs. walltime.

This system has collected and visualized data on over five
clusters:

• Indiana University’s Big Red, a BladeCenter JS21 Ter-
agrid resource with PPC 970 processors and a LoadLeveler
scheduler

• Pittsburgh Supercomputing Center’s Pople, an SGI
Altix 4700 Teragrid resource with Itanium 2 Montvale
9130M processors accessed via a PBS scheduler

• Univerity of Oklahoma’s Sooner, a PowerEdge 1950
Teragrid resource with Xeon E54xx processors and an
LSF scheduler

• Earlham College’s Bobsced, a decomissioned cluster
with Intel Core2 Quad processors and a PBS scheduler

• Earlham’s Advanced Computing Lab Computers (ACLs),
a group of Dell commodity workstations with Pentium
D processors and no scheduler

These visualizations have been presented at TeraGrid and
SuperComputing in 2009, and at Earlham College in its 2009
research conference[7]. The most dramatic discovery of our
benchmarking software was that the particular programs we
were using to test it had serious bugs and fell short of the
scaling one would expect of n-body and MapReduce prob-
lems, even at large problem sizes. AUC behaved as expected
except for its hybrid version. Hybrid’s failure to outperform
MPI on BigRed was understandable for AUC, a Map-Reduce
dwarf with low communication overhead. On Sooner, how-
ever, Hybrid AUC took over eight times as long to run as its
MPI counterpart even with heavy parallelization and large
problem size(see Figure 2). Even accounting for the addi-
tional overhead of a hybrid program, such a performance
penalty suggests an error. As for GalaxSee, we were still
having significant trouble running it and had not yet gotten
results. Fortunately, we realized that the tools we had devel-
oped to get our results were actually much more important
than the results themselves. A poster describing PetaKit as
a performance data collecting framework was presented at
SIGCSE and the Earlham College Annual Research Confer-
ence in 2010[6].

In the summer UPEP workshop at the National Center for
Supercomputing Application (NCSA) we presented PetaKit
to the new group of UPEP interns. We explained it to
the students and guided them through a lab where they
equipped their programs to output PetaKit-compatible statis-
tics (using supplied header files) and collected data on it.
We had modularized the harvester such that it could output
data into a text file to be graphed via gnuplot, but StatKit
was still a long way from being truly user friendly. Some stu-
dents accomplished this with relative convenience, but many

Journal Of Computational Science Education Volume 1, Issue 1

December 2010 ISSN 2153-4136 47

had trouble using a PetaKit interface that was not yet de-
signed for benchmarking arbitrary programs. By the next
presentation at the University of Oklahoma (OU) the har-
vester gained improved versatility via a “template system”
where the command line into which parameters are dropped
was no longer hardcoded but defined by the user at runtime
with the command --cl. Since then, scheduler submission
scripts have also been templatized, allowing users to make
a “script template” for a given system and instruct StatKit
to use it with -t. Users can send their template scripts to
us, and we will incorporate them, expanding PetaKit’s clus-
ter compatibility. For further user-friendliness we added a
feature to PetaKit,--proxy-output, to collect minimal data
from programs that have not had PetaKit output added to
their code. To minimize visualization hassle we now include
a supplementary program, PlotKit, another Perl script that
automatically averages repeated runs, organizes the data,
and creates and runs a gnuplot script to make a visualiza-
tion according to a few simple parameters the user gives.

Using this improved PetaKit system it became simple for
us to try many different programs without wasting our time
reprogramming either them or PetaKit. With our new sys-
tem we quickly tried a few different versions of GalaxSee
until we found one that effectively used MPI to perform
faster(see Figure 4). Now we can compare the results of
AUC and GalaxSee on Sooner. While AUC shows a rela-
tively smooth asymptotic curve, GalaxSee’s heavy communi-
cation load makes it more sensitive to architecture changes.
We see this in the graphs’ bumps, the most prevalent being
in the jump from eight to nine cores where GalaxSee added
an extra node and started sending messages over a network.

6. IMPACTS
With the information we learned from our project, we will
continue to improve PetaKit as both a software scaling eval-
uation tool and a cluster evaluation tool. In terms of the
cluster evaluation our first step will be to debug GalaxSee
and hybrid AUC. Then we’ll add the other eleven dwarfs,
making sure to check the efficacy of each before committing
it. The UPEP workshop gave us the opportunity to show
other people PetaKit, people who will likely be program-
ming parallel algorithms that could very well find their way
into PetaKit itself. Collecting pre-made programs will be a
much more effective way of building PetaKit’s dwarf array
than building each one from scratch, so these contacts will
be extremely useful.

Once we’ve shown the efficacy of hybrid, continuing to make
four versions of each program is unweildy and unnecessary.
Instead we will design a program to make the best use of
the resources available, for example a hybrid MPI-OpenMP
program that, when run on a dual-core laptop computer be-
haves as plain OpenMP. At the UPEP workshop we became
acutely aware of the growing popularity of the Graphics Pro-
cessing Unit for General Purpose Computation (GPGPU),
so another version of each program may be introduced where
it is appropriate to support GPGPU, or other accelerators
as they become common on cluster systems.

Although Dr. Peck always made a point of addressing par-
allel processing in his computer science classes, we went into
our UPEP internship with only the most basic understand-

Figure 2: PetaKit visualization of AUC scaling on
Sooner and Big Red[6].

ing. Some of us were under the impression that we knew
everything there was to know about the Unix command line,
but writing Perl and shell scripts solving the complex prob-
lems PetaKit presented we learned to harness Unix’s true
capabilities, far beyond what in simple academics we had
taken for granted.

The skills we learned in UPEP translated easily to much
of our classwork. After building the statistics harvester for
PetaKit, the test automation portion of software engineering
class came as second nature to Sam. He ended up spending
most of his time helping his classmates with their automa-
tion projects. The time management skills learned during
the internship helped Aaron in his senior seminar and inde-
pendent study. Deadlines were much more spread out than
in normal classes, making a structured working schedule es-
sential for success. Where other students struggled to sched-
ule their time such that they were consistently doing work,
Aaron felt comfortable staying focused and motivated under
the looser schedule of the seminar. Both of us learned the
power of source code control, something that seldom comes
up in undergraduate computer science classes. Aaron made

Volume 1, Issue 1 Journal Of Computational Science Education

48 ISSN 2153-4136 December 2010

perl stat.pl

-t al-salam.sh --scheduler pbs

--cl ’mpirun -np $processes

~/area-under-curve/area-mpi -s $problem_size ’

--processes 2-4-16 --problem_size

1000000000,100000000000 --proxy-output

Figure 3: An example StatKit command line

Figure 4: StatKit and PlotKit visualization of vari-
ous problem sizes of an MPI GalaxSee program.

heavy use of Github in his senior year independent study
and Sam was quick to suggest collaboration via Github to
his group in robotics class.

Of course, besides everything else we learned, UPEP’s goal
was to teach us parallel thinking, and we have. Now the sec-
ond question after “How would we solve this problem algo-
rithmically” is always “How would we do it in parallel?” Far
from being daunting and byzantine, parallel programming is
just another tool in our repertoire. We’re now interested in
helping other people who find parallel programming intimi-
dating to learn how much they really can do with it if they
just give it a chance.

7. RECOMMENDATIONS
The UPEP program was a powerful experience. For many
of us, it was unlike any before. Between talented mentors,
open-ended project assignments, and access to a vast array
of HPC professionals and educators, scholarly HPC litera-
ture, and of course full-scale shared cluster systems that we
shared with genuine high performance scientific models, it
taught us much more than a classroom environment could.

Certainly, UPEP’s success, at least for us, was in significant
portion due to Dr. Peck, our motivated, high-energy mentor
who was not only happy to lecture us and other members
of our small Earlham College Cluster Computing group in
our weekly meetings, but gladly volunteered his time to give
each and every one the individual help he or she needed.
Even as we attempted to solve problems which no one had
before attempted to tackle, Dr. Peck guided us with a calm,

confident demeanor, not allowing a shred of doubt that suc-
cess was assured.

For the most part, Dr. Peck took a non-interfering role in
mentoring our internships. He would send us off with gen-
eral tasks at first, then later in the internship he stepped
back, remaining available for help, asking during meetings
only whether we had enough work to keep us going. Given
the opportunity to explore the project on our own terms,
we developed a sense both for how to structure our work
and what areas within HPC interested us most, whether
they be analyzing and rewriting parallel code or construct-
ing an effective, user-friendly interface for generating and
sending out large sets of performance tests. As a result, we
stayed motivated, working on what we found engaging at
our own pace: challenging, but not exhausting. Our self-
defined relationship with the project allowed us to connect
with it more closely and to feel more accomplished with the
results. Rather than some job we were doing for Dr. Peck,
the projects became our own. Encouraging future UPEP in-
terns to similarly take the lead in planning their own projects
should help them to establish a more meaningful and per-
sonalized relationship with HPC.

As we carried out our personalized projects, we did so on
actual high-end clusters that provided tools, libraries, and
challenges for developing and running parallel code. Such
access allowed us to put theory into practice and to expe-
rience the development of real parallel software on actual
computers. Continuing to provide access to high end clus-
ters through resources such as the TeraGrid and Blue Wa-
ters will help interns gain real hands-on experience with de-
veloping high end parallel code. Though much of working
with clusters and parallel code appears daunting at first, the
inherent challenges, more than simply justified by the cor-
responding educational benefit, are an integral part of the
education themselves. To paraphrase HPC educator and
system administrator Henry Neeman, “People should learn
in education to do what they will do in real life.” 1

Continuing the theme of real-life connection, Dr. Peck pro-
vided us with scholarly work in the field, and encouraged
us to communicate with experts who deal with high perfor-
mance computing in their work, whether in industry or aca-
demica. Although practical experience working with clusters
and parallel code clearly belongs at the center of UPEP, the
encounters we had with professional-level HPC people and
materials – the Berkely view paper [1], our work with Dr.
Peck, and the people we met at conferences – served as im-
portant supplements to our education, teaching us where our
work fits in the greater practice of HPC. Armed with our
understanding of our context, we could improve the qual-
ity and depth of our research, for instance using Berkeley’s
thirteen dwarfs as guides for our benchmarks. Future in-
terns will benefit from greater networking and connection
to HPC researchers and workers.

Punctuating our internship with the occasional conference
served a dual purpose: not only to allow us to see the work
of others, but to present our own work as well. Each of the
presentations we made at conferences and workshops helped
us to share our project and receive meaningful feedback from
experts in the field. Furthermore, the preparation for these

Journal Of Computational Science Education Volume 1, Issue 1

December 2010 ISSN 2153-4136 49

presentations forced us to reflect on our project and shape
an informative and concise defense of it. These presentations
were so effective at getting us to evaluate our standing that,
as mentioned before, at one point in presentation prepara-
tion we actually changed our direction, going from a display
of the data collected from poorly constructed programs to
focusing heavily on the sophisticated system that we were
developing for collecting that data. Regular presentations
will encourage interns to feel comfortable synthesizing, ex-
plaining, and defending their projects, which will lead to
improved comprehension and learning.

For all its strengths, the UPEP program’s first year exhib-
ited some disorganization characteristic of a nascent pro-
gram with no preexisting documentation or buearacracy.
None of the issues were particularly troublesome, but we
were glad to find them addressed in the first official UPEP
workshop at the National Center for Supercomputing Ap-
plications at the end of our internships (and the beginning
of those of the next year’s interns).

The UPEP workshop was not only the first time we met the
next generation of UPEP interns, but the first time we met
the rest of our generation of UPEP interns. Had we been
in touch with each other from the beginning we could have
communicated and helped each other with our problems in
our projects.

Fortunately, the workshop resolved many of the human net-
working issues. The workshop was extremely informative,
and working so close to Blue Waters itself made for an ideal
beginning of the UPEP internships. Meeting so many peo-
ple with the same interests, especially well-spoken presen-
ters, was inspiring and motivating. In general, having the
previous year’s interns help teach the next year’s is an ex-
cellent strategy. It’s a cost-effective solution that solves the
networking issue while strengthening the expertise of both
parties.

8. CONCLUSIONS
Although the concept of a universal application benchmark
made up of an instance each of Berkeley’s thirteen dwarfs
is still a long way from realization, the work done on the
PetaKit project has by no means gone to waste. PetaKit’s
daughter project StatKit has come into its own and even
generated its own companion project PlotKit. StatKit and
PlotKit are currently being used in UPEP parallel education
curricula.

Our work in UPEP was extremely rewarding, as was devel-
oping and presenting curricula for the UPEP workshop at
the end of our internship. Sam has accepted a job at Shodor,
where he continues work on PetaKit and other STEM and
HPC education projects. He is looking into Carnegie Mel-
lon and University of Southern California to get his PhD
in Natural Language Processing, an often computationally
intense field that will benefit from effective parallel experi-
ence. Aaron hopes to pursue a PhD in computer science
and to have the opportunity to use the knowledge gained at
UPEP to teach and mentor others. He is currently working
as a system administrator in Earlham College’s Computer
Science department, putting to use the skills he has obtained
from working on a variety of cluster implementations.

9. REFERENCES
[1] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,

P. Husbands, K. Keutzer, D. A. Patterson, W. L.
Plishker, J. Shalf, S. W. Williams, and K. A. Yelick.
The landscape of parallel computing research: A view
from berkeley. Technical Report UCB/EECS-2006-183,
EECS Department, University of California, Berkeley,
Dec 2006.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning,
R. L. Carter, L. Dagum, R. A. Fatoohi, P. O.
Frederickson, T. A. Lasinski, R. S. Schreiber, H. D.
Simon, V. Venkatakrishnan, and S. K. Weeratunga.
The nas parallel benchmarks. SC Conference,
0:158–165, 1991.

[3] G. Cybenko, L. Kipp, L. Pointer, and D. Kuck.
Supercomputer performance evaluation and the perfect
benchmarks. SIGARCH Comput. Archit. News,
18:254–266, June 1990.

[4] J. Dongarra, P. Luszczek, and A. Petitet. The linpack
benchmark: past, present and future. Concurrency and
Computation: Practice and Experience, 15(9):803–820,
2003.

[5] J. J. Dongarra, H. W. Meuer, E. Strohmaier, J. J.
Dongarra, H. W. Meuer, and E. Strohmaier. Top500
supercomputer sites. Technical report, Supercomputer,
1997.

[6] M. Edlefsen, A. F. Gibbon, B. Johnson-Stahlhut,
D. Joiner, S. Leeman-Munk, G. Schuerger, A. Weeden,
and C. Peck. Collecting performance statistics on
various cluster implementations. Poster at ACM
Special Interest Group on Computer Science
Education, April 2010.

[7] M. Edlefsen, A. F. Gibbon, B. Johnson-Stahlhut,
D. Joiner, S. Leeman-Munk, A. Weeden, and C. Peck.
Parallel performance over different paradigms. Poster
at Teragrid Conference and Supercomputing
Conference, 2009.

[8] P. Luszczek, J. J. Dongarra, D. Koester,
R. Rabenseifner, B. Lucas, J. Kepner, J. McCalpin,
D. Bailey, and D. Takahashi. Introduction to the hpc
challenge benchmark suite. 2005.

Notes
1H. Neeman (personal communication, August 8, 2010).

Volume 1, Issue 1 Journal Of Computational Science Education

50 ISSN 2153-4136 December 2010

