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ABSTRACT 
The N-Body problem has become an intricate part of the 
computational sciences, and there has been rise to many methods 
to solve and approximate the problem.  The solution potentially 

requires on the order of calculations each time step, therefore 
efficient performance of these N-Body algorithms is very 
significant [5].  This work describes the parallelization and 
optimization of the Particle-Particle, Particle-Mesh (P3M) 
algorithm within GalaxSeeHPC, an open-source N-Body 
Simulation code.  Upon successful profiling, MPI (Message 
Passing Interface) routines were implemented into the population 
of the density grid in the P3M method in GalaxSeeHPC.  Each 
problem size recorded different results, and for a problem set 
dealing with 10,000 celestial bodies, speedups up to 10x were 
achieved.  However, in accordance to Amdahl’s Law, maximum 
speedups for the code should have been closer to 16x.  In order to 
achieve maximum optimization, additional research is needed and 
parallelization of the Fourier Transform routines could prove to be 
rewarding.  In conclusion, the GalaxSeeHPC Simulation was 
successfully parallelized and obtained very respectable results, 
while further optimization remains possible. 
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1. INTRODUCTION 
The N-body problem is an example of an algorithm that in simple 
to explain to students, but that quickly grows in complexity and 
need for resources.  Dealing with the potential interactions 
between particles in a distribution, the N-body problem would 
ideally compute all possible interactions, and if every N objects 
interacts with every other (N-1) objects, this results in N(N-1) 

total possible interactions, growing as in complexity.  This 
category of problems has applications in many fields such as 
astrophysics, molecular dynamics, fluid dynamics, and plasma 
physics.[2]  This paper applies the N-Body problem to the 
simulation of celestial bodies in space, particularly in the case of 
the “universe in a box” problem where the space being calculated 
is assumed to be one unit cell out of an infinite expansion. 

 

This research opportunity arose through my selection into the 
Blue Waters Undergraduate Petascale Education Program.  In 
order to best prepare for the experience we received two weeks of 
intensive training at the National Center for Supercomputing 
Applications (NCSA), via the University of Illinois at Champagne 
Urbana.  During the training we were exposed to the world of 
high performance computing and its architectures and 
applications.  We gained experience in shared-memory 
parallelism with OpenMP, and distributed system parallelism with 
MPI.  In addition we were exposed to modern applications in 
computing using GPU architectures.  At the time of my research I 
was a rising junior in Kean University’s Center for Science 
Technology & Mathematics program, majoring in Computational 
Applied Mathematics.  My research and study was done under the 
mentoring of my advisor, Dr. David Joiner, Kean University.  
Prior to this summer I had taken multiple mathematics courses, a 
calculus-based physics course, and a basic java computer 
programming course. 

2. BACKGROUND 
2.1 The N-Body Problem 
The N-Body problem is a classic physics problem dealing with the 
interactions of particles.  When we are dealing with more two or 
more particles, each potentially interacts with every other particle, 
and each force pair is equal and opposite giving N(N-1)/2 unique 

forces.  Unfortunately, the scaling then leans towards which 
quickly accumulates when dealing with problems of large N.  The 
initial conditions are the mass, coordinates, and 
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velocity of each particle, respectively.  Because of the singularity 
in the forces of close interactions a cutoff radius, sometimes call a 
shield radius, is typically used to reduce the computational error 
due to close interactions.  Alternatively, a softening radius can be 
added in the calculation of the potential. Both of these are options 
in GalaxSeeHPC [1] 
 
Shield Radius: 

  (2.1) 

 
Softened Potential: 

  (2.2) 

   (2.1) 

2.2 Particle-Mesh Method 
In the case of the “universe-in-a-box” problem, the N-body 
problem is solved in a system with a “wrapped” geometry, 
assuming that we are solving for a typical unit cell out of an 
infinite expanse. The wrapped geometry in gravitational dynamics 
is typically used to solve for large scale structure, where solving 
for the entire universe is not practical, and one assumes that there 
is mass immediately outside of the box that would affect the 
evolution of the system. Such methods are also used in molecular 
dynamics calculations, where it is necessary to maintain a 
consistent bath of solvent molecules around a protein being 
studied. The Particle-Particle Particle-Mesh method allows for the 
use of a spectral technique assuming a periodic solution. 
 

 
 

(2.3) Illustration of a “wrapped” world as is pertains to the code.  
The distance between particle A and B represents the “ghost” 
distance.  Particle B does not exist because we are dealing with a 
“wrapped” world.  Therefore, the “real” distance is between 
particle A and C. 

 

Poisson’s Potential Energy equation is given by: 

    (2.4) 

The algorithm for the density population first begins with 
incrementing through the array of coordinates and setting the 
initial density grid to zero at each particle.  Next we must find the 
nearest grid point for each body of mass and “wrap” if needed.  
After locating the nearest point the range around that grid point is 
then calculated and we ensure that coordinates are broken by the 
wrapping of any particles.  The final part of the density 
distribution is incremented through each of the bodies and 
updating the density array with the values for the particle mesh. 

 

Through a Fourier Transform, the solution to Poisson’s equation 
becomes:  

     (2.5) 

In practice, an additional function is used to smooth out shorter 
range forces and control the scale of the long range forces. This 
function, called the influence function, is typically taken to be the 
Fourier transform of the density function of a single particle in the 
system during the density grid population [4]. 

    (2.6) 

 
The basic procedure of the PM method is as follows: [6] 

• Transform particle mass into density distribution 
• Solve Poisson equation using FFT algorithm 
• Calculate the force fields and interpolate to find forces 
• Integrate to obtain positions and velocities 
• Update time step  

 

The Particle-Particle, Particle-Mesh (P3M) is a hybrid method for 
approximating the solution to the N-body problem.  PM methods 
suffer from an inability to predict short range forces accurately, as 
any nearby effects are “smoothed” out over nearby gridpoints. 
The P3M method adds a nearest neighbor “particle-particle” 
interaction that essentially divides the forces into short-range 
forces, and long-range forces.[7]  Short-range forces are 
calculated using the direct force method which is the brute force 
calculation using equation 1.1 from above. The longer range 
forces are then calculated using the Particle-Mesh 
approximation.[6]  Getting an accurate solution efficiently 
requires careful selection of the size scale of the density function 
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for each object in the density population, the influence function, 
and the radius used to determine nearest neighbors. The hybrid 
P3M method ideally results in a scaling of .[4] 

2.3  GalaxSeeHPC 
GalaxSeeHPC is a N-Body simulation source code.  It requires an 
UNIX-like environment, or a Cygwin-like environment for 
windows applications.  The code provides many options of 
different force calculation techniques.  You may chose the direct 
force method, the Fourier Transform based P3M method or the 
Barnes-Hut tree-based method.  For the purpose of this paper we 
will only discuss in detail the P3M method. 

 

2.4 Message Passing Interface 
With the occurrence of larger and larger problems needed to be 
solved, comes the use and application of supercomputers.  The 
most widespread accepted parallel programming language is the 
Message Passing Interface, or MPI.[8]  Users of C or Fortran can 
use MPI to pass messages between the nodes of the cluster.  This 
communication can spread out the computer’s work and 
drastically alter the overall performance.  If a code has to little 
work or data the addition of MPI could potentially hurt 
performance.  Also, one must take into consideration the amount 
of communication the nodes will have to have with each other.  
Too much communication can also produce harmful effects on a 
code.   

 

3. PROFILING AND DESIGN 
3.1 Profile 
In order to attempt to optimize the performance of the code we 
first began profiling GalaxSeeHPC under many different 
conditions.  The code was examined for various values of N, Final 
Time, and grid size (the resolution of the mesh, higher the 
resolution the more accurate).  For use of GalaxSeeHPC it is best 
to have the grid size set to a power of two; for example, 16, 32, 
64, etc.   

 

The implementation of the P3M algorithm in GalaxSeeHPC 
follows three steps in the force calculation, population of a density 
grid, FFT solution of Poisson’s equation on that grid, and 
interpolation of forces from the Poisson solution back to 
individual points, along with directly calculated nearest neighbor 
corrections. Shown below is the percentage of the wall time (as 
determined through the use of both hard coded timers and gprof) 
taken up by the density population step. Note that for smaller grid 
sizes, population of the density grid dominates the time required 
for a force calculation—compared to the time required for the 
FFT calculation for larger grid sizes. This suggests that for lower 
resolution P3M grids, speedups on the order of 20 to 50 times 
should be obtainable through parallelizing the density population 
alone. 

 

GRID SIZE N = 1,000 N = 5,000 N = 10,000 

16 .97 .97 .96 

32 .93 .94 .94 

64 .73 .88 .91 

128 .27 .56 .68 

256 .08 .18 .24 

                  

(3.1)  This figure portrays the percentage of total wall time which 
the creation of the density grid was responsible for. 

3.2 Parallelization  
By examining the code further, clearly the last part of the density 
creation loop had the highest potential for parallelization.  The 
statement we parallelized is said to embarrassingly parallel.  A 
code is said to be embarrassingly parallel if there are no channels 
between tasks and each process can perform its duties without 
communication with any other processes.[8]  These types of 
algorithms are usually the easiest to parallelize because of this 
lack this ability to do work without interaction.   

 

The next step after defining the subset of code to be parallelized is 
design.  A round-robin technique was used, where each node does 
some work, and returns to do more based on its rank and world 
size.  The rank is each processor’s own unique ID number, so that 
we have a way of distinguishing between nodes.  The world size 
is the total amount of processors initialized at run time.  The 
following three functions are the three most basic and important 
functions when using the Message Passing interface. 

 

MPI_Init (&argc, &argv); 

MPI_Comm_rank (MPI_COMM_WORLD, &rank); 

MPI_Comm_size (MPI_COMM_WORLD, &world_size);    

   

Mpi_Init is the function initializes the use of Message Passing 
Interface.  The MPI_Comm_rank and MPI_Comm_size determine 
the processor id’s and total number of proccessors, respectively.  
Rank and world_size are arbitrary variable names which hold the 
IDs and total size.  Now that we have MPI initialized we can 
parallelize the code. 

 

The initial parameters for the loop in the density grid creation was 
as follows: 

For(l = 0; l < theModel->n;  l++) 

This is a very basic loop incrementing by one and looping through 
all the bodies of mass in the model.  In using the round robin 
technique we change the loop to the following: 

For( l= rank; l<theModel-n; l += size) 

Now each processor will begin its loop at its rank (ID) and 
increment by the world size.  The following diagram depicts the 
round robin use of MPI. 
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(3.3) Depicts the round robin technique in a group of 3 nodes.  
Each node begins at its own ID and increments by the total 
amount of nodes being used. 

 

This type of parallelization is also referred to as data 
decomposition.  This is defined as when multiple tasks have same 
responsibility but work on different sets of data.[3]  As opposed to 
functional decomposition where each task has its own set of 
responsibilities.[3]  Now the data is broken up, but we still need to 
make sure every process receives the results of every other 
process so that have the results of the entire density grid. 

 

For this we will use one of MPI’s reduction commands.  
MPI_Allreduce is a collective communication, so each processor 
will receive the reduction results.[7]  Below is the command along 
with its necessary parameters. 

 
MPI_Allreduce( 
 Void* send_buffer, // = the send buffer 
 Void* recv_buffer = the receive buffer 
 Int cnt = the number of elements to reduce 
 MPI_Datatype dtype = Element type 
 MPI_Op op =  Reduction Operator 
 MPI_Comm comm. = Communicator 
           ); 
 

After reducing to a temporary buffer we can transfer all the results 
back to each proccessors density array.  The result is all the nodes 
sharing the results of the density grid creation with each other. 

4.  RESULTS 
After successfully profiling and parallelizing the code we were 
able to see very significant results.  Below are a few graphs 
represents the increased speed up we received by running the code 
with various amounts of nodes. 

 

 

(4.1) Above are the optimization results when simulating a galaxy 
of 10,000 stars.  Below are the results when simulating 100,000 
stars. 

 

  

In the supercomputing world there exists Amdahl’s law which 
accurately predicts the maximum speedup of parallelized code.  
Amdahl’s law assumes we are trying to solve any problem of 
constant size as quickly as possible, and can determine potential 
speedup achievable as you increase the number of processors. [7] 
The equation is simply that the maximum speedup is equal to one 
over the fraction of the time spent in code that must be run 
serially.   For instance, if 10% of your compute time is from code 
which can not be parallelized, then the maximum performance 
you can achieve is 1/.10 or a speed up of 10x.  
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(4.2) Above are the Speedups of the Wall-times of GalaxSeeHPC 
as a function of the # of processors.  The speedup value is 
calculated by divided the wall-time of P processors by the wall 
time for one processor. 

  

By examining graph (4.2) we see that our parallelized code for 
10,000 bodies maxes out at around .1, which results in speedup of 
10x.  However, when we are dealing with 100,000 bodies we only 
see a max of .29 with a speedup of 3.45x.  We can take our results 
from the above table (3.1), and apply them to Amdahl’s Law.  
Therefore, for N = 10,000 bodies and a grid size of 32*32*32, the 
maximum achievable speedup = (1) / (1-.94) or 16x.  Although we 
received a very impressive speedup of 10x for N = 10,000, we 
weren’t able to totally optimize within accordance of Amdahl’s 
Law’s projected maximum speedup of 16x. 

 

If we examine table (3.1) further we notice as the grid resolution 
becomes larger and larger (which increases accuracy), the 
percentage of total time used in creating the density grid 
decreases.  This is because as the grid sizes increase so does the 
time in calculating the Fourier Transform by the FFTW algorithm.  
Therefore, our next task in fully optimizing performance of 
GalaxSeeHPC should be the profiling and parallelization of the 3 
dimensional Fourier Transform of the gravitational potentials. 

 

5. CONCLUSION 
5.1 Analysis   
Our analysis shows that the current parallelization of 
GalaxSeeHPC using the P3M method scales in accordance with 
expectations, however, limited by the time required to perform the 
FFT, which as of yet has not been implemented in parallel.  The 
results substantiate that the population of the density grid 
consumes much CPU time, and that parallelization of the 
algorithm can lead to improved performance.  

Howbeit we achieved speedups of up to 10x; we must not 
overlook that only one algorithm in the code was parallelized.  To 
obtain maximum performance we must continue to examine the 

code for potential methods possible to execute in parallel.  As 
stating above, the next step would be optimizing the FFTW 
algorithm, within GalaxSeeHPC’s PrepPPPM method.  There is 
now Message Passing algorithms available for the FFTW open 
source libraries.  Below is data which validates that in order to 
reach maximum attainable speedups, implantation of the MPI-
based Fourier Transforms would be the next sensible phase. 

#Procs 1 2 4 8 16 32 

%Total 
Time 

3% 6% 11% 17% 22% 25% 

 

(5.1) Above represents the direct proportionality of the 
percentages of total wall time spent in PrepPPPM, and the number 
of processors used in execution, for N = 10,000, and a Grid 
Resolution of 32*32*32.   

 
(5.2) The above graph is the Percentage of total time spent in 
PrepPPPM as a function of the Grid Resolution.  The time in 
computing the Fourier Transform increases as the mesh size 
increases. 

 

Use of the GalaxSeeHPC Simulation will require a significant 
amount of CPU time, and computing power. Time constraints and 
computing resources necessary will depend on the actual problem 
set.  For instance, computing a simulation of a galaxy of 100,000 
stars on one core, over the course of 15 billions years and a time 
step of .1 million years would require a tremendous amount of 
CPU time.  Our earlier results, when running 100,000 stars for 
100 time steps, required just over 6000 seconds to run.  Therefore 
running at 15 billion years with a time step of .1 would require 
approximately 1500x more CPU time, which results in over 2584 
hours! 

5.2 Reflections 
Through Blue Waters’ education program I received an invaluable 
educational experience.  This section describes the impact this 
research internship had on my learning experience, and how to 
potentially use this paper in undergraduate education so that 
others may gain knowledge in high performance computing 
applications.   

Volume 1, Issue 1 Journal Of Computational Science Education

42 ISSN 2153-4136 December 2010



Firstly, one must master the basic mathematics and physics 
concepts behind the simulation.  The N-Body is calculated by 
means of Newtown’s basic physics equations depicted in (2-1).   
This governing equation should not take much mathematics 
knowledge to comprehend, and I already had prior experience 
with these physics concepts.  The most abstract concept for me, 
which is most likely to be the one misunderstood by students, is 
the use of Fourier Transforms.  A Fourier Transform in a very 
basic sense is the transformation of one equation from the time 
domain to the frequency domain.  The result of the transform will 
depict the frequencies of the original equation.  Initially I had no 
knowledge of Fourier techniques, therefore in order to properly 
understand the algorithms of GalaxSeeHPC; I had to master the 
concepts behind Fourier transforms and their applications.  
Therefore, future students who wish to benefit from this paper 
must first comprehend the concepts behind the simulation. 

I also had to familiarize myself with MPI and ways of thinking 
parallel in order to formulate the best algorithm.  The training 
provided by the NCSA allowed me to efficiently discover 
algorithms in the code which would benefit by the application of 
MPI and its parallel routines.  However, before I actually 
implemented any code changes, I had to first properly model and 
profile the code.  I began executing the code for many different 
sets of initial conditions, and used Microsoft Excel and MATLAB 
in order to make sense of these results.  I also learned how to 
efficiently use gprof (GNU Profiler) which aided in shedding light 
on which method calls within the simulation actually were taking 
up the most time.  However, in order to analyze the code as 
accurate as possible, I also implemented my own timing methods 
into GalaxSeeHPC.  Students must learn how to correctly profile 
and analyze in order to locate the algorithms which are best-fit to 
parallelize. 

I was also fortunate enough to work in a team environment 
throughout my research.  During my training I had a chance to 
collaborate with the other gifted students who were chosen as 
Blue Waters Petascale interns, and continued to use them as 
resources throughout my research by using OpenStudy, an online 
study group.  I also collaborated with my professors at Kean’s 
NJCSTM and some of our graduate students.  There is always 
more than one way of implementing a problem in parallel and 
having a team environment is very useful in discovering the 
optimal solution.     

This research experience can potentially be replicated by 
professors for use in their research, as well as in undergraduate 
education.  The code itself can be used in classrooms, and can 
execute scalable N-Body simulations for different boundary 
conditions.  Using the parallelized P3M algorithm within 
GalaxSeeHPC, students and researchers can experience speedups 
of 10-20x, and will have the ability to execute simulations for 
very large N.  Also students may benefit from the research 

methods I used and how to successfully analyze algorithms, and 
implement high performance computing techniques.  There are 
many different paths one could take in furthering this research, 
depending on their field of study, and intended teaching 
application.  For instance, a computer scientist may consider 
analyzing the Barnes-Hut method for parallelization, an 
alternative N-body approximation using tree data structures.  
However, a physicist may be more interested in using the 
parallelized P3M methods in order to conduct research on the 
organization of large scale universes, and how their formation. 
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