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ABSTRACT 
In this project we designed an Artificial Neural Network (ANN) 
computational model to predict the activity of short 
oligonucleotide sequences (octamers) with important biological 
role as exonic splicing enhancers (ESE) motifs recognized by 
human SR protein SC35. Since only active sequences were 
available from the literature as our initial data set, we generated 
an additional set of complementary sequences to the original set. 
We used back-propagation neural network (BPNN) with 
MATLAB® Neural Network Toolbox™ on our research 
designated computer. In Stage I of our project we trained, 
validated and tested the BPNN prototype. We started with 20 
samples in the training and 8 samples in the validation sets. 
Trained and validated BPNN prototype was then used to test the 
unique set of 10 octamer sequences with 5 active samples and 
their 5 complementary sequences. The test showed 2 
classification errors, one false positive and the other false 
negative. We used the test data and moved into Stage II of the 
project. First, we analyzed the initial DNA numerical 
representation (DNR) and changed the scheme to achieve higher 
difference between the subsets of active and complementary 
sequences. We compared the BPNN results with different 
numbers of nodes in the second hidden layer to optimize model 
accuracy. To estimate future model performance we needed to 
test the classifier on newly collected data from another paper. 
This practical application included the testing of 41 published, 
non-repeating SC35 ESE motif octamers, together with 41 
complementary sequences. The test showed high BPNN accuracy 
in the predictive power for both (active and inactive) categories.   

This study shows the potential for using a BPNN to screen SC35 
ESE motif candidates.  

 

Categories and Subject Descriptors 
J.3 [Life and Medical Science]: Biology and genetics.  

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise, 
or republish, to post on servers or to redistribute to lists, requires prior 
specific permission and/or a fee.  
 
Copyright ©JOCSE, a supported publication of the Shodor Education 
Foundation Inc. 
DOI: https://doi.org/10.22369/issn.2153-4136/9/2/4  

Keywords 
Artificial neural network (ANN), back-propagation neural 
network (BPNN), nucleotide sequences, exonic splicing 
enhancers (ESE), DNA numerical representation (DNR). 

1. INTRODUCTION 
1.1 Artificial Neural Networks (ANN) 
Over the past few decades, machine learning processes have 
become more sophisticated and useful in many different fields of 
theoretical and applied science, such as applied biology, 
biomedical research, medicine, and drug discoveries. These 
methods are based on pattern recognition capabilities [1, 2].  

The new and more advanced applications of these models now 
achieved a major growing momentum.  

They are now incorporated in text (spam filtering) and voice 
recognition (Alexa, Siri and Cortana), virtual video games, self-
driving cars, economic forecasting, health related scans and 
images to reveal any abnormal patterns related to different 
symptoms and many other fields. 
Among other computer-assisted approaches such as machine-
learning Decision Trees and Nearest Neighbors algorithms, the 
ANN–based schemes have gained probably the most attention 
and are now widely applied.  
The initial information (signal) is entering the network of 
‘neurons’ called nodes that is programmed to react to this initial 
signal and passed the transformed signal to other cluster of nodes 
so that other signal transformation could be performed. Part of the 
ANN design is to assign a finite number of these clusters (layers) 
together with the number of nodes in each layer. The general 
process of turning the initial input into the output information is 
the result of ANN program and model design. So, the computer 
is actually allowed to ‘learn’ specific information by repeating the 
very same process, and adjusting the connections intensity 
between the nodes till the required output is reached. ANNs are 
then used to solve the problems that are too difficult for both: 
people and our digital computers. Since these models work on 
pattern recognition they do not need any underlying data 
distribution function that is usually required prior to any statistical 
data analysis and the requirement of data normality before 
hypotheses testing.   
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1.2 Biological Aspects 
Literature [3, 4] and personal communication are the sources of 
active oligonucleotide sequences (class=1) used in this project.  
The authors used the SELEX [5] method to generate a set of 
sequences with 8 nucleotides (octamers) that were originally 
evaluated by calculated scores. 
 
Only unique octamers, each with the non-repeating sequence 
pattern were used in our project. Nucleotide frequencies of a 
single position of each individual active sequence were then 
combined into score matrix resulting in an assembly of more 
general, biologically active SC35 motif [GGCCCCTG] called 
consensus sequence that we also incorporated into our BPNN 
model. 
These active octamers (also named SC35 ESE motifs) play a 
major biological role during the process of exon splicing process 
as exonic splicing enhancers (ESE) that are recognized by human 
SR protein SC35. This protein is responsible for splicing of 
another enzyme called pyruvate dehydrogenase (PDH).  Any 
significant deficiency in the process of producing PDH complex 
is a major cause of lactic acidosis and mental retardation in 
childhood. SR proteins are involved in proper RNA splicing. 
They are named SR since this family of proteins is rather 
conserved and contains many repeats of serine (S) and arginine 
(R) amino acids [6].   
 

1.3 Goals 
The major objective of our project was to apply ANN concept and 
design the back-propagation neural network (BPNN) on available 
SC35 ESE motifs. DNA numerical representation (DNR) scheme 
was then applied to encode the nucleotide bases into numerical 
values representing each sequence. The set of signals was 
normalized and partitioned into two major subgroups:  
 

1. training and validation (train+val) subsets 
2. testing (test) subset 

 
Both of these subsets contained only unique signals, i.e. none of 
the test sequences were included in train+val subsets and vice 
versa. 
 
If the ANN prototype shows high accuracy in sequence 
classification into active (1) and non-active (0) groups then it 
might be potentially used as the screening tool for SC35 ESE 
motifs.   
   
2. METHODS  
The very first step was to extract active unique sequences in their 
letter description format as shown in Tables 1 and 2. It means the 
sequences of 8 letters combination of A, C, G, and T described as 
SC35 ECE motif. The letter format represents different types of 
nucleotides based on their chemical structure and biochemical 
properties:  
 
A = adenine 
C = cytosine 
G = guanine 
T = thymine 
 
Computer-assisted BPNN is usually considered at least 2-class 
pattern recognition system with one class representing active (1) 

feature vectors and the other class holding the non-active (0) 
feature vectors. In order to satisfy these criteria and make 
balanced model we generated the matrices with complementary 
sequences representing non-active output. It is based on the 
general biological rule that complementary sequences would not 
fit as SC35 ESE motifs. This process was a part of our BPNN 
script, so the complementary matrix was computationally 
generated according to the basic biology principles, where G is 
the complementary (or antisense) base of C and A is a 
complement to T.  
The conversion could be expressed by G ↔ C and A ↔ T.  
 
We started with 20 active sequences in training and 8 active 
octamers in the validation set with generated complementary non-
active sequences as shown in Tables 1 and 2.  
 
Table 1. Training set of 20 unique sequences 
 

ID	 Active	(1)	 Non-active	(0)	

1.	 GATCCCCG	 CTAGGGGC	

2.	 GGCTCGTG	 CCGAGCAC	

3.	 GGCCGCAG	 CCGGCGTC	

4.	 GGCCCACA	 CCGGGTGT	

5.	 GGTTGGCG	 CCAACCGC	

6.	 GTCCTCCG	 CAGGAGGC	

7.	 GTCCCCTG	 CAGGGGAC	

8.	 GTTCTGTA	 CAAGACAT	

9.	 GAATACCG	 CTTATGGC	

10.	 GGACCGTA	 CCTGGCAT	

11.	 GTCTAACG	 CAGATTGC	

12.	 AGCCTCAG	 TCGGAGTC	

13.	 GGATGGAG	 CCTACCTC	

14.	 GGACTGTA	 CCTGACAT	

15.	 GGTTGTTG	 CCAACAAC	

16.	 GAGCACTG	 CTCGTGAC	

17.	 TGTTACTA	 ACAATGAT	

18.	 GGCTCCAA	 CCGAGGTT	

19.	 GGATCCGG	 CCTAGGCC	

20.	 GACCTGCT	 CTGGACGA	

 
 
Table 2. Validation set of 8 unique sequences 
 

ID	 Active	(1)	 Non-active	(0)	

1.	 GTTTCGAG	 CAAAGCTC	

2.	 GGTCGCCG	 CCAGCGGC	

3.	 GGTCAGTG	 CCAGTCAC	

4.	 GGCTGATG	 CCGACTAC	
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5.	 CGCCCTTG	 GCGGGAAC	

6.	 AGCTCCCA	 TCGAGGGT	

7.	 GACCGGTG	 CTGGCCAC	

8.	 GACTAGAA	 CTGATCTT	

 
In any machine learning process, DNA sequence are converted to 
numerical values for data representation and feature learning 
related to specific biological or biochemical application. The 
distinct nature of the DNA sequence being discrete in the 
‘amplitude’ and ‘time’ offers multiple DNA numerical 
representation (DNR) techniques in the form of single or 
multidimensional array. Current DNR techniques could be 
divided into three main categories: single-value mapping, 
multidimensional sequence mapping, and cumulative sequence 
mapping [7].  
 
 Integer, real number, and measurement representations 
are still frequently used encoding schemes. In many scenarios of 
single-value mapping A, C, G, and T are assigned to a single 
indicator such as 1, 2, 3, and 4. This scheme (also called Galois 
field) is also feasible for a complementary encoding because it 
provides symmetric deviations between both groups.  Also, it was 
used in the past for DNA barcode in large-scale screening of 
multiple genomic core databases. Other direct encoding schemes 
include Atomic representation, where each nucleotide is assigned 
its atomic number (i.e. number of protons) [C=58, T=66, A=70, 
and G=70]. Calculated electron energies for each nucleotide 
[C=0.1340, T=0.1335, A=0.1260 and G=0.0806] are the core of 
Electron-Ion Interaction Pseudopotential (EIIP) single-value 
scheme, while the Molecular Mass encoding is applied in 
mapping DNA sequences based on molecular mass of different 
nucleobases [C=110, T=125, A=134, and G=150] with atomic 
mass units.  
 
 Multidimensional sequence mapping include binary 
sequence indicators such as A=[00], C=[11], G=[10], and T=[01]; 
4-bit representation with A=[1000], C=[0100], G=[0010], and 
T=[0001]. 
 
 Cumulative representation include Z-curve, DNA walk 
and other more complex DNA encoding schemes.  
 
Currently, no DNR is considered to be the ‘gold standard’ and the 
choice is usually driven by the applicable biological aspects and 
the specific goals of the machine learning project. 
 
We selected direct, single-mapping Galois field encoding method 
because it provides uniform distance between active and non-
active (complementary) sequences with symmetric deviations. 
Other advantage is to use simple barcode method to label each 
sequence for automated sequence screening. It also supports our 
biological goals of the project to separate the signals for active 
and non-active octamers.  However, this structure might imply 
that pyrimidines (C and T) are in some respect ‘greater than’ 
purines (A and G), which is a disadvantage of this encoding 
method. 
 

Table 3 represents 10 octamers that we used to test BPNN model. 
This is a data set of unique sequences with known activities. Five 
of them are active and five of them are from the non-active group. 
None of these sequences were previously used in training and 

validation subset. Active samples (1, 4, 5 and 10) are from the 
published article [3], sample 9 was added based on the private 
communication [Luke, personal communication]. 
 
 
 
  
Table 3. Testing subset of 10 unique sequences 
 

ID	 Designation	 Class	
1.	 GATCGCTG	 1	
2.	 AGTCGGAT	 0	
3.	 CTCATTGC	 0	
4.	 GGCCCCTG	 1	
5.	 GGACGCTG	 1	
6.	 CCGGGGAC	 0	
7.	 CTAGCGAC	 0	
8.	 CCTGCGAC	 0	
9.	 TCAGCCTA	 1	
10.	 GAGTAACG	 1	

 
 

Figure 1 shows the general ANN based on one-layer hidden units, 
where all nodes have the same number of weights (synapses) and 
all receive the input signal simultaneously.  
 

 
 
Figure 1. General assembly of neural network processing  
 

Action of formal neuron (node) consists in summing all weighted 
inputs (wi) transformed via activation function into output signals 
(oj). BPNN default is the sigmoid function. 
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Figure 2. ANN node action with sigmoid transformation 
  function  
 
 
 

 
3. RESULTS AND DISCUSSION 
3.1 Project Stage I 
The initial step in BPNN design was to generate Galois field 
numerical encoding for A = 1, T = 2, C = 3, and G = 4.  
Active sequences were added into BPNN MATLAB script with 
activity equal to 1. The next part of the script generated the 
complementary, non-active sequences that were used to balance 
the BPNN model. All data went through the normalization into 
[0, 1] interval across each feature matrix.  
 
In this project we used a supervised training where both the input 
signal and the output activity are provided. The network 
transforms the inputs with connection weights through the nodes 
and layers and calculate the errors between the resulting and 
desired outputs. Errors are then propagated back through the 
network to adjust the weights which control the network 
assembly. During this learning process the training data set is 
processed many times as the connection weights are continually 
adjusted and finally refined.  
 
Validation process that is parallel to training enables to validate 
the final model specification with the validation data set. The 
model is trained on the training set and the error is calculated on 
the validation set multiple times while adjusting the weights. It is 
used to analyze the value of parameters in the model which 
usually results in less error on validation set. 
 
Testing provides then an unbiased evaluation of a final model fit 
on the training dataset.   
 
For our BPNN model we used the seed for the random number 
generator applied for the initial weights to be equal 1. 
 
BPNN component was applied with multiple variables:  

 
• Convergence error (SSE): usually about 0.0001 
• Number of iterations: 100 
 
Samples not previously included in training process were used for 
the validation.   
Finally, we tested the BPNN classifier with test data set (i.e. 10 
unique octamers with known output 0 or 1) in specific model 
conditions with 8 nodes in the first layer and 6 nodes in the second 
hidden layer.  
 
 
Table 4. BPNN classification of test sequences 
 

ID	 Letter	
Designation	

Known	
classification	

BPNN	
classification	

1.	 GATCGCTG	 1	 0.9935	
2.	 AGTCGGAT	 0	 0.8843	
3.	 CTCATTGC	 0	 0.0046	
4.	 GGCCCCTG	 1	 0.9934	

5.	 GGACGCTG	 1	 0.9949	
6.	 CCGGGGAC	 0	 0.0028	
7.	 CTAGCGAC	 0	 0.0043	
8.	 CCTGCGAC	 0	 0.0044	
9.	 TCAGCCTA	 1	 0.0027	
10.	 GAGTAACG	 1	 0.9958	

Training	error	 0.0144	
Validation1	error	 0.9769	
Validation0	error	 0.9821	
Testing	error	 2	

 
Classification with the BPNN model under the specific conditions 
revealed 2 errors. Non-active sample 2 was predicted to be active 
(false positive), while the active sequence 9 was misplaced by 
BPNN model into the cluster of non-active sequences (false 
negative). We were not satisfied with model performance and 
moved into Stage II of the project.  
 

3.2 Project Stage II 
We started this stage with graphical interpretation of active and 
non-active feature vectors that provided the partial key to the 
problem. Our computer script generated the matrix of 
complementary (non-active) sequences based on the given 
instructions with the application of the existing biology rules. Our 
complementary sequences were generated with the absolute 
difference of 1 between nucleobases A and T and C and G. 
 
                    | A – T | = | 1 – 2 | = | C – G | = | 3 – 4 | = 1 
 

The data analysis of the initial train+val sequence subsets showed 
that the majority of the active sequences (86%) started with the 
first nucleotide G (C for complementary sequences). All tested 
sequences starting with G or C were then correctly classified by 
BPNN model. However, in the initial train+val subsets we also 
had total of 3 sequences starting with A nucleotide (2 active and 
1 non-active). The active sequences started with AG and non-
active AC dinucleotide. Size limitation of the training set could 
be the potential reason of the lower performance of our BPNN 
model resulting in misclassification of 2 tested sequences. 

In attempt to reduce misclassification error we applied higher 
resolution between the active and non-active categories to further 
separate both of these subsets in their space. We went back and 
changed the initial single-value DNR scheme to achieve higher 
and constant difference between both groups.  
 
        If A = 2, T = 4, C = 3, and G = 1, then  
              | A – T | = | 2 – 4 | = 2 and | C – G | = | 3 – 1 | = 2  
 

We also created a 2-D distribution chart to differentiate between 
active and non-active categories. Graph 1 displayed a complete 
overlap of both groups at position 3 and some partial overlaps at 
positions 2, 4, and 5, respectively.  
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Graph 1. Distribution of 10 tested sequences 
 
In the following step of Stage II we tried different numbers of 
nodes in the second hidden layer in order to find an optimal 
estimate.  
The results are summarized in Table 5 together with training, 
validation, and test errors. 
 
Table 5.  BPNN outputs for tested sequences with variable  
 number of nodes in the second hidden layer 
 
 

ID	 Class	 #	
nodes	1	

#	
nodes	2	

#	
nodes	3	

#	
nodes	4	

1.	 1	 0.9946	 0.9964	 0.9963	 0.9970	
2.	 0	 0.0589	 0.1048	 0.0371	 0.0291	
3.	 0	 0.0091	 0.0064	 0.0014	 0.0033	
4.	 1	 0.9948	 0.9966	 0.9970	 0.9967	
5.	 1	 0.9940	 0.9963	 0.9967	 0.9964	
6.	 0	 0.0075	 0.0043	 0.0013	 0.0023	
7.	 0	 0.0077	 0.0050	 0.0013	 0.0028	
8.	 0	 0.0084	 0.0045	 0.0013	 0.0035	
9.	 1	 0.0094	 0.0051	 0.0014	 0.0058	
10.	 1	 0.9930	 0.9971	 0.9967	 0.9969	
Training	error	 0.0292	 0.0104	 0.0125	 0.0113	

Validation1	error	 0.0086	 0.0054	 0.0063	 0.0048	
Validation0	error	 0.0163	 0.0114	 0.0020	 0.0082	
Testing	error	 1	 1	 1	 1	

ID	 Class	 #	
nodes	5	

#	
nodes	6	

#	
nodes	7		

#	
nodes	8	

1.	 1	 0.9962	 0.9969	 0.9891	 0.9951	
2.	 0	 0.3789	 0.0129	 0.4544	 0.0792	
3.	 0	 0.0070	 0.0042	 0.0048	 0.0051	
4.	 1	 0.9972	 0.9968	 0.9894	 0.9955	
5.	 1	 0.9966	 0.9971	 	0.9894	 0.9951	
6.	 0	 0.0040	 0.0043	 0.0044	 0.0053	
7.	 0	 0.0042	 0.0041	 0.0045	 0.0048	

8.	 0	 0.0049	 0.0044	 0.0055	 0.0059	
9.	 1	 0.0043	 0.0047	 0.0057	 0.0070	
10.	 1	 0.9974	 0.9963	 0.9896	 0.9948	
Training	error	 0.0141	 0.0084	 0.0170	 0.0216	

Validation1	error	 0.0062	 0.0046	 0.0125	 0.0082	
Validation0	error	 0.0087	 0.0078	 0.0121	 0.0141	
Testing	error	 1	 1	 1	 1	

 

Based on calculated training, validation, testing errors and the 
BPNN overall performance, the optimal estimate is represented 
by 6 nodes in the second hidden layer.  
Variables of the optimal BPNN prototype: 

• Convergence error (SSE): 0.0001 
• Number of iterations: 100 
• Number of nodes in the first layer: 8 
• Number of nodes in second (hidden) layer: 6 

 

3.3 Testing larger database 
We used Stage I test data to initiate Stage II and to optimize the 
number of nodes in the second hidden layer, so the test 
performance is likely an optimal estimate. To evaluate future 
performance, we needed to test the classifier on newly collected 
data from another paper [6]. The authors provided the list of 128 
active SC35 ESE motif sequences specifically arranged by 
different tissues, genes, and selected organs. They proposed 
highly conserved SC35 motif between tissues, among different 
genes, and within the same chromosome. They showed a slight 
variation in the SC35 ESE sequence motif among human 
chromosomes, with the conserved G nucleotide at the very first 
position of all active sequences.  

The set included multiple sequence duplicates as they occurred in 
several tissues and various genes, and chromosomes. Prior to the 
test we removed all duplicates (87 sequences) and used the total 
of 41 unique active sequences together with 41 complementary 
non-active sequences with our optimal BPNN classifier. Again, 
none of these tested sequences were included in our BPNN 
train+val sets.  

Model classification, together with training, validation and test 
errors are summarized in Table 6.  
 

Table 6.  Prediction for 41 active and complementary  
 sequences with the optimal BPNN model  
 

ID	 Class	(1)	 BPNN	 Class	(0)	 BPNN	

1.	 GACCCCTG	 0.9917	 CTGGGGAC	 0.0039	

2.	 GACCTCTG	 0.9916	 CTGGAGAC	 0.0034	

3.	 GACCACTG	 0.9917	 CTGGTGAC	 0.0027	

4.	 GATCACTG	 0.9920	 CTAGTGAC	 0.0033	

5.	 GATCCCTG	 0.9922	 CTAGGGAC	 0.0050	

6.	 GGCCCCTG	 0.9922	 CCGGGGAC	 0.0053	

7.	 GGCTCCTG	 0.9920	 CCGAGGAC	 0.0122	

8.	 GACTCCTG	 0.9920	 CTGAGGAC	 0.0058	

9.	 GACTCCCG	 0.9917	 CTGAGGGC	 0.0048	

10.	 GACCCCCG	 0.9917	 CTGGGGGC	 0.0035	

1
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11.	 GACCACCG	 0.9922	 CTGGTGGC	 0.0025	

12.	 GGCCCCCG	 0.9913	 CCGGGGGC	 0.0046	

13.	 GGCCTCTA	 0.9921	 CCGGAGAT	 0.0032	

14.	 GGCCTCTG	 0.9913	 CCGGAGAC	 0.0047	

15.	 GGCCTCCA	 0.9921	 CCGGAGGT	 0.0029	

16.	 GGCCTCCG	 0.9915	 CCGGAGGC	 0.0041	

17.	 GGCCCCTA	 0.9907	 CCGGGGAT	 0.0036	

18.	 GTCTCCTG	 0.9888	 CAGAGGAC	 0.0433	

19.	 GTCCCCTA	 0.9923	 CAGGGGAT	 0.0090	

20.	 GGCTCCAG	 0.9922	 CCGAGGTC	 0.0205	

21.	 GGCCCCAG	 0.9915	 CCGGGGTC	 0.0068	

22.	 GGCCCCCA	 0.9924	 CCGGGGGT	 0.0032	

23.	 GGCTACTG	 0.9920	 CCGATGAC	 0.0121	

24.	 GGCTTCTG	 0.9925	 CCGAAGAC	 0.0119	

25.	 GGCTGCTG	 0.9922	 CCGACGAC	 0.0118	

26.	 GGCCACTG	 0.9922	 CCGGTGAC	 0.0039	

27.	 GGCCGCTG	 0.9922	 CCGGCGAC	 0.0042	

28.	 GGCTCCTA	 0.9916	 CCGAGGAT	 0.0057	

29.	 GGCTCCCG	 0.9923	 CCGAGGGC	 0.0093	

30.	 GGCTCCCA	 0.9917	 CCGAGGGT	 0.0047	

31.	 GACTCCCA	 0.9912	 CTGAGGGT	 0.0032	

32.	 GATTTCCG	 0.9921	 CTAAAGGC	 0.0059	

33.	 GATTCCCG	 0.9923	 CTAAGGGC	 0.0065	

34.	 GACTTCCG	 0.9917	 CTGAAGGC	 0.0044	

35.	 GACCTCCG	 0.9916	 CTGGAGGC	 0.0031	

36.	 GACCTCCA	 0.9904	 CTGGAGGT	 0.0024	

37.	 GACCTCTA	 0.9904	 CTGGAGAT	 0.0026	

38.	 GACCCCCA	 0.9906	 CTGGGGGT	 0.0027	

39.	 GACCCCTA	 0.9907	 CTGGGGAT	 0.0029	

40.	 GACTTCTG	 0.9916	 CTGAAGAC	 0.0052	

41.	 GGCCTCAG	 0.9920	 CCGGAGTC	 0.0063	

Training	error	 0.0205	

Validation1	error	 0.0107	

Validation0	error	 0.8008	

Testing	error	 0	

 
The test confirmed that the BPNN prototype satisfactory 
distinguishes between all 41 proposed SC35 ESE active motifs 
and their compliments with high accuracy in BPNN classification 
performance.  
 

4. CONCLUSION 
In our research project we used ANN script to construct a 
functional back-propagation neural network (BPNN) model. We 
designed this model in order to classify the short oligonucleotide 

sequences with 8 nucleotide elements (octamers) into two 
categories: active (1) and non-active (0) clusters. The visual 
interpretation of the data (Graph 1) shows some partial overlaps 
of both groups on multiple feature vector elements, which 
supports our decision to apply neural network concept. Statistical 
data analysis requires a prior knowledge of data distribution, 
which could be very complex in case of any overlap. Also, all 
elements of the feature vector are discrete values in relatively 
small data set which will most likely require non-parametric 
statistical analysis.  

We used single-value scheme to encode sequence letter 
description into numerical designation. The model was trained 
with 20 active sequences and validated with the set of 8 active 
sequences. In order to keep the model balanced the 
complementary, non-active sequences were generated. The initial 
virtual screen included 10 unique sequences from the testing data 
set (5 active and 5 non-active sequences) used to assess the model 
accuracy and overall performance. After the BPNN model update 
we tried different number of nodes (1-8) in the second hidden 
layer to determine the optimal model.  

We tested our optimal BPNN prototype on larger data set of 82 
unique (41 active and 41 non-active) sequences and the results of 
the data classification revealed high model accuracy for this data 
set.   
 

5. FUTURE WORK 
For future work we could test any proposed CS35 ESE motif 
candidate or use the BPNN prototype to screen any sequence 
database for a potential match. We might also draw random 
biological sequences that are not known to be SC35 ESE motif 
candidates and detect how many of them are classified by BPNN 
as active.  
The initial published data were listed with their scores that were 
calculated using a score matrix. Another type of future work 
would be to incorporate this information into our model, i.e. not 
just to classify the data into active and non-active subsets but add 
some degree to the activity and answer the question:  “If active, 
how much activity is predicted?”  
Also, it would be beneficial to create and compare additional 
classification prototypes based on different DNA numerical 
representation (DNR) methods such as binary indicators and 
OneHot Encoder and additional classification procedures such as 
decision trees or k-nearest neighbor algorithm.  
 

6. REFLECTIONS  
The project described in this paper was the very first research 
project for all undergraduate students in my research group. They 
all actively participated on this project as each of them designed 
their own ANN model. The major attraction for all students was 
the introduction of artificial intelligence in the computer-assisted 
model and the practical application of the BPNN prototype on real 
SC35 ESE motif sequences. 
This project provided the students with multiple opportunities to 
participate on each stage of the project, starting with the literature 
research, learning the basics of MATLAB computing together 
with Neural Network Toolbox, join the time consuming journey 
to design the proper ANN model through the training, validation, 
and testing procedures. They were all rather skeptical after the 
Stage I about the real possibility to enhance model 80% accuracy. 
The first run after model update in Stage II showing improved to 
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90% accuracy on small tested data was accepted with contagious 
joy and new motivation to continue and apply BPNN prototype 
on larger data set. I know that during this project all students 
learned many invaluable skills that they could apply to their future 
education or work. They all have a better understanding of the 
advantages of applied neural network models as well as the 
limitation of such models. Students also used this research 
opportunity and presented their work during all project stages in 
multiple forums, including poster and oral presentations at local, 
state and national conferences.  Their poster was accepted for an 
oral presentation on ACS National Meeting & Exposition, as well 
as on ASBMB National Meeting.     
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