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ABSTRACT 
 
Derechos are a dangerous, primarily non-tornadic severe 
weather outbreak type responsible for a variety of atmospheric 
hazards.  However, the exact predictability of these events by 
lead time is unknown, yet would likely be invaluable to 
forecasters responsible for predicting these events.  As such, the 
predictability of nontornadic outbreaks by lead time was 
assessed.  Five derecho events spanning 1979 to 2012 were 
selected and simulated using the Weather Research and 
Forecasting (WRF) model at 24, 48, 72, 96, and 120-hours lead 
time.  Nine stochastically perturbed initial conditions were 
generated for each case and each lead time, yielding an 
ensemble of derecho simulations.  Moment statistics of the 
derecho composite parameter (DCP), a good proxy for derecho 
environments, were used to assess variability in forecast quality 
and precision by lead time.  Overall, results showed that 24 and 
48 hour simulations had similar variability characteristics, as did 
96 and 120 hours. This suggests the existence of a change point 
or statistically notable drop-off in forecast performance at 72-
hours lead time that should be more fully explored in future 
work.  These results are useful for forecasters as they give a first 
guess as to forecast skill and precision prior to initiating their 
predictions at lead times of out to 5 days. 
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1. INTRODUCTION 
Predicting severe weather occurrence continues to be a difficult 
forecasting challenge, despite many advances in this research 
area and the importance of the research problem. Many severe  
 

weather studies have considered tornadoes the primary hazard 

associated with major severe weather outbreaks owing to the 
catastrophic damage associated with tornado impacts. Receiving 
less attention are non-tornadic outbreaks of severe weather, 
which still have tremendous impacts from their known hazards, 
particularly derechos. Derechos are defined as a widespread, 
convectively induced windstorm, which can contain tornadoes 
but has a primary hazard of straight line wind damage (Johns et 
al. 1986). Derecho hazards are often as costly as many tornado 
and hurricane events that affect the United States (Ashley et al. 
2005). For instance, on 4 April 2011, there was a severe derecho 
outbreak that impacted over twenty states and caused over $16.5 
million dollars in property damage, $320,000 in crop damages, 3 
deaths, and 13 injuries (Storm Database). Despite their 
importance, derecho predictability remains difficult in many 
instances, particularly as it relates to the timing of the event 
(Gallus et al. 2005).  
Numerous studies have assessed the climatological aspects of 
non-tornadic severe weather events (including derechos). 
Coniglio et al. (2003) suggested that warm-season (summer) 
derechos tended to be confined to northern latitudes, while cool 
season derechos primarily impacted southern states.  Ashley et 
al. (2005) noted an elevated occurrence probability for derechos 
when a previous derecho had impacted a region recently. These 
efforts gave insight into the basic characteristics of derechos, but 
offered little in terms of predictability. 

Initial efforts at predicting derecho extent and timing have 
centered around the use of localized sounding observations 
(Cohn et al. 2007, Coniglio et al. 2004, others).  These efforts 
have centered around predictability of a single event (i.e. Cohn 
et al. 2007) or identification of parameters useful in identifying 
and predicting derecho environments (Coniglio et al. 2004).  
Doswell et. al (2003) also noted that that the initial mechanism 
by which convection begins is likely a major contributing factor 
to a mesoscale system evolving into a derecho. These studies 
supported initial work that identified a typical environment 
conducive for derecho formation, which requires a 1-2 km 
surface based stable layer, an elevated mixed layer of 2-4 km, 
and an upper tropospheric layer of intermediate stability 
extending up to the tropopause (Schmidt et al. 1991). These 
characteristics typically result in a storm system known referred 
to as a “bow echo” as the wind stress behind the line causes the 
line to bow outward (Przybylinski et al. 1995). These advances 
are certainly important to explain the current state of knowledge 
and fundamental characteristics of derecho events, but their 
applications in forecasting are limited, owing to data constraints 
and the impracticality of launching soundings into every derecho 
event.  The availability of an accurate forecast model would 
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certainly help meteorologists improve predictions of future 
derecho events.   

Recent work in numerical modeling of derecho events (e.g. Kain 
et al. 2004) has found good predictability for the strongest 
events.  Mercer et al. (2009) explored the discrimination 
capability of machine learning methods in identifying tornadic 
and non-tornadic environments within numerical weather 
prediction simulations, the first effort in diagnosing outbreak 
mode outside of a forecast office.  Their results showed overall 
good discrimination capability (with forecast skill scores 
exceeding 0.7). They also noted only a slight degradation in 
classification performance by lead time (out to 72-hours), 
motivating a research question regarding non-tornadic outbreak 
predictability by lead time. 

Forecasters have long assumed that outbreak forecasting 
limitations exist in the short-term without properly quantifying 
that time period (though the 72-hour results in Mercer et al. 
2009 are a first guess).  This lack of specificity, combined with 
the results of Mercer et al. (2009), motivate the current research 
objective.  The primary objective of this project is to identify 
model forecast uncertainty within non-tornadic severe weather 
outbreaks as it relates to outbreak lead time.  It is hypothesized 
that variability patterns within outbreak lead times of 3 days and 
shorter will be statistically significantly different than lead times 
of 4 – 5 days.  To demonstrate this, a set of 5 major non-tornadic 
outbreaks will be simulated with the Weather Research and 
Forecasting model using 9 stochastically varied initial 
conditions at lead times of 24, 48, 72, 96, and 120 hours.  Shifts 
in the variability associated with the 9 simulations per lead time 
will help assess forecast precision by lead time, which will be 
useful for forecasters to identify the maximum skill within their 
forecasts.   

This research is part of the Blue Waters Undergraduate 
Internship Experience.  As such, the paper contains not only 
information about the resulting research, but aspects of the 
internship including lessons learned and reflections.  Section 2 
contains a summary of data and methods used in this research, 
while section 3 shows the results from multiple non-tornadic 
outbreak simulations at varying lead times.  Section 4 contains 
discussion regarding important results and lessons learned from 
the internship, while section 5 contains reflection information on 
the internship experience.  Section 6 summarizes the results and 
provides important conclusions from the research. 

2. DATA AND METHODS 

2a.  Data 

As the primary objective of this project was the diagnosis of 
forecast variability by lead time for major non-tornadic 
outbreaks, a set of outbreak events was required.  For this study, 
five major derecho events from the Storm Event database 
(Storm Data) recorded by the National Climatic Data Center 
were selected, all of which spanned multiple states over a multi-
hour period.  The 19 June 1979 event included 137 severe 
thunderstorm wind reports (those in excess of 58 mph) occurring 
over 9 states, with a peak wind speed of 90 mph.  The 30 May 
2004 affected 19 states, resulting in 578 individual severe wind 
reports, with a peak wind speed of 97 mph. The major derecho 
of 4 April 2011 had 1318 wind reports across 18 states with a 
maximum wind speed reported at 90 mph. On 21 June 2011, a 
derecho impacted 21 states and resulted in 604 wind reports with 
a peak speed of 81 mph.  Finally, the 29 June 2012 derecho 

event (e.g. Fig. 1) affected 15 states with 1195 wind reports and 
a maximum observed wind speed of 93 mph.   

Once a case set was established, continuous atmospheric data for 
each event was required for input into the WRF model.  Since 
many of the predictors used for convective forecasting are 
mesoscale, a mesoscale analysis dataset, the North American 
Regional Reanalysis (NARR) was used to initialize the WRF.  
NARR data are provided on a 32-km Lambert conformal North 
American grid with 29 vertical levels and 3-hourly temporal 
resolution from 1979 to present.  NARR data valid at 24, 48, 72, 
96, and 120 hours prior to conclusion of the outbreak were 
retained. 

2b.  Model Configuration and Simulations 

The proper simulation of a non-tornadic severe weather outbreak 
requires a gridded, convection allowing non-hydrostatic 
atmospheric model.  The Weather Research and Forecasting 
(WRF – Skamarock et al 2008) version 3.8 was used to simulate 
the 5 outbreaks mentioned previously.  Since the primary 
objective of this project was the diagnosis of variability of 
outbreak forecasts by lead time, each event was simulated at 24, 
48, 72, 96, and 120 hours prior the end of a given event (as 
described previously).  This timing ensured the peak outbreak 
time, which typically occurred on or after 0000 UTC on the 
event day, was sufficiently captured.  Traditional model 
parameterizations for severe weather events were selected for 
the WRF simulations, including: 

 
• The Yonsei University Planetary Boundary Layer scheme 

[YSU] for all five cases (Hong et al. 2005) 
• The WRF Single-moment 6-class micro physics scheme 

[WSM6] (Hong et al. 2006) 
• No cumulus parameterization 
• The Dudhia Shortwave Radiation Scheme (Dudhia et al. 

1989) 
• The RRTM Longwave Radiation Scheme (Mlawer et al. 

1997) 
• The 5-layer Thermal Diffusion Land Surface Scheme 

(Dudhia et al. 1996) 
 

The simulation domain was centered on a kernel density 
estimated outbreak center provided by the results from Shafer et 
al. (2012) and formulated on a 250 x 150 12-km grid-spacing 
grid with 45 vertical levels (e.g. Fig. 1).  While the domain size 
was the same for each event, the geographic location of each 
simulation varied based on the storm report estimated outbreak 
center.   

While event simulations were useful to depict overall 
environmental characteristics associated with each outbreak, a 
measure of variability was required to assess forecast precision 
by lead time.  Variability was introduced into the WRF 
simulations using the Stochastic Kinetic Energy Backscattering 
Scheme (SKEBS, Berner et al. 2009) built into WRF 3.8. 
SKEBS adds random noise to potential temperature and stream 
function fields within the NARR input data, introducing 
perturbations and adding simulation variability via generation of 
an initial condition ensemble.  At model initialization, only 
NARR are used, but SKEBS introduces random noise 
throughout the rest of the simulation, ensuring maximum spread 
in ensemble output and providing a direct measure of model 
variability.  The SKEBS routine was used to generate nine initial 
condition ensemble members for each of the 5 lead times for 
each case, for a total of 225 individual model simulations.   
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The resulting simulations provided multiple diagnostic variables 
which are useful for addressing general weather variability, but 
derived severe weather parameters were required to assess 
environmental proneness to non-tornadic severe weather.  One 
well known parameter, the derecho composite parameter (DCP – 
Evans and Doswell 2001) was computed on all gridpoints within 
each simulation domain to identify those locations which had 
elevated risk for derecho impacts (e.g. Fig. 1). The DCP is based 
on the following equation (from Evans and Doswell 2001): 

𝐷𝐶𝑃 =
𝐷𝐶𝐴𝑃𝐸

980 𝐽
𝑘𝑔

𝑀𝑈𝐶𝐴𝑃𝐸

2000 𝐽
𝑘𝑔

∆𝑉234
20	𝑘𝑡

𝑉234	78
16	𝑘𝑡

 

Here, DCAPE refers to downdraft CAPE (a measure of positive 
stability associated with strong downdrafts and potential for 
extreme straight-line winds), MUCAPE is a maximum measure 
of instability, ∆𝑉234 refers to the vertical wind shear over the 0-
6 km layer, and 𝑉234	78 is the mean wind vector over the 0-6 
km vector.  Evans and Doswell (2001) defined this formula 
based on a large database of derecho proximity sounding data.  
They showed that the DCP was attuned at identifying 
atmospheric environments that were favorable for cold pool 
wind events through four mechanisms:  

1. Cold pool production [DCAPE] 
2. Ability for strong storms to be sustained along the leading 

edge of a gust front, the strongest section of a gust front 
[MUCAPE] 

3. The potential for organization for any possible ensuing 
convection [0-6 km shear] 

4. Enough flow in the ambient environment to favor 
development along a downstream portion of the gust front 
[0-6 km mean wind].   

The DCP was utilized for this project owing to its global 
depiction of derecho-prone environments.  Tremendous 
variability in DCP values is likely associated with uncertainty in 
the DCP forecast, which can be directly assessed by lead time 
using the above described methodology.   
2c.  Simulation Analysis 

Once the simulations were completed, the resulting model runs 
were analyzed by assessing gridpoint variability along the 9 
initial conditions. That is, moment statistics (mean, variance, 
skewness, and kurtosis) of DCP were computed at each 
gridpoint using the 9 stochastic perturbations for each case and 
each lead time.  However, many points which yielded zero DCP 
values were excluded, as their moment statistics did not provide 
meaningful insight into variability structures within the 
simulations.   Once non-zero DCP gridpoint variability was 
computed, 1000 bootstrap-resampled moment statistics on those 
non-zero points were formulated, allowing for the generation of 
confidence intervals for each moment statistic by lead time.  
These confidence intervals allowed the primary research 
hypothesis regarding lead time and forecast variability to be 
assessed.  Results from these analyses are provided below. 
 
 

 
Fig. 1 Derecho Composite Parameter (DCP) for 0000 UTC 29 June 
2012. Note the area shaded in gray represents the outbreak domain used 
for all simulations of the 29 June 2012 derecho event.  Higher DCP 
values support derecho formation maintenance. 

All cases showed considerable increases in DCP variability as 
the event valid time approached, and their resulting variability 
measures were widely dispersed, with an interesting pattern 
emerging.  In general, 24-48 hour simulations tended to cluster 
fairly closely with all cases, while 72 to 120 hour simulations 
tended to cluster with each other and away from the 24-48 hour 
simulation groups. As an example, the 29 June 2012 derecho 
event is provided in Fig. 2.  In this case, variance statistics at 24 
and 48 hours (second panel orange and green lines) tended to 
cluster very closely together, while the remaining observations 
tended to group together and away from the 24-48 hour pairing.  
The gridpoint distribution tended to become more positively 
skewed as the outbreak progressed, and the skewness values 
were particularly enhanced at longer lead times, suggesting the 
tendency for larger DCP outliers with longer lead times.  
Kurtosis results were similar, as all distributions were 
platykurtic but longer-lead time simulations revealed more 
peaked results.  Note that similar results were present for the 
other 4 cases as well (not shown here).  Interestingly, 96 and 120 
hour results tended to correlate strongly, suggesting that DCP 
forecasts at 96 and 120 hours offer similar performance, a 
previously undocumented result. 

While differences among moment statistic distributions were a 
useful component of this research, the primary research 
objectives dealt with output variability by lead time over all 
cases, not just individual example case studies.  To demonstrate 
overall performance, individual lead time data for all 5 cases 
were averaged, yielding average moment statistics by lead time 
for the selected events.  These analyses revealed several 
interesting patterns (Fig. 3).  First, as expected, variance by lead 
time increased with increasing lead time, with a notable jump 
observed at 96 and 120-hour lead times.  Also, note that the 96 
and 120-hour results are not significantly different based on the 
confidence intervals, supporting the previous conclusion 
regarding 96-120 hour day predictability essentially remaining 
equal.  Another notable result was the sharp increase in positive 
skewness at 96 and 120-hour lead times in contrast with the 
relatively unskewed 72 and earlier lead time forecasts.  This 
result supports the previous conclusions regarding the 
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similarities among the 24-48 hour forecasts and their stark 
contrasts with 96 to 120 hour predictions.  Additionally, kurtosis 
values showed an unusual drop off in mean kurtosis value at the 
72-hour forecast, likely owing to outlier results due to periods of 
relatively low DCP values (e.g. the green dip in Fig. 2’s bottom 
panel).  Outside of that individual outlier, the kurtosis behavior 
was in line with skewness behavior, with a relatively platykurtic 
distribution observed at 24-48 hours lead time and a more 
peaked (but still non-Gaussian) distribution observed at lead 
times in excess of 72-hours.  These results further support the  
 

 

 

 

 
Fig 2. Moment statistics for the 29 June 2012 derecho.  The top panel 
shows median bootstrap mean DCP values, while the second panel 
shows variance statistics, the third panel skewness, and the fourth 
kurtosis.  Note that for this event outbreak valid time is roughly 12 hours 
prior to the end of the simulation.  

existence of a few outlier points that are driving up the kurtosis 
values and increasing the skew of the distributions. 

3. DISCUSSION AND LESSONS 
LEARNED (EDUCATIONAL IMPACT) 
The primary objective of this research was to ascertain WRF 
model uncertainty by lead time for five major non-tornadic 
severe weather events.  Outbreak severity was assessed using 
DCP as a proxy measure for the derecho environment. Overall, 
the major findings included the consistency among 96 and 120-
hour lead time runs, the outlier and relatively unpredictable 
nature of 72-hour simulations, and the similarities among 24-48 
hour runs.  These results are very useful to forecasters for a 
variety of reasons.  First, forecast confidence in a 120-hour 
forecast is unlikely to change for a 96-hour forecast, a result that 
has not been quantified previously.  Second, similar behavior 
exists at 24 and 48-hours lead time as their DCP mean and 
variability structure was quite similar.  While this study does not 
measure accuracy of the DCP forecasts, all events selected were 
major derecho events, and as such higher values of DCP (e.g. 
the 24-72 hour runs for 29 June 2012 – Fig. 2) are more 
supportive of an environment conducive for derecho formation.  
Mean DCP values were generally higher in the shorter lead-time 
runs, which should increase forecaster confidence in derecho 
occurrence as well. 
This project was completed using Blue Waters supercomputing 
resources as a part of the Blue Waters Undergraduate Internship 
program. The educational component of the research for the 
undergraduate student fell in two key areas.  First, the student 
was exposed to the challenges of dynamic atmospheric modeling 
within a high-performance computing environment, including 
the temporal and physical constraints of simulations and 
configuring parallel processing jobs.  The student also gained 
valuable experience working with big datasets (the project 
generated nearly 1 TB of data) and the computational challenges 
associated with such big data interactions.  
In addition to the general education experiences for the 
undergraduate student, they learned key lessons regarding 
supercomputing research.  These are listed below. 
	
1. Simulation data were lost due to typical file system 

cleaning and the undergraduate student not storing the data 
properly.  The student learned the importance of file 
backups as the cases were rerun. 

2. The student gained valuable insight into the challenges of 
forecasting non-tornadic severe weather events, including 
the forecasting metrics that are used to evaluate the 
likelihood of these outbreaks.   

3. The student learned data organization and the challenges of 
large data transfers, as the 225 simulations needed to be 
moved between machines prior to running the model. 

4. The student discovered an issue with an initial condition, 
which forced the original 10 initial condition ensemble 
members to be reduced to 9.  This helped the student learn 
the importance of data quality and close interaction with 
the project to limit the risks of future issues. 

 
One important computational challenge was encountered as 
well, which required the use of an external machine to post-
process the results.  The Blue Waters Cray system was not 
compatible with the Unified Post Processor software used to 
post-process the WRF simulations due to compilation issues, 
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which the student struggled with for a long period in the 
internship.  Despite this small setback, the student felt the 
experience was largely successful and the mentor was satisfied 
that the student gained important supercomputing skills that are 
essential for successful research meteorologists. 

The work would not have been possible without access to the 
resources offered by the Blue Waters Supercomputing Center, 
particularly the quantity of simulations in the required 1-year 
study period.  The computing time utilized by the project 
exceeded 1000 computational hours, which is difficult for an 
undergraduate student to finish in a traditional computing 
environment, particularly given the limited timeline.  
Additionally, the quantity of data produced by the project 
(nearly 1 TB) and quantity of forecast hour files (16,425) are 
unwieldy for even a modest supercomputing center, requiring 
the robust resources offered by Blue Waters. 
 

4. REFLECTIONS 
Undergraduate research projects are typically fraught with 
challenges simply owing to the student’s inexperience working 
in research.  While this internship had its share of challenges, 
the student gained valuable experience working in 
supercomputing, which is becoming more important in 
operational meteorology as National Weather Service offices 
begin to maintain their own small supercomputing clusters for 
regional modeling.  Additionally, with the introduction of high 
resolution imaging provided by new data platforms such as the 
GOES-R satellite, big data experience is an essential part of any 
successful research meteorologist’s repertoire.  Finally, the 
student’s participation in the project prepared them for graduate 
study, which they are now engaged in, and that experience, 
combined with the Blue Waters Summer Internship Program 
experience, will help set the student apart from their peers when 
they begin searching for jobs.   

5. SUMMARY AND CONCLUSIONS 
The primary objectives of this research were to obtain measures 
of forecast precision and variability at lead times from 1 to 5 
days.  It is well established in meteorology that short-term 
forecasts are more precise and accurate than longer-term 
predictions, but few studies have formally quantified these 
differences.  The research objectives herein addressed these 
concerns in the context of derecho forecasts, with interesting 
results.   

To address this variability, five derecho events spanning 1979 to 
2012 were selected.  Outbreak-centric domains were retained 
from WRF simulations of each event, where WRF simulations 
were run with 24, 48, 72, 96, and 120 hours lead time.  Each 
lead time’s simulations were perturbed stochastically nine times, 
introducing forecast uncertainty from which lead time precision 
could be obtained.  Resulting gridpoint precision for non-zero 
gridpoints of DCP were retained using bootstrap-resample 
moment statistics for each case and global values for all cases.  

Overall, several key findings resulted from this analysis.  First, 
model precision (and predictions) tended to remain very similar 
with both 24 and 48-hour lead times and with 96 and 120-hour 
lead times.  This suggests only minimal drop-offs in forecast 
skill between 24 and 48 hours lead time and between 96 and 120 
hours.   

 

 

 
Fig. 3.  Average moment statistics by lead time for all derecho events at 
all forecast times.  The top panel represents variance by lead time, while 
the middle panel is skewness and the bottom panel is kurtosis.   
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The 72-hour simulations were inconsistent, with some producing 
lower variability than either 24 or 48 hours lead time and others 
higher.  This suggests the existence of a forecast confidence 
change point around 72 hours lead time, which is a likely good 
demarcation between short-term high skill forecasts and 
medium-term modest skill forecasts.  These results are in line 
with Mercer et al. (2009) who noticed some skill drop-off at 72 
hours but did not consider longer lead times, which would have 
likely revealed these patterns as well.   

These results have significant forecast implications, as they 
allow forecasters to have prior knowledge of anticipated WRF 
forecast skill, which is useful for prediction purposes.  The 
results also help reveal a cutoff point in terms of lead times; that 
is, what defines a “short term” and a “medium term” derecho 
forecast.  Future work will address this issue with additional 
non-tornadic derecho events and add tornado outbreaks as well.  
It is expected that similar behavior in tornado outbreaks will 
exist, though tornado outbreaks are less predictable than their 
non-tornadic counterparts.  Overall, this study reveals important 
insight into non-tornadic outbreak predictability, which will be 
useful for future outbreak forecasts. 
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