
How to Build a Fast HPC n-Body Engine From Scratch  
Eric Peterson1 

Marmion Academy 
1000 Butterfield Rd 
Aurora, IL 60502 

epeterson@marmion.org 

Max Kelly2 
Rose Hulman Institute of Technology 

5500 Wabash Ave  
Terre Haute, IN 47803 

maxwellrkelly@gmail.com 

Dr. Victor Pinks II3 
Marmion Academy 
1000 Butterfield Rd 
Aurora, IL 60502 

vpinks@marmion.org 
 

ABSTRACT 
Communicating and transferring computational science 
knowledge and literacy is a tremendously important concept for 
students at all levels of education to understand. Computational 
knowledge is especially important due to the tremendous impact 
that computer programming has had on all scientific and 
engineering disciplines.  As technology evolves, so must our 
educational system in order for society to evolve as a whole. We 
undertook direct instruction of a computational science course, 
and have developed a curriculum that can be expanded upon to 
provide students entering technical disciplines with the 
background that they need to be successful.  The course would 
provide insight to the C programming language as well as how 
computers function at a more basic level.  Students would 
undertake projects that explores how to program simple tasks and 
operations and ultimately ends in a final project aimed at 
assessing the knowledge accumulated from the course. 

CCS Concepts 
• Social and professional topics   • Social and professional 
topics~Computing education   • Social and professional topics~K-
12 education 

Keywords 
Computing education, K-12 Education 

1. INTRODUCTION 
Computational science as a discipline uses modern tools of 
computer science combined with a mathematical approach to 
problem solving to tackle issues that are relevant to science. 
Computational science requires knowledge from three disparate 
fields: computer and information sciences, which is used to 
develop the software and data structures to solve computationally 
interesting problems, numerical and non-numerical approaches to 
modeling, which can be used to represent data for scientific 
problems, and computing infrastructure that the software can be 
run on.  

A problem of scientific interest is usually first understood in terms 
of a model that predicts or explains observation, which serves as a 
template for software engineers to develop a computer program 
that allows the model to be studied, and then is finally executed 
on a computing platform.  Virtual modeling helps to see the 
expected outcome of experiments and ideas without real world 
execution.  This helps save time and money.  Today companies 
utilize computational science to do just that.  Other uses of 
computational science and virtual modeling are to view objects 

and interactions that are difficult to view under normal 
circumstances.  Particle interaction is the best example of this.  
The class that this paper will help outline was all about modeling 
a particle, something that cannot be seen by the naked eye, as it 
moved through space. 

Computational Science is not widely taught.  There are schools 
that will cover one of the fields of computational science in great 
detail, but will provide little or no detail on the other two. The 
goal of this course was to provide a strong foundation in all three 
areas. 

2. RELATED WORK 
The approach that was developed at Marmion Academy was 
heavily based upon the instruction that the SHODOR educational 
foundation developed for use in the Blue Waters Student 
Internship and the Petascale Institute. The approach of the 
institute combined lectures on the theory of parallel programming 
and high-performance computing with practical exercises that 
reinforced the concepts. We sought to adapt this approach for use 
at Marmion Academy, and used the XSEDE training roadmap 
available from HPC university as a starting point to developing 
computational literacy in our students. 

 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. Copyright JOCSE, a 
supported publication of the Shodor Education Foundation Inc. 
DOI: https://doi.org/10.22369/issn.2153-4136/8/2/6 

 

        Figure 1. XSEDE Training Roadmap 

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 37



3. CHALLE1NGES 
There are some significant challenges that are faced when 
introducing a computational science curriculum into a high school 
environment. The primary challenge faced is the lack of 
computing backgrounds amongst the majority of the course 
enrollees. Most students taking the course do not have any 
familiarity with programming languages, none do they have any 
exposure to a Linux operating system, and few have taken the 
mathematic and scientific coursework necessary to understand the 
scientific 2models that will be covered. Also, the high school 
format with 45 minute class periods limits the amount of time that 
instructors have to cover new material. With crowded student 
course schedules, students have very little time outside of class to 
self-study or prepare. 

The students’ lack of knowledge and available time greatly 
hindered the results of the course.  Several were able to learn the 
material, but almost all struggled in applying the material even at 
the end of the year.  Students lost interest in the class as the year 
progressed.  Additionally, majority of the students enrolled in the 
course were seniors and became afflicted with senioritis making it 
difficult for them to learn and pay attention.  As stated previously, 
students had problems applying concepts that had been introduced 
throughout the entire year.  The same questions were constantly 
being asked by students showing their lack of ability to grasp 
what the class was teaching. 

Several students had difficulty with the language as well.  The C 
programming language has a lot of rules and syntax to it.  
Students were very confused with how to structure their code and 
irked the students once they figured out how “dumb” a computer 
really is.  Several students that did express interest in the class say 
that the difficulty of the language being used dissuaded them from 
pursuing a career in computational science in the future.  The 
environment they were programming in, Cygwin, also confused 
the students because it used keystrokes that the students were 
unfamiliar with.  It caused a lot of frustration for the students 
since they might accidentally delete a line of code due to the 
unfamiliar key strokes. 

4. COURSE OUTLINE 
Using the roadmaps available from HPC University, we 
developed a prototype curriculum for the course. The curriculum 
was developed with the express goal of introducing high school 
students with no computing background. We began with a 
conceptual introduction to the ideas of high performance 
computing, computer architectures, parallel programming, and 
data visualization. We would then proceed with a tutorial of the 
Linux command-line interface, along with the basic skillset 
needed to run and submit jobs on the Blue Waters system.  The 
program used for this was Cygwin due to its ability to emulate a 
Linux environment and because of the instructor’s familiarity with 
it. Next, we would introduce a computer programming language 
that the students would use when implementing the algorithms 

                                                                    
1

 
- Undergraduate Student 

2 - Undergraduate Student 

3 - Principal Investigator   
 

 

that model solutions to scientific problems. The language that we 
chose for this course was the C programming language, due to the 
large codebase of examples from the Petascale Institute and the 
language’s high degree of hardware optimization. Throughout the 
course, topics relevant to software development would be 
introduced, such as best practices, debugging, libraries, and 
profiling.  This was done through lectures and class examples as 
well as projects that the students would work on throughout the 
week.  The projects would implement the topics discussed in class 
in order to help students understand their importance.  The 
difficulty of the projects was extremely low due to the constant 
difficulty in understanding the C programming language and 
issues with the Cygwin environment. After the students were 
confident in their knowledge of basic programming, we would 
then proceed to parallel programming concepts and techniques 
using resources such as MPI.  Due to time constraints and overall 
difficulty in the instruction the students were not able to receive 
instruction in parallel programming.  The course would conclude 
with a project that would encompass all they had learned 
throughout the course.  We decided that the final project should be 
an N-Body simulation of a particle’s position on a Cartesian Plane 
in order for the students to demonstrate a proper amount of 
knowledge from the course.  This project would involve 
computing the continual position of the particle using loops and 
dynamically updating the variables involved with the particle’s 
position as well as printing to the screen.  The final project would 
be graded based on how well constructed the student’s code was 
able to output the results, the accuracy of the results, the student’s 
understanding after a small Q&A, and finally if the code was well 
documented.  All percentages for appropriate grading scales as 
well as a more documented step by step walkthrough of how the 
students would be taught are shown in the attached course 
syllabus after the acknowledgements and references. 

5.  COURSE INSTRUCTION 
The course ran for 40 weeks, with one 45-min session every day. 
We utilized a project-based teaching method, through which the 
students were graded based on their ability to work through and 
complete in-class practical projects and materials. Each week 
consisted of a combination of the following: lectures on new 
concepts and new materials, practical lectures that the students 
could follow along with, or in-class projects and exercises. We 
also needed a development environment that would simulate the 
Blue Waters development environment, and for this role we used 
Cygwin. Cygwin allows us to simulate a Linux environment on a 
Windows system, and allows for the student to practice the basics 
of the Linux command-line, which is the only interface that they 
would be exposed to on Blue Waters. Resources from the 
Petascale Institute were used to familiarize the students with job 
processing on Blue Waters, include the “Time to Science” 
demonstration intended to demonstrate the performance benefits 
of increasing node size on a job. A basic workflow guide was also 
created by the course instructors for use as a simple in-class 
tutorial on basic operations on the Blue Waters system.  

The first semester was extremely different from the second.  The 
instructors decided that the students would be graded on 
completion rather than an assessment.  This changed at the end of 
the first semester because the students were prioritizing other 
classes since they were finding the class extremely easy.  It was 
found that students were not learning the material and constantly 
asking questions that they should have been able to answer.  
Second semester saw a lot of grading on projects that was not seen 
previously.  While this was met with a lot of frustration from the 

Volume 8, Issue 2 Journal of Computational Science Education

38 ISSN 2153-4136 July 2017



students, they did begin to take the class more seriously and 
focused on learning and becoming more proficient with the C 
language. 

 

6. COURSE RESULTS 
The final project for the course was for the students to create an n-
body simulator using the skills they had learned in the class 
throughout the year.  The students were given three weeks to work 
on the simulator.  The goal was to accept input for a time function 
and then track the position of a particle on a standard Cartesian 
plane.  The students were required to print out a graphic inside of 
a terminal showing the coordinates of the particle in relation to the 
origin. The equations that the students used to model the particle 
were explained. Debugging and algorithm help were also 
provided as well. 

As stated in Section 3, the students had difficulty throughout the 
course.  Due to the ease of use with modern technology, students 
had difficulty grasping the basic implementations and syntax of 
the C programming language.  Their lack of knowledge in 
programming greatly hindered the progress of the course.  
Questions were continuously asked throughout the year about 
topics that were extremely basic and demonstrated in every 
project.  Examples include the scope of a variable, variable 
assignment, and syntax for both for and while loops. 

The project proved very challenging for several of the students.  
The most issues became clear when the students had to figure out 
how to graph the particle’s position.  Students were familiar with 
printing out to the screen by the end of the course, but were 
unsure how to do it with continuous updates to an object as it 
changed position.  Others had problems figuring out how to use 
the C programming language to accomplish what the project 
required and were much slower to finish.   

Overall the project was a moderate success.  The students had the 
most problems with learning the C language because of its foreign 
nature.  Students constantly struggled with basic concepts such as 
creating variables or managing the scope of a program. The 
students constantly asked the same questions such as “How do I 
make this?” for extremely basic concepts such as object and 
variable creation or Boolean logic.  After interviewing some of 
the students, it was determined that most of the issues encountered 
were because of the approach taken in the first semester where 
grading was not weighted as heavily. Instruction could not be 
slowed down without sacrificing time to teach other concepts that 
would be needed for use in the final project.  Students were also 
extremely unfamiliar with programming syntax. Several students 
were able to overcome this obstacle, but others struggled up until 
the very end of the class. 

These faults do not hinder the results of the class.  Of the original 
twelve students that were enrolled in the course, only a single 
student dropped the course.  The student who dropped did not 
drop for academic purposes, but for issues with scheduling.  All 
the other students who completed the course finished with very 
good grades due to their ability to finish the projects assigned and 
demonstrate all knowledge required of them.  All of the students 
were still able to complete the final project and all had extremely 
good results.  Several of the students also became extremely adept 
at utilizing the C programming language for their own use.  
Additionally, several of the students expressed interest in going 
into an engineering or programming related field, which require 
computational science knowledge. Students expressed extreme 

satisfaction in being able to learn programming since it will 
almost definitely help them as they are transitioning to college. 

7. CONCLUSIONS 
Throughout the course there were several issues that had to be 
overcome and others that could not be accounted for.  Were this 
course to be taught in the future, we have listed several issues that 
we encountered and solutions that we feel would be most 
effective. 

• We feel that the course instruction has been informative 
on how to best approach future computational science 
instruction. To improve and extend our instruction into 
the future, we feel that more emphasis be placed upon 
the applications of computational models, and less 
emphasis be placed upon computer programming 
instruction.  

• Computer programming instruction requires a 
significant amount of time to adequately prepare the 
student, and thus is not a proper use of limited class 
time when the focus is to prepare students for the 
applications of computational science. It is therefore 
more appropriate to require the student to be 
comfortable with a programming language prior to 
entering the course, or to learn how to program outside 
of class time.  

• Another option is to use a language that is simpler to 
use and requires less class time to attain familiarity 
with. Our primary candidate for a simple language 
included Scientific Python.  

• Based on frustrations programming in a command-line 
environment, we recommend the use of an integrated 
development environment (IDE) when developing 
applications on a local system, and the use of command-
line tools only on remote systems.  

• A more rigorous grading methodology should be used in 
order to properly motivate the students and encourage 
active student participation.  

 

8. REFLECTIONS 
I feel that this experience has been very beneficial to me in my 
academic and career development, and I will take away a great 
deal from this work. The Petascale Institute especially was a 
tremendous opportunity to expand and polish my knowledge 
using the resources that SHODOR had available. The chance to 
work with colleagues from other institutions and learn from 
experts in the field of computational science education was an 
enlightening experience. I look forward to the chance to continue 
using the skills I gained from Blue Waters in my future academic 
work.  

9. ACKNOWLEDGMENTS 
I would like to thank Marmion Academy for all their help and 
support, especially Dr. Victor Pinks II for his guidance and 
expertise. I would also like to thank the teaching staff from 
SHODOR, whose codebase and teaching materials heavily 
inspired this course. Acknowledgements would not be complete 
without Max Kelly, whose help authoring this publication was 
invaluable. This research is part of the Blue Waters sustained-
petascale computing project, which is supported by the National 

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 39



Science Foundation (awards OCI-0725070 and ACI-1238993) and 
the state of Illinois. Blue Waters is a joint effort of the University 
of Illinois at Urbana-Champaign and its National Center for 
Supercomputing Applications. 

10. REFERENCES 
[1] Blue Waters Petascale Institute, Available at: 

http://shodor.org/petascale/workshops/bw2015/ 
[2] Cygwin Project, Available at: https://www.cygwin.com 

[3] Unix Tutorial, Available at: 
http://www.tutorialspoint.com/unix/ 

[4] XSEDE Roadmap Training, Available at: 
http://hpcuniversity.org/RoadmapSite/index/   

[5] Steve Qualline (1997) Practical C Programming, 3 edn., : 
O’Reilly Media. 

[6] Dr. Victor Pinks (2015), Fall 2015 Marmion Academy CT-
STEM Syllabus 

[7] Eric Peterson (2015) A Very Basic Blue Waters Workflow 
Guide 

[8] Aaron Weeden (2015) Time to Science Instructions, 
Available at: 
http://shodor.org/~aweeden/TimeToScience.pdf 

[9] BCCD Tutorials, Available at: 
http://bccd.net/wiki/index.php/Tutorials 

 

 
 
 

1st Semester - Fall 2015 
Computational Science & Engineering (CT-STEM) Syllabus & Guidelines 

Section 1 
 

Textbook: Curricular outline will coincide with materials from the Computational Science Institute 
(http://www.computationalscience.org/) , the CT-STEM program designs at https://osep.northwestern.edu/projects/ct-stem , and 
from resources on HPC University (http://hpcuniversity.org/) 

------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
This is an introductory level course on the application of computational thinking to the solution of general science problems guided by 
the inherent processes of the Scientific Method.  This course draws on the three pillars of science – theory, computation and 
experiment.  Computational elements will be performed using the programming language of C that will be taught at an introductory 
level.  Physical experiments will be performed to enhance computer simulation experiments as needed. This course is an introduction 
of computational thinking principles in a problem-based learning environment.  A major piece of the learning process will be focused 
on using high performance computing (HPC) as the platform for computational science & engineering modeling via the Blue Waters 
system (see: http://www.shodor.org/petascale/). Some prototyping of HPC code will be performed on the Marmion Academy 
Raspberry Pi HPC cluster. Grading is formative.  
 

Note: Pre-requisites: Pre-Calculus with Trigonometry (completed or currently enrolled) 
 
- Topic by Order                                                                                                        
- What is Computational Science and why? 
- Federal, State and Local efforts to promote computational science 
- Basic pre-calculus and basic linear algebra math review 
- The Scientific Method as built on the three pillars of science (theory, computer simulation, and experiment) 
- Outlining the n-body simulation semester project (why and how) 
 
- General HPC concepts  
-  Basic Linux/Unix overview and command-line interface tutorial 
- Overview of computer programming and C language basics (more advanced elements are taught in context of the project) 
- How to log into and use HPC resources like Blue Waters and the Raspberry Pi HPC cluster 
- Test run sample C code 
 
- Introduction to parallel programming and parallel programming languages like MPI, OpenMP, CUDA 
- Debugging, profiling, and optimization of serial and parallel code  

 
- Creating a single particle (1-body) 3D simulation (step-by-step) 

        Appendix 1. Fall 2015 CT-STEM Syllabus 

Volume 8, Issue 2 Journal of Computational Science Education

40 ISSN 2153-4136 July 2017



o Introducing the creation of computer representations of a single classical particle in a box 
o Moving the particle through numerical integration 
o Moving the particle in 1D then a single particle in 3D 
o Applying Periodic Boundaries to the box 
o Running the simulation with C and visualizing the output 
 

- Creating a many particle (n-body) 3D simulation (step-by-step) 
o Moving from 1D to 3D simulations – considerations of force 
o “It’s all about forces” lecture 
o Realism of computer simulations – “If the forces are realistic, the simulation will be realistic” lecture 
o How we use physical experiments to improve computer simulation realism 
o Running the 3D n-body simulation for : 

§ Planetary bodies and astronomical size simulations 
§ Monatomics (homogeneous and heterogeneous systems) 
§ Hard spheres to simulate macroscopic objects in our ‘big’ world 
§ Chemical simulations and experiments (how they compare) 
§ Biological simulations and experiments (how they compare) 

 
 

- Biological simulation of wolf and sheep populations 
- Chemical statistics of motion as applied to the Boltzmann distribution of velocities 

 
 

All programming projects and physical experiment labs are defended with an oral presentation and examination immediately after 
completion of the write-up. All lab reports will follow the MLA research report standards. Bad grammar, plagiarism and spelling will 
also be checked /scored 
 
Grading 
Grading is calculated against a formative project-based model. Emphasis is placed on quality and timely completion of assignments. 
Homework grades are reduced 10% for each day late past the assigned due date. Procrastination and/or poor time management can 
have the most devastating effect on your grade. Stay on task. It’s about following the path and doing the work. You will be given 
multiple attempts (except on exams and quizzes) to make them acceptable. If you do the work to the level of quality that I ask, you 
will get a good grade. 

 
Quizzes (online; in class; note quizzes; C quizzes)     15% 
Quarter Exam (comprehensive)       15% 
Homework & Projects (online homework; in class projects)    20% 
Labs (computer simulation analyses and/or physical laboratory experiment)  20% 
Semester Exam (comprehensive test + successful 3D n-body simulation project)  30% 
 
 
If you need to contact us:  E-mail vpinks@marmion.org or epeterson@marmion.org 
 
 
 
 
 
 
 
 

All students will be held accountable for their behavior according to the Policies outlined in the Marmion Academy 
Student/Parent Handbook 2015 – 2016. Verbal bullying such as negative characterization of other students or negative 
characterization of other student’s behavior will be considered on par with physical bullying and not tolerated. 

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 41



 
 
 
 

A Very Basic Blue Waters Workflow Guide 
Author: Eric Peterson, Marmion Academy 
Created: June 2015 
Last Modified: May 2016 
 

Notes: Commands are in bold and are preceded by a dollar sign $. [ ] tokens should be replaced with the appropriate information, minus the [ ]. Text 
that is to be inserted into files is in italics. Text in the following font will be actual output from the system: example system output 
 

1. First, SSH into Blue Waters (steps are different depending on type of account, either training or regular 
account): 
 
$ssh [your username]@bwbay.ncsa.illinois.edu   or 
$ssh [your username]@bw.ncsa.illinois.edu 
 
Password: [enter your password here] 
 

2. Use basic commands to change directories, display directories/files, move and copy files and directories, 
edit files (use basic CLI tutorial by Mubeen) 
 

3. Requesting resources on Blue Waters, either XE or XK nodes: 
 

a. There are two different ways to request resources: 
i. Interactively (allows you to submit jobs and see output immediately): 

 
$ qsub –I [resource list] 
 

ii. Batch: 
 
$qsub [batch script file].pbs 

 
b. Resource lists: 

i. This is where you request the number of nodes, type of nodes, number of processors, 
amount of time required, and more. One example for an interactive mode: 
 
$qsub -I –l nodes=1:ppn=[32 / 16]:[xk / xe] \ 

    -l walltime=1:00:00 
 

ii. For batch files: 
 
#PBS  -l [resource list] 
 

c. Batch files: (Allows you to request resources that will run without direct intervention and waste 
less of your computing time) 

i. Basic structure of a PBS file: 
 
#!/bin/bash 
cd $PBS_O_WORKDIR 
#PBS -l [resource list] 

  Appendix 2. A Very Basic Blue Waters Workflow Guide 

Volume 8, Issue 2 Journal of Computational Science Education

42 ISSN 2153-4136 July 2017



#PBS -o [pathname of output file] 
#PBS -e [pathname of error file] 
 
aprun ./[name of program]   

 

 
4. Running your job: 

a. On an interactive session: 
 
$aprun  –n [number of processes] ./[name of program] 

b. In a batch file: 
 
aprun  –n [number of processes] ./[name of program] 

 
5. After the job has been submitted, you will see the job ID of your job appear at the command line. 

Example of a job submission (through batch): 
 
Job submitted to account: jt4 
1817863.nid11293 
 

6. Checking the status of your jobs will be critical (It also allows you to check what job ID you received): 
 
$qstat -u [your username]   or 
$qstat -u `whoami`    (if you don’t know your username)  
 

7. When your job has finished (Q in stat indicates a queued job, R indicates a running job, and C indicates 
a completed job): 

 

a. In batch: 
You will receive files (hopefully in the same directory as the program) with the name : [program 
name].pbs.[e / o][job ID], unless you chose different names for the output and error files. 
 

b. In Interactive mode: 
You will see your results through standard output (the screen) unless re-directed. 

 
8. Compiling your programs: 

a. Compiling your programs may depend on if you are using CUDA, MPI, openMP, openACC, or 
none of those, but the basics are as follows: 

i. Once you have finished editing your .c file, use the CRAY C compiler to compile your 
program with the following flags: 
 
$cc -o [program name] [program name].c –l[libraries] 
 

ii. This will create a file named [program name].  
b. If you are using openACC, you may need to add: 

 
$Module load craype-accel-nvidia35  
–h pragma=acc      (add this to compiler line before -o flag) 
 

c. When using openMP, remember to set the number of threads: 
export OMP_NUM_THREADS=[number of threads] 
 

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 43



d. If you are using CUDA, you may need to compile your CUDA section separately, then link the 
CUDA to your main program 
 
$nvcc -o [program name].o -c [program name].cu 
$CC -o [program name] [program name].o [program name].c 

 

9. Makefiles: 
a. Makefiles are a way of automating the compilation process, and ensuring that all dependencies 

and flags are set properly every time you compile. 
b. Basic structure of a makefile: (example): 

 
all: 
 make 
[program name]: [program name].c 
 CC –o  [program name] [program name].c 
clean: 
 rm –rf [program name] 

 

10. Performance Testing: 
a. This guide will talk briefly about the GNU Profiler (gprof). First swap the environment to the 

GNU programming environment: 
 
$module swap PrgEnv-cray PrgEnv-gnu 
 

b. Compile a program with the –pg and –g options enabled: (this enables profiling) 
 
$gcc –pg –g –o [program name] [program name].c 
 

c. Now we actually run our program to generate the profiling info: 
 
$ ./[program name] 
 

d. This generates a file called “gmon.out”. Now we use gprof to visualize the profiling data, 
additionally providing it another run of the program to give it more data: 
 
$gprof ./[program name] gmon.out > profiling_data 
 

e. Then, we can see the final data by using less: 
 
$less profiling_data 

 

 
11. Editing a file using a text editor (vi): 

a. vi is a simple text editor that is available on blue waters and all Unix-based systems. It can 
invoked simple by typing: 
 
$vi   or 
$vi [file name] 
 

b. vi has two basic modes: 
i. Command mode, keyboard presses will be executed as commands. The default mode that 

vi starts in. To enter command mode, press ESC. 
 

Volume 8, Issue 2 Journal of Computational Science Education

44 ISSN 2153-4136 July 2017



ii. Insert mode, keyboard presses will be insert or edit text in the file. To enter insert mode, 
press ‘i’ on the keyboard. 
 

c. In command mode, you can use the direction keys to move through the file, or use: 
i. Ctrl-f to move up one screen through the file. 

ii. Ctrl-b to move down one screen through the file. 
iii. ‘gg’ to move to the top of the file. 
iv.  

d. In command mode, you can use keyboard presses to edit: 
i. ‘dd’ will remove an entire line 

ii. ‘yy’ will yank a line, and p will place the yanked line where your cursor is located. 
iii. ‘u’ will undo the last change you made  

 
e. In command mode, to close and save files: 

i. ‘:w’ will write the file to disk but not quit 
ii. ‘:wq’ will write the file to disk and quit 

iii. ‘:q!’ will quit without saving  (useful if you made unwanted edits) 
 

f. In command mode, you can navigate to a line by pressing  
 
‘:[line to navigate to]’ 
 

g. In command mode, searching for a pattern is relatively painless: 
 
‘/[pattern to search for]’ 
 
 

 

 
 
 

Journal of Computational Science Education Volume 8, Issue 2

July 2017 ISSN 2153-4136 45




