
Computational Thinking as a Practice of Representation:

A Proposed Learning and Assessment Framework

Camilo Vieira
cvieira@purdue.edu

Manoj Penmetcha
mpenmetc@purdue.edu

Alejandra J. Magana
admagana@purdue.edu

Eric Matson
ematson@purdue.edu

Computer and Information Technology, Purdue University,

401 N. Grant Street, West Lafayette, IN. 47906

ABSTRACT
This study proposes a research and learning framework for
developing and assessing computational thinking under the lens of
representational fluency. Representational fluency refers to
individuals’ ability to (a) comprehend the equivalence of different
modes of representation and (b) make transformations from one
representation to another. Representational fluency was used in this
study to guide the design of a robotics lab. This lab experience
consisted of a multiple step process in which students were
provided with a learning strategy so they could familiarize
themselves with representational techniques for algorithm design
and the robot programming language. The guiding research
question for this exploratory study was: Can we design a learning
experience to effectively support individuals’ computing
representational fluency? We employed representational fluency as
a framework for the design of computing learning experiences as
well as for the investigation of student computational thinking.
Findings from the implementation of this framework to the design
of robotics tasks suggest that the learning experiences might have
helped students increase their computing representational fluency.
Moreover, several participants identified that the robotics activities
were engaging and that the activities also increased their interest
both in algorithm design and robotics. Implications of these
findings relate to the use of representational fluency coupled with
robotics to integrate computing skills in diverse disciplines.

Categories and Subject Descriptors
K.3.2 [Computers And Education]: Computer and Information
Science Education – Computer science

General Terms
Algorithms, Human Factors

Keywords
Computation, Representational Fluency, Programming Education,
Robotics

1. INTRODUCTION
Calls for action in the field of computer science education and
computing educational research have identified, among other
issues, the lack of a variety of methodological approaches to the

design and investigation of computing learning experiences [i.e. 1,
2, 3]. These calls for action are based on searches of published
research literature in which authors have concluded that there is a
relative sparseness of research regarding how students learn
computer science and, a lack of rigor in most of the existing
investigations [2]. As a pathway to addressing this need, Clement
[1] proposed applying findings from science education to the
design of evidence-based learning experiences in computer science.
We would like to extend this call and include the use of theoretical
frameworks in the evaluation of student learning and not only in the
design stage.

Our aim is first and foremost to contribute to the field of computing
education by proposing the use of representational fluency as a
theoretical framework for the design of computing learning
experiences as well as a way to investigate how students learn
computer science related concepts under this lens. To this end, the
guiding research question is: Can we design learning experiences
to effectively support individuals’ computing representational
fluency? Specifically, this study proposes a learning experience
that uses representational fluency as a way for students to develop
computational thinking mediated by the use of robotics. The
research questions that helped us assess this proposed approach are:

(i) What are individuals’ representational abilities for
problem solving in the context of robotics challenges?

(ii) What is the effect of computational robotics challenges
for improving individuals’ computing representational
fluency?

(iii) Do individuals’ background (computing or non-
computing), academic level (freshmen or sophomore),
and/or gender have an effect in their computing
representational abilities for problem solving in the
context of a robotics problem solving task?

(iv) What are individuals’ perceptions about the usefulness of
computational robotics challenges to learn algorithmic
design and robotics?

We believe that representational fluency can help us (a) to design
learning experiences that can help students manage complexity by
means of abstractions and (b) have a clearer understanding of how
learners learn and develop expertise in computational thinking.
Findings can then inform effective methods and pedagogies to train
the next generation of workers with readily available computing
skills.

2. Background
We begin with a definition of computational thinking and its
relationship with abstraction. We then explore some of the learning
difficulties in the field of computer science education and briefly
describe the role of robotics as a pedagogical and motivational tool

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

to integrate computational thinking in the context of problem
solving. Next, we make an argument of how computational
thinking relates to representational fluency and proceed to the
application of the proposed theoretical framework to the design of
a robotics learning activity. Finally, we assess the effectiveness of
this approach by means of an exploratory study.

2.1 Computational Thinking
Computational thinking [4] has been recognized as a collection of
understandings and skills required for new generations of students
to be proficient not only at using tools, but also at creating them and
understanding the nature and implication of that creation [5].
Computational thinking refers to the combination of disciplinary
knowledge (e.g. physics, biology, nanotechnology) [6] with
thought processes (e.g. engineering thinking, quantitative
reasoning, algorithmic thinking, systems thinking) involved in
formulating problems and their solutions so that the solutions are
represented in a form that can be effectively carried out by an
information-processing agent [7]. This requires using a set of
concepts, such as abstraction, recursion, and iteration, to process
and analyze data and to create real and virtual artifacts [8, 9].

The use and creation of computing models are an important step in
understanding problems and identifying potential solutions.
Algorithmic thinking and abstraction are two of the constructs that
are at the core of computational thinking. Algorithmic thinking
consists of the ability to perform “functional decomposition,
repetition (iteration and/or recursion), basic data organizations
(record, array, list), generalization and parameterization, algorithm
vs. program, top-down design, and refinement" [10]. Abstraction
refers to the act or process of removing detail to simplify and focus
attention to salient characteristics based on a given criteria [11].
Therefore, investigations of what it means to solve problems
through different forms of representations, in which students need
to couple abstraction with algorithmic thinking in the context of
computational problem solving tasks, should result in productive
venues to advance relevant learning science theories [12, 13].

2.2 Challenges in Computer Science
Education
Research described in the computer science education literature has
identified for a long time that learning to program is difficult [14-
16]. For instance, computer programs, in order to function
appropriately, require some level of complexity and adherence to
formalisms. Some identified difficulties occur in following areas:
(i) orientation- to identify the purpose of the programming task; (ii)
the notional machine- to identify the general properties or
functionality of the machine that one is intending to control; (iii)
notation- to master the syntax and semantics of the programming
language; (iv) structure- to deal with the difficulties of acquiring
standard patterns or schemas that can be implemented to attain
small-scale goals; and (v) pragmatics- to develop the skills to be
able to specify, develop, test, and debug programs using whatever
tools are available [17, 18]. Consequently, teaching programming
to people who are not familiar with algorithm design (at least flow
diagrams design) can also be a hard task. The process includes not
only abstraction and algorithmic design capabilities, but also
programming languages syntax and semantics (Cliburn, 2006).
Additionally, the non-user-friendly outcomes of a program might
become a constraint leading to lack of motivation on the part of the
students.

2.3 Robotics in Computer Science Education
Robotics has been included in computing science classes and
curricula as one of the strategies to teach artificial intelligence and
programming in an engaging way [19-22]. Several studies using
tools such as Lego Mindstorms [19, 23], Robocode [24, 25] or
Moway [26] have explored the development of programming skills
coupled with robotics. Klassner & Anderson (2003) highlighted its
use in areas such as: Programming Fundamentals to learn
conditionals, loops, and object-oriented paradigm; Algorithms and
Complexity to be aware of efficiency in order to improve battery
lifetime and the motion speed; and Programming Languages,
Architecture, and Operative Systems to understand concepts such
as syntax and multitasking. Cilburn (2006) also highlighted its
usefulness for beginner courses, such as Fundamental Concepts of
Computer Science, in which students prefer building and
programming over lecture courses. On the other hand, he found that
in some robotics experiences there might be external factors that
frustrate students, such as light sensors that may be affected by the
environmental light or battery life.

While the computer science community has taken strides to address
issues of methodological rigor in their investigations, to date, little
work has been done to apply existing learning theories and
theoretical frameworks to the design of learning experiences and
also to create new discipline-specific learning theories. This study
attempts to use research from the learning sciences to link
constructs of initial learning conditions, initial learning context,
problem representations, transfer as an active, dynamic process,
and, specifically, representational fluency for computational
thinking.

3. Theoretical Foundations
Expertise, transfer, and representational fluency are key theoretical
constructs that guided the design of the learning experience and
subsequent investigation.

3.1 Expertise
Expertise consists of those characteristics, skills, and knowledge of
a person (that is, expert) or of a system, which distinguish experts
from novices and less experienced people. A sine qua non
characteristic of experts is the ability to fluently transfer what they
have learned from one situation to another; novices cannot do this.
Novices’ learning is closely connected to the conditions in which
they learn; novices tie principles and concepts that they know to the
surface features of how they were taught the principle or concept.
Consequently, when the context changes, novices often fail to
transfer the principle to a new situation. Experts, on the other hand,
have abstracted the knowledge that is associated with a particular
context. This abstracted knowledge is based on principles and is
usually derived from repeated learning across varying contexts
where the need for abstraction is designed into the problem.

Experts possess both general problem solving skills and domain
knowledge. Furthermore, there is a symbiotic relationship between
general cognitive skills and domain-specific knowledge: “general
heuristics that fail to make contact with a rich, domain-specific
knowledge base are weak. But when a domain-specific knowledge
base operates without general heuristics, it is brittle—it serves
mostly in handling formulaic problems” [27]. These are important
points to remember as we consider the design, development and
evaluation of educational environments that contribute to the
development of expertise. Expertise does not magically happen.
The development of expertise is a complex phenomenon. One
useful perspective for approaching and understanding the design
and development of educational environments that contribute to the

development of expertise is through exploration of the construct of
“transfer.” A second perspective underpinning this project is that
of representational fluency.

3.2 Transfer
“Transfer” is about educating so that the learner will be able to use
the newly acquired knowledge on a different problem, in a different
situation, and it is not about simply training people to accomplish
tasks ([NRC], 2000). A common goal for educators is to help the
learner acquire knowledge that extends to other contexts. In 2000,
The National Research Council published findings that suggest the
following key characteristics of learning and transfer that are
helpful for educators:

• Initial learning is necessary for transfer, and a considerable
amount is known about the conditions of initial learning
experiences that support transfer.

• All new learning involves transfer based on previous learning.
Transfer is affected by the context of initial learning, and this
has important implications for the design of instruction that
helps students learn.

• Knowledge that is overly contextualized can reduce transfer;
transfer is enhanced by instruction that guides students toward
the representation of problems at higher levels of abstraction.

• Transfer is best viewed as an active, dynamic process rather
than a passive end-product of a particular set of learning
experiences.

Conditions of Initial Learning. Initial learning is a key factor for
transfer, and it is often overlooked. Initial learning consists of
mastery of a particular topic or subject matter [28]. In a study to
evaluate the effects of transfer when using the programming
language LOGO, it was found that there were no benefits of transfer
unless a significant degree of knowledge was gained during the
learning process [28]. Additionally, further studies have shown
that the following characteristics of initial learning that affect
transfer are: a) understanding versus memorizing, b) time to learn,
c) beyond “Time on Task,” and d) motivation to learn [28]. When
learners are only required to memorize facts, they may have
difficulty understanding the “why?” and the “how come?” By
organizing facts around principles, students will better answer these
questions and will start to organize a mental framework that more
closely resembles that of experts [28]. Moreoever, it is important
to understand the amount of time initial learning takes to move
knowledge into long-term memory; for example, to become a chess
master, an individual requires around 100,000 hours of playing to
reach world class expertise [28]. Much of the time spent on initial
learning is used to develop patterns of recognition that can be
recalled and applied to new experiences [28]. The different ways
time is used is also a key factor to initial learning. Deliberate
practice with feedback is considered a more effective use of time
than spending time practicing without feedback [28]. Motivation
should be considered as one of the most important aspects of initial
learning and will help the learner stay on-task and dedicate the time
necessary to move knowledge into long-term memory. Varying the
degrees of difficulty is one way of helping the learner to stay
motivated; however, educators should be careful not to make the
learning so difficult that the learner loses interest, or so easy that
the learner becomes bored [28]. Each of these characteristics of
learning (understanding, time to learn, “Time on Task,” and
motivation) should be considered when providing instruction
because each has been shown as important to initial learning
conditions that support later transfer.

Initial Learning Context and Transfer. The context in which
learning is initially achieved is important to subsequent transfer. It
has been shown that learning is situated in practice and that
traditional classroom cultures and environments are not the most
effective contexts for student learning. Transfer can be better
served through authentic practices or cognitive apprenticeships
[29]. These authentic practices might include embedding tasks with
familiar activities, pointing to different decompositions, and
allowing students to generate their own solution paths [29]. While
authentic practices can be useful for creating a rich initial learning
opportunity, research has also shown that novices often fail to
invoke prior learning when the context changes, resulting in poor
or no transfer. This can partly be corrected through additional
examples in different contexts like providing additional similar
cases, “what if” analysis, and the abstraction of general principles
[28].

Problem Representation. Problem representations also affect
transfer. Research shows that the more abstracted the knowledge,
the more transferrable it is [28]. Learning experiences that help
students see how problems relate to principles and how those
principles can be applied to other situations promote positive
transfer. A study of algebra students that involved word problems
using mixtures showed that those students who were shown
pictures of mixtures did worse when trying to transfer their learning
to new problems than did other students that were shown abstract
tabular representations [28]. Studies have also shown that when
learners develop multiple representations they are better able to
transfer knowledge to new domains with increased flexibility [30].

Active, Dynamic Approaches to Transfer. In the literature, transfer
is often treated as static, where it is conceived and operationalized
as an outcome of learning. An alternate approach is to treat transfer
as a dynamic process that requires learners to actively choose
strategies, evaluate those strategies, consider relevant resources,
and receive timely and relevant feedback. Experts spontaneously
transfer appropriate knowledge without prompting, and, when they
get stuck, they are usually capable of self-regulating their learning
so as to redirect. In other words, experts use metacognition
(thinking about thinking) to support transfer by re-invoking initial
learning, learning context, and problem representation strategies.
Transfer can be improved by treating it as an active, dynamic
process wherein metacognitive strategies are taught to learners
within the abstraction/transfer process.

3.3 Representational Fluency
Generally, fluency is the ability to express oneself readily and
effortlessly, as well as the ability to move effortlessly between the
spoken word and the written word, which are two different
representations. A representation in the abstract refers to instances
that are equivalent in meaning, but different in mode of expression.
While the idea of fluency is often associated with the written and
spoken word, researchers have extended work fluency and
representations to other disciplines, (e.g. physics, biochemistry, and
mathematics). The idea of fluency in these other fields includes the
ability to comprehend the equivalence of different modes of
representation [31], a phenomenon that has been called
“representational fluency.” In science, technology, engineering,
and mathematics, commonly used modes of representation include
verbal vs. mathematical, graphical vs. equational, macroscopic vs.
microscopic, physical vs. virtual, etc. Representational fluency is
the ability to comprehend equivalence in different modes of
expression, to read out information presented in different
representations, to transform information from one representation
to another, and to learn in one representation and apply that learning

to another. Therefore, representational fluency is an important
aspect of deep conceptual understanding that has been shown to
promote transfer and expertise.

3.4 Computational Thinking as a Practice of
Representation
One of the main goals of computational thinking involves
individuals’ ability to define models in the form of algorithms, data
analysis, or visualization techniques [8, 32]. A model can be
referred to as a tool that (a) serves as an approximate representation
of the real item that is being built and (b) helps individuals to work
at a higher level of abstraction by bringing out the big picture and
by focusing on different aspects of a model [33]. Thus, abstraction
is at the core of algorithmic thinking, which at the same time is one
of the principles that is right at the heart of computational thinking;
however, abstraction is as hard to teach as it is important [34].

We argue that, for accomplishing a working level of abstraction,
techniques such as problem decomposition, pattern recognition,
and pattern generalization can be fostered by having students
familiarize themselves with diverse forms of representations, create
these representations, and translate meaning from one
representation to another. Hence, we propose the use of
representational fluency as a conceptual framework that can help
us to identify and describe different forms of computational
representations and their application in the manipulation,
construction, interpretation, application, revision, and refinement
of models through the process of solving real life problems.

4. Methods
The methods of this study describe how we used the framework of
representational fluency to design a robotics learning experience
and to explore if students benefited from it. We expected that
students would develop representational abilities by using the
designed robotics lab experience embedding the as use-modify-
create strategy. To this end, we developed a test case study
exploring the following guiding research questions:

(i) What are individuals’ representational abilities for
problem solving in the context of robotics challenges?

(ii) What is the effect of computational robotics challenges
for improving individuals’ computing representational
fluency?

(iii) Do individuals’ background (computing or non-
computing), academic level (freshmen or sophomore),
and/or gender have an effect in their computing
representational abilities for problem solving in the
context of a robotics problem solving task?

(iv) What are individuals’ perceptions about the usefulness of
computational robotics challenges to learn algorithmic
design and robotics?

4.1 Learning materials to scaffold
representational fluency
To guide student learning, a lab experience was created guided by
the notion of representational fluency. This lab experience
consisted of a multiple step process in which students were
provided with a framework so they could familiarize themselves
with representational techniques for algorithm design and the robot
programming language. This strategy has been described as use-
modify-create [35]. This scaffolding strategy consists of a three-
stage progression of deeper interactions [36]. The main objective
of the lab module was to make the robot travel through predefined

paths forming simple shapes. This lab module had the following
steps:

Introduction. This section provided the overview of the activity. A
scenario was presented in the introduction of the lab module in
which a fictional company is assumed to supply unmanned robots
to the US military services. This fictional company is looking to
hire a software developer to program the robot to travel through
different predefined routes. The participant had been assumed as a
software developer and will work on the entire lab module.

[Use] In this part of the lab module, participants were provided
with the process required to make the robot travel through the
square path and the programming basics. Participants were
provided with a sample of a program. To program the robot,
participants need to understand the basic functionalities. For
instance, students should know that all the four wheels need to be
programmed accordingly. Also, students were presented with the
variables and the functions to be used. Specifically, the robot is
programmed on two variables (time and speed) and it had four basic
functions available to students (i.e. stop, forward, turn right, and
turn left). A flowchart and a table were also provided to the
participants with explanations concerning the procedure used in
programming a robot to make a square path (see Figure 1).

This part of the lab module also provided a manual to assemble a
robot. This part of the lab was optional to the user. Setting up
RoboPlus software [37] and how to connect Robot to the computer
were also explained. RoboPlus is a computer program that consists
of instructions to control the robot's actions. After writing the
program, the file is saved in .tsk format, which was uploaded into
CM 510 (Servo Controller) using RoboPlus software. Figure 2
shows a screenshot of the program’s interface.

[Modify] Participants modified the above program to create a
program where the robot travels through a rectangle-shaped path.
The steps participants followed were: (1) create the pseudo code
and flowchart of the path, (2) program the robot, (3) test the robot,
(4) assess the accuracy of the program versus the design, and (5)
modify your code as necessary.

Fig.1 Path of robot making a squared shape.

Fig.2 Screenshot of the RoboPlus interface

 [Create] After participants became familiarized with the basic
concepts of flowchart and programming, they started designing,
implementing and testing the robot to accomplish the task assigned
and to make the robot travel through pre-defined paths. To this end,
participants were guided through a step-by-step scaffolded
procedure in which they created diverse forms of representations
by building form one to another. The step-by-step procedure was:

Analysis Task. Drawing a flowchart and writing a pseudo code are
two forms of representation that participants were asked to perform
as part of this task. Each participant was exposed to a natural
scenario where he or she was treated as a software developer. The
participant was responsible for drawing a flowchart based on the
scenario provided (i.e. converting natural language to flowchart).

Design Task. The flowchart produced as part of the Analysis Task
was intended to serve as a starting point to then construct the
corresponding pseudo code. To create the pseudo code, participants
were required to use short English phrases to explain specific
instructions needed for the robot to travel the predefined path.

Implementation Task. After creating a flowchart from natural
language and then the pseudo code based on the flowchart,
participants used those artifacts to program the robot.

Testing Task. The reason for testing was to see if the path traveled
by the robot matched the predefined figure. The path traveled by
the robot was supposed to be directly related to the program and the
deviations from the pre-defined path would indicate the mistakes
made in the flowchart, pseudo code, or computer program.

4.2 Participants
Participants of this test case consisted of 44 college students from
a Midwestern university with computing (n=16) and non-
computing (n=28) backgrounds. The participants in this study were
either in their freshmen (n=11) or sophomore (n=33) years. Student
majors or disciplines were: Mechanical Engineering (7), Chemistry
or Chemical Engineering (5), Computer Engineering or Computer
Science (4), Behavioral Neuroscience or Psychology (4), Medical
Laboratory Science, Nursing, Health or Applied Exercise (3),
Electrical Engineering (2), Biology (2), Biomedical Engineering
(2), Business Management (2), Communication (2),

Interdisciplinary Engineering (2), Animal/Soil and Crop Science
(2), Speech and Language (1), Acting (1), Materials Science and
Engineering(1), Aviation Engineering Technology (1), Fine Arts
(1), Physics (1), and History (1).

Recruitment of participants was conducted by posting flyers
throughout campus. After the participants made initial contact with
us, we used a purposeful sampling method. We gave preference to
freshmen students. We also gave preference to students from
diverse backgrounds (i.e. from a variety of disciplines) in an effort
to have a balance between students from computing and non-
computing oriented disciplines. Students were then invited to
participate in a two hour lab session. This study was approved by
the institutional review board.

4.3 Data Collection Method and Procedures
A process assessment rubric (PAR) was employed to evaluate
student performance in the planning of the task, implementation of
the task, and the program produced. For each step in the process,
students were evaluated on the representations they produced and
how they translated from one representation to another one;
therefore, alignment between representations was considered as
part of the rubric to identify how students built from one
representation to the following one.

Students’ perceptions were collected using three Likert-scale
questions scored from strongly disagree (1) to strongly agree (5).
The statements to be rated were: (1) The activities presented were
very engaging; (2) The activities increased my interest in algorithm
design; and (3) The activities increased my interest in robotics.

During the two-hour lab session, students were exposed to three
main activities. First, they responded the pretest assessment, then
they were exposed to the learning experience, and, finally, they
responded the posttest. The perception questions were responded to
by the participants at the same time as the posttest.

4.4 Data Analysis Method
All the participants responded to the same pretest and posttest
instrument to determine the effects of the treatment on Analysis,
Design (flowchart and pseudo-code), and the representational
fluency of students among the several artifacts required on the tests
(i.e. how they built and aligned the flowchart, pseudo-code, and
implementation code). The Implementation score assessed the
actual program that manipulated the robot. This category was only
scored as part of the posttest assessment. All data from the two
rubrics were rated on a scale from 1 to 4, and it was treated as
interval data. The responses to the perception questions were
normalized so the results ranged from 0% (strongly disagree) to
100% (strongly agree).

All pre and posttest results were tested for normality, none of which
were normally distributed. After scoring each rubric individually
for the pretest and posttest measures, a non-parametric t-test was
used to identify significant differences between the two groups.

A correlational analysis was carried out among the rubric criteria
for the pretest and for the posttest. The Pearson coefficient for a
weak correlation was considered to be less than 0.1, for a moderate
correlation to be between 0.25 and 0.45, and for a strong correlation
to be higher than 0.5 [46].

Table 1. Process assessment rubric (PrT=pretest scores, PoT=posttest scores)

Category 4 3 2 1 PrT PoT

Flowchart
Independent to

Robotics

All the components are
clearly defined, shaped,

and labeled. The
flowchart describes the
process in an accurate

manner

The flow chart
describes the process,

but its components
are not correctly

labeled, shaped, or
defined

Most of the shapes in
the flowchart are

incorrectly labeled or
shaped

The flowchart
is incomplete

or non-
understandable

Analysis Flowchart

The flowchart design is
accurate. Also, it has all
the components labeled
and shaped. The initial

and end steps are
clearly represented

The flowchart design
is accurate but there

are some components
that are not correctly
labeled, shaped, or

defined

The flowchart design
lacks of precision to
the chosen route and
some of the shapes in

the flowchart are
incorrectly labeled or

shaped

The flowchart
is incomplete

or non-
understandable

Design Pseudo-code

The flowchart and
pseudo-code are

correctly aligned, and
they lead the robot to an

accurate result

The pseudo-code is
accurate, but it is not

aligned to the
flowchart design

The pseudo-code is
not precise, and it is

not aligned to the
design

The pseudo-
code is

incomplete or
non-

understandable

Implementation
The implemented

program is accurate and
is aligned to the design

The implemented
program is accurate

but not aligned to the
design

The implemented
program has some

deviation of the
chosen route and is
not aligned to the

design

The
implemented

program is not
complete or it

has syntax
errors

N/A

4.5 Validity and Reliability of the Instrument
A pilot was conducted with two students with a computer and
information technology background. The pilot lasted 15 minutes
for the pretest and 47 minutes for the posttest. Participants’
impressions of the lab module were overall positive. Participants
found some difficulties in attaining the exact pre-specified path.
Participants found it enjoyable to work with the robot. These
observations were used to refine the instructions and the learning
materials.

5. Results
5.1 What are individuals’ representational
abilities for problem solving in the context of
robotics challenges?
Table 2 depicts descriptive statistics for the individual rubric
criterion as well as the total score. The results suggests a good
performance by the students to move between different
representations to solve a problem in robotics challenges. During
the pretest, all participants (n = 44) were able to get a high average
score (mean = 67.24%; SD = 15.81%) even though some of them
(n = 28) did not have previous experience in programming courses.
As mentioned earlier, the pretest assessment did not include the
scores associated with the implementation task. The posttest score
depicts even higher average scores both including the
implementation score (mean = 82.39%; SD = 11.54%) and without
the implementation score (mean = 78.60%; SD = 12.76%). The
implementation score was 93.75%, with a moderate standard
deviation of 12.21%. The results suggest that students with and
without computing backgrounds were able to implement the
robotics challenge.

Table 2. Pre and post –test performance to solve a robotics
challenge problem

Test
(N=44) Mean Mean

(%) SD SD
(%)

Pretest

Flowchart 2.64 65.91 0.97 24.17

Analysis 2.64 65.91 0.75 18.75

Design 2.80 69.89 0.73 18.35

Total 2.69 67.23 0.63 15.81

Posttest

Flowchart 3.20 80.11 0.85 21.28

Analysis 3.05 76.14 0.57 14.22

Design 3.18 79.55 0.58 14.54

Implementation 3.75 93.75 0.49 12.21

Total w/o
Implementation 3.14 78.60 0.51 12.76

Total with
Implementation 3.30 82.39 0.46 11.54

5.2 What is the effect of computational
robotics challenges for improving individuals’
computing representational fluency?
Figure 3 presents the comparison between the means of the pretest
and posttest results. There are two different values related to
posttest because it included an implementation question that was
not part of the pretest. Therefore, both analysis with and without
implementation scores are presented. Significant differences were
found from pretest to posttest, both without implementation t(43)=-

5.7, p-value<0.001 and with implementation t(43)=-7.91, p-
value<0.001. The test results suggest that the robotics activity
increased students’ computing representational fluency.

Fig.3 Comparison Pre and Post –Test performance to solve a

robotics challenge problem

A correlational analysis was also performed to identify student
representational fluency. Table 3 and Table 4 depict the
correlations for the rubric criteria on the pretest and on the posttest
correspondingly.

Table 3. Correlation among the rubric criteria on the pretest

 Flowchart Design Pseudo

Flowchart 1.00

Design 0.26 1.00

Pseudo 0.22 0.79 1.00

Table 4. Correlation among the rubric criteria on the posttest

 Flowchart Design Pseudo Implemen
t

Flowchart 1.00

Design 0.32 1.00

Pseudo 0.25 0.61 1.00

Implement 0.35 0.46 0.49 1.00

The flowchart that was independent from the assignment moved
from a weak-to-moderate correlation on the pretest to a moderate
one on the posttest. The design, which consisted of a flowchart for
the assignment, was strongly correlated to the pseudo-code written
by the students both on the pretest and the posttest. Finally, the
implementation showed a moderate-to-strong correlation to the
design and to the pseudo-code criteria. The results suggest that
students were able to build different representations for the
phenomenon, both on the pretest and on the posttest.

5.3 Do individuals’ background, academic
level, and/or gender have an effect in their
computing representational abilities for
problem solving in the context of a robotics
problem solving task?
Test results were also analyzed based on the independent variables
Student Gender, Student Level, and Previous Experience in
Programming Courses. Results suggest that there is no evidence of
significant differences between genders F(43,1)=1.11, p-value=0.3,
students’ level F(43,1)=0.01, p-value=0.87, or previous
experiences F(43,1)=0.15, p-value=0.7.

5.4 What are the individuals’ perceptions
about the usefulness of computational robotics
challenges to learn algorithmic design and
robotics?
Students’ perceptions about usefulness related to the activity are
described in Table 5. Engagement is highlighted as an important
factor in this kind of activity (mean=84.09%; SD = 13.20). Also,
although more than 60% of the participants did not have previous
experience in programming courses (n=28), a large portion of the
sample (74.09%) reported that the activity increased their interest
in algorithms. Likewise, 78.18% of the participants felt that the
activity increased their interest in robotics.
Table 5. Posttest students’ perceptions related to the activity

Test Mean
Norm
Mean
(%)

Std.
Dev

Norm.
Std. Dev

(%)
Activities are
engaging(N=44) 4.21 84.09 0.66 13.20

Activities increase
interest in
algorithms (N=44)

3.71 74.09 0.73 14.51

Activities increase
interest in robotics
(N=44)

3.91 78.18 0.73 14.66

6. Discussion and implications
From the analysis of student performance before and after being
exposed to the learning experience, we can suggest that the design
of learning activities guided by the use-modify-create pedagogy
scaffolded the development of student computational
representational abilities. This learning strategy might have
supported learners in breaking down the activities in multiple steps
so that they could make explicit connections between
representations [35]. Since learning programming is a complex
task[38], using multiple representations organized as Analysis,
Design, and Implementation seemed to have helped students break
down the problem in a step-by-step process. That is, by means of
the scaffolding provided, students were able to decompose the
posed problem into a flowchart to propose an initial solution [39].
Then, students transformed this representation into a pseudo-code
and finally into a programming language. The scores for different
representations, both on the pretest and on the posttest, showed a
moderate-to-strong correlation, suggesting that high performer
students in, for example, the flowchart design, also were high
performers in the creation of the pseudo-code.

The artifacts the students produced and the progression they
followed using one artifact and leveraging it to the creation of the

next one is what we believe was particularly useful for them.
Moving from natural language to flowchart, from flowchart to
pseudo-code, from the actual code to testing, and the mappings
between them, supported students in accomplishing their design
task [30].

Findings also indicated no significant differences between pre- and
posttest scores based on student academic level, gender, or
disciplinary background. Based on these results, we speculate that
the pedagogical strategy of use-modify-create coupled with
robotics, can be used to integrate computational thinking concepts
and skills with a diverse population of learners in terms of gender,
interests, and expertise. On the other hand, since the interaction
with multiple representations improves transfer [30], providing
scaffolding for the students to go through these representations
might also have had a positive impact.

In terms of motivation, several of the participants reported that the
robotics-based activities were engaging. For instance, these
students reported increased interest in both algorithm design and
robotics. Furthermore, 60% of the students who had a non-
computing background also reported positive perceptions of the
usefulness of robotics challenges for their learning. These results
are aligned with findings from other studies reporting that robotics
activities are also useful for students with non-computing
backgrounds [i.e., 19, 21]. Therefore, we speculate that the use of
robotics can lower the barriers of entry into computing related
fields.

6.1 Implications for Teaching and Learning
The implications for teaching and learning relate to the design of
computational thinking learning experiences that are grounded in
effective pedagogical methods and learning strategies. Firstly, this
study provides a learning activity and learning assessments that can
be easily adapted for learning purposes. Secondly, this study
provides key insights into how literature from the learning sciences
can be used to design learning experiences and their corresponding
assessments. The emphasis on representational fluency, within the
broader context of computational and algorithmic thinking, can
guide the design of additional learning experiences following the
process presented in this study.

This study also collected and analyzed evidence to weigh in on
what kinds of learning resources we should bring to bear and the
conceptual trade-offs they entail. The evaluation of learning
materials suggests that, in a way, humans can build representational
fluency effectively by exercising their physical intuitions.
Specifically, robotics-based challenges can provide a tangible or
sensory medium that, according to theories of embodied cognition,
can foster development of conceptual understanding [40].
Therefore, we suggest that robotics can have a strong potential to
serve as an effective and engaging vehicle to integrate principles
and practices of computational thinking, such as algorithm design
and principles of programming. Moreover, exposing students to an
explicit representation and transformation processes scaffolded
through the use-modify-create strategy can enhance their
computational representational abilities.

6.2 Implications for Computing Educational
Research
From a computing educational research perspective, this study
portrays computational thinking as a practice of representation.
Considering computational thinking in such way can allow
researchers to investigate how students can manage complexity
through a series of abstractions. Specifically, through the lens of

representational fluency, the assessment of the learning process for
this study was not only focused on the final product, but on the
transitions from one representation to the next one. That is, the unit
of analysis focused on (a) the process students followed in creating
those artifacts and the mappings they produced between one
representation to the other one (e.g. from a flowchart to a
programming language) as well as (b) the outcome or final solution
of the challenge presented to students (e.g. how the robot moved).

Computer science educators have called for the need to identify
bridges between education research and computer science research
with the goal to facilitate student learning of computing knowledge
and practices [41]. This study provides a possible example of such
process by integrating representational fluency to the design of a
learning experience, and, then, to the investigation of its
effectiveness.

The scholarship of teaching and learning implicates “engagement
with research into teaching and learning, critical reflection of
practice, and communication and dissemination about the practice
of one’s subject” [42]. This study, in a way, went through a similar
process by first designing the learning experience, then conducting
the research and assessment components, disseminating the results,
and then moving into iteration and revision to improve the learning
materials and the research design. This process represents an initial
stage toward a design-based research program that will investigate
the role of representations in computing education. Design-based
research approaches will allow us to understand learning in real-
world practice [43]. It considers education as an applied field where
researchers have transformative agendas [43]. As such, they
develop contexts, frameworks, tools, and pedagogical models with
the intent to produce new theories, artifacts, and practices that can
impact teaching, learning, and engagement in naturalistic settings
[43]. Therefore, design-based research will provide us with a series
of approaches that allow us to “engineer” and at the same time
study particular forms of learning that will be subject to test,
revision, and iteration [44].

6.3 Limitations of the Study
Methodologically, this study had some limitations. One of the
limitations in the research design was the lack of a control group.
Another limitation included the sample size and the fact that
participants were voluntarily recruited. This heterogeneous group
led to small demographic subgroups that constrained the possible
significant differences between them. Also, the study did not take
place in a naturalistic classroom environment, where students are
usually part of a longer learning process involving more variables.
Therefore, the implementation of these practices should be further
explored by means of more rigorous experimental designs to
validate the learning experiences and the use of ethnographic
methods to identify how students progress from one representation
to another one; however, the results of this study empower us to
implement, as future work, the robotics-based learning activities in
classroom settings with a bigger and more homogenous sample of
students and include a control group. It also provides us with a
proof-of-concept that can allow us to explore computational
thinking as a practice of representation.

7. Conclusion
This study proposed representational fluency as a research and
learning framework that can allow the investigation of how people
develop computational thinking. Under this perspective, this study
presented the development of a learning module that integrated and
validated pedagogical methods and scaffolding techniques to

introduce computing principles and procedures by means of
robotics-based challenges.

Findings from the implementation of these challenges suggest a
positive impact on computational thinking in general and
computational representational fluency specifically. Students with
computing and non-computing backgrounds benefited from the use
of robotics, and they performed equally in the posttest. These
findings suggest that robotics can be used to learn computational
thinking related concepts for designing, programming, and testing
with a detailed level of abstraction. Results from this study also
suggest that robotics may serve as a common theme to integrate
STEM related concepts and computing and engineering skills. For
instance, robotics can be used as viable source to teach students
from both computing and non-computing backgrounds. Similarly,
the robotics-based challenge can be adopted and adapted by
educators for classroom use. It can also be used as a guide to
develop new and more complex robotics-based challenges. The
pedagogy presented here can also be used for other kinds of
learning experiences not involving robotics.

The broader educational research community has made major calls
to pursue discipline-based educational research [45], where we
believe computer science education needs to be more strongly
represented. The computer science community has also identified
the need of more rigorous methodological approaches to pursue
computer science education research [2, 3]. One of the key
components toward a more rigorous path to discipline-based
educational research in computer science is the consideration of
theoretical foundations that can provide a perspective into how
research has been grounded in literature and the scope and
generalizability of the results [41]. Another key component would
be the use of educational research findings to design computer
science learning experiences [1]. A natural way to couple these two
worlds could be by means of design-based research approaches that
will allow educational practitioners and researchers to develop
learning materials and pedagogical models with the intent of
producing new theories, artifacts, and practices that can impact
teaching, learning, and engagement in naturalistic settings [43].

8. References
[1] J. M. Clement, "A Call for Action (Research): Applying

Science Education Research to Computer Science
Instruction," Computer Science Education, vol. 14, pp.
343-364, 2004/12/01 2004.

[2] A. Pears and L. Malmi, "Values and objectives in
computing education research," ACM Transactions on
Computing Education (TOCE), vol. 9, p. 15, 2009.

[3] J. Randolph, et al., "A methodological review of
computer science education research," Journal of
Information Technology Education: Research, vol. 7, pp.
135-162, 2008.

[4] J. M. Wing, "Computational thinking," Communications
of the ACM, vol. 49, pp. 33-35, 2006.

[5] L. K. Soh, et al., "Renaissance computing: an initiative
for promoting student participation in computing," ed,
2009.

[6] [NRC], "Report of a workshop on the pedagogical
aspects of computational thinking," National Research
Council of the National Academies, Washington,
D.C.2011.

[7] J. Cuny, et al., "Demystifying Computational Thinking
for Non-Computer Scientists," Work in progress, 2010.

[8] [CSTA]. (2012, March 15). Operational definition of
computational thinking. Available:

http://www.iste.org/Libraries/CT_Documents/Computat
ional_Thinking_Operational_Definition_flyer.sflb.

[9] V. Barr and C. Stephenson, "Bringing computational
thinking to K-12: what is Involved and what is the role of
the computer science education community?," ACM
Inroads, vol. 2, pp. 48-54, 2011.

[10] [NRC], Being fluent with Information Technology:
National Academy Press, 1999.

[11] J. Kramer, "Is abstraction the key to computing?,"
Communications of the ACM, vol. 50, pp. 36-42, 2007.

[12] R. Lesh, "Modeling students modeling abilities: The
teaching and learning of complex systems in education,"
Journal of the Learning Sciences, vol. 15, pp. 45--52,
2006.

[13] M. Alhadeff-Jones, "Three Generations of Complexity
Theories: Nuances and ambiguities," Educational
Philosophy and Theory, vol. 40, pp. 66-81, 2008.

[14] E. Soloway and J. C. Spohrer, Studying the novice
programmer: Lawrence Erlbaum Hillsdale, NJ, 1989.

[15] R. Lister, et al., "A multi-national study of reading and
tracing skills in novice programmers," ACM SIGCSE
Bulletin, vol. 36, pp. 119-150, 2004.

[16] W. M. McCracken, et al., "A multi-national, multi-
institutional study of assessment of programming skills
of first-year CS students," ACM SIGCSE Bulletin, vol.
33, pp. 125-180, 2001.

[17] B. D. du Boulay, "Some difficulties of learning to
program," in Studying the novice programmer, E.
Soloway and J. C. Spohrer, Eds., ed: Lawrence Erlbaum,
1986, pp. 283-299.

[18] R. D. Pea and D. M. Kurland, "On the cognitive
prerequisites of learning computer programming," 1983.

[19] D. C. Cliburn, "Experiences with the LEGO Mindstorms
throughout the undergraduate computer science
curriculum," in Frontiers in Education Conference, 36th
Annual, San Diego, CA, 2006, pp. 1-6.

[20] F. Klassner and S. D. Anderson, "Lego MindStorms: Not
just for K-12 anymore," Robotics & Automation
Magazine, IEEE, vol. 10, pp. 12-18, 2003.

[21] B. S. Fagin, et al., "Teaching computer science with
robotics using Ada/Mindstorms 2.0," in ACM SIGAda
Ada Letters, Bloomington, MN, 2001, pp. 73-78.

[22] D. Kumar and L. Meeden, "A robot laboratory for
teaching artificial intelligence," ACM SIGCSE Bulletin,
vol. 30, pp. 341-344, 1998.

[23] D. J. Barnes, "Teaching introductory Java through LEGO
MINDSTORMS models," in ACM SIGCSE Bulletin,
Cincinnati, Northern Kentucky, 2002, pp. 147-151.

[24] E. Bonakdarian and L. White, "Robocode throughout the
curriculum," Journal of Computing Sciences in Colleges,
vol. 19, pp. 311-313, 2004.

[25] J. O’Kelly and J. P. Gibson, "RoboCode & Problem-
Based Learning: A non-prescriptive approach to teaching
programming.," in ITICSE '06 Proceedings of the 11th
annual SIGCSE conference on Innovation and
technology in computer science education, Houston, TX,
2006.

[26] I. Angulo, et al., "Competencias y Habilidades Con El
Robot “Moway”. ," in VIII Congreso de Tecnologías
Aplicadas a la Enseñanza de la Electrónica - TAEE 2008,
Zaragoza, Espana, 2008.

[27] D. N. Perkins and G. Salomon, "Are cognitive skills
context-bound?," Educational researcher, vol. 18, pp.
16-25, 1989.

http://www.iste.org/Libraries/CT_Documents/Computational_Thinking_Operational_Definition_flyer.sflb
http://www.iste.org/Libraries/CT_Documents/Computational_Thinking_Operational_Definition_flyer.sflb

[28] J. Bransford, How people learn: Brain, mind, experience,
and school: National Academies Press, 2000.

[29] J. S. Brown, et al., "Situated cognition and the culture of
learning," Educational researcher, vol. 18, pp. 32-42,
1989.

[30] R. J. Spiro, et al., "Cognitive flexibility, constructivism,
and hypertext: Random access instruction for advanced
knowledge acquisition in ill-structured domains,"
Constructivism and the technology of instruction: A
conversation, pp. 57-75, 1992.

[31] I. E. Sigel, Development of mental representation:
Theories and applications: Lawrence Erlbaum, 1999.

[32] Google. (2013, November 29). What is CT? Exploring
Computational Thinking. Available:
http://www.google.com/edu/computational-
thinking/what-is-ct.html

[33] G. Cernosek and E. Naiburg, "The value of modeling,"
IBM developerWorks 2004.

[34] J. Kramer, "Abstraction-is it teachable? 'the devil is in the
detail'," in Proceedings. 16th Conference on Software
Engineering Education and Training, 2003.(CSEE&T
2003). , 2003, pp. 32-32.

[35] I. Lee, et al., "Computational thinking for youth in
practice," ACM Inroads, vol. 2, pp. 32-37, 2011.

[36] J. Malyn-Smith and I. Lee, "Application of the
Occupational Analysis of Computational Thinking-
Enabled STEM Professionals as a Program Assessment
Tool," Journal of Computational Science Education, vol.
3, pp. 2-10, 2012.

[37] Robotis. (2013, July 22). Robotis Inc. Available:
http://www.robotis.com/xe/

[38] J. Rogalski and R. Samurçay, "Acquisition of
programming knowledge and skills.," in Psychology of
programming J. M. Hoc, et al., Eds., ed London:
Academic Press, 1990, pp. 157–174.

[39] S. P. Lajoie, "Extending the scaffolding metaphor,"
Instructional Science, vol. 33, pp. 541-557, 2005.

[40] Z. C. Zacharia, et al., "Is physicality an important aspect
of learning through science experimentation among
kindergarten students?," Early Childhood Research
Quarterly, vol. 27, pp. 447-457, 2012.

[41] M. Daniels and A. Pears, "Models and Method for
Computing Education Research," in Proceedings of the
14th Australasian Computing Education Conference
(ACE2012), Melbourne, Australia, 2012.

[42] M. Healey, "Developing the scholarship of teaching in
higher education: a discipline-based approach," Higher
Education Research and Development, vol. 19, pp. 169-
189, 2000.

[43] S. Barab and K. Squire, "Introduction: Design-Based
Research: Putting a Stake in the Ground," The Journal of
the learning sciences, vol. 13, pp. 1-14, 2004.

[44] P. Cobb, et al., "Design experiments in educational
research," Educational researcher, vol. 32, pp. 9-13,
2003.

[45] [NRC], Discipline-Based Education Research.
Understanding and Improving Learning in
Undergraduate Science and Engineering. Washington,
D.C.: National Academies Press, 2012.

[46] A. Rubin, “Statistics for Evidence-Based Practice and
Evaluation”; Cengage Learning: Belmont, CA. 2009.

http://www.google.com/edu/computational-thinking/what-is-ct.html
http://www.google.com/edu/computational-thinking/what-is-ct.html
http://www.robotis.com/xe/

	Computational Thinking as a Practice of Representation: A Proposed Learning and Assessment Framework
	Computer and Information Technology, Purdue University,
	401 N. Grant Street, West Lafayette, IN. 47906
	1. INTRODUCTION
	2. Background
	2.1 Computational Thinking
	2.2 Challenges in Computer Science Education
	2.3 Robotics in Computer Science Education

	3. Theoretical Foundations
	3.1 Expertise
	3.2 Transfer
	3.3 Representational Fluency
	3.4 Computational Thinking as a Practice of Representation

	4. Methods
	4.1 Learning materials to scaffold representational fluency
	4.2 Participants
	4.3 Data Collection Method and Procedures
	4.4 Data Analysis Method
	4.5 Validity and Reliability of the Instrument

	5. Results
	5.1 What are individuals’ representational abilities for problem solving in the context of robotics challenges?
	5.2 What is the effect of computational robotics challenges for improving individuals’ computing representational fluency?
	5.3 Do individuals’ background, academic level, and/or gender have an effect in their computing representational abilities for problem solving in the context of a robotics problem solving task?
	5.4 What are the individuals’ perceptions about the usefulness of computational robotics challenges to learn algorithmic design and robotics?

	6. Discussion and implications
	6.1 Implications for Teaching and Learning
	6.2 Implications for Computing Educational Research
	6.3 Limitations of the Study

	7. Conclusion
	8. References

