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ABSTRACT 
This study proposes a research and learning framework for 
developing and assessing computational thinking under the lens of 
representational fluency.  Representational fluency refers to 
individuals’ ability to (a) comprehend the equivalence of different 
modes of representation and (b) make transformations from one 
representation to another. Representational fluency was used in this 
study to guide the design of a robotics lab.  This lab experience 
consisted of a multiple step process in which students were 
provided with a learning strategy so they could familiarize 
themselves with representational techniques for algorithm design 
and the robot programming language.  The guiding research 
question for this exploratory study was: Can we design a learning 
experience to effectively support individuals’ computing 
representational fluency? We employed representational fluency as 
a framework for the design of computing learning experiences as 
well as for the investigation of student computational thinking. 
Findings from the implementation of this framework to the design 
of robotics tasks suggest that the learning experiences might have 
helped students increase their computing representational fluency. 
Moreover, several participants identified that the robotics activities 
were engaging and that the activities also increased their interest 
both in algorithm design and robotics. Implications of these 
findings relate to the use of representational fluency coupled with 
robotics to integrate computing skills in diverse disciplines.  

Categories and Subject Descriptors 
K.3.2 [Computers And Education]: Computer and Information 
Science Education – Computer science 

General Terms 
Algorithms, Human Factors 

Keywords 
Computation, Representational Fluency, Programming Education, 
Robotics 

 

1. INTRODUCTION 
Calls for action in the field of computer science education and 
computing educational research have identified, among other 
issues, the lack of a variety of methodological approaches to the 

design and investigation of computing learning experiences [i.e. 1, 
2, 3].  These calls for action are based on searches of published 
research literature in which authors have concluded that there is a 
relative sparseness of research regarding how students learn 
computer science and, a lack of rigor in most of the existing 
investigations [2].  As a pathway to addressing this need, Clement 
[1] proposed applying findings from science education to the 
design of evidence-based learning experiences in computer science. 
We would like to extend this call and include the use of theoretical 
frameworks in the evaluation of student learning and not only in the 
design stage. 

Our aim is first and foremost to contribute to the field of computing 
education by proposing the use of representational fluency as a 
theoretical framework for the design of computing learning 
experiences as well as a way to investigate how students learn 
computer science related concepts under this lens.  To this end, the 
guiding research question is: Can we design learning experiences 
to effectively support individuals’ computing representational 
fluency? Specifically, this study proposes a learning experience 
that uses representational fluency as a way for students to develop 
computational thinking mediated by the use of robotics.  The 
research questions that helped us assess this proposed approach are: 

(i) What are individuals’ representational abilities for 
problem solving in the context of robotics challenges? 

(ii) What is the effect of computational robotics challenges 
for improving individuals’ computing representational 
fluency? 

(iii) Do individuals’ background (computing or non-
computing), academic level (freshmen or sophomore), 
and/or gender have an effect in their computing 
representational abilities for problem solving in the 
context of a robotics problem solving task?  

(iv) What are individuals’ perceptions about the usefulness of 
computational robotics challenges to learn algorithmic 
design and robotics? 

We believe that representational fluency can help us (a) to design 
learning experiences that can help students manage complexity by 
means of abstractions and (b) have a clearer understanding of how 
learners learn and develop expertise in computational thinking. 
Findings can then inform effective methods and pedagogies to train 
the next generation of workers with readily available computing 
skills. 

2. Background 
We begin with a definition of computational thinking and its 
relationship with abstraction.  We then explore some of the learning 
difficulties in the field of computer science education and briefly 
describe the role of robotics as a pedagogical and motivational tool 
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to integrate computational thinking in the context of problem 
solving.  Next, we make an argument of how computational 
thinking relates to representational fluency and proceed to the 
application of the proposed theoretical framework to the design of 
a robotics learning activity. Finally, we assess the effectiveness of 
this approach by means of an exploratory study. 

2.1 Computational Thinking 
Computational thinking [4] has been recognized as a collection of 
understandings and skills required for new generations of students 
to be proficient not only at using tools, but also at creating them and 
understanding the nature and implication of that creation [5]. 
Computational thinking refers to the combination of disciplinary 
knowledge (e.g. physics, biology, nanotechnology) [6] with 
thought processes (e.g. engineering thinking, quantitative 
reasoning, algorithmic thinking, systems thinking) involved in 
formulating problems and their solutions so that the solutions are 
represented in a form that can be effectively carried out by an 
information-processing agent [7]. This requires using a set of 
concepts, such as abstraction, recursion, and iteration, to process 
and analyze data and to create real and virtual artifacts [8, 9]. 

The use and creation of computing models are an important step in 
understanding problems and identifying potential solutions.  
Algorithmic thinking and abstraction are two of the constructs that 
are at the core of computational thinking.  Algorithmic thinking 
consists of the ability to perform “functional decomposition, 
repetition (iteration and/or recursion), basic data organizations 
(record, array, list), generalization and parameterization, algorithm 
vs. program, top-down design, and refinement" [10]. Abstraction 
refers to the act or process of removing detail to simplify and focus 
attention to salient characteristics based on a given criteria [11]. 
Therefore, investigations of what it means to solve problems 
through different forms of representations, in which students need 
to couple abstraction with algorithmic thinking in the context of 
computational problem solving tasks, should result in productive 
venues to advance relevant learning science theories [12, 13].   

2.2 Challenges in Computer Science 
Education 
Research described in the computer science education literature has 
identified for a long time that learning to program is difficult [14-
16].  For instance, computer programs, in order to function 
appropriately, require some level of complexity and adherence to 
formalisms.  Some identified difficulties occur in following areas: 
(i) orientation- to identify the purpose of the programming task; (ii) 
the notional machine- to identify the general properties or 
functionality of the machine that one is intending to control; (iii) 
notation- to master the syntax and semantics of the programming 
language; (iv) structure- to deal with the difficulties of acquiring 
standard patterns or schemas that can be implemented to attain 
small-scale goals; and (v) pragmatics- to develop the skills to be 
able to specify, develop, test, and debug programs using whatever 
tools are available [17, 18]. Consequently, teaching programming 
to people who are not familiar with algorithm design (at least flow 
diagrams design) can also be a hard task. The process includes not 
only abstraction and algorithmic design capabilities, but also 
programming languages syntax and semantics (Cliburn, 2006). 
Additionally, the non-user-friendly outcomes of a program might 
become a constraint leading to lack of motivation on the part of the 
students.  

2.3 Robotics in Computer Science Education 
Robotics has been included in computing science classes and 
curricula as one of the strategies to teach artificial intelligence and 
programming in an engaging way [19-22]. Several studies using 
tools such as Lego Mindstorms [19, 23], Robocode [24, 25] or 
Moway [26] have explored the development of programming skills 
coupled with robotics.  Klassner & Anderson (2003) highlighted its 
use in areas such as: Programming Fundamentals to learn 
conditionals, loops, and object-oriented paradigm; Algorithms and 
Complexity to be aware of efficiency in order to improve battery 
lifetime and the motion speed; and Programming Languages, 
Architecture, and Operative Systems to understand concepts such 
as syntax and multitasking.  Cilburn (2006) also highlighted its 
usefulness for beginner courses, such as Fundamental Concepts of 
Computer Science, in which students prefer building and 
programming over lecture courses. On the other hand, he found that 
in some robotics experiences there might be external factors that 
frustrate students, such as light sensors that may be affected by the 
environmental light or battery life. 

While the computer science community has taken strides to address 
issues of methodological rigor in their investigations, to date, little 
work has been done to apply existing learning theories and 
theoretical frameworks to the design of learning experiences and 
also to create new discipline-specific learning theories.  This study 
attempts to use research from the learning sciences to link 
constructs of initial learning conditions, initial learning context, 
problem representations, transfer as an active, dynamic process, 
and, specifically, representational fluency for computational 
thinking. 

3. Theoretical Foundations 
Expertise, transfer, and representational fluency are key theoretical 
constructs that guided the design of the learning experience and 
subsequent investigation. 

3.1 Expertise 
Expertise consists of those characteristics, skills, and knowledge of 
a person (that is, expert) or of a system, which distinguish experts 
from novices and less experienced people. A sine qua non 
characteristic of experts is the ability to fluently transfer what they 
have learned from one situation to another; novices cannot do this.  
Novices’ learning is closely connected to the conditions in which 
they learn; novices tie principles and concepts that they know to the 
surface features of how they were taught the principle or concept. 
Consequently, when the context changes, novices often fail to 
transfer the principle to a new situation.  Experts, on the other hand, 
have abstracted the knowledge that is associated with a particular 
context.  This abstracted knowledge is based on principles and is 
usually derived from repeated learning across varying contexts 
where the need for abstraction is designed into the problem.  

Experts possess both general problem solving skills and domain 
knowledge. Furthermore, there is a symbiotic relationship between 
general cognitive skills and domain-specific knowledge: “general 
heuristics that fail to make contact with a rich, domain-specific 
knowledge base are weak. But when a domain-specific knowledge 
base operates without general heuristics, it is brittle—it serves 
mostly in handling formulaic problems” [27]. These are important 
points to remember as we consider the design, development and 
evaluation of educational environments that contribute to the 
development of expertise.  Expertise does not magically happen.  
The development of expertise is a complex phenomenon.  One 
useful perspective for approaching and understanding the design 
and development of educational environments that contribute to the 



development of expertise is through exploration of the construct of 
“transfer.”  A second perspective underpinning this project is that 
of representational fluency.   

3.2 Transfer 
“Transfer” is about educating so that the learner will be able to use 
the newly acquired knowledge on a different problem, in a different 
situation, and it is not about  simply training people to accomplish 
tasks ([NRC], 2000).  A common goal for educators is to help the 
learner acquire knowledge that extends to other contexts. In 2000, 
The National Research Council published findings that suggest the 
following key characteristics of learning and transfer that are 
helpful for educators: 

• Initial learning is necessary for transfer, and a considerable 
amount is known about the conditions of initial learning 
experiences that support transfer. 

• All new learning involves transfer based on previous learning.  
Transfer is affected by the context of initial learning, and this 
has important implications for the design of instruction that 
helps students learn. 

• Knowledge that is overly contextualized can reduce transfer; 
transfer is enhanced by instruction that guides students toward 
the representation of problems at higher levels of abstraction. 

• Transfer is best viewed as an active, dynamic process rather 
than a passive end-product of a particular set of learning 
experiences. 

Conditions of Initial Learning. Initial learning is a key factor for 
transfer, and it is often overlooked.  Initial learning consists of 
mastery of a particular topic or subject matter [28].  In a study to 
evaluate the effects of transfer when using the programming 
language LOGO, it was found that there were no benefits of transfer 
unless a significant degree of knowledge was gained during the 
learning process [28].   Additionally, further studies have shown 
that the following characteristics of initial learning that affect 
transfer are: a) understanding versus memorizing, b) time to learn, 
c) beyond “Time on Task,” and d) motivation to learn [28].  When 
learners are only required to memorize facts, they may have 
difficulty understanding the “why?” and the “how come?”  By 
organizing facts around principles, students will better answer these 
questions and will start to organize a mental framework that more 
closely resembles that of experts [28].  Moreoever, it is important 
to understand the amount of time initial learning takes to move 
knowledge into long-term memory; for example, to become a chess 
master, an individual requires around 100,000 hours of playing to 
reach world class expertise [28].  Much of the time spent on initial 
learning is used to develop patterns of recognition that can be 
recalled and applied to new experiences [28].   The different ways 
time is used is also a key factor to initial learning.  Deliberate 
practice with feedback is considered a more effective use of time 
than spending time practicing without feedback [28].  Motivation 
should be considered as one of the most important aspects of initial 
learning and will help the learner stay on-task and dedicate the time 
necessary to move knowledge into long-term memory.  Varying the 
degrees of difficulty is one way of helping the learner to stay 
motivated; however, educators should be careful not to make the 
learning so difficult that the learner loses interest, or so easy that 
the learner becomes bored [28].   Each of these characteristics of 
learning (understanding, time to learn, “Time on Task,” and 
motivation) should be considered when providing instruction 
because each has been shown as important to initial learning 
conditions that support later transfer. 

Initial Learning Context and Transfer. The context in which 
learning is initially achieved is important to subsequent transfer. It 
has been shown that learning is situated in practice and that 
traditional classroom cultures and environments are not the most 
effective contexts for student learning.  Transfer can be better 
served through authentic practices or cognitive apprenticeships 
[29]. These authentic practices might include embedding tasks with 
familiar activities, pointing to different decompositions, and 
allowing students to generate their own solution paths [29]. While 
authentic practices can be useful for creating a rich initial learning 
opportunity, research has also shown that novices often fail to 
invoke prior learning when the context changes, resulting in poor 
or no transfer.  This can partly be corrected through additional 
examples in different contexts like providing additional similar 
cases, “what if” analysis, and the abstraction of general principles 
[28]. 

Problem Representation. Problem representations also affect 
transfer. Research shows that the more abstracted the knowledge, 
the more transferrable it is [28]. Learning experiences that help 
students see how problems relate to principles and how those 
principles can be applied to other situations promote positive 
transfer. A study of algebra students that involved word problems 
using mixtures showed that those students who were shown 
pictures of mixtures did worse when trying to transfer their learning 
to new problems than did other students that were shown abstract 
tabular representations [28].  Studies have also shown that when 
learners develop multiple representations they are better able to 
transfer knowledge to new domains with increased flexibility [30]. 

Active, Dynamic Approaches to Transfer. In the literature, transfer 
is often treated as static, where it is conceived and operationalized 
as an outcome of learning.  An alternate approach is to treat transfer 
as a dynamic process that requires learners to actively choose 
strategies, evaluate those strategies, consider relevant resources, 
and receive timely and relevant feedback.  Experts spontaneously 
transfer appropriate knowledge without prompting, and, when they 
get stuck, they are usually capable of self-regulating their learning 
so as to redirect.  In other words, experts use metacognition 
(thinking about thinking) to support transfer by re-invoking initial 
learning, learning context, and problem representation strategies.  
Transfer can be improved by treating it as an active, dynamic 
process wherein metacognitive strategies are taught to learners 
within the abstraction/transfer process.  

3.3 Representational Fluency 
Generally, fluency is the ability to express oneself readily and 
effortlessly, as well as the ability to move effortlessly between the 
spoken word and the written word, which are two different 
representations.  A representation in the abstract refers to instances 
that are equivalent in meaning, but different in mode of expression.  
While the idea of fluency is often associated with the written and 
spoken word, researchers have extended work fluency and 
representations to other disciplines, (e.g. physics, biochemistry, and 
mathematics).  The idea of fluency in these other fields includes the 
ability to comprehend the equivalence of different modes of 
representation [31], a phenomenon that has been called 
“representational fluency.”  In science, technology, engineering, 
and mathematics, commonly used modes of representation include 
verbal vs. mathematical, graphical vs. equational, macroscopic vs. 
microscopic, physical vs. virtual, etc.  Representational fluency is 
the ability to comprehend equivalence in different modes of 
expression, to read out information presented in different 
representations, to transform information from one representation 
to another, and to learn in one representation and apply that learning 



to another.  Therefore, representational fluency is an important 
aspect of deep conceptual understanding that has been shown to 
promote transfer and expertise.  

3.4 Computational Thinking as a Practice of 
Representation 
One of the main goals of computational thinking involves 
individuals’ ability to define models in the form of algorithms, data 
analysis, or visualization techniques [8, 32].  A model can be 
referred to as a tool that (a) serves as an approximate representation 
of the real item that is being built and (b) helps individuals to work 
at a higher level of abstraction by bringing out the big picture and 
by focusing on different aspects of a model [33]. Thus, abstraction 
is at the core of algorithmic thinking, which at the same time is one 
of the principles that is right at the heart of computational thinking; 
however, abstraction is as hard to teach as it is important [34]. 

We argue that, for accomplishing a working level of abstraction, 
techniques such as problem decomposition, pattern recognition, 
and pattern generalization can be fostered by having students 
familiarize themselves with diverse forms of representations, create 
these representations, and translate meaning from one 
representation to another. Hence, we propose the use of 
representational fluency as a conceptual framework that can help 
us to identify and describe different forms of computational 
representations and their application in the manipulation, 
construction, interpretation, application, revision, and refinement 
of models through the process of solving real life problems. 

4. Methods 
The methods of this study describe how we used the framework of 
representational fluency to design a robotics learning experience 
and to explore if students benefited from it.  We expected that 
students would develop representational abilities by using the 
designed robotics lab experience embedding the as use-modify-
create strategy. To this end, we developed a test case study 
exploring the following guiding research questions:  

(i) What are individuals’ representational abilities for 
problem solving in the context of robotics challenges? 

(ii) What is the effect of computational robotics challenges 
for improving individuals’ computing representational 
fluency? 

(iii) Do individuals’ background (computing or non-
computing), academic level (freshmen or sophomore), 
and/or gender have an effect in their computing 
representational abilities for problem solving in the 
context of a robotics problem solving task? 

(iv) What are individuals’ perceptions about the usefulness of 
computational robotics challenges to learn algorithmic 
design and robotics? 

4.1 Learning materials to scaffold 
representational fluency 
To guide student learning, a lab experience was created guided by 
the notion of representational fluency.  This lab experience 
consisted of a multiple step process in which students were 
provided with a framework so they could familiarize themselves 
with representational techniques for algorithm design and the robot 
programming language.  This strategy has been described as use-
modify-create [35]. This scaffolding strategy consists of a three-
stage progression of deeper interactions [36]. The main objective 
of the lab module was to make the robot travel through predefined 

paths forming simple shapes. This lab module had the following 
steps: 

Introduction. This section provided the overview of the activity. A 
scenario was presented in the introduction of the lab module in 
which a fictional company is assumed to supply unmanned robots 
to the US military services. This fictional company is looking to 
hire a software developer to program the robot to travel through 
different predefined routes. The participant had been assumed as a 
software developer and will work on the entire lab module. 

[Use] In this part of the lab module, participants were provided 
with the process required to make the robot travel through the 
square path and the programming basics. Participants were 
provided with a sample of a program. To program the robot, 
participants need to understand the basic functionalities. For 
instance, students should know that all the four wheels need to be 
programmed accordingly.  Also, students were presented with the 
variables and the functions to be used. Specifically, the robot is 
programmed on two variables (time and speed) and it had four basic 
functions available to students (i.e. stop, forward, turn right, and 
turn left). A flowchart and a table were also provided to the 
participants with explanations concerning the procedure used in 
programming a robot to make a square path (see Figure 1). 

This part of the lab module also provided a manual to assemble a 
robot. This part of the lab was optional to the user. Setting up 
RoboPlus software [37] and how to connect Robot to the computer 
were also explained. RoboPlus is a computer program that consists 
of instructions to control the robot's actions. After writing the 
program, the file is saved in .tsk format, which was uploaded into 
CM 510 (Servo Controller) using RoboPlus software. Figure 2 
shows a screenshot of the program’s interface. 

[Modify] Participants modified the above program to create a 
program where the robot travels through a rectangle-shaped path. 
The steps participants followed were: (1) create the pseudo code 
and flowchart of the path, (2) program the robot, (3) test the robot, 
(4) assess the accuracy of the program versus the design, and (5) 
modify your code as necessary. 

 

 
Fig.1 Path of robot making a squared shape. 

 



 
Fig.2 Screenshot of the RoboPlus interface 

 

 [Create] After participants became familiarized with the basic 
concepts of flowchart and programming, they started designing, 
implementing and testing the robot to accomplish the task assigned 
and to make the robot travel through pre-defined paths. To this end, 
participants were guided through a step-by-step scaffolded 
procedure in which they created diverse forms of representations 
by building form one to another.  The step-by-step procedure was: 

Analysis Task. Drawing a flowchart and writing a pseudo code are 
two forms of representation that participants were asked to perform 
as part of this task. Each participant was exposed to a natural 
scenario where he or she was treated as a software developer. The 
participant was responsible for drawing a flowchart based on the 
scenario provided (i.e. converting natural language to flowchart).  

Design Task. The flowchart produced as part of the Analysis Task 
was intended to serve as a starting point to then construct the 
corresponding pseudo code. To create the pseudo code, participants 
were required to use short English phrases to explain specific 
instructions needed for the robot to travel the predefined path.  

Implementation Task. After creating a flowchart from natural 
language and then the pseudo code based on the flowchart, 
participants used those artifacts to program the robot. 

Testing Task. The reason for testing was to see if the path traveled 
by the robot matched the predefined figure. The path traveled by 
the robot was supposed to be directly related to the program and the 
deviations from the pre-defined path would indicate the mistakes 
made in the flowchart, pseudo code, or computer program. 

4.2 Participants 
Participants of this test case consisted of 44 college students from 
a Midwestern university with computing (n=16) and non-
computing (n=28) backgrounds.  The participants in this study were 
either in their freshmen (n=11) or sophomore (n=33) years. Student 
majors or disciplines were: Mechanical Engineering (7), Chemistry 
or Chemical Engineering (5), Computer Engineering or Computer 
Science (4), Behavioral Neuroscience or Psychology (4), Medical 
Laboratory Science, Nursing, Health or Applied Exercise (3), 
Electrical Engineering (2), Biology (2), Biomedical Engineering 
(2), Business Management (2), Communication (2), 

Interdisciplinary Engineering (2), Animal/Soil and Crop Science 
(2), Speech and Language (1), Acting (1), Materials Science and 
Engineering(1), Aviation Engineering Technology (1), Fine Arts 
(1), Physics (1), and History (1). 

Recruitment of participants was conducted by posting flyers 
throughout campus. After the participants made initial contact with 
us, we used a purposeful sampling method.  We gave preference to 
freshmen students.  We also gave preference to students from 
diverse backgrounds (i.e. from a variety of disciplines) in an effort 
to have a balance between students from computing and non-
computing oriented disciplines.  Students were then invited to 
participate in a two hour lab session.  This study was approved by 
the institutional review board.  

4.3 Data Collection Method and Procedures 
A process assessment rubric (PAR) was employed to evaluate 
student performance in the planning of the task, implementation of 
the task, and the program produced.  For each step in the process, 
students were evaluated on the representations they produced and 
how they translated from one representation to another one; 
therefore, alignment between representations was considered as 
part of the rubric to identify how students built from one 
representation to the following one. 

Students’ perceptions were collected using three Likert-scale 
questions scored from strongly disagree (1) to strongly agree (5). 
The statements to be rated were: (1) The activities presented were 
very engaging; (2) The activities increased my interest in algorithm 
design; and (3) The activities increased my interest in robotics.  

During the two-hour lab session, students were exposed to three 
main activities.  First, they responded the pretest assessment, then 
they were exposed to the learning experience, and, finally, they 
responded the posttest. The perception questions were responded to 
by the participants at the same time as the posttest. 

4.4 Data Analysis Method 
All the participants responded to the same pretest and posttest 
instrument to determine the effects of the treatment on Analysis, 
Design (flowchart and pseudo-code), and the representational 
fluency of students among the several artifacts required on the tests 
(i.e. how they built and aligned the flowchart, pseudo-code, and 
implementation code).  The Implementation score assessed the 
actual program that manipulated the robot. This category was only 
scored as part of the posttest assessment. All data from the two 
rubrics were rated on a scale from 1 to 4, and it was treated as 
interval data. The responses to the perception questions were 
normalized so the results ranged from 0% (strongly disagree) to 
100% (strongly agree). 

All pre and posttest results were tested for normality, none of which 
were normally distributed. After scoring each rubric individually 
for the pretest and posttest measures, a non-parametric t-test was 
used to identify significant differences between the two groups. 

A correlational analysis was carried out among the rubric criteria 
for the pretest and for the posttest. The Pearson coefficient for a 
weak correlation was considered to be less than 0.1, for a moderate 
correlation to be between 0.25 and 0.45, and for a strong correlation 
to be higher than 0.5 [46]. 



 
 

Table 1. Process assessment rubric (PrT=pretest scores, PoT=posttest scores) 

Category 4 3 2 1 PrT PoT 

Flowchart 
Independent to 

Robotics 

All the components are 
clearly defined, shaped, 

and labeled. The 
flowchart describes the 
process in an accurate 

manner 

The flow chart 
describes the process, 

but its components 
are not correctly 

labeled, shaped, or 
defined 

Most of the shapes in 
the flowchart are 

incorrectly labeled or 
shaped 

The flowchart 
is incomplete 

or non-
understandable 

  

Analysis Flowchart 

The flowchart design is 
accurate. Also, it has all 
the components labeled 
and shaped. The initial 

and end steps are 
clearly represented 

The flowchart design 
is accurate but there 

are some components 
that are not correctly 
labeled, shaped, or 

defined 

The flowchart design 
lacks of precision to 
the chosen route and 
some of the shapes in 

the flowchart are 
incorrectly labeled or 

shaped 

The flowchart 
is incomplete 

or non-
understandable 

  

Design Pseudo-code 

The flowchart and 
pseudo-code are 

correctly aligned, and 
they lead the robot to an 

accurate result 

The pseudo-code is 
accurate, but it is not 

aligned to the 
flowchart design 

The pseudo-code is 
not precise, and it is 

not aligned to the 
design 

The pseudo-
code is 

incomplete or 
non-

understandable 

  

Implementation 
The implemented 

program is accurate and 
is aligned to the design 

The implemented 
program is accurate 

but not aligned to the 
design 

The implemented 
program has some 

deviation of the 
chosen route and is 
not aligned to the 

design 

The 
implemented 

program is not 
complete or it 

has syntax 
errors 

N/A  

 
4.5 Validity and Reliability of the Instrument 
A pilot was conducted with two students with a computer and 
information technology background. The pilot lasted 15 minutes 
for the pretest and 47 minutes for the posttest. Participants’ 
impressions of the lab module were overall positive. Participants 
found some difficulties in attaining the exact pre-specified path. 
Participants found it enjoyable to work with the robot. These 
observations were used to refine the instructions and the learning 
materials. 

5. Results 
5.1 What are individuals’ representational 
abilities for problem solving in the context of 
robotics challenges? 
Table 2 depicts descriptive statistics for the individual rubric 
criterion as well as the total score. The results suggests a good 
performance by the students to move between different 
representations to solve a problem in robotics challenges. During 
the pretest, all participants (n = 44) were able to get a high average 
score (mean = 67.24%; SD = 15.81%) even though some of them 
(n = 28) did not have previous experience in programming courses. 
As mentioned earlier, the pretest assessment did not include the 
scores associated with the implementation task. The posttest score 
depicts even higher average scores both including the 
implementation score (mean = 82.39%; SD = 11.54%) and without 
the implementation score (mean = 78.60%; SD = 12.76%). The 
implementation score was 93.75%, with a moderate standard 
deviation of 12.21%. The results suggest that students with and 
without computing backgrounds were able to implement the 
robotics challenge. 

Table 2. Pre and post –test performance to solve a robotics 
challenge problem  

Test  
(N=44) Mean Mean 

(%) SD SD 
(%) 

Pretest 

Flowchart 2.64 65.91 0.97 24.17 

Analysis 2.64 65.91 0.75 18.75 

Design 2.80 69.89 0.73 18.35 

Total 2.69 67.23 0.63 15.81 

Posttest 

Flowchart 3.20 80.11 0.85 21.28 

Analysis 3.05 76.14 0.57 14.22 

Design 3.18 79.55 0.58 14.54 

Implementation 3.75 93.75 0.49 12.21 

Total w/o 
Implementation  3.14 78.60 0.51 12.76 

Total with 
Implementation  3.30 82.39 0.46 11.54 

 

5.2 What is the effect of computational 
robotics challenges for improving individuals’ 
computing representational fluency? 
Figure 3 presents the comparison between the means of the pretest 
and posttest results. There are two different values related to 
posttest because it included an implementation question that was 
not part of the pretest. Therefore, both analysis with and without 
implementation scores are presented. Significant differences were 
found from pretest to posttest, both without implementation t(43)=-



5.7, p-value<0.001 and with implementation t(43)=-7.91, p-
value<0.001. The test results suggest that the robotics activity 
increased students’ computing representational fluency. 

 
Fig.3 Comparison Pre and Post –Test performance to solve a 

robotics challenge problem 
 
A correlational analysis was also performed to identify student 
representational fluency. Table 3 and Table 4 depict the 
correlations for the rubric criteria on the pretest and on the posttest 
correspondingly. 

 
Table 3. Correlation among the rubric criteria on the pretest 

 Flowchart Design Pseudo 

Flowchart 1.00   

Design 0.26 1.00  

Pseudo 0.22 0.79 1.00 
 

Table 4. Correlation among the rubric criteria on the posttest 

 Flowchart Design Pseudo Implemen
t 

Flowchart 1.00    

Design 0.32 1.00   

Pseudo 0.25 0.61 1.00  

Implement 0.35 0.46 0.49 1.00 
 
The flowchart that was independent from the assignment moved 
from a weak-to-moderate correlation on the pretest to a moderate 
one on the posttest. The design, which consisted of a flowchart for 
the assignment, was strongly correlated to the pseudo-code written 
by the students both on the pretest and the posttest. Finally, the 
implementation showed a moderate-to-strong correlation to the 
design and to the pseudo-code criteria. The results suggest that 
students were able to build different representations for the 
phenomenon, both on the pretest and on the posttest. 

 

5.3 Do individuals’ background, academic 
level, and/or gender have an effect in their 
computing representational abilities for 
problem solving in the context of a robotics 
problem solving task? 
Test results were also analyzed based on the independent variables 
Student Gender, Student Level, and Previous Experience in 
Programming Courses. Results suggest that there is no evidence of 
significant differences between genders F(43,1)=1.11, p-value=0.3, 
students’ level F(43,1)=0.01, p-value=0.87, or previous 
experiences F(43,1)=0.15, p-value=0.7. 

5.4 What are the individuals’ perceptions 
about the usefulness of computational robotics 
challenges to learn algorithmic design and 
robotics? 
Students’ perceptions about usefulness related to the activity are 
described in Table 5. Engagement is highlighted as an important 
factor in this kind of activity (mean=84.09%; SD = 13.20). Also, 
although more than 60% of the participants did not have previous 
experience in programming courses (n=28), a large portion of the 
sample (74.09%) reported that the activity increased their interest 
in algorithms. Likewise, 78.18% of the participants felt that the 
activity increased their interest in robotics. 
Table 5. Posttest students’ perceptions related to the activity 

Test  Mean 
Norm 
Mean 
(%) 

Std. 
Dev 

Norm. 
Std. Dev 

(%) 
Activities are 
engaging(N=44) 4.21 84.09 0.66 13.20 

Activities increase 
interest in 
algorithms (N=44) 

3.71 74.09 0.73 14.51 

Activities increase 
interest in robotics 
(N=44) 

3.91 78.18 0.73 14.66 

 

6. Discussion and implications 
From the analysis of student performance before and after being 
exposed to the learning experience, we can suggest that the design 
of learning activities guided by the use-modify-create pedagogy 
scaffolded the development of student computational 
representational abilities. This learning strategy might have 
supported learners in breaking down the activities in multiple steps 
so that they could make explicit connections between 
representations [35].  Since learning programming is a complex 
task[38], using multiple representations organized as Analysis, 
Design, and Implementation seemed to have helped students break 
down the problem in a step-by-step process. That is, by means of 
the scaffolding provided, students were able to decompose the 
posed problem into a flowchart to propose an initial solution [39]. 
Then, students transformed this representation into a pseudo-code 
and finally into a programming language. The scores for different 
representations, both on the pretest and on the posttest, showed a 
moderate-to-strong correlation, suggesting that high performer 
students in, for example, the flowchart design, also were high 
performers in the creation of the pseudo-code. 

The artifacts the students produced and the progression they 
followed using one artifact and leveraging it to the creation of the 



next one is what we believe was particularly useful for them. 
Moving from natural language to flowchart, from flowchart to 
pseudo-code, from the actual code to testing, and the mappings 
between them, supported students in accomplishing their design 
task [30].  

Findings also indicated no significant differences between pre- and 
posttest scores based on student academic level, gender, or 
disciplinary background. Based on these results, we speculate that 
the pedagogical strategy of use-modify-create coupled with 
robotics, can be used to integrate computational thinking concepts 
and skills with a diverse population of learners in terms of gender, 
interests, and expertise. On the other hand, since the interaction 
with multiple representations improves transfer [30], providing 
scaffolding for the students to go through these representations 
might also have had a positive impact. 

In terms of motivation, several of the participants reported that the 
robotics-based activities were engaging.  For instance, these 
students reported increased interest in both algorithm design and 
robotics. Furthermore, 60% of the students who had a non-
computing background also reported positive perceptions of the 
usefulness of robotics challenges for their learning. These results 
are aligned with findings from other studies reporting that robotics 
activities are also useful for students with non-computing 
backgrounds [i.e., 19, 21]. Therefore, we speculate that the use of 
robotics can lower the barriers of entry into computing related 
fields.  

6.1 Implications for Teaching and Learning 
The implications for teaching and learning relate to the design of 
computational thinking learning experiences that are grounded in 
effective pedagogical methods and learning strategies.  Firstly, this 
study provides a learning activity and learning assessments that can 
be easily adapted for learning purposes. Secondly, this study 
provides key insights into how literature from the learning sciences 
can be used to design learning experiences and their corresponding 
assessments. The emphasis on representational fluency, within the 
broader context of computational and algorithmic thinking, can 
guide the design of additional learning experiences following the 
process presented in this study.  

This study also collected and analyzed evidence to weigh in on 
what kinds of learning resources we should bring to bear and the 
conceptual trade-offs they entail. The evaluation of learning 
materials suggests that, in a way, humans can build representational 
fluency effectively by exercising their physical intuitions. 
Specifically, robotics-based challenges can provide a tangible or 
sensory medium that, according to theories of embodied cognition, 
can foster development of conceptual understanding [40].  
Therefore, we suggest that robotics can have a strong potential to 
serve as an effective and engaging vehicle to integrate principles 
and practices of computational thinking, such as algorithm design 
and principles of programming.  Moreover, exposing students to an 
explicit representation and transformation processes scaffolded 
through the use-modify-create strategy can enhance their 
computational representational abilities. 

6.2 Implications for Computing Educational 
Research 
From a computing educational research perspective, this study 
portrays computational thinking as a practice of representation.  
Considering computational thinking in such way can allow 
researchers to investigate how students can manage complexity 
through a series of abstractions. Specifically, through the lens of 

representational fluency, the assessment of the learning process for 
this study was not only focused on the final product, but on the 
transitions from one representation to the next one. That is, the unit 
of analysis focused on (a) the process students followed in creating 
those artifacts and the mappings they produced between one 
representation to the other one (e.g. from a flowchart to a 
programming language) as well as (b) the outcome or final solution 
of the challenge presented to students (e.g. how the robot moved). 

Computer science educators have called for the need to identify 
bridges between education research and computer science research 
with the goal to facilitate student learning of computing knowledge 
and practices [41].  This study provides a possible example of such 
process by integrating representational fluency to the design of a 
learning experience, and, then, to the investigation of its 
effectiveness.  

The scholarship of teaching and learning implicates “engagement 
with research into teaching and learning, critical reflection of 
practice, and communication and dissemination about the practice 
of one’s subject” [42]. This study, in a way, went through a similar 
process by first designing the learning experience, then conducting 
the research and assessment components, disseminating the results, 
and then moving into iteration and revision to improve the learning 
materials and the research design.  This process represents an initial 
stage toward a design-based research program that will investigate 
the role of representations in computing education. Design-based 
research approaches will allow us to understand learning in real-
world practice [43]. It considers education as an applied field where 
researchers have transformative agendas [43].  As such, they 
develop contexts, frameworks, tools, and pedagogical models with 
the intent to produce new theories, artifacts, and practices that can 
impact teaching, learning, and engagement in naturalistic settings 
[43]. Therefore, design-based research will provide us with a series 
of approaches that allow us to “engineer” and at the same time 
study particular forms of learning that will be subject to test, 
revision, and iteration [44].  

6.3 Limitations of the Study 
Methodologically, this study had some limitations. One of the 
limitations in the research design was the lack of a control group.  
Another limitation included the sample size and the fact that 
participants were voluntarily recruited. This heterogeneous group 
led to small demographic subgroups that constrained the possible 
significant differences between them. Also, the study did not take 
place in a naturalistic classroom environment, where students are 
usually part of a longer learning process involving more variables. 
Therefore, the implementation of these practices should be further 
explored by means of more rigorous experimental designs to 
validate the learning experiences and the use of ethnographic 
methods to identify how students progress from one representation 
to another one; however, the results of this study empower us to 
implement, as future work, the robotics-based learning activities in 
classroom settings with a bigger and more homogenous sample of 
students and include a control group. It also provides us with a 
proof-of-concept that can allow us to explore computational 
thinking as a practice of representation.  

7. Conclusion 
This study proposed representational fluency as a research and 
learning framework that can allow the investigation of how people 
develop computational thinking.  Under this perspective, this study 
presented the development of a learning module that integrated and 
validated pedagogical methods and scaffolding techniques to 



introduce computing principles and procedures by means of 
robotics-based challenges. 

Findings from the implementation of these challenges suggest a 
positive impact on computational thinking in general and 
computational representational fluency specifically. Students with 
computing and non-computing backgrounds benefited from the use 
of robotics, and they performed equally in the posttest.  These 
findings suggest that robotics can be used to learn computational 
thinking related concepts for designing, programming, and testing 
with a detailed level of abstraction. Results from this study also 
suggest that robotics may serve as a common theme to integrate 
STEM related concepts and computing and engineering skills. For 
instance, robotics can be used as viable source to teach students 
from both computing and non-computing backgrounds. Similarly, 
the robotics-based challenge can be adopted and adapted by 
educators for classroom use.  It can also be used as a guide to 
develop new and more complex robotics-based challenges.  The 
pedagogy presented here can also be used for other kinds of 
learning experiences not involving robotics.  

The broader educational research community has made major calls 
to pursue discipline-based educational research [45], where we 
believe computer science education needs to be more strongly 
represented. The computer science community has also identified 
the need of more rigorous methodological approaches to pursue 
computer science education research [2, 3].  One of the key 
components toward a more rigorous path to discipline-based 
educational research in computer science is the consideration of 
theoretical foundations that can provide a perspective into how 
research has been grounded in literature and the scope and 
generalizability of the results [41]. Another key component would 
be the use of educational research findings to design computer 
science learning experiences [1].  A natural way to couple these two 
worlds could be by means of design-based research approaches that 
will allow educational practitioners and researchers to develop 
learning materials and pedagogical models with the intent of 
producing new theories, artifacts, and practices that can impact 
teaching, learning, and engagement in naturalistic settings [43]. 
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