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ABSTRACT 
We discuss cognitive aspects of modeling and simulation in an 
efficacy study of computational pedagogical content knowledge 
professional development of K-12 STEM teachers. Evidence 
includes data from a wide range of educational settings over the 
past ten years. We present a computational model of the mind 
based on an iterative cycle of deductive and inductive cognitive 
processes. The model is aligned with empirical research from 
cognitive psychology and neuroscience and it opens door to a 
whole series of future studies on computational thinking. 
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1. INTRODUCTION 
Educators structure training and curriculum based on learning 
theories of how the human mind works. Recent findings from 
empirical research by cognitive psychologists and neuroscientists 
have created a critical mass to change the way we prepare 
teachers and support their classroom instruction. This is an 
opportune time for computer science educators to ground in 
cognitive theories the well-known concepts and processes in 
computational science. 

Make it Stick, an ostensibly groundbreaking book published 
recently and coauthored by several prominent cognitive scientists 
has turned conventional ideas of learning upside down (Brown et 
al. 2014). The book offers many sound practices to help students 
easily retrieve content they learned in class, retain it, and apply it 
in different contexts to solve problems. New research suggests 
that repeated, delayed and interleaved retrievals make new 
concepts stick in memory longer if the process is effortful (pp. 
47). Learning is mediated by memory, because human brain 
attempts to interpret new concepts in terms of previously 
registered knowledge and facts. However, some degree of 
forgetting is also good for learning because it forces the learner to 
use effort to cognitively engage oneself to recall or reconstruct 
newly acquired concepts through different neural pathways or 
links that exists and are retrievable.  
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According to neuroscience, information is stored into the memory 
in the form of a specific pattern of neurons placed on a pathway 
and fired together (Restak 2001, Brown et al. 2014). The number 
and strength of such pathways improve the storage and retrieval of 
information. A memory or a newly learned concept can be a 
combination of previously formed memories, each of which might 
also involve a vast network of concepts and details mapped onto 
the brain’s neural network in a hierarchical way shown in Fig. 1.  

The key to storing a concept more permanently into the memory 
is to link it to previously stored basic and retrievable concepts. 
And, the more links to associated concepts, the higher the chances 
of recalling this concept when needed later. Spaced-out cognitive 
retrieval practices attempted at different times, various settings 
and contexts is good because every time the recall is attempted it 
establishes more links that will help the remembering and 
learning. Exposure to new concepts through links to multiple 
views from different fields of study is, therefore, an effective 
retrieval strategy recommended by cognitive psychologists 
(Brown et al. 2014). This is called interleaved retrieval practice 
and it now forms a cognitive foundation for the computational 
pedagogical content knowledge (CPACK) framework that we 
developed for teacher professional development (Yaşar et al. 
2015). In the following Sections (2.1 - 2.5) we describe theoretical 
foundation of CPACK followed by its implementation and impact 
on teaching and learning (Sec. 3) in secondary school classrooms. 

 Concept 

Basic concepts, details & facts 

Figure. 1: Distributive and associative aspects of 
information storage and processing (Yaşar 2015). 



2. THEORETICAL FOUNDATION 
2.1 Interdisciplinary Education 
Interleaving retrieval practices by weaving together multi-
disciplinary features around a common topic (i.e., 
interdisciplinary education) has great advantages for gaining deep 
and lasting knowledge but it is not easy for several reasons. It 
would require a more cognitive effort than usual and as such, it 
would slow down the process of learning. In college, it would 
delay graduation and in public schools’ packed schedules it would 
risk compliance with local and state-mandated curriculum. 
Technology can be used to speed up this interdisciplinary learning 
but it needs training of teachers to teach content in pedagogically 
appropriate ways, thereby requiring a close integration of 
technology, pedagogy, and content as shown in Fig. 2. Recently, a 
theoretical framework, namely technological pedagogical content 
knowledge (TPACK), has been developed by Mishra & Koehler 

(2006) to address challenges of T, P, and C integration. Practicing 
teachers have been offered professional development (PD) to help 
them deploy appropriate technologies in the classroom, stay up-
to-date with emerging technologies, and assess efficacies of 
different pedagogical approaches (Loucks-Horsley et al. 2010). 
But, due to frequent changes in available tools, challenges might 
never go away as far as transferring curriculum inventories and 
PD content to new circumstances. Furthermore, teaching with 
technology often requires customization and the needed 
technologies must be both content specific and pedagogically 
suitable at the same time (Koehler & Mishra 2008). While the 
latest technologies offer more capacity for applicability, their 
optimum utilization may necessitate knowledge of tools’ 
operational underlying principles for easier transfer into new 
circumstances and better integration (Koehler & Mishra 2008, 
Niess 2005, Flick & Bell 2000).  

It is not very common to come across presentations or papers in 
teacher education conferences that report use of a pedagogically 
appropriate technology that is widely applicable to topics in a 
STEM content area. It is even less uncommon to see one that 
applies to teaching of topics in multiple content areas. This is 
what led scientists such as us who heavily used computational 
modeling and simulation technology (C-MST) in scientific 
research in the past several decades to cross paths with pedagogy 

and teacher education experts. We need their help to get more and 
better students from public schools to enter computational science 
programs and they need help with interdisciplinary TPACK 
training of teachers. At the 2014 and 2015 SITE (Society for 
Information Technology and Teacher Education) conferences, we 
presented a case study (i.e., CPACK) by demonstrating how we 
have integrated computational methodology and technology into 
teacher education. Encouraged by a warm reception and a TPACK 
paper award (Yaşar et al. 2015) from the SITE education 
community, we started a fruitful collaboration with other 
researchers and this has resulted in a better understanding of 
cognitive foundations of computational modeling and simulations. 

There is an important feature of interdisciplinary education that 
can be best described by Aristotle’s well-known statement, “the 
whole is more than the sum of its parts,” or the theory of Gestalt 
psychology, “the whole is other than the sum of its parts,” which 
means that the whole has a reality of its own, independent of the 
parts (Koffka 1935). Accordingly, educators have noted an 
emerging nature of TPACK when technology, pedagogy, and 
content closely interact (Mishra & Koehler 2006), which is 
illustrated as the overlap of Venn diagrams in Fig. 2.  There is 
even a stronger case, CPACK, when mathematics, computing, and 
sciences are integrated through CMST (see Fig. 3). Not only has it 
given rise to a new content domain of computational science as 
witnessed by degree programs in the past two decades (Swanson 
2002, Little 2003, Yaşar & Landau 2003) but it also led to a 
particular pedagogy which was not even there among the 
constitutive domains of computing, mathematics, and sciences to 
start with (Yaşar & Maliekal 2014a). Below, we explain cognitive 
foundations of this computational pedagogy. 

Figure 3: CPACK framework. While pedagogy is a separate 
domain in TPACK, it shows up inherently here as an outcome of 
interdependencies of computing, math, science and technology. 

2.2 Mind as a Computational Device 
Modeling and testing has been an important tool for scientific and 
engineering research for hundreds of years. Scientists often start 
with a model (e.g., a hypothesis or a concept) deductively based 
on the current research, facts, and information. They test the 
model’s predictions against experimental data. If results do not 
match, they, then break down the model into its parts (sub 
models) to identify what needs to be tweaked. They retest the 
revised model through what-if scenarios by changing relevant 
parameters and characteristics of the sub models. By putting 

Figure 2: TPACK framework (Mishra & Koehler 2006). 
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together new findings and relationships inductively among sub 
models, the initial model gets revised again. This 
(deductive/inductive) cycle of modeling, testing, what-if 
scenarios, synthesis, decision-making, and re-modeling is 
repeated  similar to the bidirectional distributive/associative 
structure in Fig. 1  as resources permit until there is confidence 
in the revised model’s validity.  

In recent years, computers have been very effective in conducting 
scientific research because they speed up the model building and 
testing of different scenarios through simulations that provide 
quick feedback to researchers in order to improve the initial model 
(NSF Blue Ribbon Report 2006). CMST’s role in scientific and 
industrial research was proven beyond doubt when computational 
predictions matched behavior of physical models in high-stake 
cases (e.g., safety of cars and planes, emissions from engines, and 
approaching storms). Its use was uniquely justified when a study 
was impossible to do experimentally because of its size (too big 
such as the universe or too small such as subatomic systems), 
environmental conditions (too hot or dangerous) or cost. CMST 
eventually demonstrated to be generating innovation and insight, 
just like experimental and theoretical research and this ultimately 
led to the recognition of computation by the scientific community 
as a third pillar of doing science besides theory and experiment 
(PITAC Report 2005). 

While such capacity was available only to a small group of 
scientists in national labs, their demand for computationally 
competent post-docs and doctoral students led to graduate 
programs in research universities. A dramatic increase in access to 
and power of high performance computing and the drop in its cost 
in the past 20 years helped spread the use of CMST tools into the 
manufacturing industry. Driven by market needs and trends, rather 
than empirical research into their effectiveness in education, 
funding agencies and colleges started investing in new CMST-
based BS and MS degree programs across the world (Swanson 
2002; SIAM Report 2001, 2007, Yaşar et al. 2000). It was not 
until friendly versions of such tools were available and considered 
for use in K-12 settings that a detailed and thorough empirical 
research was undertaken to measure their effectiveness in 
education.  

If used appropriately, CMST tools can involve students in inquiry-
based, authentic science practices that are highlighted in the recent 
framework for K-12 science education (NRC 2012). A growing 
body of research (Bell & Smetana 2008; Wieman et al. 2008) 
identifies computer simulation as an exemplar of inquiry-guided 
(inductive) learning through students’ active and increasingly 
independent investigation of questions, problems and issues. 
Research into the use of computer simulations in science 
education has been reviewed periodically and quite frequently in 
recent years. These include early efforts by de Jong & van 
Joolingen (1998) and by Bell & Smetana (2008), as well as recent 
efforts by Rutten et al. (2012) and by Smetana & Bell (2012). The 
article by the Rutten et al. (2012) reviewed (quasi) experimental 
research in the past decade (2001-2010) and the one by Smetana 
& Bell (2012) reviewed outcomes of 61 empirical studies since 
1972. The overall findings support effectiveness of computer 
simulations. In many ways simulation has been found to be even 
more effective than traditional instructional practices. In 
particular, the literature shows that computer simulations can be 
effective in: 1) developing science content knowledge and process 
skills, and 2) promoting inquiry-based learning and conceptual 
change. Effectiveness of CMST in education is also well 
grounded in contemporary learning theories that recognize the 

role of experience, abstract thinking, and reflection in constructing 
knowledge and developing ideas and skills (Hammond 2001; 
Donovan & Bransford 2005; Illeris 2009; Mooney 2013). 

Since CMST is beneficial to both scientists and students in their 
inquiry and learning, one might wonder in what ways it resonates 
with the basic functions of the mind. Although the literature 
suggests linking modeling and simulation to some cognitive 
functions such as abstract thinking and decomposition skills 
(Wing 2006), empirical research in cognitive psychology and 
neuroscience (Brown et al. 2014) encourages us to search further, 
as there might be a deeper link at more fundamental levels. For 
example, according to the computational theory of mind (CTOM), 
the deepest link between electronic and biological (mental) 
computing devices is a) the common nature of the information 
that they both process, and b) the way that they process it (i.e., 
addition & subtraction), regardless of the underlying infrastructure 
that does the computation (Montague 2006).  

Many fields have their hands in the study of how learning takes 
place in the mind. Cognitive psychologists try to understand how 
the mind works through empirical research into how people 
perceive, remember, and think. Developmental and educational 
psychologists form theories of human development and how they 
can be used in education. At the same time, neuroscientists use 
imaging techniques to understand the brain mechanisms that take 
part in learning. What was started by Alan Turing, the father of 
computer science, still continues to shed light today on the study 
of the mind. Basically, Turing’s idea was that if thoughts (i.e., 
information) can be broken up into simple algorithmic steps, then, 
machines can add, subtract or rearrange them as our brains do 
(Montague 2006; pp. 6). Turing also provided an insight that there 
should be a distinction between the patterns of computations (e.g., 
computer software and mind) running on a device and the device 
parts (e.g., computer hardware and brain). His insight keeps 
fueling the work of computer, computational, and cognitive 
scientists (Montague 2006; pp. 7). Basically, he laid foundations 
of a devise that could imitate the mind, thereby giving us a 
simplified representation (model) of the mind to understand how 
it would work in different contexts.  

While CTOM played a central role within the cognitive sciences 
during 1960s and 1970s, modern philosophers think that equating 
mental representations with information processing leaves out the 
meaning associated with mental events (Montague 2006; pp.8). 
We know that CTOM is far from complete, as information 
processing alone cannot define mental states. But, we also know 
from scientific research that computational modeling and 
simulation can generate insight when done in a bi-directional 
iterative way as shown in Fig. 1. If today’s advanced computer 
hardware and software have grown to a capacity to generate 
insight and conceptual change through a structured and cyclic 
computation with many levels involving various sizes and 
constructs of information at each level, then we should investigate 
if the same structure and mechanism support fundamental 
cognitive processes that may be common to both biological and 
electronic computation.  

In his book, “How We Make Decisions,” the neuroscientist 
Montague (2006), an ardent supporter of CTOM, describes how 
the mind attaches value to the computations in order to make 
meaningful decisions. He argues that the concern for survival 
pressures us to be efficient in the way we consume our available 
energy. As an extremely efficient computational device, the brain 
actually runs on orders of magnitude less electricity than 
mechanistic computers and mobile devices (p. 26). Furthermore, 



he suggests that the concern for efficiency makes us assign 
“value” to our thoughts, decisions and actions by computing and 
evaluating different scenarios before we take an action (p. 51). 
And, that, he thinks is the root of our intelligence and why we 
have pushed ourselves to be smarter over time. 

2.3 Electronic & Biological Computation 
Humans have long been curious about how the mind works in 
ways that are meaningful, plausible, and fruitful for further 
research possibilities. Studying the mind has been much 
complicated as it takes place in a delicate, inaccessible, and 
complicated organ, the brain. However, consideration of the 
information in terms of simpler and computable pieces by Alan 
Turing led to an electronic device to imitate the biological brain. 
After almost a century, the imitation has gotten so complicated, 
both structurally and functionally, that we may be able to discover 
how the original (mind) computes by studying how the imitation 
(computer) does it. Yet, despite similarities of computational 
processes between electronic and biological computing devices, 
each uses a different hardware to accomplish what it does. While 
electronic computers have evolved into distributed structures like 
the brain’s neural network, there exist many differences. Much of 
the literature on “computation” today refers to how it is done on 
electronic devices and it may be time to use the term computation 
in a device-independent way.  

As briefly mentioned in the introduction, the latest neuroscience 
studies now shed light on how information storage, retrieval 
(remembering), and processing (thinking) take place by the brain 
hardware (Brown et al. 2014). While electronic computing 
machines handle information storage and processing separately 
through different hardware components, our brains have no 
separate place for information storage  storing and retrieval are 
part of information processing (thinking). Both the long-term 
storage and processing of information involve a synchronized 
distributed participation of all neurons in related regions of the 
brain (MacDonald 2008: 97). Programmers of parallel computers 
know that management and utilization of a distributed hardware 
necessitates scatter and gather type communication functionalities 
in software. That is similar to what is going on in the brain 
circuitry. When new information arrives, it lights up all related 
cues, neurons and pathways in a distributive process that is similar 
to the top-down action in Fig. 1, where new concept is broken up 
into related pieces. With the same token, retrieving a memory is a 
reassembly of its original pattern of neurons and pathways in an 
associative process that is similar to the bottom-up action in Fig. 
1. Retrieval is often regarded as an act of creative re-imagination 
and what is retrieved is probably not the original pattern but one 
with some holes or extra bits (Brown et al. 2014: 75, MacDonald 
2008: 101). Neuroscientists argue now that there is no distinction 
between the act of remembering and thinking (MacDonald 2008: 
97).  

The distributive and associative way of information processing by 
the brain circuitry is consistent with the dual deductive and 
inductive process of computational modeling and simulation that 
we discussed in earlier sections. While the brain’s neural circuitry 
offers a chance for full utilization, the efficiency, intactness, and 
effort-fullness with which it is used depends on each individual. A 
scientist is a good example of a person who exercises this bi-
directional thinking methodology in a complete cycle. Since the 
latest learning theories recommend that student learn science the 
way a scientist does his inquiries, these thinking skills should then 
be taught to young learners. They are actually part of the 
electronic computational thinking (CT) skill set as described by 

Jeannette Wing (2006). Some of the currently described CT skills 
may be grounded in cognitive processes that we have discussed 
here. For example, the decomposition skills of CT roughly 
correspond to the distributive, deductive, and top-down cognitive 
process of information we have described here. And, the 
abstraction skills roughly correspond to what we have described 
as associative, inductive, and bottom-up cognitive process of 
information.  

Abstraction is an inductive process, whereby details are filtered 
out and focus is placed on more general patterns, thereby allowing 
one to assign priority and importance to the newly acquired 
information. Researchers find it amazing that we make strong 
generalizations from sparse, noisy, and ambiguous data 
(Tenenbaum et al. 2011). Abstraction helps our cognition, 
especially at its developmental stages, by simplifying, 
categorizing, and registering key information and knowledge for 
quicker retrieval and processing (Bransford et al. 2000). Perhaps, 
we developed abstract thinking skills as a result of a survival 
concern for having limited resources (i.e., time, memory, 
attention). Our tendency to summarize and generalize information 
─ before we permanently store it ─ might be a strategy to 
overcome limited storage capacity. Such tendency can shield us 
from details that have no practical value for survival. Another 
evolutionary idea is that the brain’s tendency to process 
information in a dual fashion might be because it has sought a 
way to adjust to dual behavior of matter and the incoming 
information that reflects matter’s dual behavior. Whatever the 
origins are, findings in neuroscience indicate that it is not just the 
limited capacity of our brain or our survival instinct but also the 
distributed structure of the brain hardware that drives a bi-
directional (distributive and associative) flow of information, 
which results in tendencies that benefit us.  

The growth of our brain hardware and software is a bit complex 
and many things can go wrong during a lifespan. Normally, at 
birth, the circuitry at the inner part of the brain is up and running 
to manage vital and involuntary functions (e.g., breathing, 
heartbeat, and some degree of sound and visual tracking), but the 
outer part (cerebral cortex) takes some time to be ready for 
voluntary actions (e.g., conscious thought, information storage 
and processing) (Restak 2001). Actually, the majority of neurons 
that a human is born with are contained within this thin cortex that 
separates humans from other animals. While only a few neurons 
develop during adulthood, we can take comfort that mental 
growth is not solely based on the number of neurons in the brain, 
but rather the increasing complexity of the connections between 
them. Other factors that affect mental growth include the 
functionality that each neuron or groups of neurons assume, the 
size they grow into, and the placement in different parts of the 
brain that they migrate towards. Even more important is the 
number of inter-neuronal connections, which are estimated to be 
near 100 trillion.  New neural connections are being made all the 
time as we learn new things. In fact, these connections constitute 
the definition of learning, and the existing connections are 
strengthened, weakened, or even eliminated if not revisited often 
enough. Genetics plays only a partial role determining the growth 
of the brain, as there are not enough genes on the human 
chromosome to code for the placement of billions of neurons and 
trillions of connections (Restak 2001). This luckily leaves plenty 
of room for the brain (and the mind) to continue growing as a 
result of one’s free will, experience, and environment.  
So, the good news is both deductive (e.g., decomposition) and 
inductive (e.g., abstraction) thinking skills can be improved 



beyond what is inherited, through training, education, additional 
knowledge and experience. In computer science, we use 
abstraction skills heavily and students get opportunities to sharpen 
them while writing large-scale complex codes (such as operating 
systems, compilers, and networking) in which the complexity is 
distributed into seemingly independent layers and protocols of the 
code in such a way to hide the details of how each layer does the 
requested service (Armoni 2013). Decomposition skills are also 
equally important in computational and mathematical problem 
solving. When facing a complicated situation (just like a complex 
science concept), one is often advised to divide (scatter) the 
complexity into smaller pieces and then attack each one separately 
until a cumulative (gather) solution is found. For example, domain 
decomposition is a common method in parallel computing to 
distribute the workload among multiple processors. In 
mathematics and physics, the Fourier series offers great benefits 
to deal with seemingly complex periodic functions by 
decomposing them into the sum of a set of simpler, namely sines 
and cosines, functions. In public culture, the famous “divide and 
conquer” phrase, supposedly by Napoleon, as well as ‘many a 
little makes a mickle’ by Benjamin Franklin all point to our 
awareness of the importance of the decomposition strategy. But, 
as stated above, not everyone is equally aware of the importance 
of such skills, nor are we all practicing and utilizing them fully 
and equally. So, some of us educate others, and in doing so, we 
have historically chosen different methods, as explained below, 
based on circumstances and needs. The good news is that 
technology (e.g., CMST) has now made it possible to combine 
seemingly competing and disparate methods into one that might 
do it all. 

2.4 Learning Processes Supported by CMST 
The issue of why STEM subjects may not be as engaging as 
others is complex. According to a study in 20 developed countries 
(Sjøberg & Schreiner 2005, Osborne & Dillon 2008), student 
attitudes towards science become increasingly negative as a 
country advances economically. The study suggests this 
phenomenon to be deeply cultural. Born in the early-to-mid 20th 
century as a reaction to the rigid and formal style of discipline-
based education, today’s progressive education system in the U.S. 
continues to engage students by making learning fun and exciting 
(Mooney 2013). There is nothing wrong with that. However, 
learning some subjects, such as science and mathematics, can be 
overwhelming because it involves factual details and requires 
application, discipline and delayed gratification ─ values the 
contemporary culture does not seem to encourage. Effortful 
learning is the key as we discussed earlier, according to the latest 
research in cognitive sciences and neuroscience. While the need 
for guiding young minds into the process of effortful learning had 
already been theorized by Vygotsky around the time of 
progressive education movement in America, the theory did not 
find its way across the Atlantic until two decades ago (Mooney 
2013; Hammond et al. 2001).  

There is no doubt that factual details in science and mathematics 
coursework are often overwhelming, causing high degrees of 
frustration for some students. Such individuals perceive science 
and mathematics topics to be more complex than they are and 
abandon their pursuit altogether. However, learning can be a 
joyful activity, if one is predisposed to delayed gratification, 
which is seldom the case with middle and high schoolers. Hence 
teachers everywhere face challenges that are daunting. Perhaps, 
there are two ways to overcome this. One of them requires a 
cultural change to teach new generations how to become effortful 
learners and predispose them to delayed gratification. This would 

take a whole village to do. And, it might take a lot longer than we 
have come to know Vygotsky’s theory, which says pushing a 
learner to reach his potential is a lot more important than giving 
him freedom to choose between effort and withdrawal. This 
would be like swimming against the flow in today’s educational 
system and cultural setting. The other option requires a 
pedagogical practice to employ a general simplistic framework 
from which instructors can introduce a topic and then move 
deeper with more content only after students gain a level of 
interest to help them endure the hardships. As explained in the 
next section, educators have often opted for this latter deductive 
approach. 

Teacher organizations and national standards (Bell et al. 2008) 
have suggested ways to create “antidotes” from the very thing 
(technology) that is known to have caused distraction and a 
tendency for an easy living. At the same time, the latest learning 
theories suggest that students should learn science the way 
scientists do their work (Bransford et al. 2000). For example, the 
framework for next generation science standards (NRC 2012) 
suggests that students learn better if they are engaged in activities 
closely resembling the way scientists think and work. If we 
combine these suggestions ─ that is, using technology with the 
way scientists conduct their work ─ we would recall from Section 
2.2 that scientists today heavily use CMST to do their work. So, 
the antidote can be computational modeling and simulation but it 
has some strings attached to it according to a national report (NSF 
Report 2008). Young learners cannot use the same CMST tools 
that the scientists use, as they might need prerequisite knowledge 
that they surely will not have. The report states that at early stages 
computational modeling approach should involve easy 
experimentation (learners must be able to quickly set up and run a 
model using an intuitive user interface, with no knowledge of 
programming or system commands) and high interactivity 
(models need to evolve quickly and include smooth visualizations 
for providing interactions and feedback to users).  

Modeling is a simplification of reality ─ it eliminates the details 
and draws attention to what is being studied. It enables the learner 
to grasp important facts surrounding a topic before revealing the 
underlying details. Tools, such as those in Table 1, now make it 
possible for instructors to offer easy experimentation in the 
classroom without having to expose students to STEM principles. 
For example, as described in later sections, Interactive Physics 
(IP) and AgentSheets (AS) can be used to create many fun things 
that could engage students into science experimentation, either by 
modifying an existing model or creating one from scratch.  

Table 1. List of CMST tools used in the CPACK PD. 
Interactive Physics (IP): investigate concepts in physics without 
prior physics background. http://www.design-simulation.com/IP. 

AgentSheets (AS): create games and simulations through agents and 
rules of engagement. http://www.agentsheets.com. 

STELLA: model a system by a pictorial diagram of initial values and 
rate of change equations. http://www.iseesystems.com. 

Geometer’s Sketchpad (GSP): model geometrical concepts; compute 
distances, angles & areas. http://www.dynamicgeometry.com. 

Project Interactivate (PI): online courseware for exploring scientific 
and mathematical concepts. http://www.shodor.org. 

Excel Spreadsheets: conduct modeling and simulations using a 
simple algebraic (new = old + change) for rate of change. 

Texas Instruments (TI) Tools: advanced graphing tools to conduct 
algebra, functions, and rates of change 

 



Simulation adds another level of benefit on top of easy modeling 
by providing a dynamic medium for the learner to conduct 
scientific experiments in a friendly, playful, predictive, eventful, 
and interactive way to test hypothetical scenarios. For example, in 
a harmonic motion of an object attached to a spring (Fig. 4), IP 
can provide control buttons to change physical parameters such as 
string constant, mass of the swinging object and its initial 
velocity, intensity of gravitational acceleration, among others. It 
also gives the user the ability to change some operational 
parameters, such as the run-time and accuracy desired from the 
simulation. Furthermore, it allows the learner to go into the initial 
model’s details and break it into its constitutive parts in order to 
run various what-if scenarios. Based on these scenarios and their 
outcomes, the learner can go back to the design phase and change 
the model (spring and box) to his desire. This dynamics of making 
decisions that lead to modifications to the initial model based on 
what-if scenarios is an inductive process because it lets the learner 
to put pieces of the puzzle to come up with a revised model. When 
used together, then, modeling and simulations affords the learner 
the opportunity to cycle iteratively back and forth between the 
inductive and deductive approaches to learning (Yaşar & Maliekal 
2014). This resonates with how the mind itself works because it, 
too, uses a similar dual methodology (distributive and associative) 
in its information storage and processing as we explained before. 
 

Figure 4. A typical user-created simulation in Interactive Physics: 
harmonic motion of a box attached to a spring on a flat surface.  

2.5 Deductive & Inductive Approach to 
Instruction 
There are many advantages of deductive and inductive approach 
in teaching and learning. The deductive approach to instruction 
entails the teacher introducing a new concept or theory to students 
by explaining it first, then showing an application or two of the 
theory or concept, and wrapping up the instruction by affording 
students an opportunity to apply the theory or concept by 
completing homework problems (Prince & Felder 2006). This has 
been and continues to be the traditional approach to science 
instruction, and it often leads to apathy and eventual attrition of 
students. The inductive approach to instruction, by contrast, first 
presents students with a problem, a case, or data from an 
experiment. Students are then guided to explore underlying facts, 
issues and the like. As the culminating step, students are led to 
acquire on their own an understanding of the underlying concept 

or organizing principle (Prince & Felder 2007). Inquiry-guided 
learning, problem-based learning, and project-based learning are 
all among forms of inductive instruction. While empirical 
evidence suggests that the inductive approach to instruction is 
superior and that it fosters greater intellectual growth (Bransford 
et al. 2000, Donovan & Bransford 2005), prudent educators 
should take advantage of different approaches of teaching. 

Modeling- and simulation-based computational pedagogy carries 
many characteristics of the constructivist approach (Grabinger & 
Dunlap 1995), including inquiry-based, generative, cooperative, 
and interactive learning as well as project and team based 
instruction. Creating a model through step-wise process and 
running it at each stage of the development have the added 
advantage that learners get immediate feedback about their work. 
It may be used in situations when learning about the underlying 
theories and mathematical concepts that are important. Through 
this process, learners can be led to develop an understanding of 
scientific reductionism that studying a system or solving a 
complex problem requires breaking the system into its 
components or the complex problem into smaller chunks (i.e., 
decomposition). Using models and simulations, learners become 
actively engaged in “doing,” rather than passively “receiving” 
knowledge. In so doing, the learner becomes the center of the 
learning process, allowing self-interpretation of the problem and 
revise it if necessary, mediated by own biases, beliefs, 
preconceptions, prior knowledge and observations. Once learners 
successfully infer an organizing principle or theory, they can 
embark on the next logical and necessary step; one that involves 
predicting the consequences of the organizing principle or theory 
that learner just inferred and ascertaining whether the organizing 
principle or theory is viable, given the consequences. Anyone who 
learns in this fashion would, in fact, be practicing the craft of 
scientists (Wieman et al. 2008).  

Because simulation modules of differing complexity and 
flexibility have already been developed and made public, it is now 
possible to lead learners to perform a series of simulations to 
explore a scientific process in a manner that is similar to how 
scientists conduct controlled experiments, by holding all except 
one variable invariant. A teaching and learning method reliant on 
CMST is being welcomed by today’s traditional college and 
school students, as they are digital natives, attracted to and 
captivated by all things digital! Even non-science students, with 
no prior knowledge of physics, who used CMST tools and web-
based simulations, have shown the ability to provide good 
explanations of scientific phenomena much more quickly (within 
hours) than physics majors after a year of physics (Wieman et al. 
2008). So, having believed in the promise of dual pedagogical 
aspects of CMST, we ran a professional development program for 
in-service and pre-service teachers, hoping that it would engage 
teachers in their profession and improve both the teaching and 
learning in their classroom. The next section will detail 
implementation of our decade-long program along with data 
collected and analyzed by independent evaluators.  

3. IMPLEMENTATION & KEY FINDINGS 
While the results of our CPACK professional development 
program have already been documented in earlier publications, 
such as Yaşar et al. (2014), their importance for and relevance to 
the aforementioned theoretical frameworks have gradually come 
to our attention in recent years as a result of our work in pedagogy 
and cognitive sciences. In this section, we briefly review findings 
on teaching and learning that are relevant to our discussion.  



While the main activity of our study has been teachers’ 
computational pedagogical content knowledge professional 
development, the ultimate desired outcome was better student 
engagement and learning as well as teacher engagement/retention 
and teaching. A mixed-methods approach (Creswell 2012) was 
used to collect and analyze qualitative data (interviews, activity 
logs, observations, pre- and post-activity surveys, and artifacts) as 
well as quantitative data (student grades and report cards, test 
scores, and standardized exams by the NY State) for the purpose 
of formative and summative assessment. 
Integration of modeling and simulation tools, such as those in 
Table 1, into secondary school teaching was initially done in three 
steps by incrementally adding a new domain of knowledge each 
year for the first three years. As shown in Table 2, the first step of 
the multi-tier incentive-based PD included technological 
knowledge (TK) training, the second step included technological 
content knowledge (TCK) training, and the final step included 
teaching of content through computational and pedagogical tools. 
Here, technology knowledge (TK) means knowledge of 
technology tools and their use. Technological content knowledge 
(TCK) means integrating knowledge of technology and STEM 
(physics, chemistry, biology, math, etc.) for the purpose of 
teaching its content. Technological pedagogical content 
knowledge (TPCK) means applying pedagogical technologies to 
the teaching of STEM content.  

Table 2. Profiles of teachers from Urban (U) and Suburban (SU) 
School Districts at the CPACK summer training (2003-2007).  

Training TK TCK TPCK Total 
School  U SU U SU U SU 

Math 96 14 42 2 22 0 176 

Science 38 15 17 9 12 5 96 

Tech 7 3 5 1 2 1 19 
Special Ed 14 1 2 0 1 0 18 

TOTAL 155 33 66 12 37 6 309 
 
Supported by the National Science Foundation through various 
grants, we formed a CMST Institute in 2002 and have since been 
offering CPACK PD to in-service and pre-service secondary 
school teachers. The professional development program has both 
summer and academic-year components. While we constantly 
explore new tools, we continue to use those in Table 1 because of 
a large database of artifacts and lesson plans we have developed 
using them over the past decade. Table 2 shows the number of in-
service teachers who benefited from the summer institute 
component offered through NSF support in partnership with local 
school districts (Rochester City School District (RCSD) and 
Brighton Central School District (BCSD)) and several national 
organizations (Shodor Foundation, Krell Institute, and Texas 
Instruments). Almost half of teachers who attended TK training 
returned for additional TCK training, and half of those returned 
for TPCK training. This is typical of an incentive-based PD 
(Loucks-Hersley et al. 2010). Teachers have multiple summer 
engagements and some teach in district summer schools. So, the 
dates and time impact attendance. For those who could not attend 
due to such circumstances, we offered similar short courses during 
the school year. The partnering districts also offered a condensed 
version of the training to additional 160 teachers through turnkey 
training and PD days. For the purpose of gathering data for 
research and evaluation, we only worked with teachers who 
attended the summer institute as part of commitment to the study. 

The initiative displayed elements of a scalable innovation (Dede 
et al. 2005), especially in mathematics. There was a cultural 
change in all 15 secondary schools at the urban RCSD and the 
suburban BCSD. They were fully engaged all the way from 
superintendents and principals down to teachers and students. 
Improved teacher retention and student achievement reported by 
partnering districts drew national attention to this initiative, 
including testimony by the author, Jeff Mikols (a RCSD math 
teacher who is now a district curriculum director), and Ed Chi (a 
BCSD science teacher who has left the district) before the U.S. 
Congress (House Hearing 2003).  

In a 2010 survey of 40 TCK and TPCK teachers, 94% agreed that 
the training made them more effective in the classroom; 87% 
agreed that it strengthened their pedagogical skills; 73% agreed 
that it strengthened their pedagogical content knowledge; 100% 
agreed that training strengthened their skills related to modeling 
and simulation; 86% reported that they continue to use the 
hardware, software and other materials made available through 
the project in their classrooms; and 80% believed that their 
participation served to build leadership skills. Seven years after 
the start of the initiative, 73% of participating teachers at RCSD 
were still teaching while 10% had moved to lead positions (Yaşar 
et al. 2014). According to the National Center for Education 
Statistics (NCES 2014), about 16% of STEM teachers either move 
to another school or leave the profession every year. The national 
average is that nearly half of all new STEM teachers leave the job 
within five years (Graziano 2005). Although we do not have the 
2002 baseline data from participating districts to compare with, 
urban schools such as RCSD generally perform much worse than 
the national average. RCSD district officials reported throughout 
the initiative (Crowley 2007) that it not only helped retain veteran 
teachers but it also drew more and better teachers to an urban 
school district, which usually has a hard time recruiting teachers 
because of the well-known urban problems (Margolis et al. 2008). 

Table 3: Frequency of technology tools used by trained teachers. 
Subject
/Grade 

Daily Weekly Bi-weekly Special 
Projects 

Math 
Grades
7-8  

Laptop, 
smartboard 

Power Point, 
PI, TI tools, 
GSP, Excel, 
Flash 

AgentSheets Interactive 
Physics (IP), 
Stella, Java, 
GIS/GPS 

Math 
Grades
9-12  

Laptop, 
smartboard, 
TI tools 

Power Point, 
PI 

Excel, Flash IP, Stella, 
Java, 
GIS/GPS 

Science 
Grades
7-8  

Laptop, 
smartboard, 
Power Point 

AgentSheets, 
Excel, PI 

TI, GIS/GPS, 
Flash, Java 

Stella, GSP, 
Interactive 
Physics (IP) 

Science 
Grades 
9-12  

Laptop, 
smartboard 

Flash, Excel, 
Power Point 

Interactive 
Physics (IP), 
Java, GPS 

Stella, 
AgentSheet, 
GIS, PhET 

 
All of the trained secondary school (grades 7-12) teachers 
reported that on a daily base they used laptops for presentations, 
graphing calculators for math instruction, and electronic smart 
boards for interactive lessons (see Table 3). Positive experience 
with C-MST tools is believed to have initiated use of additional 
tools such as GIS/GPS, Java, Flash, and PhET (Wieman et al. 
2008). Annual surveys of teachers showed that usage of the tools 
in the classroom was directly linked to the amount of training they 
had received. In post-training journals, while only 60% of the 
teachers reported occasional use of modeling tools in their 



classrooms after the initial TK training, 78% reported that they 
used them regularly after the TPCK training.  

Table 4: Percent of teachers using modeling in class 
Grade Level 

 

Frequency 

Regularly Special Projects No 

7-8 Math 46% 46% 8% 

9-12 Math 60% 35% 5% 

7-8 Science 25% 75% 25% 

9-12 Science 54% 38% 8% 
 
In a 2007 survey by 65 active teachers who had received at least 
two years of training, many reported a significant use of modeling 
tools for both classroom instruction and special projects (see 
Table 4). It appears that the higher the grade level, the more 
regularly these tools are used in the classroom. Less frequent use 
of tools in RCSD middle school science classes was a concern, 
which resulted from access and scheduling problems but it got 
better over time as the concern was conveyed to the district 
administration. At BCSD, access to computing resources was not 
an issue. For example, participating teachers ended up fully 
integrating Interactive Physics into their high school physics labs. 

Figures 5 through 8 show some of the survey results in graphical 
format regarding student engagement and learning as a result of 
CMST-enhanced teaching. More than 92% of surveyed teachers 
agreed that computational inquiry made math and science 
concepts significantly more comprehensible to students (Fig. 5). 
 

Figure: 5. Improved comprehension of STEM concepts. 

Figure 6: Deeper understanding of STEM concepts. 

100% of technology, 72% of math, and 31% of science teachers 
reported observed improvement in students’ problem solving 
skills. Student reaction to modeling (versus traditional techniques) 
was found to be 97% favorable in math and 77% in science 
classes. While science classes utilized technology less due to 
limited access and lack of science-related modeling examples, in 
instances where it was utilized, a deeper understanding of science 
topics was achieved, compared to math topics (83% vs. 76%, see 
Fig. 6). As seen in Fig. 7, students in higher-grade levels found 
computational modeling more engaging in both math classes 
(grades 7-8: 77% vs. grades 9-12: 90%) and science classes 
(grades 7-8: 75% vs. grades 9-12: 85%). Modeling was even 
found helpful to non-traditional (special education) learners (Fig. 
8); again the higher the grade level the higher the engagement: 
math classes (grades 7-8: %76 vs. grades 9-12: 100%) and science 
classes (grades 7-8: 75% vs. grades 9-12: 85%). 

Figure 7: Student engagement per grade level and subject. 

Figure 8: Impact on non-traditional learners. 

Qualitative data from journal entries, activity logs, and teacher 
interviews pointed out to an emerging pattern regarding gender 
response to CMST-based teaching. Two independent coders read 
the 2010 teacher survey data and coded the text segments to arrive 
at descriptions and common themes. An inductive process 
(Creswell 2012) was used to group these codes in order to form 
even broader themes. Based on detailed accounts of 26 teachers 
(out of 40), the evaluators arrived at the following broad theme:  

While male students showed more interest in playing with 
technology and plowing through the details with less regard 
to the big picture, female students initially seemed reluctant 
and timid but excelled when details (curriculum) were put 
into context of real-world problems and projects.  
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This is consistent with national findings by our collaborators such 
as Repenning (2012). It is also consistent with our own data when 
triangulated against student scores and graduation rates. For 
example, while cohorts of 8th grader male and female students 
from both districts had a gap in their average math performance at 
the beginning of the initiative, not only were the gaps closed but 
also reversed four years later (12th grade) as shown in Table 5. At 
RCSD, while both male and female students did much better than 
four years earlier, the graduation rate of the same cohorts still 
reflected a gender-based trend in performance growth, favoring 
female students. To examine whether the difference is statistically 
significant, we calculated the z-scores assuming a normal 
distribution approximation (Brase & Brase 2012). The sample 
sizes for male and female students were roughly the same at both 
districts, with about 1200 at RCSD and 150 at BCSD. The column 
p indicates the confidence level that the difference between males 
and females may be due to a nonrandom effect. Normally, any 
confidence level below 90% is less than significant. Here, with 
more than 90% confidence level female cohorts outperformed 
male cohorts in both math performance and graduation rates. 

Table 5: Gender-based performance history at RCSD & BCSD. 
 2001-2002 2005-2006 

Gender Gender Z 
score 

P 
(%) M F M F 

R 
C 
S 
D 

Math 
Cohort 

13% 10% 41% 49% 3.97 99 

Graduation 
Rate 

 34% 44% 5.06 99 

B 
C 
S 
D 

Math 
Cohort 

92% 84% 93% 93% 0 0 

Graduation 
Rate 

 85% 90% 1.29 90 

 
To further triangulate self-reporting data by teachers, annual 
student achievement data were analyzed in the partnering school 
districts via report cards and standardized test scores. While we 
cannot fully isolate the impact of teacher training from other 
contributing factors, an upward district-wide trend was noted in 
both urban and suburban districts during the initiative. The 
percentage of students receiving a Regents diploma increased 
significantly from the baseline (RCSD: 21%  59%, BCSD: 84% 
 95%). The initiative exposed students from the urban district to 
college experiences and opportunities, and this may have led to an 
increased interest (78%  83%) in both 2-year and 4-year college 
enrollments over the period examined. Furthermore, the passing 
rate (>65/100) in NY State Grade-8 Math exam increased in 
Rochester City SD from 10% to 33%, while the passing rate in 
NY Regents Math-A exam (Grade 11-12) also increased from 
13% to 67%. Passing rate in sciences also increased in areas such 
as Physics (3%  22%) and Chemistry (9%  27%). At BCSD, 
passing rates improved in mathematics (Math-A: 51%  99%) 
and sciences (Physics: 52%  78%). The number of students 
taking General Physics at Brighton increased from 50% to ~100% 
and the number of students taking AP Physics also doubled. 
Student passing rates at both districts seemed to reflect relative 
participation of district’s math and science teachers in the 
initiative. All of the improvements have been found to be 
statically significant for typical sample sizes from each district. 

The main goal of the sponsoring No Child Left Behind program 
was to train as many teachers as possible to potentially create a 
district wide impact on student achievement scores. As a result we 
trained twice as many as we had committed to (see Table 2). 

While the goals of the sponsoring agency were met, as witnessed 
by gains in the standardized test scores reported by partnering 
districts, no comprehensive research was done by the project to 
more closely link the gains in student achievement scores to the 
teaching and learning resulted from the initiative. By the time the 
goals of sponsoring NSF program shifted from ‘leaving no child 
behind’ outreach to ‘researching the interventions’ we had almost 
run out of control groups in partnering school districts’ math 
classrooms. The initiative invited science teachers but limited 
access to computer labs, skepticism about use of technology, and 
inadequate number of readymade curricular modules discouraged 
many to invest in trainings that lacked significant science content 
and representative lesson plans. By the end of the project while 
almost all secondary math teachers in RCSD and BCSD received 
training and yearlong PD, only 20% of science teachers took part.  

In final years of the study, when focus shifted towards researching 
the intervention, a few treatment-control comparisons were 
conducted. A pair of CMST and non-CMST high school teachers 
from the same school taught properties of quadrilaterals in a 
mathematics class. The CMST teacher used GSP in a class of 24 
pupils while the non-CMST teacher used conventional methods in 
a class of 14 pupils. Both teachers conducted the same unit test. 
Even though the CMST teacher taught a more crowded class, his 
classroom average was 82.5 versus 49.5 for the other class. The 
second study involved a math triathlon similar to Regents Math A 
and B tests involving use of TI graphing calculators. Scored by 
external judges, including teachers and college faculty, this study 
revealed that students taught by CMST teachers outperformed 
other students in all categories: Math-A: 60.26 vs. 49.54; Math-B: 
71.9 vs. 55.6; and 7-8 Grade Math: 64.0 vs. 58.6. 

Over the past decade, institute staff and participants created a 
large database of more than 300 CMST curriculum modules and 
lesson plans. Curriculum modules and lesson plans from the 
database have been downloaded by people around the world at a 
rate of 50-80 per day, totaling almost 100,000 since the database 
was launched. The database has also provided content for two 
local pre-service methods courses (NAS 401/501 C-MST Tools 
and NAS 402/502 Computational Pedagogy) in the college’s 
teacher education program. Table 6 shows pre-service enrollments 
in these credit-bearing NAS courses. Additionally, the database 
supported turnkey training offered by partnering districts during 
professional development days, serving 160 in-service teachers.  

The CMST database (www.brockport.edu/cmst) continues to 
support three general education courses reported earlier in this 
journal (Yaşar 2013). They have since served 500 more STEM 
undergraduates. The two NAS methods and 3 general education 
courses have become part of the NSF Robert Noyce Scholarship 
program since 2012, serving a new cadre of 50 computationally 
competent STEM teachers, some of whom have already started 
teaching in high needs school districts both locally and nationally.   

Table 6. Number of pre-service teachers trained. 
Courses 2003-07 2008-12 2013-15 Total 
C-MST Tools & 
Pedagogy 

113 107 105 325 

 
In Rochester City and Brighton Central secondary school 
classrooms taught by CMST teachers, students were all given a 
chance to experience the deductive and inductive learning 
processes. As mentioned earlier, 97% of mathematics and 92% of 
sciences classes using the CMST approach agreed that it made 
subject-related concepts more comprehensible. Furthermore, 83% 

http://www.brockport.edu/cmst


of science classes and 76% of math classes found that it led to 
even a deeper understanding of STEM concepts. While modeling 
is a common practice in mathematics and science classes, science 
classes often go beyond modeling to utilize simulations in order to 
investigate time-dependent dynamics of scientific phenomena. 
When used together, modeling and simulation affords the learner 
a constructivist opportunity (Grabinger & Dunlap 1995) to cycle 
iteratively back and forth between the inductive and deductive 
approaches to learning (Yaşar & Maliekal 2014). Teaching 
mathematical and computing concepts contextually has been 
recommended for quite some time by national learning standards 
(NGSS, Computing Curriculum 2005) but we now additionally 
know from cognitive sciences that retrieval practices attempted at 
various contexts is good  because every time the recall is 
attempted in a different context, it establishes more links that will 
help the remembering and learning (Brown et al. 2014).  

Benefits of constructivist and contextual learning was observed in 
an annual after-school CMST challenge competition, which 
allowed students more time and freedom than a regular classroom 
setting to apply, test, and revise the constructed computational 
models. Participating students had a full semester to develop a 
team project. Scoring rubric included problem statement, 
application of the model to a problem of interest, data analysis, 
teamwork, originality, electronic demonstration, and presentation 
of the results before a panel. Extra points were given for use of 
multiple CMST tools, demonstrated understanding of 
computational, mathematical and scientific content, and level of 
challenge, knowledge and skills demonstrated beyond team’s 
grade level. As expected, the incentives helped push students to 
go beyond initial job of model construction, playful 
experimentation, and introductory exposure to STEM concepts. A 
project-based experience reported in Yaşar et al. (2005) by a 
group of 9th grade high school students from Brighton High 
School (NY), who used the Interactive Physics and Geometer’s 
Sketch Pad to prove Kepler’s Laws in an afterschool program 
(annual CMST Challenge), is a testimony of how students gained 
a deeper understanding of computational and scientific content of 
the planetary motion.  Following is a sentiment by these high 
school students after their CMST experience to prove Kepler’s 
laws:  

“We had not taken any physics courses and we were not fully 
knowledgeable about laws of universe that govern planetary 
motion. That is not different from the situation of Kepler; as 
no one quite knew how gravitational forces worked until 
Newton came. Kepler had access to data compiled by Tycho 
Brahe and he looked for patterns. We had access to modern 
tools and we looked for miracles! We learned how to transfer 
visuals images and data from Interactive Physics to 
Geometer’s Sketchpad to measure angles, distance, and areas 
of triangles needed for the proofs… While it was initially 
frustrating to learn new tools, realizing what Kepler would 
have done if he had such tools; we quickly learned to 
appreciate the opportunity in our hands. In the end, we did 
not make a discovery in physics, but we certainly discovered 
that physics was not a threatening or boring subject. We also 
discovered the role of mathematics in physics. The foreboding 
nature of complicated physics was abolished and we all 
looked forward to taking physics classes.” 

The authors followed progression of these students as a case 
study. In their project the following year, these 10th graders 
inquired further about fundamental STEM principles of their 
projects and operational principles of the tools they used for 

modeling and simulations. Using Excel to compute a simple 
algebraic form of rate of change equation, new = old + change, 
that they had learned in the mathematics class that year, they 
attempted to replicate the Interactive Physics results found earlier 
for the harmonic and planetary motion. For the harmonic motion 
in Fig. 4, this involved computing algebraic formulas for the 
position (xnew = xold + dx) and velocity (vnew= vold + dv) of the 
spring-driven object at times (tnew = told + dt) separated by interval 
dt. While time (t) was an independent variable, and change in x 
was dependent on the velocity as dx= v · dt, and the change in v 
was dependent on the acceleration as dv= a· dt, where 
acceleration (a) is Force/mass. The force applied by a spring unto 
an attached box is F= - k · x, where k is the stiffness coefficient of 
the spring and x is the displacement of the box from the 
equilibrium position (x=0). The details of their self-constructed 
simulations is given in Yaşar et al. (2006), yet the brief statement 
below summarizes the progress they had made ─ they were no 
longer threatened or frustrated by learning of science. 

“Through Excel, we were able to use a simple algebraic 
equation (new = old + change) to manually construct our 
own simulations as an alternative way and compared them to 
those done earlier by the Interactive Physics. To compute the 
“change” all we needed was some basic knowledge of the 
force that governed the system, whether it was the harmonic 
or the planetary motion.” 

The progression by these students show that the learner can start 
either with a readymade model, or construct one using a pull-
down menu, that represents the scientific phenomenon under 
study and conduct fun experiments without having to know the 
details of the model and the laws that govern its motion. If it stops 
there, then we can say that the top-down deductive approach has 
engaged students in STEM activities. But, if the learner is tempted 
to continue and inquire about the initial model’s constitutive parts 
and forces that act on them, then he can run simulations by 
changing characteristics of the parts and forces to inductively 
construct a new model and physical setting that better represent 
the reality. This cycle can be repeated until the desired knowledge 
or outcome is reached. This way of learning, through inquiry and 
experience, is nothing but how scientists do their work (Bransford 
et al. 2000, Donovan & Bransford 2005). Such an iterative and 
stepwise progression in constructive learning is also consistent 
with several pedagogical frameworks, including scaffolding, zone 
of proximal development (ZPD) that we discussed earlier by 
Vygotsky, and the Optimal Flow (Csikszentmihalyi 1990) shown 
in Fig. 9, which suggests the importance of balancing challenges 
and abilities using pedagogical stepping-stones in order to attain 
optimal flow for a learner.  

Figure 9: Illustration of Optimal Flow as a path of learning.   



4. CONCLUSION 
Cognitive psychology research has shown that interleaved 
retrieval practice has great advantages for gaining deep and 
lasting knowledge. Interdisciplinary education is a form of this 
practice at course and curriculum levels but it takes effort and 
time, thereby slowing down the learning process. In college, it 
delays graduation and in K-12 it slows down the pace of teaching. 
Technology can speed it up but this throws another ranch into the 
works by adding another domain of knowledge. So, the question 
becomes of finding a technology that will facilitate mixing of 
multiple views around a topic in a pedagogically way. This, we 
claim, calls for the use of computational modeling and simulation 
technology because it naturally adds a deductive and inductive 
pedagogy to teaching of STEM content. The final question, then, 
becomes, “OK, we got this wonderful thing, how do we go about 
institutionalizing it?’ And, this is where the need for teacher 
training becomes the central task, as they are the agents of change 
for any reform in the schools (Bybee & Loucks-Hersley 2000, 
Loucks-Hersley et al. 2010).  

We have run a decade-long experiment to study the task explained 
above, using CMST tools within an interdisciplinary CPACK 
framework for teacher professional development. Triangulated 
data from multiple sources indicated that the use of CMST tools 
and pedagogy not only supported basic interleaved retrieval 
practices but it enriched such practices by putting the learner on 
the driver seat through an iterative cycle of constructivism, 
interactivity and immediate assessment. Not only did this cyclic 
process helped students: a) engage in a topic through a general 
simplistic introduction and b) move deeper deductively into more 
content as they gained more skills, but it also enabled them to 
construct significant knowledge through easy experimentation to 
inductively draw conclusions about the topic they started with. 
Computational modeling and simulation involves all of these as 
demonstrated in our initiative in public schools. The deductive 
aspect of modeling helped teachers present science concepts to 
learners by simplification of reality, which was instrumental to 
draw young minds into science learning. High levels of student 
engagement reported by our participating teachers strongly 
support the effectiveness of computational modeling as a 
deductive pedagogical tool. The CMST tools did exactly as 
expected by shielding students from having to know detailed 
content knowledge of mathematics (e.g., differential equations), 
computing (e.g., algorithmic and programming) and science (e.g., 
physics) to conduct experiments of linear, harmonic, and 
planetary motion using IP. The inductive process resulting from 
experimentation through simulations helped learners to rediscover 
principles of computing and sciences, therefore leading to deeper 
content learning. Since it is the inductive reasoning that help us 
come up with general patterns and simplifications from paralyzing 
details, one cannot have a chance to utilize a deductive approach 
if there had not been an inductive counteract to simplify concepts 
for later use. So, we do not have an option of choosing one over 
the other in education; we need to use both, as they complete  
not compete with  each other. Improved student achievement 
scores in both local and statewide exams at partnering school 
districts point out to a lasting impact of the dual nature of 
computational pedagogy.  

Our initial focus on pedagogical aspects of CMST was to develop 
a tool-independent CPACK training for our teacher education 
program in order to maximize transfer of curriculum inventories 
to new conditions when newer technologies become available. 
However, we stumbled upon much more. Information revolution 

has taken electronic computing devices to every corner of the 
globe but very few would be familiar with and relate to 
computational modeling and simulation. In fact, even some 
researchers and educators might consider CMST as an ad hoc 
technology. Computing is not usually considered as a branch of 
science (Denning 2009) because it deals with artificial 
phenomena, not natural phenomena. However, as artificial and 
imitational as electronic computation is, it might actually help us 
discover how the biological computation generates complex 
mental states. We think it is going to do more than that, as 
understanding how pervasive the computational behavior is might 
change the way we relate to ourselves and everything else in the 
universe.  

Computational theory of mind considers electronic and biological 
computing devices to compute the same way at the fundamental 
level, but much is needed to reduce our complex mental states to 
mere computational processing of information. Regardless of 
what high level processes a computing device is performing, we 
think that the way computing is done at the most fundamental 
level will carry itself all the way to the top level. Computational 
modeling and simulation is a high level electronic process whose 
dual characteristic does reflect the two fundamental modes of 
computing (i.e., addition and subtraction). Deductive and 
inductive thinking, on the other hand, are also two high-level 
cognitive processes that similarly reflect the same modes of 
computation. So, one can suggest that it is the computable nature 
of information that leads to commonality of electronic and 
cognitive outcomes of computing regardless of the underlying 
structure. A million-dollar question would then be ‘what is the 
source of information’s computable (associative and distributive) 
behavior?’ Is it merely reflecting how the matter itself behaves?  

Computability actually appears to be a universal characteristic of 
both granular matter and quantifiable information. Anything 
quantifiable has three distinguishable outcomes: quantity, 
sequence, and pattern. If quantifiable stuff ─ be it matter or 
information ─ can form various patterns to make up atomic and 
cellular structures as well as instructions and thoughts, then 
everything we see out there is computable (Montague 2006; pp. 
14). If so, then perhaps we can start examining a computational 
theory of everything (Yaşar 2016) that would mean everything in 
the universe behaves computationally by either uniting with 
(addition) or departing from (subtraction) other things to form a 
new sum as, again, depicted in Fig. 1. Our current and future 
studies will continue along these lines. Any traction that it might 
gain will be a tribute to Turing. 
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