
Picky: A New Introductory Programming Language

Francisco J. Ballesteros

Universidad Rey Juan Carlos
C/ Camino del Molino SN

E29843, Fuenlabrada, Madrid,
Spain

nemo@lsub.org

Gorka Guardiola
Múzquiz

Universidad Rey Juan Carlos
C/ Camino del Molino SN

E29843, Fuenlabrada, Madrid,
Spain

paurea@lsub.org

Enrique Soriano
Salvador

Universidad Rey Juan Carlos
C/ Camino del Molino SN

E29843, Fuenlabrada, Madrid,
Spain

esoriano@lsub.org

ABSTRACT
In the authors’ experience the languages available for teach-
ing introductory computer programming courses are lacking.
In practice, they violate some of the fundamentals taught in
an introductory course. This is often the case, for example,
with I/O. Picky is a new open source programming language
created specifically for education that enables the students
to program according to the principles laid down in class.
It solves a number of issues the authors had to face while
teaching introductory courses for several years in other lan-
guages. The language is small, simple and very strict regard-
ing what is a legal program. It has a terse syntax and it is
strongly typed and very restrictive. Both the compiler and
the runtime include extra checks to provide safety features.
The compiler generates byte-code for compatibility and the
programming tools are freely available for Linux, MacOSX,
Plan 9 from Bell Labs and Windows. This paper describes
the language and discusses the motivation to implement it
and its main educational features.

Categories and Subject Descriptors
D.3.0 [Programming Languages]: General
; D.3.3 [Programming Languages]: Language Constructs
and Features
; K.3.2 [Computers and Education]: Computer and In-
formation Science Education

General Terms
Programming Languages, CS1

Keywords
Programming Languages, CS1

1. INTRODUCTION
The authors are in charge of teaching an introductory com-
puter science course (CS1 from now on). The curriculum

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Copyright c©JOCSE, a supported publication of
the Shodor Education Foundation Inc.

is focused on imperative, statically typed procedural pro-
gramming. Nevertheless, it is not the usual imperative pro-
gramming curriculum. It strongly emphasizes the top-down
approach and the definition of subprograms. Proof of this is
that the course starts as a functional programming course.
The students learn how to build expressions and functions
before learning how to declare variables and build sequences
of statements. However, only one (imperative) program-
ming language is used for the whole course. Our approach
is similar in spirit to [8], but with a different implementa-
tion. Where Decker et al focus on object organization, we
focus on the strategy for attacking the problem by breaking
it into subproblems.

The course follows a twofold pedagogy methodology. First,
at every point the student is required to write code to test
her understanding of the matter at hand. Second, every line
of code the student writes must be comprehensible at that
point of the course. Of course, the second part needs to be
relaxed somewhat at the start of the course, but it is an
important principle we adhere to, whenever possible.

After teaching this course several years using Ada as the
main language, the authors decided to look for an alternative
for several reasons. Ada, despite being a Pascal descendant,
is multiparadigm. Moreover, its syntax is too verbose, and
it has other issues that are discussed next.

Selecting a new language for CS1 is a complex and delicate
task. The related bibliography is extensive [18] and there are
many open discussions about the different approaches, for
instance [14, 22, 21, 15, 5]. Although other authors defend
the use of object oriented languages for introductory courses
(see for example [17]), there is no consensus about which
approach is better (objects early vs procedures early) [22,
21, 15, 5]. In the authors’ experience, object oriented lan-
guages are too complex to be used as a first language. As
other authors state [12], the student should be instructed
before delving into an understanding of object oriented pro-
gramming concepts, which are more abstract (inheritance,
delegation, polymorphism, etc.) than other basic prereq-
uisites (variables, parameters). Object oriented languages
may be popular, but they are not simple enough to be un-
derstandable for a primer and look like magic to most novice
students.

After some research, the authors were not satisfied with the
existing alternatives to replace Ada. Although there are

many programming languages available, and some of them
are specifically created for education, none satisfied all our
needs, described in section 2. In the end, the authors de-
cided to design and implement Picky and write a text book
(in Spanish) for the course [3]. Picky is a new imperative
programming language that meets all these requirements.
This paper presents the main features of the language for
teaching the CS1 course and the experience after using it
for nine CS1 courses with more than six hundred students.

2. REQUIREMENTS
2.1 High level
It is widely accepted [16] that low level languages, such as
C, are not suitable for CS1 courses. Even the defenders of
such languages acknowledge their shortcomings [20].

Thus, the candidate language to replace Ada for this purpose
must completely abstract the details of the machine and the
underlying operating system.

2.2 Single-paradigm
Some prestigious institutions, for example CalTech and MIT,
use multi-paradigm languages in introductory courses [14].
As stated before, some of the issues that the authors found
while teaching CS1 in Ada are related to its multi-paradigm
features.

Although multi-paradigm languages can be suitable for long
courses that start with imperative programming and then
continue with object oriented programming, they are not
suitable for single-paradigm courses (i.e. imperative pro-
gramming). It is confusing for students to consult bibliog-
raphy that mixes the paradigms or references focused on a
paradigm that is out of the scope of the course.

Also, as part of the learning process, the student, by mis-
take, may write programs that wander off the subset taught
in class. When the language has many heterogeneous con-
structions, like Ada, it is highly probable that the student
may come across one of them by mistake. Another issue
is the compiler returning an error related to one of these
off-course constructions. Frustration and confusion ensues.

Using a pure object oriented language (e.g. Java) to teach
imperative programming, like some institutions do, is even
worse. For a significant part of the course, the student gets
used to writing code which is incomprehensible at that point
in time (public, static, class, etc.). This violates one of the
cores of the twofold approach detailed above.

2.3 Restrictive
The candidate language must provide strong typing and
range checking. These features are very convenient when
learning how to program for the first time. With them, the
compiler and the runtime act as a safety net which prevents
the students from wandering off too much. This is another
reason for not using languages such as C, where the plastic-
ity of the language makes it easy to write obscure code. In
addition, it is desirable to use a language that includes extra
restrictions. For example, global variables are very harmful
in an introductory course and it is convenient to use a lan-

guage that forbids them. This forces the student to get into
the habit of structuring the code properly.

Some kinds of syntactic sugar and language features make it
unclear for students what the code actually does. They also
make difficult to consolidate some important concepts, such
as data typing. For example, transparent dereferencing of
pointers in Ada prevents students from understanding the
difference between a record and pointer to a record. Another
example is automatic declaration of variables (i.e. dynamic
typing) in Python. The lack of variable declaration com-
plicates the comprehension and identification of data types
and variables. Furthermore, it also muddles the concept of
static scoping.

While all these features may enhance the expressiveness of a
language later on, the basic concepts need to be established
first in the mind of the student.

2.4 Terse and simple syntax
In the authors’ opinion, the perfect candidate is a language
as simple as Pascal (or even simpler), with terse syntax like
C.

Pascal has been widely recognized as a good language for
CS1 courses. However, its control syntax is too verbose.
Also, the use of brackets and parenthesis in constructions
emphasizes the formal character of the language, one source
of confusion for new programmers.

In addition, Pascal syntax is more complex than needed.
For example, the use of semicolons as separators instead of
terminators for sentences is a problem for students. They
end up guessing when to add a semicolon and when not to
add one.

There is also a practical problem with Pascal. It is difficult
to find an implementation of Pascal which works well in all
the operating systems the students may use at home and
the lab.

Ada is quite verbose and utterly complex. This makes things
hard for students in introductory courses, because there are
many different constructs to master and the possibility of
wandering off by mistake, as explained before. Also, control
structures requiring exit when constructs are easily misused.
At the same time, this construction cannot be forbidden
because it is necessary for do-while (in fact do-until) loops.

Using white space characters and tabs as part of the syntax
is a double-edged sword. On one hand, it is useful to force a
valid indentation (e.g. Python). On the other hand, it leads
to syntax errors that are hard to solve for a first course
student. For example, mixing white space characters and
tabs in the same program causes errors, and it is difficult
to locate them manually. Even worse, the correctness of the
program depends on the text editor. Some editors hide white
space characters or translate tabs to them or vice versa. A
common pitfall when programming in Python is to use two
different editors to write the same program (e.g., the editor
installed in the laboratory and the editor installed in your
personal computer). The authors consider that, in general,
using these characters as part of the syntax is not desirable

in a introductory programming language.

2.5 Explicit management and debug facilities
One of the aims of a first programming course is to teach
students how to debug programs.

To make memory allocation errors explicit and introduce
the concept of dynamic memory (de)allocation, the language
must support manual memory deallocation instead of auto-
matic garbage collection.

In addition, it must be easy to detect dynamic memory fail-
ures and leaks. It would be also desirable to be able to in-
spect the program stack in a novice-friendly format without
using complex tools (e.g. gdb).

2.6 Text based
The language must be suitable for a first year University
course. There are several visual programming languages
for education at different levels [19, 4, 11, 6, 7]. Neverthe-
less, the authors need a classic text-based language, closer
to real world programming languages, to ease the way into
the other languages taught later in the curriculum (C, Ada,
Java, Python, etc.).

2.7 Editor/IDE independent
Another important requisite is that the language must be
independent of IDEs. Some authors are especially critical of
commercially available IDEs [11]. For the authors of Picky,
it is a must to be able to compile and execute programs in
the command line and from shell scripts.

In some IDEs (like Eclipse), it is very difficult for a novice
to understand when a program is being compiled, when it is
being ran and what version is being used. The authors expe-
rience in more advance courses on Java and Android using
Eclipse is that the facilities provided for managing projects
cause problems even to last year students. For example, it
is quite complex for them to export and import a project,
even on machines running the same operating system.

In addition, it is paramount to allow the expert users (i.e.
the teachers) to select the text editor of their choice so that
the class can be taught fluidly. It is very common for the
authors to program something on demand as part of an ex-
planation. If the environment is cumbersome, the students
will get bored and distracted.

While syntax highlighting (or any other feature that make
plain text look like formatted text) may be useful for more
advanced courses, it is utterly harmful for novices. On one
hand, the students are told that the compiler only accepts
source code in plain text and that plain text does not have
any format, it is just a sequence of character codes. On
the other hand, the IDE or editor magically shows bold and
italic colored fonts. The authors want to avoid this kind of
magical effects to improve the comprehension of the tools.

2.8 Realistic I/O managing preserving refer-
ential transparency

File I/O is important not just to perform I/O, but also to
teach the students how to use control structures to guide

data consumption without violating file I/O rules imposed
by the file abstraction.

File handling in Ada is clumsy, to put it mildly. Calling
End Of File may block a program when reading from the
terminal, and students will not know why. Furthermore,
we teach that functions should be referentially transparent.
Nevertheless, many Ada file I/O subprograms (that is, non-
deterministic subprograms) are functions, not procedures.
This violates the referential transparency.

2.9 Portable
In order to study at home and complete the assignments,
students must be able to use at home the same tools that
they use at the laboratory. The tools must be available for
the systems they use, namely, Windows, Linux and Mac OS
X. Of course, the tools must be easy to install for all these
systems.

In addition, the executable files generated by the students
should also be portable. The first option is to use an inter-
preted language. Nevertheless, interpreted languages make
it difficult to consolidate concepts like compiling, linking,
and executing. For the student, it is hard to distinguish be-
tween source code files and executable files. Another option
is to use a compiled language that generates machine inde-
pendent code to run on a virtual machine. In this case, it is
also difficult to distinguish between the virtual machine and
the compiled program.

The solution we have taken is to follow the latter approach
and keep the illusion that the compiler generates an actual
native binary file that can be executed in the system like
a native executable (i.e. without invoking another program
like the virtual machine).

2.10 Open source
Last, the authors need to be able to modify the tools if nec-
essary. Thus, the language selected for the course must have
open source tools available for all the systems enumerated
in the previous point.

3. PICKY IS REALLY PICKY
Before providing a description of the language, we would
like to summarize its main features regarding safety. As the
name of the languages suggest, Picky is very restrictive. The
aim is to forbid students any practice that can be harmful
if it becomes a habit.

When a kid learns how to ride a bicycle it is convenient to
use side-wheels for a while. Only after such artifact is under
control, a new bicycle (one without side-wheels, and perhaps
with an engine) is more convenient. In the same way, Picky
is highly restrictive regarding what can be done and what
can not in a program. It has side-wheels attached.

Apart from the desired features described before (strong
typing, avoidance of automatic features such as dynamic
declaration or automatic deferences of pointers, no global
variables, and so on), both the compiler and the run time
include extra checks and waste memory and time to provide
additional safety features.

• If the student forgets to initialize a variable, it will
not be zeroed. Moreover, the variable will not have
the corresponding value left in the stack by a previous
activation register.

In Picky, all variables are implicitly initialized with a
random value. Thus, if there are uninitialized vari-
ables, every execution will be different.

• The compiler does not provide warnings. Any error is
a fatal error and the program does not compile.

• The runtime tracks dynamic memory usage and pro-
vides informative diagnostics regarding accidental use
of dangling pointers.

• A program fails if there are dynamic memory leaks,
i.e. if there is memory allocated and not freed before
the program terminates.

• Functions do not accept parameters passed by refer-
ence.

• It is required that return is the last statement in the
function body.

• Procedures cannot use return.

In addition, some constructions are forbidden. For exam-
ple, the authors have detected that the following erroneous
construction is very common:

if(condition){
dosomething();

}else{
;

}

For the above construction, the Picky compiler gives a com-
pilation error. This code should be rewritten as:

if(condition){
dosomething();

}

4. THE LANGUAGE
The language is very simple. To get a full description of the
language, see [2]. What follows is a discussion of the most
relevant details from a pedagogical point of view, following
the requirements stated in section 2. There are further ped-
agogical omitted here for the sake of brevity.

4.1 Programs
Picky has control structures reminiscent of C and data dec-
larations in the style of Pascal. A source program is made
of a single file. A simple hello world example:

1 /* Hello world */
2

3 program Hello;
4

5 procedure main()
6 {
7 writeln("hello, world");
8 }

Comment syntax is taken from C. A program is introduced
by a program clause (line 3) that assigns an identifier to the
program. A procedure named main must be included, like
in C. The program starts executing its body and terminates
when returning from it.

All declarations and statements are terminated by a semi-
colon, but note that procedure and function definitions are
not terminated by a semicolon. Constants, types, proce-
dures, and functions may not be declared within the scope
of a procedure or function. That is, subprograms may not
be nested and constants and types must be declared in the
global scope.

The language is case-sensitive. An identifier must start with
an alphabetic character followed by zero or more alphanu-
meric characters. Picky only has 26 keywords and a total
of 81 language defined names, including keywords, builtins
and predefined constants.

A program may also include one or more constant declara-
tion blocks, one or more type declaration blocks, one or more
variable declaration blocks, and procedure and function def-
initions. The scope for a declaration goes from the point
where it happens in the source to the end of file. Global
variable declaration sections are forbidden by the compiler
unless a flag is supplied.

Constant, type, and variable declaration blocks start with
the keyword consts, types, and vars (respectively) followed
by declarations. The following program is an small, correct,
albeit useless, example:

1 program Xample;
2

3 consts:
4 Npts = 11;
5 Greet = "hi";
6

7 types:
8 Tmonth = (Jan, Feb, Mar);
9 Tpt = record{

10 x: int;
11 y: int;
12 };
13 Tpts = array[0..Npts-1] of Tpt;
14

15 consts:
16 Zmonth = Jan;
17

18 vars:
19 a: month;
20

21 procedure incptx(ref pt: Tpt)
22 {
23 pt.x = pt.x + 1;
24 }
25

26 function addpty(p1: Tpt, p2: Tpt): Tpt
27 {
28 p1.y = p1.y + p2.y;
29 return p1;
30 }
31

32 procedure main()
33 pts: Tpts;
34 i: int;
35 {

36 for(i = 0, i < Npts){
37 pts[i] = Tpt(2, 4);
38 incptx(pts[i]);
39 pts[i] = addpty(pts[i], pts[0]);
40 }
41 writeln(pts[Npts-1].x);
42 writeln(Greet);
43 }

4.2 Basic data types
Per requirement 2.3, Picky is strongly typed. The basic
types are bool, char, int, float, and file. They correspond
to booleans, characters, integers, real numbers in floating
point, and external (text) files.

Two types are compatible (for assignment and other opera-
tors) only if they have the same name. Predefined types also
obey the same rule. Constants and literals are an exception,
they belong to universal types that are assumed to be com-
patible with any basic data type of the same kind. This is
reasonable, for example, to permit using integer literals in
expressions that belong to a user defined integer type. An-
other exception are subranges. Subranges do not introduce
a new type; they declare a restriction defining a subset of
an existing type.

A type definition defines a new type and declares its name.
For example:

types:
Apples = int;
Oranges = int;

This code defines two new types: Apples and Oranges. It is
not legal to mix apples with oranges, and it is not legal to
mix any of them with int values. However, integer constants
and literals may be mixed with any of them.

In general, the language does not permit type casts. How-
ever, type casts are permitted to convert ordinals to the in-
teger representing their position in the type and vice versa.
Also, integers may be converted to floating point numbers
and vice versa.

To convert a value to a type use the target type name as a
function. For example, these are legal expressions:

char(int(’A’) + 1)
float(3)
int(4.2)

4.3 Explicit dynamic memory and resource man-
agement

Resources in Picky are managed explicitly as stated in sec-
tion 2.5. Memory allocations and deallocations are explicit
and there is no garbage collection.

A pointer data type refers to another type and permits using
new and dispose to handle dynamic variables of the pointed-
to type. Type definition uses the ˆ notation, taken from
Pascal:

types:
Arry = array[1..10] of int;
Iptr = ^int;
Aptr = ^Arry;

The second line declares an array data type used in the last
line, to declare a pointer to Array data type. The third line
declares a pointer to integer. It is legal to declare a pointer
to a type that is not yet defined in the program, but the
target type must de defined later. This permits declaring
circular data types, like linked lists. In no other case may a
type be defined in terms of not yet defined types.

Syntax to dereference a pointer value is also taken from Pas-
cal, and also uses the ˆ sign:

iptr^ = 2;
aptr^[1] = iptr^;

L-values of pointer types may use the following procedures
to allocate and deallocate memory: new(ptr) (set ptr to
point to newly allocated memory) and dispose(ptr) (frees
the memory referenced by ptr). All memory allocated with
new must be released by calling dispose before completion
of the program, or the program will abort and report mem-
ory leaks. The interpreter makes sure that dereferencing a
dangling pointer (i.e. a pointer pointing to freed memory)
will abort the execution, providing the corresponding error
to the user.

File descriptors are also managed explicitly. Files need to be
opened and closed using the appropriate builtins, open(file)
and close(file). Any error related to accessing a file is fatal
for the program.

4.4 Input/Output
Some languages use I/O primitives that are predictable but
too low-level. Others provide high-level, but unpredictable
facilities. Among other things, it is impossible, in general,
to know if there is an end of file before trying to read. On
the other hand, it is not reasonable to read without checking
the end of file condition.

As we explain to our students in the CS1 course, when pro-
gramming, side effects must be contained. Checking for the
end of file should be a function without side effects. The
read operation should be a procedure with side effects.

In Picky the I/O primitives follow the requirements stated
in section 2.8. They are both practical and clean from a
theoretical point of view. A peek procedure scans the input
to check for end of file or end of line conditions. Part of the
peek specification is that it may read internally from the file.
The eof operation is a function and has no side-effects (i.e.
it never reads). Before any attempt to call read or peek, eof
returns false as it should.

The language forbids to read end of line marks, they must
be skipped. The runtime includes checks to trigger errors
if a program tries to read them directly instead of using a
readeol primitive.

4.5 Debugging facilities
Following the requirement in section 2.5, built-in procedures
are provided for user friendly debugging, and abnormal ter-
mination: fatal(text) (print text and abort execution), stack()
(dump the stack in a friendly format for debugging) and
data() (dump global data in a friendly format for debug-
ging). For example:

stack trace at:
dowork() pid 0 pc 0x000008 xample.p:9
arguments:
x = 3
local variables:
z = 8

called from:
main() pid 1 pc 0x000016 xample.p:16
local variables:
x = 3

In other development environments, students tend to de-
bug by using step-by-step execution on debuggers instead of
thinking. In this language, it is natural for them to dump
the program state and think about the cause of their prob-
lems. Later, when they are less prone to misuse them, they
will learn more advanced debugging techniques such as step-
by-step execution, breakpoints, etc.

4.6 Procedures and functions
There is a clear separation in Picky between procedures and
functions to follow the principle described in 2.8. The princi-
ple is that functions should have no lateral effects and should
preserve referential transparency. This principle is also fol-
lowed by builtin functions and procedures. Procedures are
named actions, so can have lateral effects, and do not return
values. Argument passing is by value (by default) or by ref-
erence (using the keyword ref before an argument name).
See lines 21-24 in the Xample program. Functions are de-
clared similarly, see lines 26-30 in the program.

4.7 Global and local variables
Picky does not permit global variables by default. They
can be enabled with a compiler flag. The flag is in place so
that the concept of global variables can be explained in the
corresponding class.

It is not allowed to declare a type on the fly in the variable
declaration, unlike in Pascal. A type identifier is required
after the colon. This forces the students to define types first
and assign them meaningful names before using them.

Variables are initialized to random values. This feature
makes programs fail when using uninitialized variables in-
stead of making them work intermittently. Therefore, stu-
dents learn quickly that uninitialized variables are danger-
ous.

4.8 Control structures
Picky has the usual control structures. The if, while, do-
while, and switch statements borrow their syntax from C
and semantics from Pascal (there is no break). Statements
used for then and else arms must always be blocks. Students
face no dangling else in Picky.

The for loop (see lines 36-40 in Xample) has a header with
only two expressions, an initialization and a condition. The
initialization must be an assignment for a variable of an or-
dinal type. The condition must use any of these operators:
“<”, “<=”, “>” or “>=”. The first two ones make the vari-
able increase automatically after each iteration. The last
two make the variable decrease automatically after each it-
eration.

After the for loop, the control variable is equal to the value
on the right of the condition. This implies that there is no
out of range condition for the control variable even when
using “<=” or “>=” with the first or last valid value of an
ordinal type. In Xample, i value is Npts when the loop is
done.

The only way to exit a loop is to satisfy the condition of
the loop; there is no break or goto statement. This way
the postconditions are clear and the student is forced to
structure the program.

5. COMPILATION AND EXECUTION
The Picky compiler, pick, is implemented in C. The com-
piler is implemented using yacc [13] and should be easy to
understand.

The compiler does not emit warnings. All diagnostics corre-
spond to compile time errors. In many cases, when an error
is detected, a symbol or node in the syntax tree is still built,
for safety; other parts of the compiler still get a data struc-
ture as expected, and it’s less likely that an invalid value
causes a bug.

Picky compiles to a virtual machine (PAM [2]), invoked
transparently by the compiled output file. Thus, students
are not surprised by “binaries” behaving differently on dif-
ferent platforms. Code generation is straightforward. The
machine is stack based. Most operations take arguments
from the stack and replace them with a result, pushed also
on the stack. There is a single flow of control, guided by a
loop switching on the instruction type.

PAM wastes memory and time to detect mistakes like out
of range conditions, the use of already disposed data struc-
tures, etc. This way, it issues very descriptive diagnostics
and not just “segmentation violation”.

As already stated, variables (from the data, stack or heap)
are initialized with random values, to let the user discover
early that variable initialization is missing. Such random
values are always odd, to recognize uninitialized pointer val-
ues and issue a descriptive diagnostic for that case at run
time, instead of a segmentation violation or producing a
heisenbug.

The abstract machine construction makes it possible to dump
the state at any point in a user friendly format. The stack
and data builtins (explained in section 4.5) rely on this fea-
ture.

Picky “binaries” are just text files that are interpreted by
PAM. They start with the Unix hash bang syntax to call
PAM on their own. In Windows, to the same end, the file

extension pam is associated in the registry to the application
pam as part of the installation. Thus, students have“binary”
files that, at the same time, are portable and can be used
for pedagogical purposes. Students compile and then run
the resulting file:

prompt$ pick hello.p
prompt$ out.pam
hello picky!
prompt$

The “binary” generated includes portions of the source code
in comments, and can be used during lectures to teach how
the code written by students maps to machine instructions:

#!/bin/pam
entry 0
...
x: int = 3
0000a push 0x00000003 # 3;
0000c lvar 0x00000000 # x;
0000e sto 0x00000002
dowork(x: int)
00010 lvar 0x00000000 # x;
00012 ind 0x00000004
00014 call 0x00000000 # dowork();

This way students do not perceive the machine as a magical
device.

6. EXPERIENCE
The authors are quite happy with the results of using Picky
in CS1 courses. They have used the language to teach nine
CS1 courses that are part of three different degrees of the
Telecommunications Engineering School of the Rey Juan
Carlos University of Madrid. The number of students that
have actually used the language is greater than six hundred.
The first generation of students that used Picky for CS1 is
currently programming in Java, C, Ada, Python and shell
scripting in 3rd-year courses.

It is difficult to evaluate fairly and accurately the effective-
ness of the language for teaching CS1 courses. Since the au-
thors are in charge of teaching and evaluating the students,
any evidence related to grades of tests and assignments could
be unintentionally biased. In addition, given the continuous
turmoil of secondary education in Spain, which creates a
high heterogeneity of students at different points in time it
is difficult to quantify any approach.

In order to assess some feedback from the students, we passed
a survey in a 3rd-year course class. Of course, this survey
should not be considered an indisputable evidence, but it
points in the right direction. We polled 3rd-year students
because they have learnt other programming languages and
have a wider vision. On the other hand, there is an implicit
bias because many students abandon the degree (for many
reasons, but the common case is the difficulty of the degree,
not necessarily CS1). The results of the survey are shown
in Figure 1. The questions were:

(A) How did you like Picky as your first language program-
ming language?

(B) Did using a simple language in CS1 helped you to learn
more than a complex but powerful language?

(C) Was it difficult to learn the Picky syntax in CS1?

(D) Was it difficult to learn the Ada syntax in CS1?

Questions A to C were given to students that used Picky
as a first language. Question D was given to students that
used Ada instead.

The experience with the language is positive. We do see the
students less engaged in nitpicking with the unimportant de-
tails of the language and more focused on the learning task.
In our opinion, Picky has made teaching simpler and the
students learn more compared to other introductory courses
the authors have taught in Ada and C. Before using Picky,
the authors had to explain to students how things in prac-
tice departed from what was taught in theory. This was an
imposition of the language being used (e.g. the eof function
with side effects in Ada). In addition, the students had prob-
lems regarding dynamic memory, uninitialized memory, and
all the other issues enumerated early in this paper. Picky
has alleviated most of these problems.

One disadvantage of creating a custom language for the
course, is the absence of ready-made materials for teaching
the subject and for student consultation. In order to cover
this gap, we wrote an introductory programming book (in
Spanish) using Picky [3] for the course. This book covers
the course following the same approach and in the same or-
der we cover it in class. It serves two purposes. On the one
hand, it is a reference material for the students, with some
extra content for the more advanced students. On the other
hand it serves as a guide for the teachers, helping to provide
a detailed guideline of what should be taught in class and
in what order.

The absence of ready-made code snippets to copy from the
network helps make the students work more in their assign-
ments and spend less time forcing code copied from a ran-
dom web page into them.

Another unanticipated benefit of using a language built by
ourselves, is, of course, that we understand it thoroughly.
With more complicated languages, it is always possible to
have a dark corner of the language appear in code written
by students which puzzles the teacher, sometimes momen-
tarily, sometimes longer. While the response to the student
is simple: “rewrite that mess”, more advanced students may
want to understand what exactly is going on. For instance,
one of the authors remembers fondly trying to understand
an accidental and obscure variation on the Duff device [9]
to be able to explain to a good student why his code worked.
With Picky, these days are over.

As every teacher knows, plagiarism detection is an important
issue whenever students are given assignments. While we
were concerned when we started that we would have to write
our own tools for this purpose, we found that the already
existing tool Moss [1] works very well with Picky and we use
it routinely on the assignments.

Good
40.91%

NA
9.09%

Neutral
31.82%

Bad
18.18%

Good
50.00%

Neutral
18.18%

Bad
22.73%

Yes
63.64%

Neutral
4.55%

No
18.18%

NA
13.64%

NA
9.90%

Good
22.22%

Neutral
44.44%

Bad
27.78%

NA
5.56%

Survey A Survey B Survey C Survey D

Figure 1: Students’ response to Survey Questions.

7. CONCLUSIONS
The authors have designed and implemented a new lan-
guage, Picky, specifically designed to aid students as much as
possible during introductory programming courses. Just its
I/O design would justify its adoption in the authors’ opin-
ion, but it helps students and teachers in many other ways.
The language has been ported to all the mainstream operat-
ing systems. The authors have also written a book based on
it for the course. While it may seem to be too much work,
the return on investment is very good. The students learn
more, the teaching task is simpler and the teachers have well
honed tools designed exactly for the task at hand. The main
regret of the authors is not having done it earlier.

8. FUTURE WORK
The authors have observed that the students are more en-
gaged with programming when they perceive than they can
program any kind of graphical game, however simple. A
simple experiment with a text based animation (which was
quite contrived to write in Picky), got them very interested
and peaked their motivation. This insight has led us to add
some builtins for simple graphic interaction in Picky (sim-
ple non-blocking keystroke I/O, sleeping and some graphical
primitives). This is an ongoing effort and it is still too early
to know what will come out of it.

The authors have also developed another fully compatible
version of the compiler in the Go programming language [10],
which may help develop new tools for use in the lab.

9. ACKNOWLEDGMENTS
This work has been supported in part by Spanish Ministry
of Education project TIN2013-47030-P and Comunidad de
Madrid project S2013/ICE-2894.

10. REFERENCES
[1] A. Aiken et al. Moss: A system for detecting software

plagiarism.
http://theory.stanford.edu/~aiken/moss/, 2014.
Accessed: 2015-06-06.

[2] F. J. Ballesteros. Picky Whitepaper. lsub.org, 2012.

[3] F. J. Ballesteros, E. Soriano-Salvador, and G. G.
Múzquiz. Fundamentos de la programación. lsub.org,
2012.

[4] M. Boshernitsan and M. S. Downes. Visual
programming languages: A survey. Citeseer, 2004.

[5] M. Butler, M. Morgan, et al. Learning challenges
faced by novice programming students studying high
level and low feedback concepts. In Proceedings of
Ascilite, pages 99–107. Citeseer, 2007.

[6] B. A. Calloni and D. J. Bagert. Iconic programming in
baccii vs. textual programming: which is a better
learning environment? SIGCSE Bull., 26(1):188–192,
Mar. 1994.

[7] T. Crews and C. Murphy. A Guide to Working With
Visual Logic. Course Technology Press, Boston, MA,
United States, 1 edition, 2008.

[8] R. Decker and S. Hirshfield. Top-down teaching:
object-oriented programming in cs 1. In ACM SIGCSE
Bulletin, volume 25, pages 270–273. ACM, 1993.

[9] T. Duff. Tom duff on duff’s device.
http://www.lysator.liu.se/c/duffs-device.html,
2015. Accessed: 2015-06-06.

[10] Google. The go programming language.
http://golang.org, 2014. Accessed: 2015-06-06.

[11] J. H. Greyling, C. Cilliers, and A. Calitz. B#: The
development and assessment of an iconic programming
tool for novice programmers. In Information
Technology Based Higher Education and Training,
2006. ITHET ’06. 7th International Conference on,
pages 367–375, 2006.

[12] S. Hadjerrouit. Java as first programming language: a
critical evaluation. SIGCSE Bull., 30(2):43–47, June
1998.

[13] S. C. Johnson. Yacc: yet another compiler-compiler.
Bell Laboratories, 1986.

[14] D. Krpan and I. Bilobrk. Introductory programming
languages in higher education. In MIPRO, 2011
Proceedings of the 34th International Convention,
pages 1331–1336, 2011.

[15] R. Lister, A. Berglund, T. Clear, J. Bergin,
K. Garvin-Doxas, B. Hanks, L. Hitchner,
A. Luxton-Reilly, K. Sanders, C. Schulte, and J. L.
Whalley. Research perspectives on the objects-early
debate. SIGCSE Bull., 38(4):146–165, June 2006.

[16] R. Mody. C in education and software engineering.
ACM SIGCSE Bulletin, 23(3):45–56, 1991.

[17] J. Ophel. Incorporating an object-oriented
programming language into the first year of a software
engineering education. In Software Engineering:
Education and Practice, 1996. Proceedings.

International Conference, pages 317–322, 1996.

[18] A. Pears, S. Seidman, L. Malmi, L. Mannila,
E. Adams, J. Bennedsen, M. Devlin, and J. Paterson.
A survey of literature on the teaching of introductory
programming. SIGCSE Bull., 39(4):204–223, Dec.
2007.

[19] M. Resnick, J. Maloney, A. Monroy-Hernández,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. Silver, B. Silverman, et al. Scratch:
programming for all. Communications of the ACM,
52(11):60–67, 2009.

[20] E. S. Roberts. Using c in cs1: evaluating the stanford
experience. In ACM SIGCSE Bulletin, volume 25,
pages 117–121. ACM, 1993.

[21] R. M. Siegfried, D. Chays, and K. Herbert. Will there
ever be consensus on cs1? In H. R. Arabnia, V. A.
Clincy, and N. Tadayon, editors, Proceedings of the
2008 International Conference on Frontiers in
Education, FECS 2008, July 14-17, 2008, Las Vegas,
Nevada, USA, pages 18–23. CSREA Press, 2008.

[22] M. Vujoševic-Janicic and D. Tošic. The role of
programming paradigms in the first programming
courses. The Teaching of Mathematics, 11(2):63–83,
2008.

