
Introducing Evolutionary Computing in Regression
Analysis

Olcay Akman
Department of Mathematics

Illinois State University
Normal, IL 61790 USA
oakman@ilstu.edu

ABSTRACT
A typical upper-level undergraduate or first-year graduate
level regression course syllabus treats “model selection” with
various stepwise regression methods. In this paper, we im-
plement the method of evolutionary computing for “subset
model selection” in order to accomplish two goals: i) to in-
troduce students to the powerful optimization method of ge-
netic algorithms, and ii) to transform a regression analysis
course into a regression and modeling course without requir-
ing any additional time or software commitment. Further-
more, we employ the Akaike Information Criterion (AIC) as
a measure of model fitness instead of the commonly used
measure of R-square. The model selection tool uses Mi-
crosoft Excel, which makes the procedure accessible to a
very wide spectrum of interdisciplinary students, with no
specialized software requirement. An Excel macro, to be
used as an instructional tool, is freely available through the
author’s website.

Keywords
Genetic Algorithm, Model Selection, AIC

1. INTRODUCTION
Predictive model selection can be a difficult procedure for
data sets with a large number of explanatory variables. De-
termining what variables best explain the system by exhaus-
tive search becomes unreasonable as the number of variables
increases. For example, over one billion possible models ex-
ist for data with 30 explanatory variables.

One area in which model selection is important is multiple
linear regression. In ecological studies one of the commonly
used methods for selection is step-wise regression, with for-
ward or backward variable selection algorithms. These meth-
ods have been criticized for lacking the ability to truly pick
the best model for several reasons [2, 12]. One problem
is that the choice in which the variables enter the selec-
tion algorithm is not justified theoretically. In addition, the

probabilities for the selection procedure are chosen arbitrar-
ily, which may lead to a poorly selected model. One of the
leading advocates of implementing cutting-edge methods in
predictive model selection [11] provides a solid foundation
for evolutionary computing. Finally, since these methods
employ local search, it is unlikely that the global maximum
set of variables will be found [9, 6, 7, 10].

Because of the drawbacks of the current model selection pro-
cedures, we propose to use a genetic algorithm to optimally
determine the subset of variables for a multiple regression
model. Genetic algorithms are a wise choice for this proce-
dure. They are a global search tool and are not prone to
the problems associated with stepwise selection being a lo-
cal search. Genetic algorithms operate by considering many
models at the same time; through selection, components of
the best models come together to form the maximal model.
We will now go through the basics of genetic algorithms.
This is a brief explanation; a thorough one can be found
in [5].

2. GENETIC ALGORITHMS
Genetic algorithms (GAs) are a set of optimization tech-
niques inspired by biological evolution operating under nat-
ural selection. First developed by Holland [8], they have
grown in popularity because of the ability of the algorithm
to perform well on many different types of problems. In a
genetic algorithm, possible solutions are coded using binary
strings, which are called chromosomes. Each chromosome
has a fitness value associated with it based on how well the
string is optimizing the problem. During each generation,
the time step of the algorithm, a population of chromosomes
compete to have their “genes” passed on to the next genera-
tion. The selection step is used to pick the chromosomes for
the next generation based on their fitness. Those selected
enter the mating pool, where two chromosomes mate using
crossover. During this phase, parts of each parent string are
swapped to form two new chromosomes that have certain as-
pects of their parents. After crossover, mutation is applied.
Mutation occurs with a small probability, and is defined as
a change from 0 to 1 or 1 to 0 at a certain location in the bi-
nary string. Mutation allows the introduction of new“genes”
that were either lost from the population or were not there
to start with. Through successive generations, increasingly
better chromosomes come to dominate the population and
the optimal (or close enough) solution is realized.

3. AKAIKE INFORMATION CRITERION

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 23

kross
Typewritten Text
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE, a supported publication of the Shodor Education Foundation Inc.

kross
Typewritten Text



A key parameter of a GA is a method to evaluate the fitness
of a chromosome. In order to use a GA for model selection
in multiple regression, a way to evaluate the chromosomes
is needed. In other words, a method is needed to determine
how well the subset explains the system.

Akaike introduced AIC in 1973 [1] as a measure of the com-
plexity of a model. It measures the bias due to the estima-
tion of the model from the true distribution based on the
data. Additionally, AIC takes into account the number of
parameters used to create the model. The formula for AIC
is given as

AIC(k) = −2logL(θ̂k) + 2m(k), (1)

where L(θ̂k) denotes the maximum likelihood function, θ̂k
is the maximum likelihood estimate of parameter vector θk
under the model mk, and m(k) is the number of parameters
in the model. The first term of AIC gives the lack of fit of
the model, and the second term is a penalty for the number
of parameters in the model. The model with the lowest
AIC value is considered the best, because the model best
determines the underlying stochastic process with the least
number of parameters.

4. A GENETIC ALGORITHM FOR MUL-
TIPLE LINEAR REGRESSION MODEL
SELECTION

4.1 Background
The first step to implementing a genetic algorithm for any
optimization problem is to determine a way to encode the
problem into a binary string. In the case of multiple linear
regression, we have q data points with n explanatory vari-
ables and one response variable. We wish to fit the data
to

y = Xβ + ε, (2)

where y is an n×1 response vector, X is an n×q matrix of the
data points, β is a q× 1 coefficient matrix, and ε is an n× 1
error vector with entries from independent normal distribu-
tions (N(0, σ2) for all components). The dataset contains
n explanatory variables. The encoding is done by creating
a binary string with n+ 1 bits, where each bit represents a
different parameter of the model. The additional parameter
in the binary string is the intercept for the linear model. A
parameter is included in the model if the value of the bit for
that parameter is a 1 and is excluded if it is a 0. A quick
example will help explain this procedure.

Suppose that we have a dataset where we are interested in
what variables explain the reproductive fitness of a species
of trees. The possible explanatory variables will include

1. Age of tree

2. Height of tree

3. Soil pH

4. Density of trees in the surrounding area

5. Average temperature of environment

6. Average rainfall of environment

7. Circumference of trunk

8. Longitude of environment

9. Latitude of environment

10. Prevalence of disease in environment.

In order to use a genetic algorithm in choosing the best
model, each binary string will have 11 bits.The first bit is for
the intercept and the following 10 correspond to the possible
explanatory variables. For example, the string 10010111101
would code for a model which includes the intercept, soil
pH, average temperature of environment, average rainfall of
environment, circumference of trunk, longitude of environ-
ment, and prevalence of disease in environment. To further
demonstrate this point, the string 00001000110 is a model
that has no intercept, and includes density of trees in the
surrounding area, longitude of environment, and latitude of
environment (see Table 1).

Chromosome Variables Included
10010111101 Intercept,3,5,6,7,8,10
00001000110 4,8,9

Table 1: Chromosomes and variables included by
the model it represents

Once we have a method of encoding, we need a way to eval-
uate the binary strings in order to choose the best model.
Although several choices for evaluation are available, this
paper focuses on AIC. Since the model with the lowest AIC
value is considered the best, the genetic algorithm chooses
strings biased towards those with the lowest value.

The probability that a string will be chosen for the mating
pool is proportional to its transformed fitness. For example,
if one string has a value of k for its fitness and a second
has 5k for its fitness, the second string has 5 times a better
chance of being in the mating pool. Additionally, note that
the string with the worst AIC value will never be picked for
the mating pool, as its fitness will be 0.

Now that we have a method of encoding and a way to eval-
uate the strings, we will determine some parameters of the
genetic algorithm. The first one we consider is the method
of creating the initial population and determining its size.
Unless previous knowledge about the problem is available, it
is commonplace in genetic algorithms to randomly generate
binary strings [5]. However, in the case of model selection, a
user may want to force a parameter(s) to be included, even
if it is not part of the model with the lowest complexity. In
this case, the initial population can be generated in such a
way that certain parameters are always in the model. In ad-
dition to how the population is initially generated, the user
must choose the size of the initial population. This process
can be difficult. Generally the size should not be too large
because it will slow down the algorithm, and should not be
so small that genetic drift takes over the course of evolution
of the population. In typical genetic algorithms, the size of
the population stays the same; however, this may not be an
effective use of computation. We will see in the next section

Volume 5, Issue 1 Journal of Computational Science Education

24 ISSN 2153-4136 August 2014



that starting with a larger size then reducing it may be more
effective.

Finally, we discuss the genetic operators which allow the
algorithm to find the optimal model. There are two oper-
ators that are generally implemented in genetic algorithms:
crossover and mutation. Crossover mimics biological crossover
in a simplified manner. First, the probability of crossover
(pc) is chosen. When in the mating pool, a pair of strings
are chosen along with a random number from [0, 1]. If that
number is less than the probability of crossover, crossover
occurs. Thus, if pc = 1, then every pair will cross, and if
pc = 0, then the strings will not be altered by crossover.
After the choice of pc, the number of crossover points must
be chosen. The location of the crossover points is chosen at
random. Then the bits from the parent strings are swapped
to create two new offspring strings (see Figure 1). The pur-
pose of crossover is to bring together models which have
components that reduce complexity. In the previous exam-
ple about trees, we had two parent strings where Parent 1
coded for a linear model with the intercept, soil pH, av-
erage temperature of environment, average rainfall of envi-
ronment, circumference of trunk, longitude of environment,
and prevalence of disease in environment. Parent 2 coded for
density of trees in the surrounding area, longitude of envi-
ronment and latitude of environment. Applying crossover of
the two parents created two offspring (see Figure 1), where
Offspring 1 coded for a model with an intercept, soil pH,
average temperature of environment, longitude of environ-
ment, latitude of environment, and prevalence of disease in
environment. Offspring 2 is a model that includes density
of trees in the surrounding area, average rainfall of environ-
ment, circumference of trunk, and longitude of environment.
Through successive generations and application of crossover
of low complexity models, the algorithm is able to find the
least (or close enough) complex model to explain the data.

Fig. 1: Diagram of crossover with 2 points

Crossover can only generate models that include parameters
that already exists in the population. What if the least com-
plex model includes a parameter that is not present in the
population? That is, the position in the string that codes
for that parameter is fixed at 0. Mutation alleviates this
problem. Mutation in genetic algorithms is similar to muta-
tion that occurs in DNA. First, the probability of mutation
(pm) has to be determined. This value gives the probability
that at each location in the string the bit will be flipped.
Flipping is defined as the change of a 0 to 1 or a 1 to a
0. Typically, mutation rates are low, on the order of 10−3

to 10−5, however, strings are usually longer for other appli-
cations of genetic algorithms than they are for determining
least complex models.

We conclude this section with pseudo code for a genetic algo-
rithm used to find the least complex model that sufficiently
describes the data.

1. Generate initial population

2. While (t<max generations OR the maximum number
of computations have not been executed)

(a) Calculate AIC for the model each string encodes

(b) Select strings for the mating pool

(c) Create a new population using crossover

(d) Mutate new population

(e) t=t+1

3. End

5. CLASSROOM IMPLEMENTATION
Since the goal of this approach is multifaceted, the classroom
implementation has three basic components as a part of a
typical regression analysis syllabus.

The first component is a one lecture-hour introduction to
genetic algorithm concepts that is best initiated just before
the time where a typical syllabus introduces model building
via stepwise regression. At this point students are familiar
with multiple regression, goodness of fit measures, and their
use in model comparison. This component does not need
to cover detailed descriptions of crossover options, optimal
mutation rates, population sizes, required number of gen-
erations, or stopping rule conditions, but rather should be
designed to expose the students to the basic notions of evo-
lutionary computing. In fact this is where, for instance, an
idea of “numbers mating to create new numbers” fascinates
most students, making them eager to learn what comes next.

The second component is also an hour-long demonstration
of evolutionary computing. It is made of an exercise where
students can witness how an initial guess evolves to be the
solution of a problem by following the performances of pop-
ulations within each generation. One of the best examples
of this classroom exercise is obtaining the solution for a Dio-
phantine equation using MS Excel. For this step, using MS
Excel, as opposed to an R-code written exclusively to per-
form GA optimization, a canned GA program, or an online
applet, would be highly recommended since this approach
allows the students to store each population on a sheet and
enables them to compare the improvement in fitness from
generation to generation. This step doesn’t have to be very
sophisticated. In fact performing the GA only for a few
generations (a few Excel worksheets) within a lecture will
be enough to convey the underlying message of evolutionary
computing. In particular, the recommended exercise is as
follows:

1) We are looking for positive integers a, b, c, and d such
that a + 2b + 3c + 4d = 30. This is the famous Diophan-
tine equation, which has now become a benchmark tool in
teaching evolutionary computing or GA based optimization
in undergraduate level courses due to its simple but yet non-
analytic solution structure. It is a commonly used example

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 25



for teaching GA. Another use of it using C++ code can be
seen in [3].

2) Generate 4 uniform integers from (0, 30) and save them to
columns A2 through D2. Enter the formula = ABS(A2+2∗
B2+3∗C2+4∗D2−30) to cell E2 (Use A1 to E1 for labels).
Notice that since we are seeking a solution in terms of these
four positive integers, none of them can be greater than 30.
At this step the user needs to know how to hold the ran-
dom numbers static, else each time Enter is hit the random
numbers will change. This can easily be achieved by set-
ting the Calculation option to Manual in Excel 2010 (Click
Formulas ribbon, click Calculation Options,select Manual to
disable auto-calculation). In older versions use Click Tools
> Options > Calculation tab.

3) Repeat step 2, say 50 times (using the cells A51 to E51),
which creates the “1st generation” of 50 “chromosomes” each
of which has 4 “genes” (a through d) with “fitness” given in
column E. In this case, the smaller the value in column E,
the fitter the corresponding chromosome is. Hence, entering
the formula 1/fitness into column F will be useful during
the rest of the process.

4) Normalize fitness of each chromosome saved in column F
(by dividing each fitness by the total fitness) to create the
probability of selecting a chromosome proportional to its fit-
ness. As a suggestion, the instructor might use conditional
formatting in the fitness probability column to help students
to visualize the relative magnitudes of the selection proba-
bilities,. In Excel 2010, this can be achieved by using Data
Bars-Gradient Fill option.

5) Copy and boldface the “best” solution for these 50 indi-
viduals in row 52.

6) Randomly select one pair with probability given in col-
umn F and copy them into into the first two rows of column
G. These are the two parents of the first offspring. Specifi-
cally select two rows using the probabilities in column F.

7) Generate a uniform integer from (1,3) to determine the
crossover point. Swap the tails of the two parents to create
two children. Copy them to column H.

8) Repeat this process for 25 pairs, forming 50 new children.

9) Randomly choose 5 children (rows). For each selected
chromosome generate a uniform integer from (1,4). This will
indicate which gene to “mutate”. At this point, we explain
that 10% of the individuals are subject to mutation for some
“divine” reason.

10) Replace the selected genes with newly generated integers
from (0,30).

11) Copy these 50 rows onto a new worksheet with their
respective fitnesses.

12) The fitness of the best individual in row 52 of the 2nd
worksheet can now be compared with that of the first work-
sheet.

13) Repeat this process for 3 more generations so that a total
5 generations of 50 individuals can be used to to discuss the
principles evolutionary computing.

After these steps, the students are now ready to work with
GAs for subset model selection, which is the third compo-
nent of this approach. So far, with the use of the Diophan-
tine equation we demonstrated how chromosomes (variables
of the equation) evolve improving the fitness generation af-
ter generation. We now make the connection to regression
modeling, where the fitness is the quality of the model, say
R-square or AIC (another commonly used more robust good-
ness of fit measure for students of this level). We will see
how R-square improves as models evolve. Since the idea of
subset model selection requires comparing regression mod-
els containing different predictors we will treat models with
different set of predictors as different chromosomes. This is
exactly what we did for the Diophantine equation where dif-
ferent values of the variables were defined different chromo-
somes. As an alternative to stepwise regression, we generate
a binary string of length equal to the number of possible
predictors, and include only. the variables that correspond
to 1’s. Repeating this process generates a population of
regression models each one has its own fitness. We then
proceed with the natural selection process as described in
Section 4. For this step, it is recommended that the first
few steps are demonstrated, again using MS Excel. How-
ever, for model selection discussions using real-life data sets,
it is recommended that the freely available Excel macro on
the author’s website1 should be used to focus on the mod-
eling discussions without allocating any more class time to
the process itself. The first few steps can be implemented
as follows:

1) Save the response variable to column A, and explanatory
variables into columns starting with B.

2) Generate a binary string of length equal to the number
of explanatory variables.

3) Form a regression model by including only the explana-
tory variables that correspond to 1 in the binary string.

4) Run MS Excel regression utility for the model.

5) Repeat from step 2 for another model, pointing out the
different models due to the different set of explanatory vari-
ables being used.

6) Use the MS Excel macro for a desired number of gener-
ations, discussing the model sensitivity aspects of different
runs.

The steps given above were implemented as a part of a sec-
tion where subset model selection was covered in an upper
level undergraduate/lower level graduate Regression Anal-
ysis class. Since no regression analysis book has a chapter
allocated to this approach, the supplementary notes, Excel
files were distributed. Although the lectures were also sup-
plemented by Power Point presentations, this is optional and
not an essential part of the approach described here.

1www.ilstu.edu/∼oakman

Volume 5, Issue 1 Journal of Computational Science Education

26 ISSN 2153-4136 August 2014



6. CONCLUSIONS
Treating predictive model selection via GA in a regression
analysis course serves two very useful purposes. First, it
introduces students to the notion of evolutionary comput-
ing by blending its basic concepts within the very familiar
framework of of regression methods. This requires no back-
ground beyond some introductory statistics knowledge. Sec-
ond, it arms students, especially those with diverse interests
such as biology, sociology, economics and so on, with a very
powerful and cutting-edge method of model building. Addi-
tionally, the genetic algorithm approach combined with the
use of AIC is better at handling data in which collinearity
exist than the traditional selection methods such as forward,
backward, and stepwise selection. Although no formal study
of student performance was conducted, every student, even
the ones who perform less than perfect seem to relate to
the material much better than they do to the traditional
approaches. Course evaluations consistently indicate this
chapter as of the their favorite chapters. In fact several in-
dependent Study projects, two M.S. theses were produced
on the topic by the students who approach the instructor
after this chapter was covered.

7. REFERENCES
[1] Akaike, H. (1973). Information theory and an

extension of the maximum likelihood principle. In
B.N. Petrov and F. Csaki (Eds.), Second
international symposium on information theory,
Academiai Kiado, Budapest, 267-281.

[2] Boyce, D. E., Farhi, A., and Weischedel, R. (1974).
Optimal Subset Selection: Multiple Regression,
Interdependence, and Optimal Network Algorithms.
Springer- Verlag, New York.

[3]
http://www.generation5.org/content/1999/gaexample.asp?Print=1

[4] Fisher, R.A. (1930) The Genetical Theory of Natural
Selection Clarendon Press, Oxford.

[5] Goldberg, D. E.(1989) Genetic algorithms in search,
optimization, and machine learning. Reading, MA:
Addison-Wesley.

[6] Hocking, R. R. (1976). The analysis and selection
variables in linear regression, Biometrics, 32, 1044.

[7] Hocking, R. R. (1983). Developments in linear
regression methodology: 1959-1982, Technometrics,
25, 219-230.

[8] J. Holland. (1975) Adaptation in Natural and
Artificial Systems. The MIT Press.

[9] Mantel, N. (1970). Why stepdown procedures in
variables selection, Technometrics, 12, 591-612.

[10] Moses, L. E. (1986). Think and Explain with
Statistics, Addison-Wesley, Reading, MA.

[11] J. Whittingham, Philip A. Stephens, Richard B.
Bradbury and Robert P.Freckleton Why Do We Still
Use Stepwise Modelling in Ecology and Behaviour?
Journal of Animal Ecology, Vol. 75, No. 5 (Sep.,
2006), pp. 1182-1189

[12] Wilkinson, L. (1989). SYSTAT: The System for
Statistics, SYSTAT, Evanston, IL.

Journal of Computational Science Education Volume 5, Issue 1

August 2014 ISSN 2153-4136 27




