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Introduction to Volume 14, Issue 1
David Joiner

Editor
Kean University

Union, NJ
djoiner@kean.edu

FOREWORD
In this issue, we present papers from the SC22 Ninth Workshop on
Best Practices for HPC Education and Training, and two additional
papers.

Horn and colleagues put forth an innovative pedagogical strat-
egy that enhances the teaching of network security within the
realm of computer engineering. They have developed a unique
curricular approach that focuses on protocol behavior and trust
point observations, creating a novel path towards understanding
and learning secure design of networks.

In their paper, Lu and Lampert emphasize the significant role
Python can play in environmental modeling. They showcase how
Python can be used to simulate the movement of substances within
porous media, with examples of how this can be used for student
engagement.

Barker and colleagues address the challenge of expanding the
HPCworkforce, emphasizing the role of hybrid and virtual hackathons
in bridging the gap between traditional programming and necessary
hands-on skills. They provide an overview of current programs,
insights from past hackathons, and offer implementation recom-
mendations.

Gyires-Tóth et. al. discuss the importance of accelerated com-
puting and deep learning, acknowledging the unique expertise
needed in these fields. They explore the teaching methodology of
the NVIDIA Deep Learning Institute, present post-workshop sur-
vey results, and provide a case study on teaching heterogeneous
parallel computing.

Lee, a student researcher, introduces a novel approach to genetic
sequencing and bioinformatics using quantum annealers. The paper
presents a modified MSA algorithm that leverages the properties
of quantum mechanics to overcome the computational challenges
of aligning extensive sets of genetic sequences. While traditional
algorithms rely on brute force or heuristic methods, this new ap-
proach uses progressive alignment techniques to optimize quantum
annealing algorithms.

Mensa et al. focus on training users in hybrid technologies inte-
grated with high-performance computing (HPC). They propose a
three-stage education plan, which involves foundational HPC train-
ing, digital innovation awareness, and specialized training tailored
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to business needs. The approach aims to enhance productivity and
encourage the adoption of innovative practices.

Ngo and Bui address the difficulties inherent in big data education
and propose a comprehensive solution. Their paper suggests a dual
approach that leverages both personal computers and public cloud
resources to provide meaningful, hands-on learning experiences,
helping students gain practical expertise in big data analysis.

Parete-Koon and colleagues offer an overview of the U.S. De-
partment of Energy’s Exascale Computing Project’s initiative to
diversify the HPCworkforce. Their work highlights efforts to create
a sustainable and inclusive culture within the computing sciences,
with the goal of attracting and retaining a diverse group of profes-
sionals.

Lastly, Biggerstaff et al. provide a compelling demonstration of
how computational tools can be applied to tackle a global health
crisis. Their research focuses on identifying potential inhibitors for
the SARS-CoV-2 virus, showcasing the critical role of computational
analysis in advancing antiviral drug discovery.

As I embark on my journey as the new editor of JOCSE, I’d like
to express my deep appreciation for the formidable legacy left by
our founding editor, Steve Gordon. His relentless commitment to
cultivating and elevating this journal has set a high bar for those
who follow. I also owe a significant debt of gratitude to Aaron
Weeden, whose technical acumen has shaped the face of JOCSE in
the past years. His invaluable work on consolidating past issues and
enhancing our back-end infrastructure over the past year has left
an indelible mark. Lastly, but by no means least, my heartfelt thanks
to Holly Hirst for adeptly stepping into Aaron’s role in assembling
and circulating this issue. I look forward to seeing the contributions
we will make together to JOCSE in the years to come.
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ABSTRACT 
Expanded articulation of demonstrable competencies and a 
burgeoning demand for security analysts increasingly responsive to 
rapidly evolving conditions have brought to foreground a need to 
revamp core curriculum in the area. Once such effort has emerged 
at one university where a faculty member in computer engineering 
technology, network communications, and computer science has 
developed a novel pedagogical strategy that teaches network 
security through protocol behavior and trust point observations. 
This paper used a single course case study to explore the 
engagement patterns of learning associated with this novel 
curricular approach to learning secure design of networks. This 
exploratory study’s findings lay important foundation for 
understanding the ways in which students are making use of 
multiple forms of experiential engagement. While homework 
exercises, perhaps conceptually the most traditional form of 
engagement, were accessed largely at a one opportunity per student 
count, practices and much more importantly labs were used in much 
more frequent ways. In particular, labs display a positive 
engagement patten in that they demonstrate students’ choices to 
access early and in a sustained variety of topics. Importantly, these 
opportunities are active in their mechanism for learning, which 
connects with a strategy previous empirical literature has positively 
reinforced.  

KEYWORDS 
Interactive Learning, Computer Science Education, Scaffolded 
Learning, Computer Networks 

1 INTRODUCTION 
Expanded articulation of demonstrable competencies and a 
burgeoning demand for security analysts who are increasingly 
responsive to rapidly evolving conditions have brought to 
foreground a need to revamp core curriculum in the area. 
Specifically, federal and agency guidelines prompt instructors to 
consider differently their approach to cybersecurity education in 
order to better prepare graduates [4, 10, 13, 15, 16].  

Once such effort has emerged at the University of Houston 
where a faculty member in computer engineering technology, 
network communications, and computer science has developed a 
novel pedagogical strategy that teaches network security through 
protocol behavior and trust point observations [9]. Specifically, this 
undergraduate class is designed to introduce the concept of trust 

protocol points and guiding principles through a scaffolded set of 
learning opportunities available to students in a semi-autonomous 
opportunity to learn. The course combines lectures, hands-on labs, 
homework, auto-graded practices, exams, and a final project to 
allow multiple opportunities for students to master material (see [9] 
for full description).  

This paper uses a single course case study to explore the 
engagement patterns of learning associated with this novel 
curricular approach to learning secure design of networks. 
Specifically, the study seeks to answer the following research 
questions: What patterns of learning engagement do students 
demonstrate? What pedagogical tools associate with these patterns? 

2 THE ROLE OF EXPERIENTIAL LEARNING 
OPPORTUNITIES 
Abundant literature documents the definitions and benefits of 
experiential learning in knowledge development [3, 8, 11, 14, 17]. 
As a generic representation, Table 1 presents a scale of learning 
typologies. As it indicates, learning experiences move from more 
concrete to abstract where experiences also vary from more active 
to ones where students function largely as receivers of information. 
As Bersteinger et al. summarize, “primary learning essentially 
occurs through active/concrete doing, whereas secondary learning 
occurs when a passive receiver interprets abstract information 
communicated by another through spoken words, written text, 
graphic images or gestures” [2, p. 37].  

Table 1. Generic Scale of learning typologies [13]. 

Concrete/Active Abstract/Passive 

Student as actor Student as receiver 
Do an 
activity 

Watch an 
activity 

Hear about an 
activity 

Read about 
an activity 

In a related literature, research has identified the utility of teaching 
and learning through multiple strategies toward student learning. In 
his seminal work, Howard Gardner [7] posited a theory of multiple 
intelligences where learners differ in their capacity and preference 
for different forms of information processing based on the kinds of 
intelligence they demonstrate. Taken together, these bodies of 
research suggest the need for varied learning opportunities where 
at least part of those experiences ground in experiential learning.  

2.1 Conceptual frames guiding engagement through 
experiences 
Complex Adaptive Systems Theory (CAS) guides this study’s 
understanding of engagement patterns and the instructional tools 
that associate with them (Figure 1). First, CAS suggests that know-
ledge develops through novel encounters with information and 
other opportunities to ultimately formulate a set of rules to guide 
understanding. Key to this process is the role of feedback where 
knowledge developers have opportunity to adapt their 

Permission to make digital or hard copies of all or part of this work for 
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understanding based on attempts and useful response to those 
attempts. At its core, CAS assumes the presence of an 
organizational structure that shapes and is shaped by knowledge 
formation. In the case of this study, the classroom itself serves as 
the “human organization” where the students are encouraged to 
“innovate by producing spontaneous, systemic bouts of novelty out 
of which new patterns of behavior emerge. Patterns which enhance 
a system's ability to adapt successfully to its environment are 
stabilized and repeated; those that do not are rejected in favor of 
radically new ones, almost as if a cosmic game of trial-and-error 
were being played. Complexity is, therefore, in part, the study of 
pervasive innovation in the universe” [12, p. 196].  

Figure 1. Complex Adaptive System (CAS) Model [16]. 

At the individual level, then, learning “is a process of emergence 
and co-evolution of the individual, the social group, and the wider 
society. Emphasis is placed on the relationship between elements, 
rather than the elements themselves” [12]. Through this frame, 
then, the current study seeks, then, to understand how engagement 
represents an evolution of novel to more sophisticated encounters 
with new information.  

3 DATA AND METHODS  
3.1 Participants and Learning Experiences  
Data for this study were drawn from 58 students taking a 16-week 
undergraduate introduction to networking course offered in Fall 
2020. Students completed 9 homework exercises throughout the 
duration of the course and received a full completion grade for any 
complete first attempt (regardless of correctness of answers). 
Because the purpose of the assignment was to serve as a 
developmental opportunity for learners to assess their 
understanding and work toward mastery in a low-stakes format, 
they were also provided feedback on the accuracy of each of their 
responses. Subsequently, students were permitted to return to any 
items they answered incorrectly and attempt them again (with new 
randomly generated data). The primary goal of the homework–in 
format and in function–was to provide an opportunity to strengthen 
their capacity to do well on the laboratory assignments, exam, and 
ultimately the assigned project.  

Students also engaged in labs and practice over the course of 
the study. Labs, which are not graded, are opportunities intended to 
aid in homework submission. A lab manual web page provides 
detailed instructions and provide another opportunity through a 
different format to continue to engage in work toward mastery of a 
set of discrete but scaffolded concepts leading toward a compre-
hensive understanding of network security. Finally, practice oppor-
tunities are directly linked to discrete learning outcomes assessed 
in the homework and provide yet another space and structure for 
students to grapple with what they understand and what remains 

unclear with respect to specific competencies they are expected to 
develop. 

Data for this study derive from the usage patterns for each of 
these opportunities, including assignment and date accessed.  

3.2 Analytical Approach 
This study descriptively represents patterns of engagement. 
Specifically, it aggregates the number of times a particular learning 
opportunity was accessed in total and by month. For labs and 
practices, Chi Square statistics were calculated to assess differences 
in distribution by opportunity and by month.  

4 FINDINGS 
Findings are organized around key aspects of the course: 
homework; labs; and practice opportunities. 

4.1 Homework Exercises 
Homework exercises were accessed a total of 534 times throughout 
the semester (M=59, SD=8.16). Figure 2 presents the distribution 
of engagement counts by homework exercise topic.  

Figure 2. Fall 2020 ELET 4421 Exercises - 
Engagement Counts. 

As can be seen, most exercises were accessed a similar number 
of times (on average, approximately 1 time per student in the class). 
In seeking to understand the extent to which students engaged and 
reengaged with homework exercises over time, Figure 3 in presents 
counts by week.  

Two important observations are noted. First, not surprisingly, 
students engaged in most substantial numbers nearest the time 
when the exercise was on the syllabus related to topic of discussion. 
That said, for most exercises, distribution of access occurred over 
at least a 2- and sometimes a 3-week period. This is an important 
observation in that it suggests a fluidity of engagement among 
students with respect to learning opportunities. Second, as 
evidenced by the inclusion of “redisplaying current exercise 
module,” execution of that command occurred more often during 
the initial weeks of the class. The gradual decline in redisplay 
suggests that as they learned to navigate the system, the need for 
re-execution waned.  

4.2 Labs 
Patterns of engagement in lab opportunities, in contrast to 

homework exercises, identified that this learning strategy was far 
more accessed overall and varied in relationship to particular units. 
Overall, labs were accessed 1881 times, an average of 32.4 times 
per student in the class. The mean number of times accessed per lab 
unit was 125 (SD=111.41). The next several subsections (4.2.1-
4.2.4) briefly describe key labs before the paper turns to findings. 
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Figure 3. Exercise Engagement Counts by Week. 

4.2.1 Layer 2: Ethernet Lab 
Broadcast domain concepts, layer 2 forwarding and MAC address 
learning functionality in Ethernet networks is covered through the 
four lab modules: Ethernet bridge MAC learning, ARP, VLANs 
and a host connected to a bridge (Figure 4). The observations are 
composed of sending and monitoring of packets on host interfaces, 
examination of bridge layer 2 tables, and bridge port con-
figurations. Students are able to conduct experiments on network 
topologies that in turn allow them to verify the knowledge they are 
gaining while also new experiences are provided in network state 
observations, troubleshooting, and analysis of network topologies 
and protocols through packet traces and protocol behavior. 
 

 
 

Figure 4. Ethernet bridges provide layer 2 connectivity and 
when port VLANs are configured, layer 2 isolation. The 

representative topologies that are used in the lab modules are 
included here. 

4.2.2  IP Subnetting and Routing, Address Resolution 
Protocol 
IP subnet assignment and bit math are introduced with example 
topologies and exercises that emphasize the calculations of IP 
subnets and host addresses within a subnet (Figure 5). 
 

 

Figure 5. IP subnets are assigned inside two broadcast 
domains to hosts that are also isolated in  

the layer 2 broadcast domain. 

Routing is introduced in representative topologies illustrated 
in the Figure 6 with router devices that forward between subnets as 
well as subnet addresses assigned to hosts with route tables that 
reflect the network state and configuration for reachability. 
 

 
 
Figure 6. Routing and routers are utilized in the lab modules 

that cover ARP, IP routing, and route tables. 

4.2.3  DNS and DHCP  
Typical services that run in a network are DHCP and DNS. The 
services are included in the representative topologies shown in 
Figure 7. 
 

 
 

Figure 7. A number of subnets along with naming services  
are instantiated in network topologies. 

The host interfaces are configured using the services in the 
network. Sample name resolutions are achieved to gain experience 
and firsthand understanding of the function and innerworkings of 
DNS protocol in the network. 
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4.2.4  Projects: Network Troubleshooting 
The course final activity is culminating project where critical 
thinking is required to complete. Students are presented with 
networks that have misconfigurations. They are asked then to test 
reachability to identify the misconfigurations in the network 
devices and end hosts (See Figure 8). In the process, they are 
required to use the lab investigation methods they learned 
throughout the semester during the lab activities. They apply their 
knowledge of how network devices behave and what protocol 
observations they need to make to identify the misconfigurations. 
The students are also provided with the vendor-agnostic methods 
to correct the misconfigurations on their individual networks. The 
second phase of the project activity requires that the miscon-
figurations are corrected and full reachability is achieved in the 
submission phase.  

Figure 8. A topology that is pre-configured with typical 
misconfigurations is provided during the lab  

in order to teach network troubleshooting skills and  
reflect on the learnings in the previous labs. 

4.2.5  Engagement Data 
As reinforced in Figure 9, lab engagement ranged from 10 (STP 
Typology C) to 474 access records (Mismatch Typology Found; 
not displayed in Figure but happens when a student has forgotten 
to delete their existing topology from a previous lab and tries to 
build the next lab). The majority of labs were accessed between 72 
and 141 times (an average of 1.24 and 2.43 times per student). 

Figure 9. Fall 2020 ELET 4421 Labs – Engagement Counts. 

When again considering patterns of engagement over time, 
Figure 10 identifies students engaged almost half (7 of 15) of the 
labs in the first month of the semester.  

Figure 10. Fall 2020 ELET Labs – 
Engagement Counts by Month 

Similarly, 8 of the labs were accessed in October. Students 
engaged with fewer labs (6) in October, and only 3 labs were 
accessed in December. This difference in total access counts across 
months is statistically significant (c2(3) = 650.36, p < .001) as is 
the difference across months by specific lab (c2(42) = 3227.72, p < 
.001).  

4.3 Practice 
Practice opportunities were engaged 949 times throughout the 
course of the semester with an average count of 38 encounters per 
discrete practice (SD=12.13). Similar to homework exercises, most 
practice opportunities, looking across the broader topical areas, 
were accessed between 98 and 121 times (between 1.69 and 2.09 
times per student). Figure 11 presents the distribution across 
aggregated topical areas, indicating Loading ARP Practice as most 
accessed (189 times).  

Figure 11. Fall 2020 ELET 4421 Practice Counts 
Aggregated by Major Topic Area. 
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Figure 12 presents access counts by month and identifies that 
all practice areas were exclusively or almost entirely accessed in 
November. Students are able to practice as soon as they submit a 
homework, which makes this finding especially important.  

While practice on a topic becomes available immediately after 
homework is submitted, during the week leading up to the exam (in 
mid-November), all the items are made available. As such, it is 
important to understand weekly access patterns for practice during 
the concentrated month of engagement. Figure 8 displays counts, 
by week, for the month of November.  

Figure 12. Practice Aggregated by Major Heading 
and by Month. 

As can be seen, all the practice opportunities were accessed 
predominantly within a single week (week of November 7). 
Similarly, a majority are being visited or revisited (but at a lower 
count relative to the week of November 7) during the week of 
October 31. 

5 DISCUSSION, IMPLICATIONS FOR 
PRACTICE, AND FUTURE RESEARCH 

5.1 Discussion and Limitations 
This exploratory study’s findings lay important foundation for 
understanding the ways in which students are making use of 
multiple forms of experiential engagement. While homework 
exercises, perhaps conceptually the most traditional form of 
engagement are accessed largely at a one opportunity per student 
count, practices and much more importantly labs are used in much 
more frequent ways. In particular, labs display a positive 
engagement patten in that they demonstrate students’ choices to 
access early and in a sustained a variety of topics. Importantly, 
these opportunities are active in their mechanism for learning, 
which connects with a strategy previous empirical research has 
positively reinforced.  

The findings related to the ways students are engaging in 
practice is also an important one. In connection with the ways in 
which a complex adaptive system works, students are taking 
feedback (provided through original homework) to seek additional 
opportunities to refine understanding. Practices are equipped with 
an auto grader (correct/incorrect) that gives immediate feedback 
when utilized. However, the findings of this study suggest that 
rather than associating that extended learning more proximal to the 

original exposure, students are waiting until an externalized 
mechanism (i.e., the exam) prompts a need or desire for deeper 
understanding. 

Figure 13. Practice Aggregated by Major Heading and 
by Week for Month of November prior to  

the Course Semester Exam. 

In considering prior work [1, 5, 6] that underscore the import-
ance of scaffolded learning opportunities tied closely (both in time 
and content) to initial exposure, this study suggests that more work 
may be needed to ensure that students are understanding subtopics/ 
concepts clearly and in a way that strengthens their overarching 
learning possibilities. While this study serves an important purpose, 
it is bound by several constraints. First, it looks only at a single 
course in a semester that was contextualized by COVID 19. That 
notwithstanding, it offers interesting insight into the ways in which 
students engage with a connected set of complementary learning 
opportunities.  
5.2 Implications for Practice 
This study positively reinforces the utility and importance of 
providing multiple pathways for students to learn content material. 
Building on the work of this instructor, findings identify that when 
made available, students will engage with different forms of 
curricular presentation and for at least some, will revisit those 
opportunities multiple times. Further, the findings suggest that 
opportunities that are low stakes (e.g., without serious grade 
consequences) may be especially important in allowing students the 
active space needed to master concepts.  
5.3 Implications for Future Research 
This study lays important foundation for future research in this area. 
Specifically, subsequent studies might usefully understand with 
finer grain individualized patterns of student use connected across 
course learning opportunities as well as the ways in which those 
usage patterns connect with various outcomes (e.g., grades, 
satisfaction, sense of agency).  
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6 CONCLUSION 
Work continues to be needed to ensure that we are providing and 
understanding the utility of various learning opportunities toward 
the larger academic outcomes of interest. In the field of network 
security, the generation of highly skilled graduates able to engage 
the work effectively has never been more needed. This study 
reminds us that the pathway to a strong workforce begins with the 
classroom.  
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ABSTRACT 
The fate and transport of dissolved constituents in porous media has 
important applications in the earth and environmental sciences and 
many engineering disciplines. Mathematical models are commonly 
applied to simulate the movement of substances in porous media 
using the advection-dispersion equation. Whereas computer 
programs based on numerical solutions are commonly employed to 
solve the governing equations for these problems, analytical 
solutions also exist for some important one-dimensional cases. 
These solutions are often still quite complex to apply in practice, 
and therefore computational tools are still needed to apply them to 
determine the concentrations of dissolved substances as a function 
of space and time. The Python Programming Language provides a 
variety of tools that enable implementation of analytical solutions 
into useful tools and facilitate their application to experimental data. 
Python provides an important but underutilized tool in environ-
mental modeling courses. This article highlights the development 
of a series of Python-based computing tools that can be used to 
numerically compute the values of an analytical solution to the one-
dimensional advection-dispersion equation. These tools are targeted 
to graduate and advanced undergraduate courses that teach 
environmental modeling and the application of Python for 
computing.  

KEYWORDS
Python, Advection-Dispersion Model, Analytical Solution, Column 
Experiment, Columntracer, Dispersion Coefficient, Breakthrough 
Curve, Jupyter Notebook, Binder, Educational Computing Tools 

1 INTRODUCTION 
The fate and transport of dissolved constituents in porous media has 
many important applications in geology, environmental science, 
and engineering. Field and laboratory studies are often used to study 
the fate and transport of contaminants in porous media. These 
studies also require computational tools for interpretation of data 
and forecasting of pollutant migration into uncontaminated areas. 
Since many contaminants released to the environment are 
eventually trapped in soils and sediments, these media can 
contribute to the contamination to surface water and groundwater in 
the vicinity, depending on the contaminant characteristics and site 
geological properties.  

 Laboratory columns are widely used to study fate and 
transport in porous media such as soils and sediments. For example, 

McKenzie et al. [13] and Høisæter et al. [8] recently conducted 
column experiments to improve the understanding of per- and 
polyfluoroalkyl substances, an emerging class of pollutants, in 
unsaturated soils and groundwater. Perujo et al. [16] carried out a 
laboratory-scale column experiment to study the interaction 
between physical heterogeneity and microbial processes in 
subsurface sediments, and Westerhoff et al. [22] performed column 
tests for arsenate removal in iron oxide packed bed columns. The 
main purpose of column experiments is to investigate the transport 
and attenuation of a specific compound within a specific sediment 
or substrate [2]. Column experiments are flexible and simple to 
manage; therefore, it is possible to run a column experiment as part 
of an educational course. The boundary conditions, physical and 
chemical properties of the contaminants, media characteristics, and 
the type of the solvent can be controlled easily during preparation. 
The resulting data can provide a useful educational experience for 
students that are learning about fate and transport modeling. 

The movement of dissolved constituents in porous media 
strongly depends on the fluid flow characteristics. In laboratory 
columns, it is reasonable to assume the flow is one-dimensional. 
Tracer studies using an inert substance that does not interact with 
the media are frequently used to assess fluid flow. The results of a 
tracer study provide data that can be used with an appropriate model 
to interpret the fluid movement, which can then be used to assess 
migration of other substances within the media.  

Mathematical models based on advection (the movement of a 
dissolved substance with the bulk media) and dispersion (the 
dissipation of concentration gradients in the media due to 
differences in flow path lengths) are often used to simulate the fate 
and transport of dissolved substances. One-dimensional advection-
dispersion models often provide excellent performance in 
explaining observed concentrations within laboratory columns used 
to study the movement of dissolved substances within porous media 
[1]. Students in the earth and environmental sciences and engin-
eering disciplines require substantial training in computational 
science to apply these models. In addition to knowledge of the 
underlying physical and chemical processes, these students often 
also require training in the solution of differential equations and the 
development of computer programs to perform the calculations. 
The Python Programming Language provides a convenient plat-
form for solving advection-dispersion problems, since it provides 
access to many applicable computational and visualization tools; 
however, limited educational tools are available to teach the 
applications of Python for environmental modeling. 

The one-dimensional dispersion-advection model can be used 
to simulate the behavior of tracer transport in porous media. An 
analytical solution for the model has been developed in the Fortran 
programming language that is described in a report published by the 
U.S. Geological Survey (USGS), which includes three additional 
useful analytical solutions to 1-dimensional dispersion-advection 
equation in porous media, and more solutions to 2 and 3-dimen-
sional situations [23]. Fortran is still used today for high perform-
ance computing, but it is difficult to implement for analytical 
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solutions. High-level languages like Python provide many external 
libraries for specific needs such as root finding, minimization, and 
graphics that make it a more suitable alternative on modern 
computing platforms for problems such as the transport of a tracer 
in a porous medium.  

In this article, a new Python library “columntracer” and a suite 
of supplementary Jupyter Notebooks [11] illustrating its develop-
ment and usage are presented. The software is written entirely in 
Python and is freely available online. Key features of columntracer 
include the ability to: (1) calculate the solute concentration at any 
point in time and space in a column, (2) plot concentration profiles 
and breakthrough curves, and (3) fit experimental data at the outlet 
to breakthrough curves to find dispersion coefficient. In experi-
mental column studies, effluent concentrations are easily obtained, 
while the dispersion coefficients are a key unknown parameter. By 
using columntracer, dispersion coefficients can be determined with 
a few lines of code. This library and the associated Jupyter Note-
books serve as a potentially useful educational tool for students in 
environmental modeling classes. Students are able to learn how 
contaminants flow through the column, how different initial 
conditions affect the concentration profile across the column and 
lead to different final concentrations at outlet, and how to fit 
experimental data to obtain dispersion coefficient of the process. 
The Notebooks also demonstrate the potential power of using 
Python versus computing tools that are more familiar to environ-
mental science and engineering students, such as spreadsheet 
programs. 

This project was conducted as an individual special problem 
for three credit hours for the student lead author. The objectives of 
the project were to: (1) deepen student understanding of the 
modeling of fate and transport of contaminants in porous media, (2) 
improve student Python programming skills, including creating 
Python classes, utilizing modules, managing code on GitHub, and 
publishing the columntracer library, and (3) provide an alternative 
to the U.S. Geological Survey Fortran based program for solving 
the dispersion-advection equation by developing a Python 
implementation.  

2 METHOD 
2.1 Model Description 
Consider a cylindrical column of length L with flow entering on one 
end and exiting on the other end. The velocity of the flow U is easily 
measured by monitoring the flow rate (volume that exits per unit 
time). The dispersion coefficient D represents the tendency of the 
concentration gradients to dissipate. Tracer experiments using 
conservative substances such as bromide are typically used, along 
with a model, to estimate this parameter. The solute concentration 
in the influent for a tracer has a constant concentration of C0, and 
eventually the concentration leaving the column will also have a 
concentration of C0, at which point the tracer is said to have 
achieved “breakthrough.” Before breakthrough, the concentration 
in the effluent gradually increases from zero and to the influent 
concentration level. Figure 1 illustrates the model system for the 
case when C0 = 100, L = 30, U = 10, and D = 100. The parameters 
that affect the output from the column for this model are listed in . 
. 

Table 1. List of model parameters. 
Parameters Description Units 

C0 Solute influent concentration mg/L 

U Flow velocity in column cm/hr 

D Dispersion coefficient cm2/hr 

L Length of column cm 

Figure 1. Schematic of Column Mode. 

2.2 Advection and Dispersion Equation 
2.2.1  Model and Boundary Conditions 
Equation (2.1) shows the model used in the software, which is the 
one-dimensional advection-dispersion equation. The value of C is 
the concentration at time t and distance x from the inlet. The 
equation is based on a material balance within a differential element, 
and it assumes constant value of the parameters U and D. 

𝑑𝐶
𝑑𝑡 = 𝐷

𝑑!𝐶
𝑑𝑥! −𝑈

𝑑𝐶
𝑑𝑥

(2.1) 

Two boundary conditions and one initial condition are 
required to solve the equation. Assuming there is no tracer in the 
column at the start of the simulation, the initial condition is zero 
concentration, as shown in Equation (2.2). The boundary condition 
for the influent is flux-matching (i.e., the mass flow of the tracer 
into the column equals the mass flow inside the column at x = 0). 
The advective flux into the column matches the advective and 
dispersive fluxes at the start of the column in Equation (2.3). The 
Danckwerts’ boundary condition used at the effluent assumes that 
the dispersion flux is negligible, meaning the derivative is zero, 
which is shown in Equation (2.4) [25]. 

𝐶(𝑥, 𝑡 = 0) = 0 (2.2) 

𝑈𝐶" = 𝑈𝐶(𝑥 = 0, 𝑡) − 𝐷
𝑑𝐶(𝑥 = 0, 𝑡)

𝑑𝑥
(2.3) 

𝑑𝐶(𝑥 = 𝐿, 𝑡)
𝑑𝑥 = 0 (2.4) 

The equations can be non-dimensionalized using the 
dimensionless time t*, distance x*, and concentration C*, which 
simplifies the mathematics as shown in Equations (2.5)-(2.7). In the 
dimensionless domain, the three parameters are reduced to just one 
parameter, defined as the Peclet number Pe in Equation (2.8), which 
represents the ratio of the importance of advection to dispersion 
processes in the column. 

𝑡∗ =
𝐷𝑡
𝐿!

(2.5) 

𝑥∗ =
𝑥
𝐿

(2.6) 

𝐶∗ =
𝐶
𝐶"

(2.7) 

𝑃𝑒 =
𝑈𝐿
𝐷

(2.8) 
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The governing equation, initial condition, and boundary conditions 
become Equations (2.9)-(2.12), after normalization. 

𝑑𝐶∗

𝑑𝑡∗ =
𝑑!𝐶∗

𝑑𝑥∗!
− 𝑃𝑒

𝑑𝐶∗

𝑑𝑥∗
(2.9) 

𝐶∗(𝑥∗, 	𝑡∗ = 0) = 0 (2.10) 

𝐶∗(𝑥∗ = 0, 	𝑡∗) −
1
𝑃𝑒
𝑑𝐶∗(𝑥∗ = 0, 	𝑡∗)

𝑑𝑥∗ = 1 
(2.11) 

𝑑𝐶∗(𝑥∗ = 1, 𝑡∗)
𝑑𝑥∗ = 0 (2.12) 

2.2.2  Analytical Solution to the Model 
The dimensionless governing equation and auxiliary conditions 
(Equations (2.9)-(2.12)) are a boundary value problem that can be 
solved using separation of variables [18]. The USGS summarizes 
four analytical solutions for the 1-dimensional advection-dispersion 
equation, including the model problem shown in Equation (2.13, 
which is referred to as a “Finite System with Third-Type Source 
Boundary Condition” in the report. Only one analytical solution is 
included in columntracer, but the others could be added easily in the 
future or developed for other student projects. Furthermore, 
analytical solutions to 2 and 3-dimensional problems in different 
situations are also available [23]. The values of 𝛽𝑖 are the 
eigenvalues of the boundary value problem, and the corresponding 
terms in the infinite series are the eigenfunctions [5]. The 
eigenvalues are determined by finding the roots of Equation (2.14), 
which is the characteristic equation of the boundary value problem. 

𝐶∗(𝑥∗, 	𝑡∗)

= 1 − 2𝑃𝑒 ∙ 𝑒$
%&
! '

∗(%&
"

) *∗+

∙ 5
𝛽, 6𝛽, cos(𝛽,𝑥∗) +

𝑃𝑒
2 sin(𝛽,𝑥∗)=

>𝛽,! +
𝑃𝑒!
4 + 𝑃𝑒@ >𝛽,! +

𝑃𝑒!
4 @

∙ 𝑒(-#"*∗
.

/01

(2.13) 

𝛽𝑐𝑜𝑡𝛽 −
𝛽!

𝑃𝑒 +
𝑃𝑒
4 = 0 

(2.14) 

A sufficient number of eigenvalues must be estimated to 
perform the summation in Equation (2.13). The characteristic 
equation (2.14) has no exact solution, unlike some other 
characteristic equations commonly encountered in diffusion 
boundary value problems. The eigenvalues for a given column 
system with parameters U, D, and C0 depend only on the Peclet 
number defined in Equation (2.8). The values for a given Pe can be 
determined by finding the roots of Equation (2.15). The function 
has a singularity at all integral multiples of 𝜋 based on trigonometric 
relationships shown in Equation (2.16) and (2.17). 

𝐹(𝑃𝑒, 𝛽) = 	𝛽𝑐𝑜𝑡𝛽 −
𝛽!

𝑃𝑒 +
𝑃𝑒
4

(2.15) 

𝑐𝑜𝑡𝛽 =
𝑐𝑜𝑠𝛽
𝑠𝑖𝑛𝛽

(2.16) 

𝑠𝑖𝑛𝛽 = 0	𝑎𝑡	𝛽 = 0, 𝜋, 2𝜋,… = 𝑛𝜋 (2.17) 

Between each singularity, the function has exactly one zero. 
Figure 2 shows the value of the function across the first ten 
singularities. It also shows the first few roots. In Figure 2, the value 
of the function, the singularities at every 𝑛𝜋, and the location of the 
first eigenvalue near 𝛽	= 1.54 can be seen. To use the model result, 
the first task is to identify the eigenvalue across each interval. 
Scientific Python (SciPy) has an optimization library with a variety 
of methods to determine the root of a function. For the model 

problem, Brent’s method [3] can be used to solve the characteristic 
equation. 

Figure 2. Characteristic Equation for Eigenvalues. 

Brent’s method (also sometimes called the van Wijngaarden-
Dekker-Brent method) is a root-finding algorithm which combines 
root bracketing, bisection, and inverse quadratic interpolation. It 
uses a Lagrange interpolating polynomial of degree 2. Brent [3] 
claims that this method always converges as long as the values of 
the function are computable within a given region containing a root. 
Given three points x1, x2, and x3, Brent’s method fits x as a 
quadratic function of y, then uses the interpolation formula 
described in Equation (2.18) [21]. 

𝑥 = 
[𝑦 − 𝑓(𝑥1)][𝑦 − 𝑓(𝑥!)]𝑥2

[𝑓(𝑥2) − 𝑓(𝑥1)][𝑓(𝑥2) − 𝑓(𝑥!)]
+ 

[𝑦 − 𝑓(𝑥!)][𝑦 − 𝑓(𝑥2)]𝑥1
[𝑓(𝑥1) − 𝑓(𝑥!)][𝑓(𝑥1) − 𝑓(𝑥2)]

+
[𝑦 − 𝑓(𝑥2)][𝑦 − 𝑓(𝑥1)]𝑥!

[𝑓(𝑥!) − 𝑓(𝑥2)][𝑓(𝑥!) − 𝑓(𝑥1)]
 

(2.18) 

Subsequent root estimation is obtained by setting y = 0, giving 

𝑥 = 𝑥! +
𝑃
𝑄

(2.19) 

where P and Q are: 

𝑃 = 𝑆[𝑇(𝑅 − 𝑇)(𝑥2 − 𝑥!) − (1
− 𝑅)(𝑥! − 𝑥1)]

(2.20) 

𝑄 = (𝑇 − 1)(𝑅 − 1)(𝑆 − 1) (2.21) 
with 

𝑅 ≡
𝑓(𝑥!)
𝑓(𝑥2)

 
(2.22) 

𝑆 ≡
𝑓(𝑥!)
𝑓(𝑥1)

 
(2.23) 

𝑇 ≡
𝑓(𝑥1)
𝑓(𝑥2)

 
(2.24) 

Following the determination of a suitable number of eigenvalues, 
the simulated concentration is computed at any point in the domain 
by summing the eigenvalues in Equation (2.13).  

2.2.3  Dispersion Coefficient Fitting 
One of the primary applications of Equation (2.13) is to determine 
the value of the dispersion coefficient in the media. The velocity 
and initial concentration can be measured relatively easily for a 
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given experiment. Determining the value of D requires an inverse 
parameter fitting, which typically requires running many 
simulations, assessing performance, and optimizing an objective 
function, such as minimizing error. A common approach for 
parameter estimation is to compare the model simulation with 
experimental results. Given a set of values for the effluent 
concentration at 𝑥	= L at various points in time, a series of values of 
the dispersion coefficient can be used to calculate the 
concentrations corresponding to specific data points of 
breakthrough curve.  

After the simulated concentrations corresponding to each data 
point are calculated, the mean squared error (MSE) between the 
simulated data and the experimental data can be determined. The 
MSE is calculated using Equation (2.25), where 𝐶3T  is the simulated 
concentration, 𝐶, is the measured concentration, n is the number of 
measurements. The goal of fitting process is to minimize the MSE. 

 
 

𝑀𝑆𝐸 =
1
𝑛5(𝐶3T − 𝐶,)!

/

,01

 
(2.25) 

Scientific Python (SciPy) offers several functions for 
minimization in its “optimize” module. Four different functions are 
available, depending on the nature of the application. The default 
function is fmin, which uses the downhill simplex algorithm, also 
known as the Nelder-Mead method [14]. The other options are 
fmin_powell, fmin_cg, and fmin_bfgs, which use Powell’s method 
[17], the nonlinear conjugate gradient algorithm [15], and the 
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [6], resp. 
The results of different functions were compared for performance 
as described in Section 3.3. One of the advantages of using Python 
is the ready availability of these tools for applications such as 
parameter fitting. Demonstrating these capabilities to students can 
help to close the gap and develop computational thinking skills for 
students with limited programming experience. 

After the dispersion coefficient is determined, the coefficient 
of determination, R2, can be calculated using Equation (2.26), where 
�̅�4  and �̅�5  represent the mean values of the model, 𝐶3T , and the 
observations, 𝐶,, resp. 
 

 
𝑅! =

(∑ (𝐶3T − 𝐶4̅) ∙ (𝐶, − �̅�5),0/
,01 )!

∑ (𝐶3T − 𝐶4̅)!,0/
,01 ∙ ∑ (𝐶, − �̅�5)!/

1
 (2.26) 

 

2.3 Software 
2.3.1  Description 
The model tools described in Section 2.2 have been compiled into 
a software library known as “columntracer.” The columntracer 
library is written completely in Python [19]. Python is an interpreted 
high-level open-source programming language, with a design 
philosophy that emphasizes code readability. Python’s user-friendly 
syntax and interpreted nature decrease the time requirements for 
new users (e.g., students in an environmental modeling course) to 
begin applying the software to problem solving. Python’s 
extensibility and interpreted nature allow new users to perform 
complex tasks by integrating various libraries, thereby saving time 
[12]. The key third-party modules used in columntracer are 
Numeric Python (NumPy) for generating and calculating arrays and 
matrixes [7], Scientific Python (SciPy) for optimizing and solving 
equations [20], and the Math Plotting Library (Matplotlib) for 
plotting and visualization [9]. 

The Jupyter Notebook is an open-source web application that 
allows user to create and share documents that contain live code, 
equations, visualizations, and narrative texts [11]. Jupyter Note-

books have been generated to illustrate the computation procedure 
outlined in Section 2, show applications of the columntracer classes 
that enable rapid development of new models, and provide 
documentation of the source code that is available on GitHub [4]. 
In the documentation, examples are demonstrated with both code 
and narrative texts. An example data set for fitting the dispersion 
coefficient is also available in the repository that comes with the 
module. The data set was taken from a study that compared the 
performance of different models that were fit to experimental 
concentrations in a one-dimensional column [24].  

The Binder project offers an easy place to share computing 
environment to everyone. It allows project creators to specify 
custom environments and share them with a single link [10]. With 
the link, users are able to get access to the project without 
downloading any required software or packages. On the 
columntracer GitHub page [4], Binder links are provided for 
interacting the Jupyter Notebooks, requiring only a web browser. 
With the help of Binder, it’s easy to demonstrate the functions of 
columntracer in classroom or other educational situations that 
Python environment is not immediately accessible.  

2.3.2  Walk-through  
Figure 3 shows a screenshot of the code for importing the 
columntracer package and performing a demo run with the default 
parameters.  

  
Figure 3. Example Code for Import and Demo Run  

Four methods are called during the demo run in the following 
sequence: (1) “characteristic_equation” that computes and plots the 
characteristic equation for a given Pe (3 in the demo), (2) 
“eigenvalues” that calculates the first n eigenvalues (1000	in	the	
demo),	 (3)	 “concentration_profile”	 that	 calculates	 the	
concentrations	 across	 the	 column	 at	 various	 times	 (0.00001, 
0.1, 0.5, 1, 2, 4, and 10 hours in the demo), and (4) 
“effluent_concentration” that calculates the concentration at the 
outlet of the column (0 to 12 hours in the demo). 

By setting the parameter “demo_plot” to True, the software 
generates plots of the characteristic equation for eigenvalues 
(Figure 2), the column concentration profiles (Figure 11), and the 
column breakthrough curve (Figure 12), which can also be obtained 
by the code in Figure 4, Figure 6, and, Figure 8, respectively. The 
parameter “demo_plot_save” determines whether to save the plots 
to a local file, and “savefig_dpi” specifies the image quality (200 
dots per inch, dpi).  

The parameter “savefig” in Figure 4, Figure 6, and, Figure 8 
controls the export of plots, and it is set to False by default. Setting 
savefig to True will save the plot to the working directory with a 
default file names of “characteristic_equation,” “concentration_	
profile,” and “breakthrough_curve,” respectively. Users can also 
assign a string to the parameter to name the image files. If users 
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want an image with lower or higher quality, they can change the 
value of parameter “savefig_dpi.” 

 

 
Figure 4. Example Code to Compute the  

Characteristic Equation. 

  
Figure 5. Example Code for Calculating the Concentration  

at a Given Time and Position. 

Columntracer can calculate the concentration at any given time 
and location in the column as shown in Figure 5. The x values range 
from 0 to 1, which is similar to the parameter “position” in Figure 
6, indicating the location from the beginning to the end of the 
column. In Figure 5, the effluent concentration at 9 hours is 
calculated to be 98.23 mg/L. By calculating the concentration 
throughout the column at a given time, a concentration profile can 
be created as shown in Figure 6. 

   
Figure 6. Example Code for Calculating and  

Plotting Concentration Profiles. 

In Figure 6, concentration profiles are calculated for t = 
0.00001, 0.1, 0.5, 1, 2, 4, and 10 hours at different locations through 
the column, which are indicated by the variable “pos.” The 
parameter “positions” must be provided as a list of values ranging 
from 0 to 1, and each value represents the ratio of the distance in 

the column to the total length of the column. This method returns a 
list of concentration lists that can be printed by setting parameter 
“print_conc” to True. Each concentration list corresponds to a time 
in the parameter “times,” and each list has the same length as 
parameter “positions.” By using the concentration stored in variable 
“c_profile,” users can access the data and make plots using the 
Matplotlib package [9] as illustrated in Figure 7.  

For calculating and plotting a breakthrough curve such as the 
one shown in Figure 8, users must provide a time period for the 
solute transport, as well as the time interval, which determines how 
many data points are calculated. The parameter “time_start” is 0 by 
default, but can modified if a different starting time is desired. This 
method returns a list of concentrations that can be used for printing 
or plotting. Users can also choose to use automatic plotting by 
setting parameter “plot” to True, or create plots manually as shown 
in Figure 9. 

 
Figure 7. Example Code for Accessing Concentration  

Profile Data after Numerical Computation. 

For calculating and plotting a breakthrough curve such as the 
one shown in Figure 8, users must provide a time period for the 
solute transport, as well as the time interval, which determines how 
many data points are calculated. The parameter “time_start” is 0 by 
default, but can modified if a different starting time is desired. This 
method returns a list of concentrations that can be used for printing 
or plotting. Users can also choose to use automatic plotting by 
setting parameter “plot” to True, or create plots manually as shown 
in Figure 9. 

 
Figure 8. Example Code for Calculating the Effluent 
Concentration and Plotting the Breakthrough Curve. 

In Figure 10, a csv file containing time and effluent concen-
tration data is imported. The first 8 values in the file are also shown 
in the figure. The data are used to fit to a breakthrough curve, so 
that a dispersion coefficient can be determined. The data processing 
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in the figure is only for the example data set, which is a csv file with 
2 columns: one for time and the other for the corresponding 
concentrations. The csv file is available in the columntracer module 
folder or can be accessed on GitHub repository [4]. The initial 
concentration, solute velocity, length of the column, and the initial 
guess of the dispersion coefficient are required for the dispersion 
coefficient fitting. Four algorithms are available for minimization, 
which are described in Section 3.3. Setting the parameter 
“algorithm” to None applies the default algorithm: the Nelder-Mead 
method. 

 
Figure 9. Example Code for Accessing Effluent  

Concentration Data after Numerical Computation. 

 
Figure 10. Example Code for Fitting Data to Breakthrough 

Curve to Fit the Dispersion Coefficient. 

3 RESULTS 
Examples of several model applications are provided in Jupyter 
Notebooks that describe the code and show plots of the output for 
educational purposes. A general description of the model and a 
detailed set of examples scripts for columntracer are provided with 
the source repository [4]. Jupyter Notebooks are recommended for 
educational applications, but other Python environments can also be 

used, including the Command Prompt or the IPython console. 
Alternative text editors and integrated development environments 
(IDE) such as PyCharm and Spyder can also be used to work with 
the code, particularly since columntracer is provided as a library on 
the Python Package Index (PyPI) [26].  

3.1 Concentration Profiles 
After the eigenvalues for a given parameter set (Pe) have been 
determined, the concentration can be evaluated at any point in time 
and space with the same approach described in Section 2.2.2. Figure 
11 shows the evolution in the concentration profile over time 
throughout the column for the example case where initial 
concentration C0 = 100 mg/L, the column length L = 30 cm, the 
solute velocity U = 10 cm/hr, and the dispersion coefficient 
D = 100 cm2/hr. The number of eigenvalues used for the example 
was n = 1000. At the beginning of the simulation, the concentration 
is zero everywhere, as expected, while at the end, the concentration 
has equilibrated with the influent concentration throughout the 
column. Between these extremes, the concentration gradually 
increases throughout the column. 

 
Figure 11. Column Concentration Profiles for  

t = 0, 0.1, 0.5, 1.0, 2.0, 4.0, 10 hours. 

3.2 Breakthrough Curve 
The concentration at the outlet is of primary interest for tracer 
studies, since it can be compared to observed data. A high-
resolution time series of concentrations can easily be obtained by 
evaluating the function at the outlet (𝑥	= 𝐿), and the breakthrough 
curve is shown in Figure 12. The dotted line in blue indicates the 
breakthrough with D = 0, which is known as “plug flow,” since the 
fluid flow paths in this case are all the same causing flow in a “plug” 
motion.  

 
Figure 12. Column Breakthrough Curve. 

3.3 Dispersion Model Fitting 
Experimental data for a column were obtained from Xiong et al. 
[24] and are provided with the columntracer repository on GitHub 
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[4]. The column length in the study was 650 cm, and the velocity 
was 34 cm/hr. The concentrations in this publication were non-
dimensionalized, meaning they represent the dimensionless C* (the 
ratio of the effluent to the influent concentration), so the values 
range between 0 and 1. By choosing the default minimization 
method from SciPy, fmin, which uses Nelder-Mead method, and 
with an initial guess of 175 cm2/hr, the fitted dispersion coefficient 
is 193.9 cm2/hr, with mean squared error (MSE) of 0.0888 and R2 
of 0.964. Figure 13 shows the raw data and the breakthrough curve 
based on fitted dispersion coefficient. In Xiong et al. [25], the 
coefficient was fitted to be 74 cm2/hr with root mean square error 
(RMSE) of 0.0313 and an R2 of 0.9935. The relatively higher MSE 
may be caused by the inaccuracy and low quantity of the 
experimental data obtained from the figure. Because porosity η was 
not considered in the software, the adjusted dispersion coefficient 
is calculated to be 77.56 cm2/hr using Equation (3.1), assuming 
η = 0.4, which is in good agreement with the value determined from 
the original analysis. 

𝐷678 = 𝜂𝐷 (3.1) 

Figure 13. Fitted Breakthrough Curve and 
Experimental Data. 

The other three minimization methods from SciPy were also 
tested. The results are listed in Table 2, which  compare the  time 
consumption to determine D for the different  algorithms.   For 
the sample dataset, both the Nelder-Mead method and  Powell’s 
method achieved satisfactory MSEs, whereas the MSEs for the 
nonlinear conjugate gradient algorithm and BFGS algorithm were 
less satisfactory.  Students  can easily try  different    algorithms to 
find  the  most  suitable  approach  for  their  own data  sets  in  an 
educational environment. 

Table 2. Fitted Dispersion Coefficient and MSE Using 
Different Minimization Algorithms. 

Function Algorithm 
D 

(cm2/hr) 

MSE 

(-) 

Time 

(s) 

fmin Nelder-Mead method 193.9 0.089 4.73 

fmin_powell Powell’s method 171.2 0.088 19.1 

fmin_cg Nonlinear conjugate gradient 
algorithm 175 0.18 7.7 

fmin_bfgs BFGS algorithm 175 0.19 9.6 

3.4 Verification, Validation, and Accreditation 
The USGS report provides an example (Sample Problem 2) in 
section titled “Finite System with Third-Type Source Boundary 
Condition” that includes detailed computational results shown in 

attachment 4 [23]. The input data from this sample problem were 
used for validation of the columntracer library. The input 
parameters include: the initial concentration C0 = 1 mg/L, the 
column length L = 12 inches (30.48 cm), the solute velocity U = 0.6 
inch/hr (1.524 cm/hr), and the dispersion coefficient D = 0.6 
inch2/hr (3.87096 cm2/hr). The concentration profiles are shown in 
Figure 14, in which the lines represent the simulated data by 
columntracer and markers represent the data provided in the USGS 
report. The detailed results are presented in U.S. Customary units 
in APPENDIX in the Appendix and show perfect consistency with 
the results in the report.  

Figure 14. Concentration Profiles for Sample Problem 2. 

The simulation results in Table 3 and the concentration profile 
plot are provided in the USGS report on pages 219 and 31, 
respectively. Both Figure 14 and Table 3 show a perfect repro-
duction of the results from the USGS program using the 
columntracer simulation. The time consumption is about 0.03 
seconds, which is over a hundred times faster than the FORTRAN 
program described in the report. A Jupyter Notebook is available 
showing these results in a folder called “validation” on GitHub 
repository for validation [4]. The results provide a comparison of 
the utility of the modern interactive Python notebook and a com-
piled and less user-friendly FORTRAN program from 30 years ago. 

The source code, data, and Jupyter Notebooks can be found on 
GitHub repository [4]. The columntracer library is downloadable 
from PyPI by using command “pip install columntracer” in 
Command Prompt. With the installation of columntracer and a 
clone of the repository, users are able to verify the algorithms of the 
program and use the Jupyter Notebooks to validate the results of the 
model that are provided in the repository. The source code was 
installed on new machines and used to validate the results shown in 
this article. The results are shown with both MSE and R2 to ensure 
that the model correctly predict the transport process. With the help 
of the Binder link provided in the source repository, the Jupyter 
Notebooks can be run through a server online without installing any 
software locally. The examples provided throughout this exercise, 
and additional examples that were run using different parameter 
values all validate the model. The expected behavior that is 
observed in physical experiments is reproduced from the model 
results. 

The information in this article is useful for both undergraduate 
and graduate students in environment-related majors, teachers who 
teach courses involving fluid transport in porous media, and 
researchers who perform column experiments. The information 
provided can help students both be trained with Python 
programming ability and learn modeling of fate and transport of 
dissolved constituents. 

4 CONCLUSION 
Column experiments are useful for studying fate and transport of 
solutes through porous media. A new open-source software tool, 
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columntracer, has been developed to help user better understand the 
column experiment. The software provides solutions to advection-
dispersion equation as well as the visualization of the solutions, 
which includes plotting the characteristic equation, concentration 
profiles, and the effluent breakthrough curve. The software can also 
be used to fit the dispersion coefficient using experimental effluent 
data by minimizing the mean-squared error. The columntracer 
library can be a useful tool for research, but it is also appropriate for 
educational purposes. Students in environmental modeling courses 
could use the software to learn about solute transport, Python 
scripting, NumPy, SciPy, Matplotlib, and Jupyter Notebook by 
using the software and the supplementary Notebooks. The code and 
Notebooks are open-source and freely available online [4].  

5 REFLECTION 
By completing the project, I managed to learn how to define and 
modify a Python class by manipulating attributes and functions, as 
well as by implementing third-party libraries including NumPy, 
SciPy, Matplotlib, Jupyter, and Binder. In addition to programming 
skills, I became acquainted with the advection-dispersion model, 
and its analytical solution solved by separation of variables. I also 
learned how to perform parameter fitting using optimization within 
the Python environment. During the acquirement of these skills, 
there were several challenges that I faced. Debugging was one of 
the hardest, because sometimes a typo could result in a break-down 
or an unexpected outcome. Finding an appropriate method for the 
parameter fitting was also challenging, because there were 
numerous approaches available. On the whole, the project improved 
both my programming ability and specialized knowledge in my 
major, and would help me in future projects such as programming 
for wastewater process optimization and machine learning in 
Python. For these reasons, I consider the project an overall success. 
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APPENDIX 

Table 3. Solute Concentration as a Function of Time for 
Sample Problem 2 

Position 
in 

Column 
(inch) 

Time (hr) 

2.5 5.0 10.0 15.0 20.0 

 Solute Concentration (mg/L) 
0.0 0.79858 0.90992 0.97530 0.99197 0.99716 

0.5 0.68921 0.85904 0.96098 0.98727 0.99549 

1.0 0.56799 0.79673 0.94230 0.98097 0.99322 

1.5 0.44466 0.72419 0.91871 0.97276 0.99021 
2.0 0.32919 0.64364 0.88977 0.96231 0.98629 
2.5 0.22958 0.55821 0.85524 0.94926 0.98128 
3.0 0.15033 0.47151 0.81509 0.93331 0.97499 
3.5 0.09217 0.38726 0.76955 0.91415 0.96720 
4.0 0.05280 0.30880 0.71911 0.89156 0.95771 
4.5 0.02820 0.23875 0.66455 0.86537 0.94630 
5.0 0.01402 0.17878 0.60686 0.83551 0.93276 

5.5 0.00648 0.12953 0.54722 0.80201 0.91692 

6.0 0.00278 0.09072 0.48691 0.76503 0.89862 

6.5 0.00111 0.06137 0.42724 0.72482 0.87775 

7.0 0.00041 0.04008 0.36949 0.68179 0.85425 

7.5 0.00014 0.02525 0.31477 0.63644 0.82814 

8.0 0.00004 0.01534 0.26404 0.58940 0.79952 

8.5 0.00001 0.00898 0.21800 0.54138 0.76864 

9.0 0.00000 0.00507 0.17710 0.49322 0.73590 

9.5 0.00000 0.00275 0.14160 0.44591 0.70194 

10.0 0.00000 0.00144 0.11154 0.40065 0.66775 

10.5 0.00000 0.00072 0.08691 0.35904 0.63487 
11.0 0.00000 0.00035 0.06782 0.32340 0.60563 
11.5 0.00000 0.00018 0.05487 0.29733 0.58368 
12.0 0.00000 0.00012 0.04982 0.28674 0.57463 
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ABSTRACT
Given the anticipated growth of the high-performance comput-
ing market, HPC is challenged with expanding the size, diversity,
and skill of its workforce while also addressing post-pandemic dis-
tributed workforce protocols and an ever-expanding ecosystem of
architectures, accelerators, and software stacks. As we move toward
exascale computing, training approaches need to address how to
best prepare future computational scientists and enable established
domain researchers to stay current and master tools needed for ex-
ascale architectures. This paper explores adding hybrid and virtual
Hackathons to the training mix to bridge traditional programming
curricula and hands-on skills needed among diverse communities.
We outline current learning and development programs available;
explain the benefits and challenges in implementing hackathons
for training using experience gained from the Open Hackathons
program (formerly the GPU Hackathons program); discuss how
to engage diverse communities—from early career researchers to
veteran scientists; and recommend best practices for implementing
these events.

KEYWORDS
HPC, Exascale, Hackathons, HPC Training, HPC Education

1 INTRODUCTION
The potential for high-performance computing (HPC) to accelerate
science is limitless, making it essential to much of the research
activities across academia, supercomputing centers, government
laboratories, and industry. As the landscape of research changes,
large scientific projects can no longer advance in isolation but are
dependent on community-driven participation. This necessitates
the need for scalability of data processing and analysis, input/output
capabilities that match pace with computational capabilities, and
sufficiently performance-portable and expressive programming
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models that can handle the ever-growing volume, complexity, and
rapidity of current and future data sets. [7]

The overall outlook for the HPC market is strong. Growing at
an overall market compounded annual growth rate (CAGR) of 6.9
percent, Hyperion Research reported HPC spending (on-premise,
cloud, and AI) for 2021 neared $35 billion (USD) and is on track to
reach nearly $40 billion in 2022 and $50 billion by 2026. The rise
of exascale and near-exascale systems has also seen tremendous
growth, increasing from one near-exascale system in Japan in 2020
to five to eight exascale systems predicted by 2026 [9].

With the anticipated growth of HPC into exascale regions for
both scientific computing and the broader enterprise, HPC is feeling
the pressure of recruiting and retaining people. It faces the quandary
of expanding the size, diversity, and skill of its workforce while
simultaneously facing an expertise shortage. This scarcity of HPC
experts is driven by several factors, such as the outflow of retirees
exceeding the pipeline of new HPC staff, an increasing number of
HPC sites worldwide, and the rising complexity of existing sites
utilizing emerging technologies (i.e., AI, cloud, GPUs and other
accelerators) that require different skill sets and leading to more
systems per site [11].

As we move forward in exascale computing we must ask: How
can we improve recruitment and better prepare future computa-
tional scientists for the upcoming challenges in exascale computing?
How do we enable established domain researchers to stay current
with the latest software and hardware trends and master the tools
needed for the newer compute node architectures? How do we
make exascale and HPC more accessible?

Traditionally, HPC has had a high barrier to use, owing in no
small part to the shortfall of available expertise. Numerous training
and development modalities exist, but often are independent of each
other, lack standardization, or fail to incorporate real-world con-
cepts and applications. Adding in-person and virtual hackathons
to the training mix can bridge traditional programming curricula
and hands-on skills needed among the diverse communities across
national laboratories, supercomputing centers, and academic envi-
ronments.

Hackathons and coding bootcamps have evolved from early cod-
ing and “bug discovery” sessions to become modern innovation
events that combine agile programming and intense mentoring. The
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collaborative approach of these events provides the critical acceler-
ated computing skills needed by the scientific community and the
professionals that support them and aids in preparing researchers
to use current and upcoming supercomputing resources.

This paper explores adding in-person and virtual hackathons to
currently available learning and development programs, outlines
the benefits and challenges of these events; discusses community
impact and engagement, and finally, recommends best practices
for implementing hackathons for ongoing and sustainable develop-
ment.

2 BACKGROUND: CURRENT TRENDS IN HPC
TRAINING AND EDUCATION TODAY

HPC concepts have been taught in academic settings, through in-
formal webinars and tutorials at HPC Centers, or self-taught on
an "as-needed" basis." In traditional academia, HPC content is in-
terwoven within accredited computer science, information science,
or computer engineering degree programs. For students pursuing
research in other disciplines that require significant computing
resources, HPC education may be integrated into courses in a stu-
dent’s subject domain (i.e., physics) but the number of institutions
offering HPC coursework is low [14]. Additional challenges such as
the diversity and complexity of the subject domains and the limited
or varied computer literacy of the students only serve to compound
the problem.

Modeling and simulation, now so ubiquitous, have led to emerg-
ing fields such as Computational Science and Engineering (CSE).
Combining computer sciences, applied mathematics and statistics,
and domain sciences, CSE’s multidisciplinary approach encom-
passes methods of HPC and has become a cornerstone for the
development and use of computational methods for scientific dis-
covery [27]. While the number of CSE courses and programs has
grown, the overall availability is low as is the number of students
pursuing this area of study or graduating from these programs.
Current coursework fails to expose students to real-world appli-
cations thus limiting a true understanding of the complexities of
the field, preventing the development of skills needed for modern
scientific and technological enterprises, and inadequately preparing
students to fully utilize powerful new supercomputers for scientific
applications and innovation. Moreover, almost no universities have
a curriculum specifically focused on exascale or petascale science
as issues are largely unknown and unexplored [3].

HPC education is also commonly taught as brief, condensed
workshops lasting a half-day to several days or through specialized
training modules and events. These workshops are offered by a
diverse ecosystem of providers, but, whether it is an institution
looking to shore up the skills of their existing staff, a government
initiative aimed at ensuring the country continues critical research
or a professional organization dedicated to a specific area of practice,
the explicit goal is to develop a workforce with HPC-specific skills.

A variety of training options are available, ranging from we-
binars, lectures, Massively Open Online Courses (MOOCs) [15],
hands-on labs and tutorials, software carpentries [29], on-the-job
and specialized events among others. These options are often dis-
parate, unrelated, and not universally standardized. Many of these
training activities are executed in accordance with specific projects

or agendas that may or may not continue, such as in the case of
XSEDE which concluded formal operations as a National Science
Foundation (NSF)-funded project in August 2022 [30], or the Exas-
cale Computing Project (ECP), a component of the DOE-led Exas-
cale Computing Initiative (ECI), which is moving to completion in
mid-2023. An overview of the Training Efforts in the Exascale Com-
puting Project can be found in the paper by Marques and Barker
[12].

Additional challenges to workshops and training include a lim-
ited pool of qualified and available trainers, a finite number of
workshops and training activities offered for a given region within
the calendar year, the efficacy of the training materials and modali-
ties to meet individual learning needs at scale, and finally, training
materials may not be appropriate for the individual’s specific project
or timeframe.

3 LEVERAGING HACKATHONS FOR
TRAINING

Complex scientific challenges and priority research is pushing the
increased demand for extreme-scale computational resources to
support a range of workflows for modeling, simulation, and data
analysis that enable new discoveries and new understandings. The
role of software that is reusable is central to research; however,
many of the software libraries and scientific codes have largely
been developed organically and maintained by a diverse commu-
nity without considering longer-term sustainability that supports
interdisciplinary collaboration nor addresses rapidly changing com-
puting architectures [10].

Hackathons are fixed-time events during which individuals form
teams and intensively collaborate to advance or complete a specific
project of interest. [24] Believed to be coined during an OpenBSD
cryptographic development event in 1999 [13], the meaning and na-
ture of these events have developed from early ad-hoc exploratory
programming sessions to represent modern innovation events that
offer new opportunities for cooperative research and scientific dis-
covery. Growing in both popularity and success, hackathons foster
learning, drive community engagement, increase networking and
relationship-building, and are effective for addressing civic, envi-
ronmental, and public health issues, leading to increased adoption
across various fields from higher education to healthcare to business
services [8] [24].

For the purpose of this paper, we focus on Open Hackathons (for-
merly GPU Hackathons) [22], which are managed by the OpenACC
Organization [23] and are designed to help scientists, researchers,
and developers accelerate and optimize their applications on a vari-
ety of data center architectures, enabling them to build the critical
skills needed to take advantage of modern HPC compute resources.
Started as a one-off training activity in partnership with Oak Ridge
Leadership Computing Facility [20] and NVIDIA [4] in 2014, Open
Hackathons have evolved into a global program with over 100
hackathon events executed worldwide since the program launch.

3.1 Benefits
Leveraging Open Hackathons to support HPC training initiatives of-
fers benefits to attendees, the hosting organizations, and the commu-
nity at large. For hackathon attendees, the first and foremost benefit
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is training and skills development. Where both academic settings
and workshop/training offerings have challenges that perpetuate
difficulties in meaningful HPC training at scale, Open Hackathons
can address many of these limitations systematically.

At Open Hackathons, domain scientists are paired with expe-
rienced programming experts to receive dedicated guidance and
mentorship for the course of the event. Attendees work with their
mentors to strategically develop realistic goals for their codes and re-
ceive targeted recommendations and training in the HPC tools and
resources relevant to those goals, allowing them to build hands-on
skills such as learning how to compile their applications to identify
computational bottlenecks or trying a new library or framework
for a new approach to optimizing their code in short order.

Attendees are also given access to large heterogeneous HPC
compute clusters that they may not otherwise have access to, for
example, Ascent [21] the stand-alone 18 node system at OLCF
with the same architecture and design as their Summit supercom-
puter, ranked in the top five of the Top500 list of most powerful
commercially available computer systems since its debut in 2018
[25]. This enables an immersive experience that mirrors real-world
environments so that attendees, particularly those who are stu-
dents or early career researchers, can learn to navigate through
many issues related to scalability, parallel efficiency, heteroge-
neous computing, parallel storage systems, and other issues [26].
Other computing platforms used during Open Hackathons include
Cori at the National Energy Research Scientific Computing Center
(NERSC), HiPerGator at the University of Florida, Juwels Booster
at Forschungszentrum Juelich (FZJ), Piz Daint at the Swiss National
Supercomputing Centre (CSCS), and Cirrus powered by EPCC [1]
to name a few.

Since hackathon formats are intrinsically geared toward interde-
pendent work, attendees benefit from collective knowledge sharing
and increased opportunities for networking and recruitment as
teams gain visibility to active projects and peers in different insti-
tutions and domains.

With the growing range of HPC workflows needing support and
global exascale systems representing an $11 to $15 billion (USD)
investment, it is imperative that HPC organizations compel full uti-
lization of their existing systems and judiciously plan and prepare
for upcoming needs. The motivations for organizations to host a
hackathon are different from attendees; however, the benefits are
aligned, focusing on skills development of their talent, system pre-
paredness and utilization, talent recruitment, and competitiveness.
To that end, Open Hackathons can assist.

Developing staff ability is paramount, since researchers cannot
fully take advantage of computing systems without possessing
the needed skills to do so. Hackathons help to facilitate quick and
efficient skill-building through mentor engagement and guidance,
hands-on team collaboration, and collective knowledge sharing.
This is particularly effective, since the participants are actively
working on their own specific codes or projects at the hackathon
and therefore are deeply invested.

Many hackathons utilize the host organization’s own compute
cluster. This serves to assist staff in becoming more comfortable
with the institution’s available architectures and able to use new
tools and techniques that allow them fully utilize the resource. Ad-
ditionally, hackathons can help host institutions prepare for future

system needs by giving them point-in-time snapshots of current
research projects and their related applications across different
domains of science, allowing the host to discover trends in the
aggregate data and plan accordingly.

Lastly, as these events are most often open to the scientific com-
munity to participate in without regard to the participant’s affil-
iation, hosting institutions can leverage hackathons to network,
recruit new talent, as well as new users and projects of interest for
computing allocation on their systems.

3.2 Open Hackathon Challenges
While there are numerous benefits to implementingOpenHackathons
to augment HPC training, there are also challenges that need to
be evaluated, including attendee preparedness, mentor availability
and engagement, and system limitations.

Most Open Hackathon events are largely open to the scientific
community for participation. This attracts a diverse applicant and
attendee pool with varying levels of both domain-specific and tech-
nical skills and experience. This can lead to behaviors that affect
participation, team dynamics, and overall outcomes. Applicants that
are students or in early careers may feel intimidated or less able to
fully contribute or participate without significant mentoring while
more senior or seasoned attendees may be resistant to suggestions
or new approaches. These behaviors affect team dynamics, impede
progress and lead to lower satisfaction and learning outcomes.

Volunteer mentors are crucial to hackathon success: their expert
guidance is needed to bridge gaps between domain knowledge and
programming demands. With so many programming languages,
libraries and frameworks, software development kits, and hardware
choices available or utilized by the hackathon applications, having
a large enough pool of qualified mentors can present a challenge
when implementing a hackathon program. Given the intensive
nature of hackathons, mentors must be available, engaged, and
committed for the entirety of the event which can also pose chal-
lenges as they balance competing work priorities and schedules,
particularly if they are affiliated outside the host organization.

Hackathons are great opportunities for training researchers on
existing systems or helping to plan for upcoming system needs.
They can also help stress test and evangelize systems that are newly
online; however, this poses a challenge as well. A hackathon host
should carefully consider the availability and “readiness” of the
compute resource intended for the hackathon. Systems must be
configured properly, be available and have adequate storage for
the teams for the duration of the event, and provide any necessary
information or instructions for access, containers, workflows and
software stacks. Cluster support expectations should be understood
and communicated. We have found that it’s often best to have
multiple systems available to mitigate risk associated with outages,
new test systems, and other issues.

4 COMMUNITY IMPACT
The close integration of HPC simulation and data analysis contin-
ues to feed the development of new computer architectures and
workflows, specialized software, and the growth of interdisciplinary
teams, which are becoming more and more important for today’s
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HPC computing and scientific research efforts. Interdisciplinary re-
search (IDR) is loosely defined as an effort conducted by teams that
integrates information, data, techniques, tools, perspectives, and
concepts from multiple disciplines to solve problems whose solu-
tions are beyond the scope of a single discipline or area of research
practice [19]. IDR is emerging to be a key concept of "convergence
research," which is one of the NSF’s "10 Big Ideas" for 2022 [6] and
which the DOE Office of Science has made a Priority Research Area
for SCGSR 2022. [18] Leveraging Open Hackathons as auxiliary
HPC training programs will have a considerable, lasting impact
on the research and development community by growing an inter-
disciplinary community, assisting with creating sustainable code,
driving computer resource allocation, and advancing research. As
a result, the Open Hackathon program has the potential to impact
interdisciplinary scientific research and development.

The ethos of hackathons is collaboration and implementing
these cooperative events for training grows the community by
establishing wide-reaching, interconnected relationships between
researchers and their projects. Participants can learn new perspec-
tives, practices and technologies from each other, their mentors
and their peers and are able to try new approaches in a safe en-
vironment. Strategic networks developed at these events can be
instrumental for broader interdisciplinary knowledge exchange as
well as raising the visibility of new collaboration opportunities and
recruiting activities which is helpful for attracting new generations
of HPC practitioners.

Scientific software is vital to research but faces difficulties in that
it relies on an active community for continued development and
distribution, but this community-driven approach can lead to an
ecosystem of competing and collaborating products [10] as differ-
ent contributors add to the codebase based on their own projects.
Additionally, a sustainable approach to developing scientific soft-
ware is sometimes overlooked by domain researchers as the focus
is on publishing and not necessarily creating software [28]. As re-
searchers work with mentors during the hackathon, not only is
there a significant contribution to the code base but also an in-
creased likelihood of a portable, production-ready, and sustainable
code that can readily be used by the community since mentors
are experienced programming experts and well-versed in creating
reproducible, documented codes.

Open Hackathons increase community access to large-scale su-
percomputing systems enabling researchers and also act as feeders
for additional initiatives and programs at hosting institutions as
they solicit project proposals to allocate computing resources and
cycles. One such example is the Innovative and Novel Compu-
tational Impact on Theory and Experiment, or INCITE program,
jointly managed by Argonne Leadership Computing Facility and
the Oak Ridge Leadership Computing Facility (OLCF) that awards
allocations of supercomputer access to high-impact computational
science projects across multiple disciplines [5]. Additionally, teams
continuing work on large projects have participated in more than
one hackathon, allowing them to access different compute systems
(i.e., Ascent from ORNL [21] and Cori from NERSC [16]) aiding in
scalability studies and comparisons.

Lastly, hackathons connect researchers to the right tools and
technologies within an environment conducive to collaborative
innovation and rapid optimization, making them very useful to

advance research projects. To date, over 100 hackathons using this
approach have been run worldwide and more than 550 scientific
applications across multiple scientific domains have been accel-
erated wholly or in part at Hackathons. Examples include Berke-
leyGW, Quantum ESPRESSO, CASTRO, Gkeyll, QUICK, CASTEP,
and NWChem/NWChemEx. For additional information, please re-
fer to the published paper: Best Practices in Running Collaborative
GPU Hackathons: Advancing Scientific Applications with a Sus-
tained Impact [2].

5 BEST PRACTICES FOR IMPLEMENTING
HACKATHONS

Based on our experiences, we propose the following best practices
in order to maximize the success and outcomes of hackathons and
other training events.

5.1 Event Format
The Open Hackathon format centers around some guiding princi-
ples, including:

• detailed team application process involving hackathon hosts
and Open Hackathon organizers to verify team capabilities
and appropriate model to be studied,

• a minimum number of team members working on the same
code to ensure a broader developer base behind the code [2],

• defined team goals for the hackathon [2], and finally,
• an approach that pairs teams of researchers with mentors
and programming experts who are often experienced in the
scientific domain.

An application process is utilized for participation in the hackathons
where detailed information is collected, including code information
such as programming language, programming model, algorithmic
motif, code license, as well as team goals for hackathon and team
members. Applications are reviewed by a jury composed of the
host institution and program organizers in order to select those
applications that 1) have a high impact project or code with domain
relevance, 2) are technically feasible for the hackathon event with
codes that are properly licensed, reproducible and documented, and
3) can be practically supported by available mentors in the network.

Most hackathon events run for a total of approximately five
days; however, these days are not sequential but are separated over
the course of two weeks to promote manageable and meaningful
progress. “Day 0” occurs two weeks before the main hackathon
event and introduces the team members and mentors, discusses
the code, goals, and possible strategies to achieve these goals, and
sets expectations between the participants. Day 0 also provides an
overview of useful online tools as well as instructions for compute
cluster access. “Day 1” occurs one week prior to the main event
and introduces the participating teams, introduces all the mentors
and their area of expertise, provides an overview of each project
and code, and provides brief tutorials on the cluster, main tools
such as profilers and libraries, and Q&A opportunities to encourage
dialogue and knowledge sharing. The remainder of the hackathon
(“Days 2-4”) occurs during the last week where teams and men-
tors work collaboratively, loosely applying agile methodology and
presenting progress in daily stand-up scrum sessions.
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Small adjustments can be made dependent on whether the event
is in-person or virtual, but this format balances flexibility and disci-
pline for optimal progress.

5.2 Team Composition and Preparedness
The guiding principles are coupled with careful team selection and
preparation to make sure that teams make progress throughout the
event and beyond.

In terms of team composition, we have found that three to five
members is the ideal number for hackathon participation, permit-
ting equitable division of work without too much “down” time.
All team members should be fluent in the code they are working
on and committed to completely participating for the duration
of the hackathon event. Lastly, while team composition can vary
greatly–from students to senior scientists, from little to no GPU
or accelerator programming skills to advanced CUDA or language
fluency–a balanced mix produces the best outcomes. For teams
composed of all students, a principal investigator or advisor should
be tasked with supervising and regular check-ins to keep goals
aligned.

The more prepared the team is, the better the experience and
ultimately, progress. There are many tools available to prepare for
the hackathon and we recommend that teams take advantage of
these to the extent possible. Focused training can shore up knowl-
edge gaps and provide attendees with fundamental understanding
of techniques that will be used during the hackathon. Targeted
bootcamps are short-format training events that teach basic skills
in specific topics (i.e., how to accelerate a code via various program-
ming models) through a combination of lectures and hands-on ac-
tivities using mini-applications in a controlled environment. These
training events help attendees to quickly gain introductory pro-
gramming skills that they can apply to a real code, increasing their
confidence and readiness to participate in the hackathon. Finally, to
maximize time with mentors, teams are encouraged to profile their
codes ahead of time so that computational bottlenecks are known
and can actively be addressed.

5.3 Team Mentors
Mentor pairing is one of the most critical components for the suc-
cess of a team.Mentors should be assigned to teams based on several
factors, including their core competencies, skill level, expertise and
work style, and we recommend two mentors per team for most
hackathons but this is flexible depending on the experience of the
mentor and the complexity of the code/project.

Successful mentors have both the technical skills and soft skills.
From a technical perspective, mentors are experienced program-
mers with core competencies in a specific programming language
or model and who oftentimes also have domain-specific knowledge.
This helps the mentor to understand the context of the problem
statements and offer guidance that is specific to the goals of the
team, and helps the team have confidence in the mentor and builds
trust. Soft skills are also important to facilitating open communi-
cation, increasing receptiveness to coaching and keeping teams
focused and on-track. For optimal outcomes, mentors should rein-
force the focus on learning and development rather than “project
completion,” remaining in a mentoring role as opposed to project

stakeholder. [17] This mentoring role mindset helps guide mentor
interaction, informing mentors when to get “hands on” such as
helping with small code samples, showing integration in the main
code base, or profiling; and when to step back—allow teammembers
to problem-solve or write code themselves to become self-sufficient.

Lastly, providing mentors with training and support helps in-
crease success and satisfaction. Open Hackathons provides a variety
of training options for mentors, including online courses, tutorials,
industry training modules, peer-to-peer shadowing, and a mentor
certification program.

6 CONCLUSIONS
High-performance computing (HPC) is critical to the continued
advancement of science. As we approach the era of exascale comput-
ing, technology changes are creating opportunities and challenges,
necessitating broadened approaches to training and developing the
next generation of HPC users to be able to realize the full poten-
tial of emerging computing systems and architectures. Integrating
hackathons into the training mix can bridge traditional program-
ming curricula with real-world, hands-on skills to address the wide
spectrum of computational needs and aptitudes and help stem the
HPC talent shortfall.
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ABSTRACT
Researchers and developers in a variety of fields have benefited
from the massively parallel processing paradigm. Numerous tasks
are facilitated by the use of accelerated computing, such as graph-
ics, simulations, visualisations, cryptography, data science, and
machine learning. Over the past years, machine learning and in
particular deep learning have received much attention. The de-
velopment of such solutions requires a different level of expertise
and insight than that required for traditional software engineering.
Therefore, there is a need for novel approaches to teaching people
about these topics. This paper outlines the primary challenges of
accelerated computing and deep learning education, discusses the
methodology and content of the NVIDIA Deep Learning Institute,
presents the results of a quantitative survey conducted after full-day
workshops, and demonstrates a sample adoption of DLI teaching
kits for teaching heterogeneous parallel computing.
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1 INTRODUCTION
Research and development have been transformed by the advance-
ment of accelerated computing (AC). At present, the computational
power of a single workstation is comparable to the power of a super-
computer of the past. Furthermore, the top supercomputer of today
has broken the exascale barrier [23]. Due to the growing amount of
data available, the significant enhancements in accelerated comput-
ing, and novel scientific results, deep learning (DL) [9] has become
the most powerful tool for modeling real-world processes based on
observations. In a neural network, the trainable parameters realized
as a computational graph, are capable of learning various high- and
low-level abstractions of the process being modeled, which is also
referred to as feature learning. The modeling is performed hand
in hand with the feature learning part in order to align the ’best’
features with the ’best’ model. Deep neural networks are scaling
well – if more data is available, than a larger model can usually
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achieve better accuracy [6]. A robust hardware and software archi-
tecture for deep learning is capable of supporting the computational
requirements. Aside from the ability to model speech [20] and vi-
sion [25] functions, deep learning is among the basic techniques
for natural language processing [3], predictive maintenance [21],
and anomaly detection [17], just to name a few areas. Profession-
als who are skilled in developing accelerated computing and deep
learning solutions are in great demand. In these fields typically
Pi or comb-shaped skills [10] are needed. A good understanding
of fundamentals, programming skills, and project experience are
essential even for a junior, which slows down the learning curve [8]
compared to traditional education in software engineering. Besides
higher education (HE), reskill [4] and upskill offerings of tech giants
(like NVIDIA, Google, Amazon Web Service, Microsoft, etc.) and
of vocational education training (VET) providers are among the
possible options. Our paper discusses the main challenges in accel-
erated computing and deep learning education, demonstrates the
methodology that was implemented in two universities based on
the NVIDIA Deep Learning Institute (DLI) materials, and presents
and discuss the results of the delivered contents.

2 EDUCATION
2.1 Accelerated Computing Education
Accelerated computing enables speed-up in program executions by
leveraging hardware resources [5]. While instruction-level paral-
lelism implemented in earlier superscalar processors provides per-
formance optimizations and often does not need specific code mod-
ifications, leveraging multiple cores in a parallel system requires
significant programming effort. Understanding the massively par-
allel execution and resource utilization in heterogeneous platforms
with many-core GPUs requires expertise in architecture-aware pro-
gramming.

While it is possible to introduce accelerated computing concepts
in high-level directive-based programming models like OpenACC
or OpenMP [2], teaching fine-grained programming based on low-
level programming models like CUDA [7] or Pthreads can be an
option to enable more parallelism opportunities for performance
improvements in target executions.

For teaching heterogeneous computing, there are efforts to intro-
duce parallel programming in different stages of undergraduate and
graduate university education [18, 19]. Besides formal university
courses, Massive Open Online Courses (MOOC)-style platforms
enable people to learn about diverse topics by maintaining online
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courses. This solution seems promising as MOOC serves high-
quality content from various qualified instructors and provides
cloud infrastructure with software and hardware setup.

2.2 Deep Learning Education
Teaching deep learning can be approached in a variety of ways.
Among the most common methods are:

Bottom-up: Generally, fundamentals such as probability theory,
algebra, data analysis, and machine learning are taught first. Based
on these concepts, backpropagation, stochastic gradient decent
(SGD) and its variants, regularization techniques and traditional
and modern neural architectures are described. Programming tasks
and deep learning applications follow the fundamental components.
Due to the fact that learning the fundamentals takes a considerable
amount of time, this approach is usually taught in HE institutions
as BSc and MSc programs. A combination of MOOC courses can
also follow this approach.

Top-down: In order to gain practical experience as early as
possible, the education begins with high-level programming exam-
ples. Following the first impression and the experience of success,
participants are instructed on the fundamentals in greater detail.
Depending on the length of the educational program, the depth of
fundamentals may vary. In shorter courses, in MOOC courses, as
well as in multi-semester programs for higher education, top-down
approaches can be effectively incorporated.

Application-oriented: It is similar to the top-down approach,
however it is geared towards a specific application domain, such as
speech, computer vision, natural language processing, predictive
maintenance, etc. Furthermore, the fundamentals are briefly dis-
cussed, mostly. Essentially, the goal is to gain knowledge about
how to use DL tools in order to solve some specific problems.
Application-oriented deep learning education are usually done in
one to few-days trainings, workshops and boot camps.

Project-based [22] and on-the-job training: This focuses on
some specific problem, which is often related to a real-world project.
This approach allows corporate employees to gain deep learning
experiences while working on their primary duties. In this case,
not only the modeling but the data collection, preparation, feature
engineering, and evaluation might be included in the training. In
order to conduct a project-based or on-the-job training, senior deep
learning experts are needed as instructors, who understand the
problem, identify potential pitfalls, assist the employees in finding
a solution (in which the expert is also involved), and evaluate that
solution appropriately. A bootcamp or consultation service can be
implemented using this approach.

3 METHODOLOGY
In this paper, we describe how NVIDIA Deep Learning Institute
offerings help people to dive into AC and DL, and we also discuss,
how these contents can be integrated into the academia. NVIDIA is
a hardware and software platform company focusing on graphics
processing units (GPUs) for the gaming and professional markets
(including Artificial Intelligence), as well as system-on-a-chip units
(SoCs) for the mobile computing and automotive market. Providing
high quality software tools and educational materials is essential
for NVIDIA in order to assist their customers. As for the former, it

is provided by NVIDIA researchers and developers, while the latter
is provided by NVIDIA Deep Learning Institute (DLI). NVIDIA DLI
offers resources for diverse learning needs – from learning mate-
rials to self-paced and live training to educator programs—giving
individuals, teams, organizations, educators, and students what
they need to advance their knowledge in AI, accelerated comput-
ing, accelerated data science, graphics and simulation, and more.
NVIDIA DLI has various offerings, as follows.

3.1 Self-Paced Courses
DLI offers online self-paced courses, where interested individuals
follow the online materials from NVIDIA infrastructure on their
own and receive certificates upon successful completion. Through
accessing content on the latest technology trends prepared by ex-
perienced instructors and domain experts, and gaining hands-on
experience with GPU-accelerated servers in the cloud, they learn
to build deep learning, accelerated computing, and data science
applications for a variety of industries. DLI offers self-paced courses
in Deep Learning, Accelerated Computing Fundamentals, Data Sci-
ence, Graphics and Simulation, Infrastructure, and Networking.
The courses are in different lengths, from one- to eight-hours. Due
to the various lengths, these courses are flexible to be integrated
into university classes. For instance, after introducing the theory of
Long Short-Term Memory (LSTM) in a bottom-up approach, includ-
ing a DLI self-paced course on ’Modeling Time Series Data with
Recurrent Neural Networks in Keras’ [15] as a 2-hour-long practice
helps students to have a hands-on experience with a real-world
dataset. As the hardware and software infrastructure are already
available, it is a great benefit to educators as well.

3.2 Instructor-led Workshops
For developers, data scientists, and engineers, live instructor-led
workshops are taught by DLI-certified instructors with deep learn-
ing or accelerated computing expertise. The workshops may take
place virtually or in-person with both models leveraging NVIDIA’s
online compute resources. Course materials include hands-on ex-
perience in a variety of concepts and levels. While some basic
courses are instructor-led versions of the self-paced courses, there
are many other advanced and domain-focused courses. By having
a specific content, instructor-led workshops can be categorized as
’application-oriented’ (see Section 2.2 for details). In addition to
the actual applications, a broad theoretical overview is often pre-
sented as well, so the attendees can decide where to further their
knowledge. DLI’s instructor-led workshops cover five major areas:

Deep Learning Fundamentals teach how to use deep learning
for computer vision, transformer-based natural language processing
(NLP), conversational AI applications, recommendation systems,
and multi-GPU setups.

Deep Learning by Industry describes how deep learning and
AI can be applied to various industry domains such as industrial
inspection, intelligent video analytics, anomaly detection, and pre-
dictive maintenance.

Accelerated Computing focuses on programming CUDA with
C/C++ and Python on single and multiple nodes, as well as how to
accelerate applications with OpenACC.
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Figure 1: DLI workshop main page with slides and link to
the cloud (via Launch Task).

Accelerated Data Science covers data science techniques ac-
celerated with GPUs using Rapids.AI, and libraries such as cuDF,
cuML, cuGraph, and more.

Networking introduces important concepts in building multi-
GPU and multi-node systems.

Instructor-led workshops are offered by Deep Learning Insti-
tute for both individuals and teams from academia and industry.
While public workshops are available for everyone, DLI University
Ambassadors deliver free workshops for students and lecturers by
utilizing hands-on course materials and GPU-accelerated work-
stations in the cloud. It is possible either to request a workshop
from NVIDIA or to attend a scheduled workshop by registering
for the course. Once registered for the offered workshop, an event
code is sent to the participant via e-mail, and s/he can join the
course from https://courses.nvidia.com/dashboard by creating an
account in the system. After logging into the system, as seen in
Figure 1, the participant can reach presentation slides, which the
instructor explains during the workshop. Additionally, cloud-based
GPU resources are available via Jupyter Notebook and JupyterLab
interfaces. The participant can view both brief explanations and
small examples, where he can execute code segments and modify
them to get hands-on experience. In the meantime, he can access
the workstation via the terminal to compile, execute, and modify
the source files provided as part of the workshop. As the final part
of the workshop, an assessment is given to demonstrate the in-
formation gained from the workshop and receive a certificate if
the participant successfully completes the assessment. A typical
assessment includes a hands-on programming goal, combining the
main concepts taught in the workshop and testing the skills learned
in the course. Moreover, some courses include only multiple-choice
questions and require a minimum number of correct answers from
the participant. While it is possible to attempt the assessment just
at the end of the workshop, the participant can postpone the as-
sessment evaluation and certification process. After completion of
the workshop, the participants are asked to provide feedback about
the workshop to evaluate both the content and the instructor.

The feedback form asks the following questions:
• How likely is it that you would recommend this course to a
friend or colleague? (0..10)

• How would you rate these aspects of your learning experi-
ence? (1..5 and N/A)
– Overall experience
– Registration and login
– Navigating the course
– Launching hands-on content

• Did the course material meet your expectations? (1..5 and
N/A)
– Hands-on exercises were helpful in my learning objectives
– Level of difficulty was as expected
– Quality of content was as expected
– The content of the course was interactive
– Prerequisite information was useful

• How would you rate these aspects of your instructor-led
session? (1..5 and N/A)
– Instructor presentation skills
– Instructor knowledge
– TA knowledge
– Pacing of course
– Pre-event communication

• Anything else you’d like to tell us? (open ended question)
Teaching assistants (TAs) are involved depending on the number
of participants. There should be one teaching assistant per 20 at-
tendees as a general guideline. TAs are mainly helping in the chat.
In case of a complex question, the TA will take the attendee into a
breakout room for direct assistance. In this paper, we investigate the
feedbacks of the following DLI workshops organized in Hungary
by NVIDIA DLI and the Budapest University of Technology and
Economics:

• Fundamentals of Deep Learning (FDL) [14]
• Building Transformer-Based Natural Language Processing
Applications (NLP) [12]

• Building Conversational AI Applications (CAI) [11]
There were three different target groups (even within a group, the
participants varied between two workshops):

• BSc group: These workshops were delivered as a part of a
beginner level deep learning class (4 ECTS) at a university
for BSc students.

• MSc group: The studentswere attending to aHuman-Computer
Interaction class (5 ECTS) at a university in their MSc studies.

• Mixed group: including BSc, MSc and PhD students, educa-
tors and non-profit researchers.

Participation in the workshop and passing the assessment were
required for the BSc group to complete their course at the university.
For the MSc group, passing the assessment was among the tasks to
be exempted from the exam. Participants from mixed groups were
invited to attend workshops (although it was not mandatory), and
they were encouraged to pass the assessment to earn the certificate
so they can add it to their CV. Participation in all workshops was
free of charge, but only non-profit research institute and university
staff and students were permitted to attend.

3.3 Teaching Kits
In order to assist educators in incorporating deep learning and accel-
erated computing into university courses, DLI offers downloadable
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Table 1: Weekly Course Topics and Accelerated Computing Teaching Kit Modules.

Course Topic Teaching Kit Module

Parallelism Module 17 - Computational Thinking For Parallel Programming
Introduction to CUDA Module 2 - Introduction to CUDA C
CUDA Threads Module 3 - CUDA Parallelism Model
CUDA Memory Module 4 - Memory and Data Locality
Tiling Module 4 - Memory and Data Locality
Convolution Module 8 - Parallel Computation Patterns (Stencil)
Parallel Patterns Module 9 - Parallel Computation Patterns (Reduction) + Module 10 - Parallel Computation Patterns (Scan)
CUDA Performance Module 6 - Memory Access Performance
Dynamic Parallelism Module 23 - Dynamic Parallelism
CUDA Libraries Module 25 - Using CUDA Libraries
CUDA CNN –

teaching kits that include course materials that were co-developed
with different university faculties. Each kit, freely available for the
instructors world-wide, includes lecture slides and hand-on lab
exercises with sample solutions. Additionally, the Teaching Kits
Program provides free access for instructors and students to GPU-
accelerated workstations in the cloud, either through Amazon’s
AWS program offering credits or online self-paced DLI courses.
(mentioned in Section 3.1). The students can access GPU resources
for hands-on exercises or larger-scale projects, and earn certificates
that demonstrate their expertise in the subjects.

In the computer engineering department at Izmir Institute of
Technology in Turkey, the Heterogeneous Parallel Programming
course has been offered based on the Accelerated Computing teach-
ing kit. The semester-long technical elective course covers GPU
hardware, CUDA basics, advanced CUDA features, and parallel
application development topics. While the content is updated each
year, the main concepts and the corresponding teaching kit modules
are presented in Table 1.

While the slides from the teaching kit are utilized in the specific
modules, lab exercises and quiz questions are not used since there is
no lab session or quiz in the course. Instead, self-developed program-
ming assignments and midterm/final questions are designed for the
course assessment and evaluation. Additionally, a final term project
is assigned to the students, where Project Guidelines document of
the Teaching Kit is utilized for defining the purpose, outline, and
grading rubric of the project (The definition document at 2020-2021
term is given in Figure 2). The students are expected to propose
and implement a complete CUDA application, conduct an experi-
mental study, and perform a comparative analysis by comparing
different CUDA implementations with other programming models,
like OpenACC or other libraries.

3.4 Hardware and software infrastructure
In order to conduct research, development, and education in AC and
DL, a specific hardware and software infrastructure is required. In
terms of hardware, the most critical component is access to GPU(s),
since they are not commonly found in personal computers. Further,
the appropriate software stack is required, which includes drivers
for the GPU(s) and the programming environment, frameworks,

Figure 2: Final TermProject Definition at theHeterogeneous
Parallel Programming Course.

and modules relevant to the topic. Integrated development environ-
ments (IDEs) should also be easily accessible to users. Setting up
an appropriate hardware and software environment for AC and DL
education can be time-consuming and costly. Since one of the main
goals of DLI courses is to provide hands-on programming exer-
cises that are to be executed on GPU-based architectures, NVIDIA
provides access to the participants NVIDIA GPU enabled cloud en-
vironment with all necessary software components installed. The
software stack is built in separate Docker images [1], and the IDE
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Figure 3: Sample module interfaces in Fundamentals of Accelerated Computing workshop.

is primarily a web-based application (Jupyter Notebook and Lab,
https://jupyter.org/).

The participant can utilize the cloud resources presented as
Jupyter notebooks, which can be accessed by graphical notebook in-
terface, graphical console IDE, or terminal screen. While graphical
interfaces are more useful for Python-based courses like Fundamen-
tals of Deep Learning, terminal provides more practical interface
like Fundamentals of Accelerated Computing, which may require
frequent source code modification and low-level analysis. Figure 3
presents one module (Kernels_In_Streams) and possible user inter-
faces in Fundamentals of Accelerated Computing workshop to access
the module components. While the main Jupyter Notebook inter-
face provides guidance about the module, the participant can edit
the source code in the editor interface or modify/compile/execute in
a terminal screen. Additionally, the courses that include visual per-
formance analysis, based on NVIDIA Nsight Systems tool [16], offer
remote desktop access, which has running Nsight Systems instance
inside the JupyterLab environment. The participants can connect
this desktop environment and visually profile their executions by
observing performance behavior of the different code versions to
see the effects on performance. Figure 4 demonstrates the phases
for using remote Nsight Systems tool in DLI infrastructure:

(1) Executing the program in the terminal with profile option
(provided in Makefile),

(2) Connecting the remote desktop and observing the report file
generated at the end of the program execution,

(3) Visualizing the profile report at Nsight Systems Tool, which
is already installed and configured in the remote desktop
environment.

3.5 University Ambassador program
The DLI University Ambassador Program [13] enables qualified
educators to teach free instructor-led courses for the academia,
including university and non-profit research lab staff, students, and
researchers. They are also allowed to run paid corporate workshops.

Execute/ 
profile
program

Connect
remote 
desktop

Visualize
profile
report

Figure 4: Nsight Systems Tool in remote desktop.

By completing the instructor certification process, educators affili-
ated with an academic institution are certified as University Ambas-
sadors. For each workshop, DLI instructors must pass a multi-stage
examination in order to become certified in the specific content.
Teaching assistants are selected by the instructors. This program
has several benefits: free DLI instructor certification, online ready-
made workshop materials, free access to online GPU resources,
and expense reimbursement for travel and catering expenses for
instructor-led workshops. See [13] for detailed information about
this program.
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Figure 5: Country of origin of the attendees in the mixed
group deliveries, on the top: FDL with 60, on the bottom:
NLP with 86 attendees.

4 EVALUATION AND RESULTS
4.1 Instructor-led Deep Learning Workshops
Altogether we held 2 FDL, 1 NLP, and 3 CAI workshops in the
autumn and spring semesters of 2021/2022 academic year, according
to Section 3.2. All of these workshops were ran by an associate
professor with 10+ years of machine learning, and 8+ years of deep
learning research, development, and education experience. The
number of participants of the examined workshops was as follows:

• BSc group: one FDL and one CAI were delivered in-class for
30 (22 from Hungary, 7 from the USA, 1 unknown) and 26
(22 from Hungary, 4 from the USA) students, respectively.
These workshops were delivered as a part of a beginner level
deep learning class at a Hungarian university.

• MSc group: two CAI were delivered online for 13 (12 from
Hungary, 1 from Romania) and 38 (37 from Hungary, 1 from
the USA) attendees. The students were attending to a Human-
Computer Interaction class at a Hungarian university.

• Mixed group: one FDL and one NLPwere delivered online for
60 and 86 attendees, respectively. The attendees’ country of
origin are shown in Fig. 5. These workshops were advertised
in various channels in the EMEA region, including AI-related
mailing list in Hungary, LinkedIn groups, and NVIDIA DLI
academic partners.

Figure 6, 7, 8 show the results of the feedback forms.

Learning experience. The overall impression of the attendees
was 4 or above. A weak but clear trend can be inspected that the
more knowledgeable the audience was, the higher they scored the
overall experience (4 and a little bit below for the BSc, 4 and a
little bit above for the MSc, and around 4.5 for the Mixed group).
Interestingly, similar trend is shown for the other questions (Regis-
tration, Navigation, Launch Time), however, those aspects are not
directly correlated to hard skills, knowledge, and experience. There
are two possible explanations for this. On the one hand, juniors are
more likely to get frustrated than senior experts. There were more
seniors in Mixed than in BSc and MSc groups, since it included PhD
students, researchers, and educators in addition to BSc and MSc
students. On the other hand, participants of mixed groups were
attending the workshop on their own initiative and during their
free time, so they recognized the value of the material more than
university students, for whom the content was part of their course
work.

Meeting the expectations. In all groups, meeting the learning
objectives scored 4 or above – with the Mixed group scoring the
highest. In spite of having different groups and different contents,
the difficulty of the materials was considered to be similar. It rein-
forces that NVIDIA DLI’s efforts to maintain a dense information
content in the courses, but in a manner that is digestible in a full-day
workshop are successful. Similar scores can be inspected for the
’clear prerequisites’. The quality of the content was scored better by
more advanced groups (MSc and Mixed), and it scored 4 for the BSc
group, too. In interactivity, similar weak trend can be inspected,
as before. It is interesting that within the same groups FDL scored
higher than the more advanced NLP and CAI content, regarding
interactivity. This can be mainly the cause of the course content:
When introducing deep learning for the first time, more interac-
tions are involved in the workshop. When discussing advanced
topics like NLP or CAI, the participants are considered to be more
advanced, thus information content is superior to interaction.

Instructor, teaching assistants, course pace. Feedback about
the instructor showed similar patterns as the previous two cate-
gories. The instructor’s presentation skills and knowledge were
judged quite similar by distinct groups. Interestingly, among all
questions the feedback on the teaching assistant’s (TA’s) knowl-
edge scored the lowest overall. The workshop TAs were all PhD
candidates specialized in deep learning, they had teaching and con-
sultation experience, and they had earned the certificate of the
particular workshop in advance. The relatively lower scores (<4)
may be the result of different expectations of the TAs (e.g. expect-
ing more help in the self-paced parts of the workshop) and/or the
way TAs interacted with the audience degraded the participants’
experience (chat, generally).

The statistics of successful certificates are shown in Table 2. Due
to the requirement to earn the certificate in order to complete the
deep learning course at the university, it is understandable why
the majority of attendees completed the assessment successfully
in the BSc groups. In case of the MSc groups a smaller percentage
of the class earned the certificate – in this case the certificate was
not required, but was among the options to be exempted from the
exam. In the case of the Mixed-FDL similar percentage of the group
passed the assessment successfully. For Mixed-NLP the percentage
dropped significantly, to 44%. The possible cause for this could be
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Figure 6: Results of the feedback form on the learning expe-
rience.

Figure 7: Results of the feedback formon the coursemeeting
the expectations.

the timing of the workshop: this one was held in 13 December, right
before the holiday season, when students and educators are also
overloaded with exams, and researchers with finalizing projects
at the end of the year – which allow them less time to completely
participate in a full day workshop and complete its assessment.

Table 2: Percentage of participants who have obtained a cer-
tificate by completing the assessment in the given work-
shop.

Workshop Percentage

BSc-FDL 94%
BSc-CAI 93%
MSc-CAI1 77%
MSc-CAI2 64%
Mixed-FDL 69%
Mixed-NLP 44%

4.2 Adopting Accelerated Computing Teaching
Kit

Each year 10-20 students are registered in the Heterogeneous Par-
allel Programming course, and in average 60-80% of them can get

Figure 8: Results of the feedback form on instructor, teach-
ing assistant and course pace (in BSc-FDL, BSc-CAI andMSc-
CAI1 there were no teaching assistant.

a passing grade. Table 3 presents the statistics about the course in
the four years. It presents the number of students in terms of en-
rolled in the course, failed (got F) from the course, and received the
highest letter grade, AA. Additionally, Course Evaluation column
demonstrates the average score of the evaluation survey (out of
5), where the number in parenthesis represents the score for the
question about the demonstration of the course content based on
the quality of the course material and effective examples. While

Table 3: Heterogeneous Parallel Programming course statis-
tics.

Term #Students #Students #Students Course
Taken Failed w/ AA Evaluation

2021-2022 11 2 1 4.23 (4.27)
2020-2021 12 4 5 2.84 (2.89)
2019-2020 20 8 3 3.94 (3.94)
2018-2019 16 6 1 3.79 (3.60)

general feedback appreciates the effort in the course, term 2020-2021
demonstrates a negatively different result with relatively low scores
in the course evaluation. Since the course is taught virtually that
term, we think that student involvement could not be achieved as in
the face-to-face semesters. It is also remarkable that 2021-2022 eval-
uation results are the highest even though the number of students
is not large. Since CUDA Libraries and CUDA CNN are emphasized
that year, we think that the students were able to see the power of
CUDA programming model and real scenarios that they can apply
the methods and, as a result evaluated the course as more efficient.

For the student evaluation, programming tasks were assigned to
the students to demonstrate their comprehension of the concepts
introduced throughout the semester. Additionally, the final project
tests their skills at defining parallel programming problems, op-
timizing performance by considering GPU hardware and CUDA
programming model features, and performing a comparison study
to evaluate the effectiveness of their methods. The sample project
topics in 2021-2022 semester were as follows: Perlin and fractal
noise, Gaussian Jordan elimination, Dijkstra’s shortest path algo-
rithm, Convolution operations from the PolyBench benchmark. The
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Figure 9: Number of additions and deletions per week in the
GitHub projects.

students created GitHub repositories and updated their code during
the semester based on a few deadlines. Figure 9 presents the code
frequency in terms of additions and deletions in sample GitHub
projects. In the two-month period, there are peaks at two specific
points representing the deadlines. While most of the projects in-
clude basic CUDA implementations, one project is extended as a
conference paper and presented at a national conference by the
student [24].

5 SUMMARY
In this paper the primary challenges of accelerated computing and
deep learning education was introduced, the offerings of NVIDIA
Deep Learning Institute were discussed and instructor-led full day
workshops and teaching kits were evaluated. The feedback form
filled after the workshops revealed that in case of all examined
content the overall satisfaction with the learning experience were
between 3.9...4.5 (out of 5). The results also showed us, that more
experienced groups scored various aspects higher (e.g. overall im-
pression, quality of the content, interactivity, impressions about the
instructor, etc.). No significant difference in difficulty was observed
between beginner and advanced workshops, based on the feedback
scores. Surprisingly, experienced teaching assistants received rather
lower scores (between 3.4..4.3) compared to other questions in the
feedback forms.

Based on the course evaluation questions and the implemen-
tation of the term projects, we can conclude that the adoption of
Teaching Kits was a success.

It is our overall impression and conclusion that the content
created by NVIDIA DLI can be easily and successfully integrated
into related university courses for smaller and larger groups. DLI
content can even be implemented in classes that are not directly
related to AC or DL (e.g. the Human-Computer Interaction MSc
course) with a great learning experience – based on our findings.
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ABSTRACT
We propose a modified MSA algorithm on quantum annealers with
applications in areas of bioinformatics and genetic sequencing. To
understand the human genome, researchers compare extensive sets
of these genetic sequences – or their protein counterparts – to
identify patterns. This comparison begins with the alignment of
the set of (multiple) sequences. However, this alignment problem
is considered nondeterministically-polynomial time complete and,
thus, current classical algorithms at best rely on brute force or
heuristic methods to find solutions. Quantum annealing algorithms
are able to bypass this need for sheer brute force due to their use
of quantum mechanical properties. However, due to the novelty of
these algorithms, many are rudimentary in nature and limited by
hardware restrictions. We apply progressive alignment techniques
to modify annealing algorithms, achieving a linear reduction in
spin usage whilst introducing more complex heuristics to the algo-
rithm. This opens the door for further exploration into quantum
computing-based bioinformatics, potentially allowing for a deeper
understanding of disease detection and monitoring.

KEYWORDS
QuantumAnnealing, Multiple Sequence Alignment, Bioinformatics,
Clustering, Progressive Alignment, Spin Use Reduction

1 INTRODUCTION
1.1 Alignments in Disease Detection and

Prevention
In a single year, over 850 million years of healthy life may be lost to
disease and disabilities [33]. In fact, an estimated 50% of the United
States population is living with a chronic disease [15]. Presently,
there is an inadequate response to this healthcare crisis, as most of
the attention in epidemiological research and health care has been
centered around acute diseases [15]. Human genomes are explicit
factors in determining susceptibility to some of these diseases [22].
Comparison of their constituent genetic sequences may one day
reveal knowledge that permits for early diagnosis or monitoring of
heritable diseases of at-risk individuals [17]. Furthermore, the com-
parison of sequences has heavy bearing on treatment procedures
as well. For instance, the study of large sets of DNA sequences
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can allow researchers to eventually predict patient response to
chemotherapy or other treatments [32]. This could allow for the de-
termination of personalized treatment options for patients in order
to maximize their chances of recovery, including cancer. Therefore,
emphasis on the comparison of the genetics underlying major ac-
tors in these diseases – from protein mutations to patient genomes
– is needed.

There is a clear issue, however. The sheer length of genetic
sequences is comparable to the circumference of the Earth or even
the distance to the moon. Each genetic sequence can contain on
the magnitude of several thousand base pairs. Analysis of large
sets of these sequences consumes significant computing resources.
Protein sequences are no better, with the length of the amino acid
sequences on a similar order of magnitude. In spite of the limited
alphabet these sequences are composed of – pulling from sets of a
mere four base pairs or twenty amino acids – these sequences are
responsible for the behavior of countless diseases in existence, and
thus researchers have sought various methods of analyzing them.

Table 1: An example alignment for a set of three genetic se-
quences.

A T G - T T
A T - C T T
T T G C T -

To compare these sequences effectively, an ideal alignment of
the sequences must be found, in which gaps or shifts in the se-
quences are inserted to minimize the differences in each column
of Table 1. After all, it would do no good if subsequences that en-
code for different biological components are mistakenly compared
against one another. The problem of finding the multiple sequence
alignment (MSA) is an applied form of the mathematical consensus
string problem [34]. The solution seeks to find an alignment where
the distances between sequences are minimized. This distance is
a quantitative measurement of how well sequences are aligned,
comparable to the aforementioned number of differences in each
column [16]. For every alignment of a pair of sequences, the ele-
ments in corresponding positions are compared. The greater the
discrepancies across the positions, the greater the distance between
the two sequences [16]. This problem is analogous to finding the
smallest distance between some set of locations. The given set of
locations are the sequences, and their distances are the differences
between each plausible alignment. The nature of this problem, there-
fore, centers on distance minimization, deeming it an optimization
problem. While the alignment of, say, ten or twenty elements per
sequence is not difficult, solving the problem for larger and larger
scales can become unmanageable for the standard human mind.
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This paper functions as a simultaneous investigation into MSA
algorithms and certain alterations to these algorithms that may
be made. We begin by discussing existing algorithms for MSA,
alongside shortcomings in the computational tools currently in use.
We then transition to discussion of quantum annealing, prior to
discussing our classical-inspired modifications to a MSA quantum
annealing algorithm. This modified algorithm is then used to align
a sample dataset and its results analyzed.

1.2 Existing Algorithms for MSA
Rather than arbitrarily align these sequences, MSA algorithms
systematically align sequences. While there are numerous algo-
rithms in existence, the most common are based on the Needleman-
Wunsch algorithm. This algorithm was first described in 1970 by its
namesake researchers, Saul B. Needleman and Christian D. Wunsch
[29].The initial algorithm aligns a pair of protein sequences using
iterative comparison of each individual amino acid [29]. While ef-
fective, there lies a major issue in the resource requirements for the
problem. The MSA problem has non-deterministic polynomial-time
hardness (NP-hardness) [34]. As the size of the input size increases,
the amount of time and memory required to find the perfect solu-
tion increases at unmanageable rates. This becomes a hindrance in
effective application. Finding the ideal alignment for inputs on the
samemagnitude as protein or genetic sequences can take decades to
process. Thus, better algorithms capable of handling larger inputs
are being sought.

Over the years, researchers have developed more complex meth-
ods of computation to raise the ceiling on the size of the inputs
that may be reasonably handled. Algorithms capable of running on
multiple computer cores in parallel have been developed. This is
analogous to having multiple people brainstorm ideas for a project,
as opposed to a singular "brain" working on the task. The approach
has approximately a 60% reduction in execution time from exper-
imental results, showing parallel processing has strong potential
[28].

Another common – but effective – method aligns smaller subsets
of the sequences before merging the final solution. These methods
are generally categorized into two types: (1) progressive alignments
and (2) iterative alignments [12]. Progressive algorithms organize
sequences based on similarity and arrange subsets of these se-
quences. In some cases, the sequences are arranged in a tree-like
structure, such that only a few sets of parents and their children
are aligned at once, reducing the load on the computer at any sin-
gle point [12]. Iterative algorithms, on the other hand, go through
multiple iterations of aligning and then re-aligning sequences in
overlapping subsets. Both types may use heuristics to estimate the
pairwise distances between sequences prior to arrangement, allow-
ing them to introduce reasonable steps that increase the scalability
of the resultant process [42].

1.3 A Tool for Problem Solving: Quantum
Computers

While existing methods are effective effective, they are still bound
by the binary nature of computing units. That is, standard classical
computers have bit values restricted to either 0 and 1, or True and
False, and therefore are only able to represent one state at a time

Figure 1: There exist several key characteristics of quantum
computers that make them especially of interest when it
comes to algorithms (created by author).

[35]. Quantum computers – which make use of parallel processing
and quantum mechanical properties to bypass these restrictions –
have emerged as new contenders for finding alignments [44].

While the absolute supremacy of quantum computers over their
classical counterparts is yet unproven [36], they have two key prop-
erties whose partnership make computation on quantum systems
especially advantageous: one, parallel processing and, two, entan-
glement. The parallel processing capabilities come from the ability
for the quantum bits to be in a probabilistic suspension between
the bit values, or in a superimposed state [44]. This phenomenon
allows for an exponential number of solutions to be simultaneously
represented [35]. This cooperates with the second property, en-
tanglement, to make quantum computers especially unique. The
values of the quantum bits – including those in superposition –
may be "tangled" together, such that knowledge of the value of one
qubit will reveal information about other entangled qubits in the
system [35]. This permits for added levels of complexity [35]. The
combination of these quantum mechanical properties in comput-
ing makes quantum computing especially well-suited for solving
NP-hard problems (Figure 1).

For example, certain algorithms have used a combination of
both classical techniques and quantum computer capabilities. Re-
searchers have applied machine learning models to reduce the
amount of memory required to store comparisons of the sequences
[40]. Others have taken inspiration from the quantum mechanical
properties outright in developing quantum-inspired heuristics to
find alignments [12].

1.3.1 Quantum Annealing Algorithms. Other algorithms focus
on a subtype of quantum computing: quantum annealing. Quan-
tum annealers, also known as adiabatic quantum computers, take
advantage of the natural tendency for physical systems to seek out
the lowest energy configurations [8]. A commonly used analogy to
illustrate the workings of a quantum annealer involves finding the
lowest point of elevation among a series of hills and valleys [8]. This
region is analogous to the problem space defined. Classical comput-
ers find the solution to the problem by sending a singular traveler
to begin at some arbitrary point in the area. This traveler finds the
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Figure 2: Quantum annealers use quantum tunneling to find
the lowest energy state for the given problem space (created
by author).

minimum by walking some direction determined by the classical
algorithm until a local lowest point is reached. To ensure this is
the absolute lowest point, the classical algorithm then proceeds
to drop the traveler off again at several other locations across the
area. Quantum annealers, on the other hand, bypass this repeated
traversal. Rather, superposition permits for the traveler to exist
simultaneously in different locations, cutting down significantly
on the costliness of traversal [8]. To find the absolute minimum,
quantum tunneling – a phenomenon unique to particles on the
quantum scale – allows this traveler to "tunnel" directly through
hills to reach the absolute minimum, rather than have to metaphor-
ically climb all the way back up the hill (Figure 2). Since aligning a
set of data involves minimizing the distance between each pair of
sequences – a textbook optimization problem – the MSA problem
fits neatly into the functionality of quantum annealers [24].

1.3.2 Current Shortcomings. In spite of the potential advantage
using quantum algorithms to find alignments may provide, there
exist two major areas in need of immediate improvement. First,
due to the relatively new nature of quantum annealers, existing
algorithms tend to at best mirror rudimentary classical algorithms.
That is, some algorithms mimic brute-force processes without the
inclusion of more complex heuristics that aid the process, such as
progressive or iterative techniques [24].

Secondly, modern quantum algorithms are constrained by hard-
ware limitations [10]. The reliance on the quantum properties of
particles leaves the qubits susceptible to slight changes in the en-
vironment [4]. These errors result in inconsistencies between the
simulated solution and experimental results returned [21]. Further-
more, the number of quantum nodes available for public use is
restricted, largely due to the limited size of existing computers. For
example, the D-Wave quantum annealer Advantage, contains just
over 5000 quantum bits [43] – barely meeting current supercom-
puting capabilities, and there exist few available annealers larger in
size. This places an upper bound on the size of the test data. Thus is-
sues are raised. The input datasets of genetic and protein sequences
are large in both size and sequence length. So, a sufficient amount
of qubit spin usage in these quantum computers is needed. The
development of a more efficient tool for MSA capable of bypassing
the constraints of hardware limitations is needed.

2 METHODS
We took inspiration from classical algorithms that utilize clustering
methodologies [42], where sequences are grouped before being
progressively processed via the alignment algorithm, providing a
close approximation of the solution [11]. In short, we introduced
classical-inspired processing methods to the quantum annealing
process. To do so, we implemented an overarching progressive
alignment structure throughout the algorithm.

We first determined the hardware on which the quantum algo-
rithm could be run. This was used as a constraint to specify the
algorithm body type. We then broke this project in three key parts:
(1) Pre-processing, (2) Algorithm Body, and (3) Post-processing.
These parts are defined by their function relative to the overarching
algorithm, as outlined below and in Figure 3.

(1) The Pre-processing [Key Modification] part is the set of
operations that reads in files and prepares the sequences for
alignment.
• Read in sequences from FASTA file,
• Cluster sequences, and
• Convert sequence clusters into matrix.

(2) The Algorithm body returns the alignments of given set
of sequences.
• Take in clusters and transform to form digestible by quan-
tum solver and

• Align sequences per cluster.
(3) ThePost-processing [AdditionalModifications] processes

the results obtained from Parts 1 and 2. in order to produce
a final output for the user.
• Interpret the annealing results,
• Merge locally aligned clusters with previous alignments,
and

• Output final alignment.

Figure 3: Visual obserview of MAQ algorithm approach (cre-
ated by author).

2.1 Hardware
Thus, MAQ was run on the D-Wave Adiabatic Computing (Quan-
tum Annealing) System, made accessible via the Leap integrated
development environment (IDE). While other quantum annealers
– including those developed by the New Energy and Industrial
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Technology Development Organization [1], Ford Motor Cars, and
Lockheed Martin [30] – exist, D-Wave annealers were selected
due to their commercial availability and earlier establishment as a
product available to the public [9].

Simulations of this system were also accessible. The Leap IDE is
a quantum cloud service run using Python. The D-Wave Solvers
may also be used locally. Here, D-Wave’s Ocean v.5.2.0 software
development kit [19] and dimod v.0.11.2 package [18] was used,
allowing the quantum annealing environment to be simulated on
the local system’s central processing unit (CPU).

2.2 Pre-processing Development
2.2.1 Approaching Sequence Read-In And Storage. Prior to align-

ing the sequences, we parsed the sequences in from an external file.
We assumed that the data – containing either protein or genetic
sequences – is contained on a single FASTA Formatted Sequence
file. Using the Biopython v1.79 package, the sequences were stored
as Sequence Record objects, containing key information on the
sequence’s identity [5]. For the purposes of data storage and later
processing, we assumed that every genetic sequence in the file had
an unique identifier.

2.2.2 Introducing the Novel Modification. To implement the pro-
gressive alignment technique, we introduced a sequence clustering
component to the pre-processing stage. To identify the clustering
algorithm to accomplish this task, we first set the lowest possible
bar. We observed the naive solution was not ideal. While the arbi-
trary assignment of sequences would not be costly, it would have
come at the cost of the accuracy of the returned alignment. Thus a
deliberate algorithm was sought for.

We took inspiration from the Feng-Doolittle progressive align-
ment approach [11]. The Feng-Doolittle algorithm uses classical
computers to first group the clusters by similarity, then uses dy-
namic programming methods to merge the sequences following
their local alignments [11], producing an approximate MSA. We
used a simplistic approach, which was in line with a similarly in-
spired hierarchical clustering algorithm developed in 1988 [6].

More specifically, we adapted the ALFATClust algorithm and
treated the clustering problem as a question of finding the nearest
neighbor [3]. It used the Leiden algorithm to localize each clus-
ter, connecting "communities" of these clusters based on relative
similarity [39]. This differs from the greedy approach taken by
most existing software tools, which are reliant on a limited set of
parameters (thereby producing not ideal alignments).

To approximate the difference between sequences prior to clus-
tering, ALFATClust uses the Mash (sample-based) technique [3].
While preliminary studies have shown the alternate, unsupervised
learning-based algorithms, such as MeShClust, are able to process
these sequences more rapidly [20], these algorithms return an un-
usually low number of clusters (with larger numbers of sequences
per cluster) [3]. This is contrary to one of the primary objectives
of MAQ, which seeks to reduce the total spin usage once these
datasets are passed into the quantum annealers. The ALFATClust
method holds its own against other algorithms that do not employ
the Mash heuristic, demonstrating its viability for selection for our
purposes [3].

Following initial testing, it was revealed that ALFATClust occa-
sionally returns clusters that contain a small number of sequences
(e.g. a 2-sequence dataset), for which calls on a quantum annealer
may be deemed unnecessary. To remedy this, we introduced a
minimum cluster threshold size. If a cluster size did not meet the
threshold, it would be appended to the next cluster, the entirety of
which was then aligned locally.

To create a standard of comparison across each subsequent se-
quence, we introduced a function to identify the centers of each
of the clusters. The center was defined as a singular sequence in
the group with the lowest total distance when compared against
all other sequences in the cluster. This center re-emerges in the
post-processing stage to aid in the merging of cluster alignments.

The Mash v.1.14 package was used to conduct preliminary es-
timations on the distances between each of the sequences [31].
The subsequent data was analyzed using the NumPy v.1.22.4 [14],
SciPy v.1.8.1 [41], and Pandas v.1.4.2 packages [37]. The clustering
algorithm calls on the Leiden algorithm v.0.8.10 package [39] and
Python igraph v.0.9.11 package [7].

2.3 Main Algorithm
Each cluster is then passed through the main algorithm, with the
center from a previously aligned sequence appended to the cluster
for later merging. To implement the MSA problem in the annealing
algorithm, we defined the problem space, developing the Hamilton-
ian for the distance minimization problem with constraints. The
algorithms were thusly based on this problem formulation. While
selecting the algorithm for the body, we considered three sets of
variables: appropriate use of the (1) objective, (2) weights and penal-
ties, and (3) constraints. Quantum spin usage was a secondary
driving factor.

We defined (1) the objective to be the minimization the over-
all distance between the sequences. Thus, in constructing (2) the
weights matrix, an effective method of comparison and storage
must be used. Full penalties are applied in alignments where the
elements in corresponding positions do not match. To avoid the
insertion of unnecessary gaps, a partial penalty for these gaps are
included. After the weights matrix in the sequences is found, (3)
constraints may be applied. These constraints would be dependent
on the approach.

We considered two potential approaches to problem formula-
tion. We began by defining the parameters of the problem. When
given a L-sized set of sequences with maximum sequence length
N , the naive solution is to use a systematic brute-force approach.
Every element in each sequence will compared against every other
element in all other sequences. In this case, every possible pairing
of elements will require a corresponding spin value to be stored.
This requires a system on the magnitude of O(N L). This is by all
means infeasible on current hardware, especially after gaps are
inserted to account for element deletions or insertions (a biological
phenomenon) [24].

After further research, we determined a secondary, more effec-
tive approach. Oscar Lindvall proposed using the Column Align-
ment Formulation (CAF) approach to align the sequences (Figure 4).
It may be visualized using a table with L rows and someC columns.
Given some user-defined parameter G, representing the maximum
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Figure 4: CAF aligns sequences by assigning the elements in
each sequence a column and inserting gaps into any column
spaces with no elements [24].

number of gaps that may be inserted into the sequence to shift
corresponding sections,C can be set equal to N +G . Every row rep-
resents a single sequence, and every column a single position. The
goal, then, is to find the positions in every row where an element in
the sequence can be placed, such that the number of differences per
column is minimized. We assumeG is significantly small relative to
N , the maximum length of the sequence. In this case, the number
of spins that must be represented at any point (that is, the number
of qubits needed) is withinO(LN 2) [24], a reduction to manageable
polynomial magnitude.

We used the CAF approach proposed by Lindvall, applying some
pre-defined penalty д for the insertion of empty spaces in the se-
quences [24]. Per Lindvall’s proposed algorithm, we constructed the
matrix by comparing the sequences against one another each other,
resulting in weights w(s1,n1,s2,n2) for every pairing of elements
[24].

2.4 Post-Processing Development: Dynamic
Programming

The output of the main algorithm is a matrix, where each row
represents a sequence and each column a position [24]. The first ’1’
in the row is where the first element in the corresponding sequence
is placed, the second ’1’ is where the second element is placed, and
so on. If a ’0’ exists in the matrix, then a gap has been inserted
in that position. We authored a simple method to interpret these
results and transform them into readable strings.

However, the process at this step is incomplete. Alignments have
only been made for the individual clusters. Recall that the align-
ment contains the center of the previous cluster. Using comparisons
between the gaps inserted in the center in this and the previous
iteration of the algorithm, we dynamically merge the clusters to-
gether, such that after merging, the current cluster is immediately
forgotten from the quantum annealer.

3 RESULTS & COMPLEXITY ANALYSIS
To properly analyze the preliminary results returned by this modi-
fied algorithm, we reiterate that the main goals of this project were
to

(1) Introduce classical-inspired heuristics to rudimentary quan-
tum algorithms, and

(2) Reduce the spin usage per call of the quantum annealer.
In order to approximate the effectiveness of the algorithm in

achieving this end, we conduct a rough space complexity analy-
sis of the key impacts of (1) the weights determination function,
(2) the quantum-dependent component, and (3) the merging func-
tion. These three areas have been impacted most strongly by the
modifications.

3.1 Analysis of Weights Matrix Function
Let us consider an input dataset of L sequences, with a maximum
sequence length of N and G inserted gaps per sequence. We first
consider the characteristics of the initial algorithm for comparison.
The creation of the weights matrix is especially consuming, since
it requires storage of the comparisons between every individual
element in the dataset. Since every possible pair of elements in
distinct sequences is compared, the space complexity may roughly
be given by

O(
N !

2!(N − 2)!
×

L!
2!(L − 2)!

)

≃ O(
N (N − 1)

2
×
L(L − 1)

2
)

≃ O(N 2L2)

(1)

Let the clustering algorithm reduce the dataset to some number
of clusters, such that the largest cluster has k sequences, where
k << L. The weights matrix determination function is then reap-
plied to this reduced sample size, resulting in a complexity of

O(N 2k2)

per cluster. However, the weights matrix must be applied at most k
times. Therefore, the overall complexity of the weights matrix is
given by

O(N 2k2 ×
L

k
) ≃ O(N 2Lk). (2)

Equation 2 presents a linear advantage over the initial weights
matrix development requirements. However, this advantage is par-
tially offset by the ALFATClust algorithm introduced during the
pre-processing stage. Nevertheless, the ALFATClust’s application
of the Mash approximation for distance estimation cuts down sig-
nificantly on the initial O(N 2L2) space complexity [3].

3.2 Analysis of Alignment Algorithm
Secondly, we consider the spin usage during the sequence align-
ment on clusters. Spin usage is a quantitative approximation of the
number of nodes that will be used on the quantum annealer during
computation. Recall we seek to reduce this usage per call of the
quantum annealer.

The use of the Column Alignment Formulation (CAF) method
already introduces a significant reduction on possible spin usage.
The spin values – and resultant alignment – is stored in somematrix,
where the number of columns is equal to the sum of the length of
the sequence and number of gaps

C = N +G . (3)

Thus, using Equation 3, we conclude the spin usage S is given by

S = C
L∑
i=1

Ni (4)

where N1...NL are the lengths of the sequences [24]. That is, the
spin usage may be roughly described as
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S ∈ O(CLN )

= O(LN (N +G)

= O(L(N 2 + NG)

≃ O(LN 2)

(5)

where it is assumed G << L [24].
We now consider the spin usage on a reduced number of se-

quences, given by k . Following a similar line of reasoning, the spin
usage when run on a single cluster may be given by

O(kN 2) << O(LN 2) (6)
Observe that the total spin usage (on the magnitude ofO(kN 2 ×

L
k ) ≃ O(LN 2) is not representative of the maximum spin usage at a
single point, as the quantum annealer is called L/k distinct times.
It is worth noting that this rough complexity analysis treats the
processing time of the inputs as a black box, thereby not accounting
for the space or time needed to translate the input system onto
the corresponding architecture (that is, node arrangement) for the
annealer. This approach is nonetheless effective, as it indirectly
implies the net node usage on the quantum annealer. Therefore, it
follows from this reasoning that an approximate linear advantage
is achieved in spin usage.

3.3 Analysis of Merging Function
Lastly, we analyze the function that progressivelymerges the aligned
clusters. The local alignments are stored in matrices containing the
elements and gaps with their corresponding positions. These ma-
trices have a maximum size O(kC), meaning the space complexity
for n clusters may be described as

n∑
i=0

kiC

≃ O(LC)

≃ O(L(N +G))

≃ O(LN + LG)

≃ O(LN )

(7)

These clusters are aligned locally. The center of the previously
aligned cluster is included in the alignment of the new cluster.When
merging, this center serves as the metric of comparison and the
entire sequence is iterated through at least once, with a maximum
length of N , resulting in a minimum baseline runtime of O(N ).
Additionally, any gaps (G) that are inserted are then propagated
throughout the remainder of the corresponding alignment (includ-
ing through the compiled sequences in all previous alignments).
Thus, over n clusters, the total running time is approximately

O(N ) +

n∑
j=0

kGj

≃ O(N ) +O(kGn(n + 1)

≃ O(N ) +O(kGn2)

≃ O(N + kGn2)

(8)

In the worst case scenario, to draw an upper bound on the run-
time, n = L and k = 1. Then, the worst case runtime is roughly

O(N +GL2) (9)

4 TESTING THE ALGORITHM
The developed algorithm, named MAQ, was run on a small, sample
dataset for comparison (Table 2). Throughout the development pro-
cess, the algorithm was repeatedly tested on this reduced dataset.
Each sequence in the dataset was a derivation of some "base" se-
quence that represented some accepted sequence, along with an
identical sequence "control" that ensured the most basic alignment
(of the same sequences) could be achieved. Each subsequent se-
quence then contained at least one fundamental mutation that may
occur in generic sequences (e.g. insertion, deletion, or point muta-
tions). The sequences are identified in Table 2 accordingly. When
run on ALFATClust, the dataset is clustered into three distinct sets
of sequences, making it ideal to test the clustering-based MAQ
algorithm.

Table 2: Alignment returned by MAQ algorithm using sam-
ple dataset (created by author).

ID Sequence Alignment
Base - N V R L M L R L
Control - N V R L M L R L
Insertion M N V R L M L R L
Deletion - N - R L M L R L
Point - N V M L R L N L
InsertionAndDeletion M N V R L - R - L

Table 3: Alignment returned by Oscar Lindvall’s algorithm
[24] using sample dataset (created by author).

ID Sequence Alignment
Base N V - R L M L R L
Control N - V R L M L R L
Insertion M N V R L M L R L
Deletion N - R L - M L R L
Point N - V M L R L N L
InsertionAndDeletion M N V - R - L R L

Table 4: Alignment returned by Kalign [23] using sample
dataset (created by author).

ID Sequence Alignment
Base - N V R L M L R L
Control - N V R L M L R L
Insertion M N V R L M L R L
Deletion - - N R L M L R L
Point - N V M L R L N L
InsertionAndDeletion M N V R L R L - -

Volume 14 Issue 1 Journal of Computational Science Education

36 July 2023



4.1 Metrics of Comparison
We firstly define the metrics used to compare these three MSA tools.
We quantify the effectiveness of the algorithm by considering the
alignment’s deviation from the norm. The analysis is considered
by column (following the CAF methodology), with pairwise com-
parisons conducted. In other words, we use a sum-of-pairs scoring
method. For every pair of elements that differ in the same column,
the total score for the alignment is incremented by +1, although
differences between base pairs or amino acids and gaps will have
no penalty (an adjustable parameter during the development of the
problem space). An ideal alignment will have a total score of 0. The
greater the alignment score, the less effective the alignment.

We now define this alignment score formally. Let us label the
sequences in the final alignment from {s0, s1, ...., sL}, organized in
a matrix containingC columns and L sequences. Note these aligned
sequences include any gaps inserted after the dataset is processed
using the alignment algorithm. Then, construct a new matrix A
with dimensionsC × L × L, where the element ac,i, j ∈ A equals 1 if
the cth element of sequences si and sj are not equivalent and are
not gaps and 1 otherwise. Then, the alignment score is defined as

C∑
c=1

L∑
i=1

L∑
j=i

Ac,i, j . (10)

For example, consider the set of sequences AT ,T . An example
alignment may be seen in Table 5. Observe that the first column has
3 pairs of alignments that do not match. The pair (A,T ) has weight
+1, while the pairs (A,−), (−,T ) do not match but contain gaps, so
these differences are weighted at 0. Observe that the second column
does not contain any pairwise differences. Using Equation 10, we
find the score of the alignment in Table 5 is 1.

Table 5: Sample genetic sequence alignment, with a resul-
tant alignment score of 1 (created by author).

A T
- T
T T

4.2 Comparing with Existing Algorithms
We conducted preliminary tests on MAQ and compared the results
obtained against results from two other algorithms: the unmodified
Lindvall algorithm and a classical algorithm that uses similar pro-
gressive techniques. Much like how MAQ clusters sequences into
local groups prior to alignment, Kalign focuses on alignments in
local regions [25], employing a heuristic version of the Wu-Manber
string (sequence) alignment algorithm. Kalign was shown to be
significantly more accurate than other methods on large datasets,
especially when compared against popular methods, such as Bal-
ibase and Prefab [23]. The algorithm was an estimated 10 times
faster than ClustalW, an algorithm that makes use of tree-like data
structures (arguably a more sophisticated form of clustering) to
align the sequences [38].

After the test dataset of sequences (as seen in Table 2) was aligned
on the three algorithms (MAQ, Lindvall’s, and Kalign), the align-
ment scores were calculated using Equation 10 and organized in
Table 6.

Table 6: MAQ is able to return an alignment with competi-
tive alignment scores on relatively small sets of sequences
(created by author).

Algorithm Alignment Score by Column Total1 2 3 4 5 6 7 8 9
MAQ 0 0 0 5 0 4 5 4 0 18
Lindvall 8 2 4 7 4 4 0 5 0 34
Kalign 0 0 5 5 0 8 0 4 0 22

5 MAJOR CONCLUSIONS
The world of bioinformatics shapes societal responses to disease.
A significant part of this understanding arises from pattern iden-
tification, which may be used to find information to predict how
patients may respond to various diseases or treatments. This poses
a series of sequence-based problems that are solvable on algorithms.
Among these, MSA plays a significant role. After all, comparison
of large sets of genetic or protein sequences is reliant on the as-
surance that these sets have been aligned in a logical manner. In
spite of its relevance, the problem is NP-complete, which speaks
to the need for the development of algorithms that are capable of
stepping beyond the 0’s and 1’s of today’s classical computers. Our
developed algorithm, MAQ, is one step in such this direction.

The application of quantum computing to problems is not new
[27]. Over the years, algorithms for tasks such as genetic sequencing
and protein structure prediction have been proposed [27]. However,
many are heavily restricted by spin usage and the relatively new
nature of the field. MAQ introduces a classical-inspired approach
reduces the spin usage per call of the quantum annealer.

The algorithm first clusters the sequences using ALFATClust [3].
The reduced sequence sets are then compared and aligned on the
main algorithm, modified from Oscar Lindvall’s approach [24]. The
resultant alignments are then dynamically merged based on the
relative spacing of the center sequences of each cluster. The final,
progressively aligned alignment is then returned to the user.

A linear advantage of O(L/k), given L total sequences and k
clusters, is achieved in the reduction of spin usage per call of the
quantum computer (Equation 2). However, added complexity due
to the addition of the clustering step and repetitive calls to the quan-
tum annealer adds to the overarching running time. Nonetheless,
the spin usage of each single call on quantum annealers has been
reduced. This allows for the adjustment of large datasets for cur-
rent quantum hardware that has yet to be able to handle significant
space usage without significant loss of information.

Furthermore, when run on a test dataset, MAQ was shown to be
comparable to existing MSA algorithms, including Lindvall’s initial
algorithm and Kalign. For this specific dataset, MAQ performed
better, with an alignment score of 18, relative to the scores of 34
and 22 for Lindvall’s algorithm and Kalign, respectively. Thus, it is
comparable to existing algorithms.
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6 DISCUSSION ANDWIDER APPLICATIONS
Onemust caution that the advantage achieved byMAQ is dependent
on the characteristics of the data. The viability of a clustering-based
method may be determined using the rank of the set of sequences
(that is, how similar the sequences are to each other, where lower
rank suggests larger similarity). The lower the rank of the set, the
more likely the results will resemble that of Lindvall’s algorithm,
since the number of clusters is reduced. MAQ assumes there exists
sufficient distinctions between each sequence in the set such that
they may be clustered into a reasonable number of subsets. In other
words, there is moderate variability between the sequences. In the
case all of the sequences are nearly identical (say, with an estimated
similarity of > 0.99, the clustering may be deemed ineffective.
Consider the alternative extreme. In the case the sequences have
unusually high rank (where the variability between the sequences
is high), the number of clusters will be close to the initial number of
sequences, and the impact of the clustering algorithm will be called
into question. One may argue the sequences in these extreme cases
should instead be grouped by the order it is read in from the file.
This would consume fewer resources.

Future research is needed to quantify the actual effectiveness
of clustering prior to alignment. This is especially important since
the clustering algorithm is costly, as it is itself tackling a NP-hard
problem [26]. further study may reveal a definitive response on
whether the cost of clustering the sequences exceeds the benefits of
an improvement in alignment when compared against, for instance,
alignment of random groupings of sequences.

Furthermore, futureMAQ versionsmay explore other algorithms,
including those that use K-means clustering, where the number
of clusters is predefined. Then, the approximate reduction of the
spin usage per call on the quantum annealers may be approximated
with greater certainty. Granted, although the number of cluster will
be guaranteed (including for sets with low rank), the size of these
clusters will still be dependent on user parameters.

This algorithm deserves further revisitation. Tackling MAQ as
three distinct components that funnel into one another presents
an opportunity for improvement. Additional research is needed to
investigate approaches to consolidating sequence clustering and
alignment, especially with regards to the creation of the weights
matrix (a costly process). For example, the pairwise distance of
sequences is first estimated using the Mash heuristic during the
clustering pre-processing phase. The pairwise comparisons are
then completed a second time while creating the problem space
the quantum annealer will solve (although the exact mechanics
differ). Thus, a standalone clustering algorithm may not be the
best integration into MAQ. Rather, future versions of MAQ may
look to consolidate these pairwise comparisons to reduce overall
iterations through the sequences. Alternative approaches should
also be studied.

Additionally, when run on small datasets, the quantum annealing-
based algorithms may regularly return different results. This is
likely the result of multiple "lowest energy state" configurations. In
MAQ, these differences may be propagated across the clusters, mag-
nifying minor decisions early on in the alignment process between
mathematically-identical alignment states. For each cluster aligned,
there is no guarantee that the arbitrarily chosen state will result

in the lowest alignment score across the total alignment. It merely
guarantees a low alignment score locally. In order words, the dy-
namic merging process assumes all previous alignments are ideal,
an assumption that does not always hold true. Despite this, this
characteristic of the algorithm may be harnessed as an advantage.
For example, rather than returning a single plausible alignment,
several alignments – one corresponding to each combination of the
ideal, local solutions – may instead be simultaneously compared
by the algorithm. This may open the door for a more accurate fi-
nal solution to be returned. Further research is needed to explore
alignment algorithms that may make the most of the existence of a
set of plausible local alignment results.

MAQ demonstrates the viability of quantum computing as a
supporting system for studies into computational biology. This is
a part of the wider driving force that dictates the possible paths
of research development. After all, MSA is just one of many op-
timization problems in bioinformatics. Genetic engineering and
sequencing, for example, are heavily reliant on the capabilities of
existing technology. These capabilities are defined by the accuracy
and accessibility of these tools. As the accessibility of quantum
computers increases, a rising number of algorithms – including
MAQ – are bridging the gap between quantum computing and
other areas.

These identified areas have the potential to impact millions of
human lives. Chief among them are epidemiological and phenolog-
ical studies. In particular, comparison of these sequences permits
for a stronger understanding of the human genome. More rapid
sequencing tools will help translate compiled genomic data into
medically useful information [13]. This includes a better approach
to treatment response prediction – including chemotherapy – and
phenology determination of disease strains. Through extensive mul-
tiple sequence analysis (made possible through alignment), medical
professionals’ understanding of the genetic patterns corresponding
to phenotypical characteristics may be expanded. These develop-
ments have the potential to impact the 33.4 million individuals who
pass through the US hospital system annually [2], along with the
countless others who use any form of healthcare service. In order
to achieve this, however, refinement of the quantum annealing pro-
cess and algorithms must be conducted. As problem sizes continue
to grow and the need for algorithms with lower space complexity
and runtimes continues, heuristics such as that taken by MAQ will
continue to emerge, marking this as an area of strong potential,
worthy of further research.

7 STUDENT REFLECTION
MAQ was the result of a 9-month student research project I (the au-
thor) conducted. The investigative project explored the plausibility
of applying quantum computing as a tool. In particular, I focused on
addressing current limitations of the quantum hardware. However,
arriving at this focus involved a rather indirect path consisting of a
series of decisions.

My initial research had led me into a more abstract form of
string alignment. This pure mathematics problem approached the
situation via graph theory and employed techniques beyond the
scope of this paper. I had initially begun with the intention of apply-
ing my previous understanding of quantum-inspired and quantum
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computing algorithms to the project. Yet these purely theoretical
subjects felt disconnected from ongoing problems in the world, and
I struggled to identify a path forwards.

Over time, as the research plan began to solidify, I encountered
an increasing number of applications for these algorithms. The
puzzle pieces began to fall into place as I read about the application
of MSA algorithms to genetic sequencing. I found I was revisiting
a subject that had fascinated me years prior, and my appreciation
for interdisciplinary studies grew.

This played a role in reshaping my long-term plans for study.
In particular, my focus transitioned from pure mathematics and
theoretical computer science to computational biology. While the
two former fields are still on my radar as fields of interest, I rec-
ognize computational biology will likely play a larger role in the
direction I take for future endeavors. Following conversations with
a number of current graduate students, professors, and researchers
in the field, I hope to go into and remain in research and academia
following my college and (ideally) graduate studies.

Nevertheless, I recognize this research project is merely a small
glimpse of what is plausible in the realms of bioinformatics and
quantum computing. Even as I have gained a stronger understand-
ing of algorithmic thinking, implementing quantum annealing, and
the mathematics surrounding the fields, I realize I have much more
left to learn. I have no intention of stopping my curiosity, and I
hope to continue to expand my understanding of what is possible
over the next few decades.
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ABSTRACT
Delivering training and education on hybrid technologies (includ-
ing AI, ML, GPU, Data and Visual Analytics including VR and
Quantum Computing) integrated with HPC resources is key to
enable individuals and businesses to take full advantage of digital
technologies, hence enhancing processes within organisations and
providing the enabling skills to thrive in a digital economy. Super-
computing centres focused on solving industry-led problems face
the challenge of having a pool of users with little experience in
executing simulations on large-scale facilities, as well as limited
knowledge of advanced computational techniques and integrated
technologies. We aim not only at educating them in using the facil-
ities available, but to raise awareness of methods which have the
potential to increase their productivity. In this paper, we provide
our perspective on how to efficiently train industry users, and how
to engage with them about wider digital technologies and how
these, used efficiently together, can benefit their business.

KEYWORDS
Education, Training, HPC, Integrated Technologies, Customer Suc-
cess, Quantum Computing Training, GPU Training, Digital Twin-
ning

1 INTRODUCTION
The Hartree Centre (HC) is part of the Science and Technology
Facilities Council (STFC) - one of UK Research and Innovation’s
research councils - building on the rich established scientific her-
itage and a network of international expertise to support the UK’s
continued leadership in computational science and digital inno-
vation [1, 4, 6]. HC supports businesses and organisations of any
size in the UK in exploring and implementing technologies such
as supercomputing (HPC), data analytics and artificial intelligence
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(AI) for increased productivity, cleverer innovation, and economic
growth. The centre is home to some of the most cutting-edge digital
technologies and experts in the UK, supported by sizeable UK gov-
ernment funding and strategic partnerships with industry leaders.
In 2021, the Hartree National Centre for Digital Innovation (HNCDI)
[2] programme was established to provide a safe and supportive
environment for UK businesses and public sector organisations to
acquire the skills needed to adopt AI, develop proofs-of-concept
and de-risk investment into emerging digital technologies such as
quantum computing.

The Hartree Centre’s in-house skills set is key to helping in-
dustrial partners deliver solutions to real-world challenges. True
customer success, however, is achieved when customers fully un-
derstand how to apply acquired knowledge and can adapt it to their
own business needs. Dealing with industrial customers as end users
of HPC facilities can present unique challenges. A typical user com-
ing from an industrial background is remarkably knowledgeable
in a specific domain area, however, they often lack the knowledge
required to perform numerical simulations on large-scale comput-
ing facilities. Furthermore, the adoption of hybrid computational
technologies (that is the use of computational techniques such as
ML, AI etc. in combination with classical HPC) is hindered by the
lack of detailed understanding of the functionality.

These two issues have often three negative outcomes. The first
casualty due to lack of "operational knowledge", is productivity.
Users that do not know their way in an HPC infrastructure usually
end-up in using the facility in a sub-optimal way, hence resulting
in loss of productivity and ultimately financially impacting the
project itself. Indeed, poor usage of computational resources will
unavoidably drain paid project compute time allocation. Second,
inexperienced, and non-self-sufficient users impact data-centres
operations, opening tickets and incidents that take time to solve,
diverting staff time into non-critical troubleshooting. Finally, lack
of understanding of the low level functionality of new technologies
limits their uptake and hinders digital innovation in the business.
Hartree Centre staff aim to assist in all three areas.

In this paper, we provide our perspective on how to efficiently
train users with an industrial background, not only on how to use
HPC systems but also on how to engage with them about wider
digital technologies and how these, used efficiently together, can
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benefit their business. Here, we describe our training and education
strategy for users with a core industrial background using the
following three stages. The first stage is about building a confident
and self-sufficient cohort by providing consistent and systematic
training on how to use HC supercomputing facilities. These users
can pass on knowledge to their colleagues. The second stage is
designed to build digital innovation awareness, where we engage
with customers by showcasing successful examples of integration of
hybrid technologies within a business pipeline, especially by means
of visualisations aids. The final stage is a more specialised training
and education, where customers already aware of the benefits of
digital innovation for their business can gain in-depth knowledge
via the HNCDI Explain programme.

1.1 HNCDI: The Hartree National Centre for
Digital Innovation

The Hartree National Centre for Digital Innovation is a collabora-
tive programme with IBM which will enable businesses to acquire
the skills, knowledge and technical capability required to adopt
digital technologies like supercomputing, data analytics, artificial
intelligence (AI) and quantum computing.

Through HNCDI we provide a safe and supportive environment
for organisations to explore the latest digital technologies and skills,
develop proofs-of-concept and apply them to industry and public
sector challenges. Our dynamic and collaborative approach is driven
by industry requirements and will help organisations to de-risk
investment in new and emerging digital technologies.

Either at the start of their digital journey or trying to advance to
the next level, we can help businesses navigate the possibilities of
AI and quantum computing technologies to discover the next step
for their digital development.

The HNCDI programme is divided in four work-streams.
(1) Emerging Technology: we are looking at the future of com-

puting in the UK, helping businesses to identify the areas
where emerging digital technologies like quantum comput-
ing might offer the most competitive advantage.

(2) Excelerate: through our applied industrial research, we help
to turn good ideas into industry-ready solutions that ad-
dress business challenges, embedding AI solutions across
the industry.

(3) Explore: it aims to go one step further by finding ways to
solve industry challenges when there isn’t an existing off-
the-shelf solution but there is evidence it can be solved and
a business value and motivation to solve it.

(4) Explain: in this work-stream, HC staffworks with individuals
to identify learning pathways through our course catalogue
that will equip their organisation with the skills needed
to take advantage of digital technologies. Explain will be
discussed more in-depth in the following Sections.

2 BUILDING A CONFIDENT AND
SELF-SUFFICIENT USER COHORT

Successful routine use of a supercomputer in a commercial project
goes hand in hand with the proficiency of its project members
in making the most of the available infrastructure. This involves
managing their data as well as efficiently targeting the resources in

terms of processor type, number, etc. for specific simulation cases.
Although HPC infrastructure across the world operates with the
same principles (distribute computing over a fast network, hybrid
hardware, job scheduler to orchestrate the workload, distributed
file system etc.) and use pretty much the same family of operating
systems (e.g. Linux based clusters), each data centre is different
and only rarely will HPC systems have identical features. Thus,
even experienced users will have somewhat to re-learn and adapt
when moving onto a new supercomputer. The time taken to adapt
to a new machine depends on the proficiency of the user. There
are several educative and training perspectives as mentioned in
[11, 14, 26–29].

We believe that customer on-boarding plays a crucial role for
businesses’ journey towards integration of hybrid technologies. For
this reason, each and every new HC user undergoes an on-boarding
process that we call "driving license", a training course delivered
as a two hour lecture in which the users are expected to learn the
fundamentals of our supercomputer, Scafell Pike (Top 500 list). To
complement the lecture, a hand-book is also made available, see
[19]. Topics covered in the course span both hardware and software
of the machine, and the message we want to share is that there
is no efficient usage of a supercomputer if first it is not clearly
understood how the machine works, in terms of it’s hardware, the
nature of the file-system, the job-scheduler and the overall software
stack. Finally, practical examples of job submissions are provided,
also useful as a starting template for customised submission scripts.
Before users receive their machine accounts, a "driving license" test
needs to be passed, in which the users demonstrate competency in
the usage of the machine, by being quizzed on a number of question
regarding our HPC facility usage.

The HC on-boarding process has a number of benefits. First,
the training provided guarantees a consistent minimum working
knowledge across users in the centre, meaning that even a complete
novice possess the relevant knowledge to comfortably move around
the system. Second, the amount of downtime that users experience
due to unexpected issues at submission time, execution time and
so forth is significantly reduced, as understanding of the system
provides the user with basic diagnostic skills (e.g. the job did not
produce any output because it was submitted from the wrong base
directory). Third, data-centre operations also benefits a trained user
workforce a, generally speaking, trained users tend to raise less
tickets for issues, thus reducing the amount of staff time spent
troubleshooting basic issues.

3 BUILDING DIGITAL INNOVATION
AWARENESS

The second fundamental stage of training and educating users
with an industrial background is to build digital innovation aware-
ness, that is to understand which and how digital technologies
can enhance business productivity and profits. However, learning
about the power of computational methods and, in general, novel
technologies to address business critical objectives is hard if ap-
proached under a purely theoretical perspective, and a practical,
tangible example would be a more effective learning tool. The HC
has 10 years of experience in enhancing businesses profitability
through the application of advanced technologies, with a large
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portfolio of projects and case studies available to share. Thanks
to our portfolio, we built a number of demonstrations showcasing
projects outcomes obtained with hybrid technologies (HPC, AI/ML
etc.), using visual computing strategies aiming at immersing the
customer in an engaging visual and virtual environment, to help
promoting and understanding the impact of a knowledgeable use
of such hybrid technologies. We found out that visual computing is
a good enabler towards digital innovation awareness.

3.1 Visual Computing as an Educational Tool
Visual computing and digital twinning have unquestionable ad-
vantage to bring insight and deeper understanding for scientific,
industrial and educational fields. Exploiting such emerging tech-
nologies can allow us to bring more awareness and interest to
applications of HPC.

Here at the Hartree Centre we have a range of visual computing
facilities suitable for demonstration and training purposes as well
as use in a project work. Our two showcase rooms house large
main displays, and both of these displays are stereo 3D capable and
both are equipped with high-end visualisation workstations and
HD audio systems. All the displays and devices throughout the Vi-
sual Computing suit are connected through a high-speed multi-cast
network utilising Crestron NVX transducers and switches such
that any computer in the system can be connected to any display.
We typically connect to our HPC facilities through VNC [5] for
interactive access and remote visualisation. We have a number of
licensed and open source software tools available for our scientists,
engineers and partners to train and utilise for project work. Com-
bining tools such as these with our super-computing systems can
allow us to manipulate, control and visualise data on a massive
scale for educational and training purposes.

Ranging from partners to students, we demonstrate a number
of visually exciting case studies from past projects to help raise
awareness of how we can engage with them and help them realise
their potential. Our visualisation systems are instrumental in im-
proving the quality of demonstrations and presentations, and this
helps us to enable better experience during training and education
processes.

One of the projects we demonstrate in this way is our Virtual
Wind Tunnel project (VWT) [30]. We visualised a project inves-
tigating airflow over a prototype car body, and it produced some
near photo-realistic renders of streamlined data from computational
fluid dynamics (CFD) simulations. We ran the CFD simulation on
one of our supercomputer systems and the data produced was
post-processed and overlaid onto the CAD model in the rendering
software also running on the supercomputer. This led to the de-
velopment of a supercomputer CFD workflow, which we call our
Virtual Wind Tunnel (VWT) and an application used to display and
investigate CFD data overlaid on CAD models in a more realistic
and human-relatable 3D/VR environment. The app simulates an
actual wind tunnel and allows the user to move around the test
object and view it from all angles while displaying streamlined
data. Particles can be added to the streams and animated along
the streamline trajectories to show the development of flow. This
work-in-progress app when shown on our larger displays gives a
more realistic and relatable feel when visualising data. This in turn

demonstrates to our customers how the correct visualisation can
give insight into what the data is showing us by putting the human
back in the loop.

Figure 1: Photorealistic rendering of a F1 Ferrari overlapped
with CFD streamline data simulated on our HPC facility.

Another example of visualising big data is our Dengue Virus
demonstration. Here we show a stereo 3D visualisation of the viral
protein that causes dengue fever on our 4.7-metre display pointing
out to people that this is just one way to view the 1.1 million atoms
that make up the protein. Such kind of protein visualisation is
helpful to intuitively grasp the structure of the virus, potentially
identifying hidden pockets that could be targeted by drugs.

Figure 2: Dengue virus envelope protein renderedwithVDW
drawing method using VMD [16].

Demonstrating techniques for visualising big data sets in this
way will hopefully show a good visualisation can bring potential
benefits to educational, scientific and industrial projects and how it
can help to make big data more accessible to more people.

4 SPECIALIST TRAINING AND EDUCATION
WITH THE HNCDI EXPLAIN PROGRAMME

To meet some of the above goals, we offer application-focused train-
ing via the HNCDI Explain program, designed to enable individuals
and businesses to take full advantage of digital technologies to
enhance processes within their organisation and provide the skills
that enable them to thrive in a digital economy.
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Our training model is flexible and built with industry in mind.
Whether learning the basics or searching for new tools and tech-
niques to apply, a combination of self-directed online learning and
face-to-face practical sessions can be used with certification.

The HC team will work with individuals to identify learning
pathways through our course catalogue that will equip their organ-
isation with the skills needed to take advantage of digital technolo-
gies. These skills can then be passed on to colleagues who will also
have free access to the training materials. In general, four different
levels of training are provided:

• Introductory: trainees from a non-related background with
very little knowledge of the subject area;

• Learner: trainees with some theoretical or practical knowl-
edge within the relevant subject area;

• Independent user: traineeswho canwork independentlywithin
the subject area but would require guidance for solving com-
plex problems;

• Practitioner: trainees actively working in the subject field,
looking to investigate emerging technology developments,
and new techniques and/or develop collaborative multidisci-
plinary applications with higher levels of complexity.

Below two examples of specialist training we provide. A more
comprehensive list of training courses offered can be found here
[3].

4.1 Computational use of GPUs
Much research software, particularly open source, is nowadays de-
veloped to work using GPUs for the acceleration of critical numeri-
cal components. This is particularly true in fields such as machine
learning and AI, bio-informatics and chemistry, solution of linear
systems of equations for engineering applications and so forth.
Despite the technological relevance, good software engineering
practice for GPU accelerated software is somewhat limited to a
small portion of specialised software engineers, and it’s only being
taught in specific academic degree courses, leaving interested users
to rely on online open-source material or resorting to a self-taught
strategy.

HC has a core specialism in GPU software development, as well
as owning large GPU-based resources. Such specialism and hard-
ware are exploited by the Centre to train users, aiming at sharing
good GPUs software engineering practices. Teaming with partners
such as NVIDIA, we offer hands-on training in GPU accelerated
computing to solve real-world and industry-relevant problems, get-
ting much-needed practical experience and earning a certificate
of competency to support professional growth. As mentioned in
[12, 15], this significantly improves the interest of users in the field
and encourages more people to accelerate their codes. Furthermore,
supervising skilled and interested students across Europe in projects
with state-of-art topics using GPUs during PRACE Summer of HPC,
brought more interest and possible workforce for the area.

4.2 Quantum Computing
The rise of Quantum Computing (QC) as the next mainstream com-
puting paradigm for code acceleration is gaining momentum in the
scientific computing community, promising to change the way we
solve real-world challenges. Based on completely different physical

rules compared to traditional, classical computing, QC requires
a different mind-set and a different approach in the way code is
written. This is true due to a number of factors: completely new
hardware to be interfaced with classical facilities, classical codes
needs to be ported to be suitable to work on quantum hardware
and, overall, basic understanding of quantum mechanical rules and
how these affects computation. As such, the need for structured
and rigorous training for QC is very much needed.

Structured training is a strong challenge for super-computing
centres to adapt and prepare materials for emerging technologies
such as QC. There are readily-available materials for quantum
computing such as:

• Introductory and Learner level: Michael Nielsen’s book [25]
and tutorials [17, 18, 23, 24] are one of the most welcoming
when it comes to introduction for QC. As previously men-
tioned by [20–22], games and interactive environments have
significant importance in education and training in HPC, and
there are also QC-related games available [7, 32]. There are
several very well-prepared materials such as Qiskit textbook
[8, 31] Tensorflow Quantum [10], Cirq [13], Pennylane Tu-
torials [9], however, they are tailored for specific SDKs and
hardware. Furthermore, installing a QC environment and
using it can be challenging especially for end-users. In addi-
tion, SDKs and QC environments are not stable and getting
updated regularly.

• Practitioner level: Previously mentioned materials also have
advanced levels for people who wants to specialise. In addi-
tion, there are many articles available and published every
day about quantum computing.

In HC, via the Explain program we aim at building the next
generation of quantum software engineers from bottom up. First, we
provide training for the basics of quantum computing with respect
to introductory applied quantum mechanics, and afterwards, for
specific hardware (e.g., quantum annealing, universal gate-based
etc.) and their SDKs. Despite we commonly use universal gate-
based systems for hands-on training using simulators, we can tailor
the materials according to the specific needs of a project or users.
Furthermore, we also encourage and support individuals to take
extensive courses from external sources and join related events to
be specialists in the area.

5 CONCLUSIONS
In this paper we provide our perspective on how to effectively train
industry users, and how to engage with them about wider digital
technologies and how these, used efficiently together, can benefit
their business. Specifically, we have discussed our three stages edu-
cation plan. In the first stage, we provide each and every user with
a core training on how to use efficiently our HPC system, building
a confident and self-sufficient user cohort that can productively use
the machine. In the second stage, we engage with industry users
building digital innovation awareness. This stage is key to provide
businesses with concrete examples of how applied digital strategy
can bring benefits to their business. The third and last stage is to
provide specialist training tailored to match the business needs of
the users, as well as training on novel emerging technologies via
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our HNCDI Explain work stream. This allows us to stay competitive
meanwhile building the future’s work force.

To conclude, through the approaches described in this paper
we have introduced businesses to new ways of working, and in-
corporating new technologies into their research pipeline through
enhanced service o�erings. Demonstrating the capabilities based
on each kind of technology leads to an increased demand to use
them. As speci�c examples, this includes using remote interactive
access and visualisation, use of GPUs and quantum computing.
Data analysis and AI solutions are also being included in software
development work, e.g. using AI models alongside more traditional
mathematical models.
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ABSTRACT
As more students want to pursue a career in big data analytics and
data science, big data education has become a focal point in many
colleges and universities’ curricula. There are many challenges
when it comes to teaching and learning big data in a classroom
setting. One of the biggest challenges is to prepare big data infras-
tructure to provide meaningful hands-on experience to students.
Setting up necessary distributed computing resource is a delicate
act for instructors and system administrators because there is no
one size fit all solutions. In this paper, we propose an approach
that facilitates the creation of the computing environment on both
personal computers and public cloud resources. This combined
approach meet different needs and can be used in an educational
setting to facilitate different big data learning activities. We dis-
cuss and reflect on our experience using these systems in teaching
undergraduate and graduate courses.

KEYWORDS
Big Data Computing, Learning Activities, Apache Spark

1 INTRODUCTION
Multicore processors have become standard in modern personal
computing devices. Linux Kernel Subsystem and Hypervisor com-
ponents have ensured Windows-based computers to have access
to the same software libraries commonly used in parallel and dis-
tributed computing (PDC) education such as pthreads [17], OpenMP
[22] and OpenMPI [23]. This enables students to carry out PDC
learning activities on their personal computers rather than fully
dependent on large-scale computing resources. When it comes to
big data computing (BDC) topics, computing environment setup
becomes more complex. For example, Apache Spark, a popular big
data analytic platform, is not a library to be linked and invoked
at run time but a complex ecosystem that needs to be installed,
configured, and deployed. Programs are then submitted to this plat-
form for execution. In addition to multicore requirements, available
memory and local storage are also critical resources to be managed.
To date, BDC education relies mainly on distributed resources with
a preference for on-site physical cluster [15].
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In this work, we present several deployment varieties for indi-
vidualized computing environments together with various BDC
learning activities. These approaches range from direct installation
and configuration on personal computing devices, development
of workflow on local clusters to indirect deployment through con-
tainerization, and large-scale temporary deployment on federal
cloud resources. This provides a sustainable approach to BDC edu-
cation where the burden of maintain computing resources is not
solely placed on academic institutions and students have access to
a learning environment beyond the duration of the courses. These
approaches help creating and disseminating BDC courses at two
academic institutions that lack support for large-scale infrastruc-
tures.

The remainder of the paper is structured as follows. Section 2
presents our approach to maintain a sustainable BDC learning envi-
ronment. Section 3 describes the learning activities and assessments.
In Section 4 we discuss our overall classroom experience, including
descriptions of previous taught courses, students evaluation and
learning outcomes, and the lessons learned. Finally, we conclude
our paper and discuss future work in Section 5.

2 SUSTAINABLE AND SCALABLE SOLUTIONS
There are primarily three approaches to providing computing envi-
ronment to big data education: physical cluster [7], virtual cluster
[14], or cloud-based solutions [24]. Given these approaches require
institutional investments and extensive technical knowledge, scal-
ability and sustainability can be limited for smaller institutions.
These solutions can become limited available to students due to
limitation such as computing credits (cloud), on-campus access
(physical or virtual), or resource contention (physical or virtual).
Students can lose access to resources after the course is ended,
hindering the potential of further self studying.

We define sustainable solutions as approaches that do not place
significant financial and technical burden on students and academic
institutions. A sustainable option for BDC learning environment,
therefore, is one that is deployed on students’ personal computer
(PC). However, it is critical that learning activities behave exactly
the same on personal computers or large-scale resources, except
for run time performance.

2.1 Infrastructure on personal computers
There are three varieties of deploying Spark on PC: direct deploy-
ment, single-node containerized local deployment, and multi-node
containerized cluster deployment. Today, a fairly minimal and inex-
pensive (relative) laptop boasts a dual-core CPU, 4GB of memory,
and 32GB of storage. A direct installation of Apache Spark [28]
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Figure 1: Jupyter notebook with Spark cell setup and Word
Count execution

and PySpark [13] is necessary to avoid overhead that could hap-
pen from containerized solutions. The trade-off in this case is the
added complexity of managing various installations in a Windows
environment. For more powerful devices, single-instance Docker
solutions can be used, where all required libraries for Spark and
Python are already configured inside the container. With top-of-
the-line PCs, we can also deploy a multi-node Spark cluster that
is housed in multiple containers. In all scenarios, we are assuming
Windows installation as it is the most popular operating system
used by students.

For direct deployment, the following components must be setup:
1) Anaconda [5], 2) Apache Spark, 3) Java, and 4) Hadoop-Windows
utilities. Out of these four components, Anaconda potentially takes
up the most space (approximately at least 500MB) and requires
an installation process. While it is possible to selective pick only
relevant Python components necessary to support Apache Spark,
the steps will be lengthy and tedious. Students lacking command-
line experience and administration skill will likely encounter er-
rors, creating technical overhead inside and outside of the class-
room. Java can either be installed or decompressed to a specific
location. Apache Spark and Hadoop-Windows utilities need to be
downloaded and decompressed to specific locations. Once every-
thing is in place, environment variables need to be set for ANA-
CONDA_HOME, SPARK_HOME, HADOOP_HOME, and their corre-
sponding sub-directories to executable files in PATH via Windows’
System Properties.

After a Jupyter notebook is created, a block of template code
is provided to setup the launching of a local Spark cluster. This

Figure 2: Spark Web UI on local server

template includes getting the location of Spark’s installation via
SPARK_HOME and append relevant supporting libraries to the
notebook’s Python kernel. Students can specify the size of the
cluster via number of cores and amount of memory in GB. Finally,
PySpark will launch the local Spark cluster. Figure 1 demonstrates
the execution of the template cell, and the subsequent running of
another cell that runs the word count activities and returns the
top ten unique words’ counts. Figure 2 shows the records of the
submitted Spark jobs on the local 127.0.0.1:4040 address.

In both single-node [2] and multi-node [1] containerized de-
ployments, the key setup step is to install Docker Desktop. The
challenge is the enabling of virtualization support on older laptop
models via BIOS. This issue has gradually been reduced over time
as newer laptops have virtualization enabled by default. The deploy-
ments launch the Docker container(s) and expose the default port
of the Jupyter notebook server to the host machine, making Jupyter
available to students via the host browser. One downside of this
approach is the limited access to Spark’s Web UI. While it is possi-
ble to expose the primary interface of the Web UI, additional log
information resides on individual Spark worker’s container whose
port must be exposed separately. It is possible to examine the log
from the terminal using docker log command. However, this cre-
ates a potential point of failure/technical overhead for students. An
example multi-node containerized deployment is shown in Figure
3.
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Figure 3: Multi-node containerized deployment of Spark cluster

2.2 Scaling to community cloud
The containerized solutions for single and multi-node Spark cluster
can also be used to deploy at scale on CloudLab, a federal cloud
resource that is available for research and education purposes [21].
A CloudLab experiment needs to be deployed prior to class. This
experiment launches a single Docker node or a multi-node Docker
Swarm [3]. Students can launch the containerized deployments
here on the experiment and access the Jupyter server via the public
IP address of the experiment’s head node.

As CloudLab is designed to be an experimental test-bed, cloud al-
locations are provisioned within limited timing duration (16 hours)
that are not suitable for sustained learning activities. However, long-
term availability of personal computing devices can be combined
with CloudLab to create a learning model that enables students to

build their big data workflow locally using smaller data set and test
their solutions on CloudLab using larger data sets.

The combination of personal computing devices and public cloud
resources facilitates sustainable and scalable solutions to provide
learning environments for BDC topics. In the next section, we will
discuss learning activities that are created to support this approach.

3 LEARNING ACTIVITIES AND ASSESSMENT
While designing learning activities, we focus on guiding students
through fundamental steps in the big data processing pipeline.
These steps include identifying data sources, acquiring and ingest-
ing raw data, and analyzing curated data. Students are exposed to
both the underlying theory behind big data techniques and the soft-
ware tools and infrastructures that implement and support these
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techniques. Assessments include both short-term assignment and a
semester-long data analysis project.

3.1 Learning activities
Data acquisition: The first topic of interest is data identification,
acquisition, and curation. The experience of combing through a
large number of data sets can be rewarding but also can be frus-
trating at times. For this topic, students learn to narrow down their
topic area and not to focus solely on quantity but on quality of
the data sets being examined. Qualities such as cleanliness, relia-
bility and uniqueness have a direct impact on subsequent learning
activities. There are many publicly available data sets spanning
across many topic areas for students to explore. Examples include
data.gov [10] for data related to government, climate, health, en-
ergy, and economy, Kaggle [16] for health, science, sports, crypto,
and entertainment data, UCIML [26] for science and engineering
data, Nasdaq Datalink [20] for financial and business related data.
Table 1 shows a list of sources and topic areas for publicly available
data sets.

Additionally, we also make security data collected from our own
Linux servers available to students. For larger data sets, smaller
samples that can easily be processed on PCs are generated.

Programmingmodels: Existing big data toolkits (e.g., Hadoop
[12], Spark [28], AllPairs [19], DataSpaces[25], etc) already provide
an extensive collection of ready-to-use functionalities. It is critical
that students understand the underlying programming paradigms
implemented in these functionalities. They are to momentarily step
away from the traditional procedural and object-oriented paradigms
where functions and objects are the targets of programming ac-
tivities. Instead, they are to focus on the data pipelines and how
these pipelines will eventually produce the desired results. The
MapReduce programming paradigm [11] is one such dataflow pro-
gramming paradigm, where programmers utilize ‘map‘ and ‘reduce‘
functions to form the data pipelines. This paradigm is implemented
in Hadoop MapReduce, Apache Spark, and many other big data
frameworks.

3.2 Assessments
In addition to the standard quizzes and exams that assess students’
on their understanding of foundational concepts, assignments and
semester projects are key components to the assessment process.
The following assignments and projects were disseminated to stu-
dents and carried out primarily using the infrastructures described
in Section 2.

Assignments: Assignments are used forWCUPA’s BDC courses.
There is a total of five assignments that work on progressively
bigger and more complex data sets. Students demonstrate their
understanding by implementing well-known algorithms such as
PageRank and K-mean clustering using MapReduce programming
paradigms and apply them on the data.

• Assignment 1 is a straightforward demonstration that stu-
dents are able to deploy Spark on their PC/laptops. This
assignment requires students to provide a series of screen-
shots showing working Jupyter notebooks, Spark WebUI,
and success WordCount results. The assignment serves as

a confirmation that all students have access to adequate
infrastructure to continue the course.

• Assignment 2 provides students with an actual security log
of a public-facing computer. Students are to study the log and
provide answers to the following questions: 1) How many
failed access attempts? 2) Which countries these attempts
are generated from? 3) What are the attempted usernames?
4) Which date has the highest attack frequencies? These
questions require students to become familiar with Spark’s
actions and transformations and also to learn how to examine
complex textual data.

• In Assignment 3, students are first introduced to a big data
set: the user information portion of Yelp’s academic data
set [4]. This data set is approximately 1.8Gb compressed,
which is large enough to be inconvenient. Besides descrip-
tive statistics, students are required to identify the top ten
influential users from this data set. This particular require-
ment is open-ended, as students will need to justify their
choice of attributes that define level of influence.

• Assignment 4 is an extension of assignment 3, where stu-
dents now use all data within the Yelp data set (user, review,
and business) to study characteristics of the influential users
and identify their pattern of restaurant visits (local, regional,
or east-west coasts). This assignment is where students can
decide to apply complex techniques such as PageRank and
K-mean clustering.

• Assignment 5 introduces students to Kaggle [6]. The assign-
ment involves two parts. In part 1, students are to participate
in the introductory “Titanic - Machine Learning from Disas-
ter“ competition but use Spark and its supporting libraries
to carry out the prediction task. In part 2, students study
the cryptocurrency data set on Kaggle. While this data set is
not overly large (approximately 300Mb), the text line them-
selves contains non-standard characters and are not easily
tokenized.

Semester Project: We have students design and implement a
data analysis workflow to analyze the data set of their own choice.
The goal of this activity is to get students ready to apply what they
learn to work on real-world problem beyond the classroom. We
ask students to come up with at least five interesting questions
they want to answer from the chosen data set. If the student de-
cides MapReduce programming model is suitable to answer those
questions, the student would write their own mapper and reducer
functions specific to each question. A prototype of the workflow
is developed on small sampled data and run on PCs. Later, this
prototype is migrated to run on a large-scale BDC environment
that could be on-site or cloud-based, depending on the institution’
resources. We evaluate the entire workflow by processing different
data sizes and scaling out across different number of computers
and whether the results support answering the proposed questions.

Case Study: One of our students wanted to perform a study of
educational data, specifically,identifying the correlation between
a student’s gender, course work performance and the likeliness of
he/she pursuing a career in STEM after high school graduation.
The student looked into a number of educational data sets from
the National Center for Education Statistics (NCSE) and chose a
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Table 1: Popular sources for data sets

Source Topic Areas
data.gov Government, Climate, Health, Energy, Economy,...
Kaggle Health, Science, Sports, Crypto, Entertainment,...
UCI ML Repository Life Science, Physical Science, Engineering,...
Nasdaq Datalink Financial, Real Estate, Banking,...

data set from the High School Longitudinal Study[27]. The study
surveyed over 20,000 students from more than 900 both public and
private schools.

After obtaining a data set, the next step was for the student
to propose a list of questions they want to investigate. The ques-
tions are listed in Table 3. As an example of the type of insight
student could derive from the data set, he/she propose a hypothesis
which state that a student with higher GPA is more likely to take
post-secondary classes (college/university) because GPA is a good
indication of the student’s future academic aspiration in higher edu-
cation. The student then proceed with creating customized mapper
and reducer functions to attempt to validate the hypothesis. Figure
4 shows a part of a mapper code.

Figure 4: A snippet of a customize mapper function

The analysis result validated the hypothesis. Table 2 shows as
the GPA increases, there are more student answered yes to indicate
they were talking postsecondary courses after graduating from
high school.

4 DISCUSSION
The deployment varieties on PC presented in Section 2 have been
used in one BDC course from West Chester University of Penn-
sylvania (WCUPA) and a series of independent study course from
Western Illinois University (WIU). Both institutions are regional
public universities and lack either infrastructure (WCUPA) or per-
sonnel support (WIU) to deploy and maintain large-scale comput-
ing infrastructures for regular BDC courses. The adoption of the

Table 2: Student response to the questions about taking post-
secondary courses

GPA Yes No Don’t know
0.0-0.5 32 58 49
0.5-1.0 70 158 110
1.0-1.5 195 343 189
1.5-2.0 590 618 319
2.0-2.5 1299 708 329
2.5-3.0 2073 617 269
3.0-3.5 2449 417 169
3.5-4.0 2768 202 70
4.0+ 3390 99 16

above-mentioned deployment varieties enable teaching and learn-
ing activities of BDC topics and subsequent course creation.

4.1 Course descriptions
At WCUPA, there was no BDC course prior to 2019. A special topic 
course on complex large-scale systems was offered with emphasis 
on BDC contents during the Winter 2019 semester. During this ini-
tial offering, the multi-node containerized local deployments were 
introduced to the course. At this time, Docker required Docker 
Toolkit and VirtualBox to support containerization for older ver-
sions of Windows and Mac, and several students with much older 
machines could not run a multi-node solution. A single-node so-
lution was developed and introduced as an alternative. After the 
initial offering in Winter 2019, the course was offered once again as 
a special topic course in Winter 2020. During this semester, the di-
rect deployment approach was introduced to students. Instructions 
for Docker-based deployments were made available to students as 
alternatives but were not formally introduced in class. Beginning 
Fall 2021, the course was converted into a regular Fall-semester 
course titled “Big Data Engineering."

Because traditional BDC courses are not offered at WIU, students 
who want to gain experience working with big data often do so 
through an independent study course. The course includes most 
of the activities outlined in Section 3 culminating with a semester 
long final project. This specific independent study course has been 
taken by WIU graduate students four times in recent years.

4.2 Student outcomes and feedback
Descriptive summary of student enrollments during for BDC course 
offering at WCUPA is presented in Table 4. It should be noted that 
for the Fall 2022 semester, class size was capped at 35 due to limited 
physical seating. In general, students’ verbal feedback has been 
positive. For Winter semesters, there were no formal evaluation
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Table 3: Proposed questions by a student [18]

# Questions
1 Does a higher high school GPA correlate to enrollment in a post-secondary education program towards earning a bachelor’s?
2 Does a higher high school GPA correlate to the number of STEM courses enrolled in during high school?
3 Is there a correlation between gender and the decision to enroll in a post-secondary educational program?
4 Is there a correlation between gender and the amount of STEM courses taken during high school?
5 Does a positive response about the value of math also correlate with the number of science related courses enrolled in during high school?
6 How do di�erent genders perceive the importance of math and their own ability to do well in math compared to that of the other gender?

Table 4: BDC Course o�erings and enrollments at WCUPA.

Semester Enrollment
Winter 2019 13
Winter 2020 20
Fall 2021 40
Fall 2022 35

process. However, in-class interactions had been positive and no
signi�cant technical issues happened. During Winter 2020, two
students decided to follow up on the security analysis assignment
and expanded the work to cover all system logs of department
computers. This resulted in a publication that won Best Student
Paper award at a regional conference [9]. For the �rst regular of-
fering, students’ ratings of course contents have been well-above
departmental, college, and university’s mean rating. As Fall 2021
was the �rst semester back after Covid-19, no verbal feedback from
students was made available.

4.3 Lesson learned
We o�er the following lessons to summarize our experience in
teaching big data computing to both undergraduate and graduate
students. We hope these can be applied to sustain and improve
teaching and learning experience for fellow educators and students
in the future.

Keep sustainability and reproducibility at the forefront:
Limited access to workable resources is the primary obstacle to
teaching and learning BDC, or PDC for that matter. Helping stu-
dents to deploy a suitable computing environment on their PCs
ensures access and allows students to at least learn about the un-
derlying theories, even without scalability demonstration.

Give students some autonomy: Having access to the comput-
ing environment on their own PCs will also contribute to students’
autonomy in learning and experimenting with various data sets
from topics that they are interested in. Many data sources available
on ‘data.gov‘ are actually small in size (dozens of megabytes) and
well suited for PC processing. Working with data sets in topic areas
that they can relate to either their future career or their personal
hobbies can help boost students’ motivation.

Be ready to clean data: Ideally, students are able to �nd a
useful and clean data set that contains all relevant information.
However, this is almost always not the case, and students should be
reminded to be mindful about the cleanliness and trustworthiness
of their collected data. Data cleaning is an important part of the

data analysis work�ow. Additional data sets might be needed before
the �nal data product is ready to be analyzed.

Start small, then scale-up: Students can create a small sample
from a big data set while maintaining original statistical properties.
They would then design, implement, and deploy an end-to-end
analysis prototype work�ow for the small sample on their PC en-
vironment. A scale-up deployment on the large-scale resource is
carried out later. One of the side advantage of starting small is
failing faster. If something go wrong, students would have chances
to alter their design and implementation and rerun their experi-
ments. Once they are con�dent on the correctness of their analysis,
they can deploy to the large-scale resource for �nal validation and
performance evaluation.

Use high level abstractions to speed up progress: Although
we spend time on low level programming paradigms to provide
necessary foundational knowledge on BDC, modern frameworks
such as Apache Hadoop or Apache Spark provide students with
more suitable functionalities to build their data analysis work�ow.
It is important for students’ learning growth that they can step
away from the low-level paradigms and focus on designing an
appropriate data�ow pipeline. The question then becomes, what
functionalities would they need to shape their pipeline. In doing
so, students can leave complex decisions such as coordination and
synchronization among multiple compute nodes to the framework.

5 CONCLUSION AND FUTUREWORK
In this paper, we present our approach to create a sustainable and
scalable approaches in setup personal computing environment for
big data computing. Our approach potentially can free educators
from tedious tasks of maintaining distributed computing infrastruc-
ture. Instead, they can focus on teaching and mentoring activities.
For students, theywill have access to resources that can be recreated
and duplicated outside classrooms, enabling self-learning beyond
the scope and duration of the class. We also discuss a list of ac-
tive learning activities that play a large role in achieving many
important learning objectives.

With the gradual changes in Windows’ toward supporting Linux
environment and better yet inexpensive computers, additional work
needs to be done to continue improving the above approaches.
These include, but not limited to

• Creating better documentation for the direct deployment
process. Video instructions might be more useful than static
documentation.

• Convert themulti-nodeDocker deployment fromusingDocker
Compose to using Kubernetes [8]. This allows this approach
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to be deployed as a centralized infrastructure if a cloud re-
source becomes available.

• Improve the Docker deployment to make external data and
code integration more dynamic. This will reduce complexity
of importing/uploading external materials into the container-
ized environment.
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ABSTRACT
The mission of the U.S. Department of Energy’s (DOE) Exascale
Computing Project (ECP; https://www.exascaleproject.org) is to
ensure all the necessary pieces are in place for the nation’s first ex-
ascale systems. The project is delivering an ecosystem that includes
mission critical applications and an integrated software stack, while
working closely with U.S. high-performance computing (HPC) hard-
ware companies to identify and drive the development of advanced
computer system engineering and hardware components. All of
these elements are necessary to enable fully functional, capable
exascale computing environments, which are critical to national
security, scientific discovery, and a strong U.S. economy. ECP is com-
posed of hundreds of researchers and engineers from various DOE
national laboratories as well as academic and industry partners. 1

This article gives an overview of ECP’s Broadening Participation
Initiative (https://www.exascaleproject.org/hpc-workforce/), which
has the mission of establishing a sustainable plan to recruit and re-
tain a diverse workforce in the DOE high-performance computing
community by fostering a supportive and inclusive culture within
the computing sciences at DOE national laboratories. We will de-
scribe key activities within three complementary thrusts: establish-
ing an HPC Workforce Development and Retention Action Group,
creating accessible ‘Intro to HPC’ training materials, and launching
the Sustainable Research Pathways for High-Performance Comput-
ing (SRP-HPC) workforce development program. We are leveraging
ECP’s unique multilab partnership to work toward sustainable col-
laboration across the DOE community, with the long-term goal of

1Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-
AC05-00OR22725 with the US Department of Energy (DOE). The US government
retains and the publisher, by accepting the article for publication, acknowledges that
the US government retains a nonexclusive, paid-up, irrevocable, worldwide license
to publish or reproduce the published form of this manuscript, or allow others to do
so, for US government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan (http:
//energy.gov/downloads/doe-public-access-plan).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.
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changing the culture and demographic profile of DOE computing
sciences.

KEYWORDS
High Performance Computing, Education, Diversity, Equity, Inclu-
sion, Workforce Development

1 HPCWORKFORCE DEVELOPMENT AND
RETENTION ACTION GROUP

The mission of the HPC Workforce Development and Retention
(HPC-WDR) Action Group is to enable DOE national laboratories
and their related computing communities to share their collective
insight for inclusive and equitable workforce development and re-
tention for high-performance computing. Representatives from var-
ious national laboratories and associated universities meet regularly
to share ideas, catalog best practices, and develop recommendations
and strategies for improvement.

The first two HPC-WDR projects are a webinar series and a
website focused on best practices for developing a diverse, equi-
table, and inclusive HPC workforce culture. Webinars (https://www.
exascaleproject.org/workforce-development-seminar-series/) have
been held on best practices in mentoring and how to normalize
inclusion by embracing our differences. The most recent webinar
covered how to be a good workplace ally. The speakers are drawn
from the HPC community. The website, once developed, will host
an archive of webinar recordings, along with information on work-
force and cultural development opportunities and best practices
drawn from the participating computing communities.

2 INTRO TO HPC
The mission of the Intro to HPC team is to provide accessible intro-
ductory material to HPC, thereby addressing gaps in, and expand-
ing the pipeline of, people with foundational HPC skills. The first
target is the development of an intensive HPC/AI course aimed
at advanced undergraduate students and early graduate students
in underrepresented groups. The team is working collaboratively
across DOE national laboratories and communities to develop a
curriculum, including hands-on HPC exercises. The team has issued
a broad call for interest and identified potential contributors from
across the ECP and national laboratory staff. To determine a plan
for the program, they are leveraging experience and a framework
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from Argonne National Lab’s Education Department. Listening ses-
sions with a subset of the computational postdoctoral population at
Argonne and Oak Ridge National Labs were held to uncover HPC
topics that were (1) useful and (2) missing from their undergraduate
and early graduate education. Once the curriculum is complete, the
plan is to have course materials freely available online for commu-
nity use.

The Intro to HPC team is also working with universities by con-
ducting listening sessions to understand the challenges of teaching
advanced computing topics and how to address them. The team
is focusing on minority-serving institutions in the U.S. that o�er
4-year degrees with computer science or related departments. The
�rst listening session was completed on April 21, 2022. Invitations
were sent to 40 institutions, resulting in participation of 14 pro-
fessors from 12 institutions. A listening session report including
lessons learned is now available. Ultimately, the team plans to work
with administrators and faculty at interested universities to develop
and implement Intro to HPC programs at their institutions.

3 SUSTAINABLE RESEARCH PATHWAYS FOR
HPC

Sustainable Research Pathways forHPC (SRP-HPC; https://shinstitute.
org/srp-hpc/) is an inclusive workforce development program that
began this year with a cohort of 61 students from underrepresented
groups in HPC and related faculty. They are working with ECP
teams at 9 DOE labs on a variety of projects across application devel-
opment, software technologies and advanced computing facilities.
The program includes onboarding at the ECP Annual meeting and a
10-week summer experience that incorporates extended opportuni-
ties for mentoring and community building. In addition to boosting
participants’ careers by giving them the opportunity to explore

cutting-edge research opportunities at DOE labs, the program also
focuses on helping people learn how to work together and unlearn
biases so that inclusion becomes a normal practice.

The SRP-HPC program is based on a program started in 2015 at
Lawrence Berkeley National Laboratory (Berkeley Lab) that was
developed by the Sustainable Horizons Institute, a 501(c)3 nonpro�t
dedicated to building inclusive scienti�c communities. The ECP
Broadening Participation Initiative has scaled up the SRP concept
across the ECP community.

4 CONCLUSION
Through these three complementary thrusts, the Exascale Com-
puting Project’s Broadening Participation Initiative is helping to
build a more diverse workforce and foster an inclusive professional
environment for high-performance computing through the national
labs and their related academic partners. Submission and reviewing
guidelines, and methodology: http://submissions.supercomputing.
org/reproducibility
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ABSTRACT 
SARS-CoV-2 (also known as COVID-19) is a coronavirus that has 
recently emerged and impacted nearly every human on the planet. 
The nonstructural protein 12 (NSP 12) is an RNA-dependent RNA 
polymerase that replicates viral RNA in a cell to infect it. 
Interrupting this function should prohibit the virus from replicating 
within the body and would decrease the severity of the virus’s 
effects in patients. The objective of this project is to identify 
potential inhibitors for NSP 12 that might be suitable as antiviral 
drugs. Thus, we obtained the structure of NSP 12 from RCSB’s 
protein data bank. The protein structure was analyzed using 
computer software (Chimera and PyRx), and ligands obtained from 
the ZINC database and RCSB’s protein data bank were docked to 
NSP 12. The resulting binding affinities were recorded, and binding 
geometries analyzed.  

KEYWORDS 
Virtual Screening, Drug Discovery, AutoDock Vina 

1 INTRODUCTION 
Since the end of 2019, the virus SARS-CoV-2, also known as 
Covid 19, has permeated throughout the cultural, political, and 
medical fields of nearly every country. The emergence of this virus 
has altered the day-to-day life of many as they attempt to avoid 
being infected by SARS-CoV-2. As a result, chemists, biochemists, 
biologists, and other medical scientists have directed their attention 
to SARS-CoV-2, its composition, effects, and treatments. 
Therapeutic treatments are currently of particular interest to the 
medical community, and two drugs, Molnupiravir and PF-
07321332, show promising inhibitory effects against SARS-CoV-
2 [12,13]. Additionally, Remdesivir, the only drug currently 
approved by the FDA for the treatment of SARS-CoV-2, is not as 
effective as desired [4]. As such, there is a great need for the further 
development of drugs that would inhibit SARS-CoV-2.  

SARS-CoV-2 contains a variety of nonstructural proteins 
(NSP), each exhibiting their own form and function. These 
proteins, which are observed on the inside of the host cell, mediate 
the seven steps of viral replication [17]. Most of these proteins are 
essential for viral replication. Specifically, several of the 16 NSPs 
are exceptional drug targets. Protein targets were evaluated on 
necessity for the virus to replicate, uniqueness of structure from 

host cell proteins, and conservation of protein sequence for SARS-
CoV to SARS-CoV-2. Assessment of the differences between the 
SARS-CoV-2 protein and host cell proteins is to help reduce side 
effects. Targeting a viral protein that has a similar structure to the 
host protein will result in high IC50 values and limited 
effectiveness. The basis for using the conservation of protein 
sequence between SARS-CoV to SARS-CoV-2 is that a protein 
that is mutating quickly will not be a good drug target because 
mutations can affect drug affinity and binding. Conservation 
between SARS-CoV to SARS-CoV-2 does not guarantee that there 
won’t be mutations in the active site of the protein that will change 
binding affinity. It does give a better chance that there won’t be a 
random mutation at any point, including the active site. 

Our selected target is the nonstructural protein 12, or NSP 12. 
This NSP is the RNA-dependent RNA polymerase, meaning that 
NSP 12 uses RNA as a template to replicate the genome of SARS-
CoV-2. Inhibiting NSP 12 would decrease the replication rate, 
reducing the symptoms of SARS-CoV-2 [4]. The NSPs of SARS-
CoV-2 serve as good inhibition targets for therapeutics because of 
their significant roles in the function of the virus [14]. The NSPs in 
different variants of SARS-CoV-2 do not differ significantly, so 
drugs targeting the NSPs of SARS-CoV-2 will inhibit significant 
functions and will be effective across all observed variants [18]. 
More significantly, NSP 12 is highly conserved between SARS-
CoV and SARS-CoV-2 [10]; thus, it is likely that inhibitors for 
SARS-CoV-2 will be effective for other coronaviruses [19].  

Currently, few drugs have been proven to be successful in 
inhibiting this nonstructural protein. This is, in part, because there 
are millions of small molecules that could potentially be used as 
drugs. Deciding which is the best through experimentation alone 
would be an extremely long task that would not satisfy the urgent 
need for SARS-CoV-2 therapeutics. A solution to this dilemma is 
to take advantage of virtual screening to narrow down the list in a 
shorter period before beginning experimental trials. One computa-
tional program which aids in drug discovery is AutoDock Vina, an 
open-source program for molecular docking [16]. AutoDock Vina 
calculates binding affinity between proteins and small molecules in 
kilocalories per mol (kcal/mol) with a larger negative number 
indicating a greater binding affinity. For reference, Remdesivir is a 
nucleotide analog with a binding affinity of -7.8 kcal/mol in our 
calculations. Remdesivir is a delayed chain terminator that blocks 
transcription [4]. Since Remdesivir has been shown to be effective 
in treating patients infected with SARS-CoV-2, any small molecule 
with a stronger binding affinity might be at least somewhat 
effective in the treatment of SARS-CoV-2.  

2 METHODS 
First, the structure of the NSP 12 of SARS-CoV-2 (6YYT) was 
obtained from the RSCB Protein Data Bank and the structural file 
was analyzed and optimized in Chimera [4,11].  
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The protein NSP12 crystal structure was selected from the 
Protein Data Bank (PDB). The structure selected was reported by 
Mariano et al. [9]. The structure selected also had NSP7 and NSP8 
bound in the crystal structure. For modeling to get the protein small 
enough to be functionally useful for the software, NSP7 and NSP8 
were manually removed. The ligands to be tested were selectively 
chosen from the PDB database. Ligands that were nucleotide 
triphosphates (NTP) or nucleotide monophosphate (NMP) 
derivatives were chosen for testing. The selected ligand file was 
downloaded as an SDF file from the PDB website.  

Then, two studies were conducted: the targeted study and the 
general study. In the targeted study, small molecules with a similar 
structure to RNA were chosen and docked to NSP 12. The 
bounding box, which tells the docking software where the ligand 
should be placed, was determined by locating the binding site for 
RNA on NSP 12. PyRx, a front-end interface for AutoDock Vina, 
was used to dock these molecules [2]. The chosen molecules were 
either nucleotides or nucleotide derivatives because NSP 12 
typically binds to nucleotides in the body. In the general study, 
small molecules from the ZINC Database were collected and 
docked. We downloaded .gz files containing multiple compounds 
from the ZINC database [5,20]. Then, we wrote a series of Python 
programs to automate the process [15]. The programs unzipped all 
the downloaded files, producing a series of text files, each 
containing multiple compounds. The programs then split the text 
files into the individual pdbqt files. Next, the programs assembled 
a new commands text file with one command to run AutoDock 
Vina per compound. The screening was then started in parallel on 
a multi-CPU server using xjobs [8]. When there were power 
failures at various points during the screening, another Python 
program was run to rebuild the commands text file without the 
compounds that had already been screened and run it again, so the 
screen could resume where it had left off. When the screening was 
complete, a final program was used to assemble a text file with all 
the compounds and their scores and sorted using the Linux sort 

command to produce a new file with all the compounds and their 
scores in the order from the best to worst.  
 

3 RESULTS AND DISCUSSION 
3.1 Targeted Study 
In the targeted study, 45 nucleotide or nucleotide derivatives were 
docked to NSP 12 using PyRx, with many molecules demonstrating 
some compatibility. Of those results, 17 ligands had binding ener-
gies more negative than the value calculated for Remdesivir (-7.8 
kcal/mol) and 2 met our desired target of -9 kcal/mol (more 
negative values indicate stronger binding). The best binding ligand 
was 7-methyl-guanosine-5’-triphosphate-5’-(2’-o-methyl)-adeno-
sine (V9G) with a binding affinity of -9.1 kcal/mol (Figure 1). All 
of the ligands analyzed in the targeted study were nucleotides or 
nucleotide derivatives, so nearly all of the ligands contained a 
phosphate group, a 5-carbon sugar, and a nitrogenous base. As a 
result, the differences in conformations and additional atoms can 
be analyzed.  

For instance, V9G and GTA are very similar in structure 
(Figure 2). The only difference between the two structures is the 
presence of an ether or alcohol. In V9G, there is an ether in the 
place of GTA’s alcohol suggesting that a stronger electrostatic 
negative charge provided by the alcohol group in that location is 
detrimental to the binding affinity of the ligand. This accounts for 
a difference of 0.5 kcal/mol, resulting in a significant difference in 
binding affinity.  

Most of the best ligands from the targeted study contained a 
triphosphate group, and six of the top ten ligands exhibited 
structures that were similar to those of V9G and GTA with minor 
differences. The length of the phosphate group may be important 
in the inhibition of NSP 12 because it creates a molecule of the 
appropriate size to fit into the active site. 
 

 
Figure 1. The top ten ligands with the best binding affinity to NSP-12 of SARS-CoV-2 calculated in PyRx from the targeted study. 

 
3.2 General Study 
10,582,294 molecules were screened using AutoDock Vina. Of 
them, about 3,000 were above the desired threshold for being 
desirable drugs in the inhibition of NSP 12. The best ligand was 
ZINC000004783172 with a binding affinity of -11.6 kcal/mol.  

NSP 12 binds to RNA in the active site. As a result, it is 
expected that nucleotides and nucleotide derivatives are the ligands 
that would bind best. Surprisingly, very few of the top-ranking 

ligands in the general study had characteristics of a nucleotide, and 
the non-nucleotide molecules of the general study have stronger 
binding affinities than the nucleotides of the targeted study. There 
were no phosphate groups in any of the top-ranking ligands, as 
shown in Table 1. However, when considering that binding affinity 
is determined by many intermolecular forces such as electrostatic 
interactions, Van der Waals forces, and hydrogen bonding, small 
molecules could strongly bind to portions of the protein differently 
than the nucleotides that are normally found in the binding site. 
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Figure 2. The molecular structures of the ligands GTA and 

V9G respectively, with their highlighted difference.

 

The ligand that bound the best, ZINC000004783172, can also 
be referred to as 7,7’-Bializarin. This molecule is currently being 
studied as an antibiotic.20 If this molecule continues to show 
promising results, then it may be one of the best options for a future 
therapeutic. According to the calculations from AutoDock Vina, 
7,7’-Bializarin should span the entire active site of NSP 12 (Figure 
3). This is additionally promising as it ensures that the RNA does 
not have a location to bind to within the protein’s active site, and 
therefore, cannot replicate.  
 

Table 1. The top nine ligands with the best binding affinity to NSP-12 of SARS-CoV-2  
calculated in Autodock Vina from the final general study. 

ZINC ID, 

Binding affinity (kcal/mol) 
Structure 

ZINC ID, 

Binding affinity (kcal/mol) 
Structure 

ZINC000004783172 

 

-11.6 

 

ZINC000004015296 

 

-11.4 

 

ZINC000035385140 

 

-11.3 

 

ZINC000101500434 

 

-11.2 

 

ZINC000033122972 

 

-11.2 

 

ZINC000097137247 

 

-11.2 

 

ZINC000004701175 

 

-11.2 

 

ZINC000003861401 

 

-11.2 

 

ZINC000004974498 

 

-11.2 
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Figure 3. The three-dimensional representation of 7,7’-

Bializarin binding to the active site of NSP 12 

4 CONCLUSIONS 
Using computational programs to find the binding affinities 
between ligands and the active sites of nonstructural proteins was 
successful in identifying a large range of ligands that could act as 
good drugs for SARS-CoV-2. Further research is planned into 
attempting to identify more ligands that could bind to NSP 12. 
Additionally, these ligands will be analyzed extensively in Chimera 
in order to identify the intermolecular forces and other potential 
causes of good binding affinity. Finally, since these nonstructural 
proteins are mostly conserved over viruses within the same 
families, the final drug produced from this research could be 
extremely effective in treating all SARS viruses, including those 
that may arise in the future.  

5 REFLECTIONS 
This project was my first experience with computational research. 
When I decided to join this project, I was already interested in 
computational chemistry but did not know the extent of how 
computational science could bring insights into the mechanics of 
the real world. At first, the research was intimidating. I was familiar 
with physical chemistry, but my knowledge of biology and 
biochemistry was lacking. Additionally, I had not taken any 
computer science classes, and I was not familiar with the software 
we used in the research. However, as we began to study the SARS-
CoV-2 NSPs, I became fascinated by how different conformations 
and locations of small molecules could change binding affinities, 
and therefore have significant impacts on the protein’s 
functionality. Of course, the research was not always easy, and we 
encountered many obstacles along the way. Still, I am thankful for 
experience, including the hardships, as I am now much more 
knowledgeable about proteins, SARS-CoV-2, and generally, how 
to do research. This project inspired me to pursue studying 
chemical systems using computational tools at the graduate level. 
 
REFERENCES 
[1] Juan Marcelo Carpio Arévalo and Juliana Carolina Amorim. 

2021. An in-silico analysis reveals 7,7’-bializarin as a 
promising DNA gyrase B inhibitor on gram-positive and 
gram-negative bacteria. Comput. Biol. Med. 135, 104626. 
https://doi.org/10.1016/j.compbiomed.2021.104626  

[2] Sargis Dallakyan and Arthur J. Olson. 2015.  Small-molecule 
library screening by docking with PyRx. In Chemical 

Biology. Methods in Molecular Biology Vol. 1263. Humana 
Press, New York, NY, 243-250. https://doi.org/10.1007/978-
1-4939-2269-7_19  

[3] Richard T. Eastman, Jacob S. Roth, Kyle R. Brimacombe, 
Anton Simeonov, Min Shen, Samarjit Patnaik, and Matthew 
D. Hall. 2020. Remdesivir: A review of its discovery and 
development leading to emergency use authorization for 
treatment of COVID-19. ACS Cent. Sci. 2020, 6, 672-683. 
https://doi.org/10.1021/acscentsci.0c00489  

[4] Hauke S. Hillen, Goran Kokic, Lucas Farnung, Christian 
Dienemann, Dimitry Tegunov, and Patrick Cramer. 2020. 
Structure of replicating SARS-CoV-2 polymerase. Nature 
584, 154-156. https://doi.org/10.1038/s41586-020-2368-8  

[5] John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. 
Bolstad, and Ryan G. Coleman. 2012. ZINC: A free tool to 
discover chemistry for biology. J. Chem. Inf. Model. 52, 7, 
1757-1768. https://doi.org/10.1021/ci3001277  

[6] Lindsey S. Jung, Tamara M. Gund, and Mahesh Narayan. 
2020. Comparison of binding site of remdesivir and its 
metabolites with NSP12-NSP7-NSP8, and NSP3 of SARS 
CoV-2 virus and alternative potential drugs for COVID-19 
treatment. Protein J. 39, 619-630. 
https://doi.org/10.1007/s10930-020-09942-9  

[7] Robert N. Kirchdoerfer and Andrew B. Ward. 2019. 
Structure of the SARS-CoV Nsp12 polymerase bound to 
Nsp7 and Nsp8 co-factors. Nat. Commun. 10, 2342. 
https://doi.org/10.1038/s41467-019-10280-3  

[8] Thomas Maier-Komor. n.d. Home of the xjobs Utility. 
http://www.maier-komor.de/xjobs.html 

[9] Giuseppina Mariano, Rebecca J. Farthing, Shamar L. M. 
Lale-Farjat, and Julien R. C. Bergeron. Structural 
characterization of SARS-CoV-2: Where we are, and where 
we need to be. Front. Mol. Biosci. 7, 605236. 
https://doi.org/10.3389/fmolb.2020.605236  

[10] Ozal Mutlu, Osman Mutluhan Ugure, Emrah Sariyer, Oguz 
Ata, Tugba Gul Inci, and Erennur Ugurel. 2022. Targeting 
SARS-CoV-2 Nsp12/Nsp8 interaction interface with 
approved and investigational drugs: An in silico structure-
based approach. J. Biomol. Struct. Dyn. 40, 2, 918-930. 
https://doi.org/10.1080/07391102.2020.1819882  

[11] Eric F. Pettersen, Thomas D. Goddard, Conrad C. Huang, 
Gregory S. Couch, Daniel M. Greenblatt, Elaine C. Meng, 
and Thomas E. Ferrin. UCSF Chimera - A visualization 
system for exploratory research and analysis. J. Comput. 
Chem. 25, 13, 1605-1612. https://doi.org/10.1002/jcc.20084  

[12] Carlos A. Ramos-Guzmán, J. Javier Ruiz-Pernía, and Iñaki 
Tuñón. Computational simulations on the binding and 
reactivity of a nitrile inhibitor of the SARS-CoV-2 main 
protease. Chem. Commun. 57, 72, 9096-9099. 
https://doi.org/10.1039/D1CC03953A  

[13] Awadhesh Kumar Singh, Akriti Singh, Ritu Singh, and 
Anoop Misra. Molnupiravir in COVID-19: A systematic 
review of literature. Diabetes Metab. Syndr. Clin. Res. Rev. 
15, 6, 102329. https://doi.org/10.1016/j.dsx.2021.102329  

[14] E.J. Snijder, E. Decroly, and J. Ziebuhr. Chapter 3 - The 
nonstructural proteins directing coronavirus RNA synthesis 
and processing. In Advances in Virus Research 96, 59-126. 
https://doi.org/10.1016/bs.aivir.2016.08.008  

Volume 14 Issue 1 Journal of Computational Science Education

58 July 2023



[15] Dave Toth. n.d. Drug_discovery_python_scripts. 
https://github.com/DaveToth/drug_discovery_python_scripts  

[16] Oleg Trott and Arthur J. Olson. 2010. AutoDock Vina: 
Improving the speed and accuracy of docking with a new 
scoring function, efficient optimization, and multithreading. 
J. Comput. Chem. 31, 2, 455-461. 
https://doi.org/10.1002/jcc.21334  

[17] Philip V’kovski, Annika Kratzel, Silvio Steiner, Hanspeter 
Stalder, and Volker Thiel. 2021. Coronavirus biology and 
replication: Implications for SARS-CoV-2. Nat. Rev. 
Microbiol. 19, 3, 155-170. https://doi.org/10.1038/s41579-
020-00468-6  

[18] Deepa Vasireddy, Rachana Vanaparthy, Gisha Mohan, 
Srikrishna Varun Malayala, and Paavani Atluri. 2021. 
Review of COVID-19 variants and COVID-19 vaccine 
efficacy: What the clinician should know? J. Clin. Med. Res. 
13, 6, 317-325. https://doi.org/10.14740/jocmr4518  

[19] Francis K. Yoshimoto. The proteins of severe acute 
respiratory syndrome coronavirus-2 (SARS CoV-2 or n-
COV19), the cause of COVID-19. Protein J. 39, 3, 198-216. 
https://doi.org/1007/s10930-020-09901-4  

[20] ZINC12. n.d. Welcome to ZINC - A database of 
commercially-available compounds. 
https://zinc12.docking.org

 

Journal of Computational Science Education Volume 14, Issue 1

July 2023 59



Volume 14 Issue 1 Journal of Computational Science Education

60 July 2023



	  



Volume 14 Issue 1 

July 2023


	3-Barker.pdf
	Abstract
	1 INTRODUCTION
	2 BACKGROUND: CURRENT TRENDS IN HPC TRAINING AND EDUCATION TODAY
	3 LEVERAGING HACKATHONS FOR TRAINING
	3.1 Benefits
	3.2 Open Hackathon Challenges

	4 COMMUNITY IMPACT
	5 BEST PRACTICES FOR IMPLEMENTING HACKATHONS
	5.1 Event Format
	5.2 Team Composition and Preparedness
	5.3 Team Mentors

	6 CONCLUSIONS
	Acknowledgments
	References

	4-Gyires-Toth.pdf
	Abstract
	1 Introduction
	2 Education
	2.1 Accelerated Computing Education
	2.2 Deep Learning Education

	3 Methodology
	3.1 Self-Paced Courses
	3.2 Instructor-led Workshops
	3.3 Teaching Kits
	3.4 Hardware and software infrastructure
	3.5 University Ambassador program

	4 Evaluation and results
	4.1 Instructor-led Deep Learning Workshops
	4.2 Adopting Accelerated Computing Teaching Kit

	5 Summary
	Acknowledgments
	References

	5-Lee.pdf
	Abstract
	1 Introduction
	1.1 Alignments in Disease Detection and Prevention
	1.2 Existing Algorithms for MSA
	1.3 A Tool for Problem Solving: Quantum Computers

	2 Methods
	2.1 Hardware
	2.2 Pre-processing Development
	2.3 Main Algorithm
	2.4 Post-Processing Development: Dynamic Programming

	3 Results & Complexity Analysis
	3.1 Analysis of Weights Matrix Function
	3.2 Analysis of Alignment Algorithm
	3.3 Analysis of Merging Function

	4 Testing the Algorithm
	4.1 Metrics of Comparison
	4.2 Comparing with Existing Algorithms

	5 Major Conclusions
	6 Discussion and Wider Applications
	7 Student Reflection
	References

	6-Mensa.pdf
	Abstract
	1 Introduction
	1.1 HNCDI: The Hartree National Centre for Digital Innovation

	2 Building a confident and self-sufficient user cohort
	3 Building Digital Innovation awareness
	3.1 Visual Computing as an Educational Tool

	4 Specialist Training and Education with the HNCDI EXPLAIN programme
	4.1 Computational use of GPUs
	4.2 Quantum Computing

	5 Conclusions
	Acknowledgments
	References

	7-Ngo.pdf
	Abstract
	1 Introduction
	2 Sustainable and Scalable Solutions
	2.1 Infrastructure on personal computers
	2.2 Scaling to community cloud

	3 Learning Activities and Assessment
	3.1 Learning activities
	3.2 Assessments

	4 Discussion
	4.1 Course descriptions
	4.2 Student outcomes and feedback
	4.3 Lesson learned

	5 Conclusion and Future Work
	References

	8-Parete-Koon.pdf
	Abstract
	1 HPC Workforce Development and Retention Action Group
	2 Intro to HPC
	3 Sustainable Research Pathways for HPC
	4 Conclusion
	Acknowledgments




