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ABSTRACT
We propose a modified MSA algorithm on quantum annealers with
applications in areas of bioinformatics and genetic sequencing. To
understand the human genome, researchers compare extensive sets
of these genetic sequences – or their protein counterparts – to
identify patterns. This comparison begins with the alignment of
the set of (multiple) sequences. However, this alignment problem
is considered nondeterministically-polynomial time complete and,
thus, current classical algorithms at best rely on brute force or
heuristic methods to find solutions. Quantum annealing algorithms
are able to bypass this need for sheer brute force due to their use
of quantum mechanical properties. However, due to the novelty of
these algorithms, many are rudimentary in nature and limited by
hardware restrictions. We apply progressive alignment techniques
to modify annealing algorithms, achieving a linear reduction in
spin usage whilst introducing more complex heuristics to the algo-
rithm. This opens the door for further exploration into quantum
computing-based bioinformatics, potentially allowing for a deeper
understanding of disease detection and monitoring.

KEYWORDS
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1 INTRODUCTION
1.1 Alignments in Disease Detection and

Prevention
In a single year, over 850 million years of healthy life may be lost to
disease and disabilities [33]. In fact, an estimated 50% of the United
States population is living with a chronic disease [15]. Presently,
there is an inadequate response to this healthcare crisis, as most of
the attention in epidemiological research and health care has been
centered around acute diseases [15]. Human genomes are explicit
factors in determining susceptibility to some of these diseases [22].
Comparison of their constituent genetic sequences may one day
reveal knowledge that permits for early diagnosis or monitoring of
heritable diseases of at-risk individuals [17]. Furthermore, the com-
parison of sequences has heavy bearing on treatment procedures
as well. For instance, the study of large sets of DNA sequences
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can allow researchers to eventually predict patient response to
chemotherapy or other treatments [32]. This could allow for the de-
termination of personalized treatment options for patients in order
to maximize their chances of recovery, including cancer. Therefore,
emphasis on the comparison of the genetics underlying major ac-
tors in these diseases – from protein mutations to patient genomes
– is needed.

There is a clear issue, however. The sheer length of genetic
sequences is comparable to the circumference of the Earth or even
the distance to the moon. Each genetic sequence can contain on
the magnitude of several thousand base pairs. Analysis of large
sets of these sequences consumes significant computing resources.
Protein sequences are no better, with the length of the amino acid
sequences on a similar order of magnitude. In spite of the limited
alphabet these sequences are composed of – pulling from sets of a
mere four base pairs or twenty amino acids – these sequences are
responsible for the behavior of countless diseases in existence, and
thus researchers have sought various methods of analyzing them.

Table 1: An example alignment for a set of three genetic se-
quences.

A T G - T T
A T - C T T
T T G C T -

To compare these sequences effectively, an ideal alignment of
the sequences must be found, in which gaps or shifts in the se-
quences are inserted to minimize the differences in each column
of Table 1. After all, it would do no good if subsequences that en-
code for different biological components are mistakenly compared
against one another. The problem of finding the multiple sequence
alignment (MSA) is an applied form of the mathematical consensus
string problem [34]. The solution seeks to find an alignment where
the distances between sequences are minimized. This distance is
a quantitative measurement of how well sequences are aligned,
comparable to the aforementioned number of differences in each
column [16]. For every alignment of a pair of sequences, the ele-
ments in corresponding positions are compared. The greater the
discrepancies across the positions, the greater the distance between
the two sequences [16]. This problem is analogous to finding the
smallest distance between some set of locations. The given set of
locations are the sequences, and their distances are the differences
between each plausible alignment. The nature of this problem, there-
fore, centers on distance minimization, deeming it an optimization
problem. While the alignment of, say, ten or twenty elements per
sequence is not difficult, solving the problem for larger and larger
scales can become unmanageable for the standard human mind.
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This paper functions as a simultaneous investigation into MSA
algorithms and certain alterations to these algorithms that may
be made. We begin by discussing existing algorithms for MSA,
alongside shortcomings in the computational tools currently in use.
We then transition to discussion of quantum annealing, prior to
discussing our classical-inspired modifications to a MSA quantum
annealing algorithm. This modified algorithm is then used to align
a sample dataset and its results analyzed.

1.2 Existing Algorithms for MSA
Rather than arbitrarily align these sequences, MSA algorithms
systematically align sequences. While there are numerous algo-
rithms in existence, the most common are based on the Needleman-
Wunsch algorithm. This algorithm was first described in 1970 by its
namesake researchers, Saul B. Needleman and Christian D. Wunsch
[29].The initial algorithm aligns a pair of protein sequences using
iterative comparison of each individual amino acid [29]. While ef-
fective, there lies a major issue in the resource requirements for the
problem. The MSA problem has non-deterministic polynomial-time
hardness (NP-hardness) [34]. As the size of the input size increases,
the amount of time and memory required to find the perfect solu-
tion increases at unmanageable rates. This becomes a hindrance in
effective application. Finding the ideal alignment for inputs on the
samemagnitude as protein or genetic sequences can take decades to
process. Thus, better algorithms capable of handling larger inputs
are being sought.

Over the years, researchers have developed more complex meth-
ods of computation to raise the ceiling on the size of the inputs
that may be reasonably handled. Algorithms capable of running on
multiple computer cores in parallel have been developed. This is
analogous to having multiple people brainstorm ideas for a project,
as opposed to a singular "brain" working on the task. The approach
has approximately a 60% reduction in execution time from exper-
imental results, showing parallel processing has strong potential
[28].

Another common – but effective – method aligns smaller subsets
of the sequences before merging the final solution. These methods
are generally categorized into two types: (1) progressive alignments
and (2) iterative alignments [12]. Progressive algorithms organize
sequences based on similarity and arrange subsets of these se-
quences. In some cases, the sequences are arranged in a tree-like
structure, such that only a few sets of parents and their children
are aligned at once, reducing the load on the computer at any sin-
gle point [12]. Iterative algorithms, on the other hand, go through
multiple iterations of aligning and then re-aligning sequences in
overlapping subsets. Both types may use heuristics to estimate the
pairwise distances between sequences prior to arrangement, allow-
ing them to introduce reasonable steps that increase the scalability
of the resultant process [42].

1.3 A Tool for Problem Solving: Quantum
Computers

While existing methods are effective effective, they are still bound
by the binary nature of computing units. That is, standard classical
computers have bit values restricted to either 0 and 1, or True and
False, and therefore are only able to represent one state at a time

Figure 1: There exist several key characteristics of quantum
computers that make them especially of interest when it
comes to algorithms (created by author).

[35]. Quantum computers – which make use of parallel processing
and quantum mechanical properties to bypass these restrictions –
have emerged as new contenders for finding alignments [44].

While the absolute supremacy of quantum computers over their
classical counterparts is yet unproven [36], they have two key prop-
erties whose partnership make computation on quantum systems
especially advantageous: one, parallel processing and, two, entan-
glement. The parallel processing capabilities come from the ability
for the quantum bits to be in a probabilistic suspension between
the bit values, or in a superimposed state [44]. This phenomenon
allows for an exponential number of solutions to be simultaneously
represented [35]. This cooperates with the second property, en-
tanglement, to make quantum computers especially unique. The
values of the quantum bits – including those in superposition –
may be "tangled" together, such that knowledge of the value of one
qubit will reveal information about other entangled qubits in the
system [35]. This permits for added levels of complexity [35]. The
combination of these quantum mechanical properties in comput-
ing makes quantum computing especially well-suited for solving
NP-hard problems (Figure 1).

For example, certain algorithms have used a combination of
both classical techniques and quantum computer capabilities. Re-
searchers have applied machine learning models to reduce the
amount of memory required to store comparisons of the sequences
[40]. Others have taken inspiration from the quantum mechanical
properties outright in developing quantum-inspired heuristics to
find alignments [12].

1.3.1 Quantum Annealing Algorithms. Other algorithms focus
on a subtype of quantum computing: quantum annealing. Quan-
tum annealers, also known as adiabatic quantum computers, take
advantage of the natural tendency for physical systems to seek out
the lowest energy configurations [8]. A commonly used analogy to
illustrate the workings of a quantum annealer involves finding the
lowest point of elevation among a series of hills and valleys [8]. This
region is analogous to the problem space defined. Classical comput-
ers find the solution to the problem by sending a singular traveler
to begin at some arbitrary point in the area. This traveler finds the
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Figure 2: Quantum annealers use quantum tunneling to find
the lowest energy state for the given problem space (created
by author).

minimum by walking some direction determined by the classical
algorithm until a local lowest point is reached. To ensure this is
the absolute lowest point, the classical algorithm then proceeds
to drop the traveler off again at several other locations across the
area. Quantum annealers, on the other hand, bypass this repeated
traversal. Rather, superposition permits for the traveler to exist
simultaneously in different locations, cutting down significantly
on the costliness of traversal [8]. To find the absolute minimum,
quantum tunneling – a phenomenon unique to particles on the
quantum scale – allows this traveler to "tunnel" directly through
hills to reach the absolute minimum, rather than have to metaphor-
ically climb all the way back up the hill (Figure 2). Since aligning a
set of data involves minimizing the distance between each pair of
sequences – a textbook optimization problem – the MSA problem
fits neatly into the functionality of quantum annealers [24].

1.3.2 Current Shortcomings. In spite of the potential advantage
using quantum algorithms to find alignments may provide, there
exist two major areas in need of immediate improvement. First,
due to the relatively new nature of quantum annealers, existing
algorithms tend to at best mirror rudimentary classical algorithms.
That is, some algorithms mimic brute-force processes without the
inclusion of more complex heuristics that aid the process, such as
progressive or iterative techniques [24].

Secondly, modern quantum algorithms are constrained by hard-
ware limitations [10]. The reliance on the quantum properties of
particles leaves the qubits susceptible to slight changes in the en-
vironment [4]. These errors result in inconsistencies between the
simulated solution and experimental results returned [21]. Further-
more, the number of quantum nodes available for public use is
restricted, largely due to the limited size of existing computers. For
example, the D-Wave quantum annealer Advantage, contains just
over 5000 quantum bits [43] – barely meeting current supercom-
puting capabilities, and there exist few available annealers larger in
size. This places an upper bound on the size of the test data. Thus is-
sues are raised. The input datasets of genetic and protein sequences
are large in both size and sequence length. So, a sufficient amount
of qubit spin usage in these quantum computers is needed. The
development of a more efficient tool for MSA capable of bypassing
the constraints of hardware limitations is needed.

2 METHODS
We took inspiration from classical algorithms that utilize clustering
methodologies [42], where sequences are grouped before being
progressively processed via the alignment algorithm, providing a
close approximation of the solution [11]. In short, we introduced
classical-inspired processing methods to the quantum annealing
process. To do so, we implemented an overarching progressive
alignment structure throughout the algorithm.

We first determined the hardware on which the quantum algo-
rithm could be run. This was used as a constraint to specify the
algorithm body type. We then broke this project in three key parts:
(1) Pre-processing, (2) Algorithm Body, and (3) Post-processing.
These parts are defined by their function relative to the overarching
algorithm, as outlined below and in Figure 3.

(1) The Pre-processing [Key Modification] part is the set of
operations that reads in files and prepares the sequences for
alignment.
• Read in sequences from FASTA file,
• Cluster sequences, and
• Convert sequence clusters into matrix.

(2) The Algorithm body returns the alignments of given set
of sequences.
• Take in clusters and transform to form digestible by quan-
tum solver and

• Align sequences per cluster.
(3) ThePost-processing [AdditionalModifications] processes

the results obtained from Parts 1 and 2. in order to produce
a final output for the user.
• Interpret the annealing results,
• Merge locally aligned clusters with previous alignments,
and

• Output final alignment.

Figure 3: Visual obserview of MAQ algorithm approach (cre-
ated by author).

2.1 Hardware
Thus, MAQ was run on the D-Wave Adiabatic Computing (Quan-
tum Annealing) System, made accessible via the Leap integrated
development environment (IDE). While other quantum annealers
– including those developed by the New Energy and Industrial
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Technology Development Organization [1], Ford Motor Cars, and
Lockheed Martin [30] – exist, D-Wave annealers were selected
due to their commercial availability and earlier establishment as a
product available to the public [9].

Simulations of this system were also accessible. The Leap IDE is
a quantum cloud service run using Python. The D-Wave Solvers
may also be used locally. Here, D-Wave’s Ocean v.5.2.0 software
development kit [19] and dimod v.0.11.2 package [18] was used,
allowing the quantum annealing environment to be simulated on
the local system’s central processing unit (CPU).

2.2 Pre-processing Development
2.2.1 Approaching Sequence Read-In And Storage. Prior to align-

ing the sequences, we parsed the sequences in from an external file.
We assumed that the data – containing either protein or genetic
sequences – is contained on a single FASTA Formatted Sequence
file. Using the Biopython v1.79 package, the sequences were stored
as Sequence Record objects, containing key information on the
sequence’s identity [5]. For the purposes of data storage and later
processing, we assumed that every genetic sequence in the file had
an unique identifier.

2.2.2 Introducing the Novel Modification. To implement the pro-
gressive alignment technique, we introduced a sequence clustering
component to the pre-processing stage. To identify the clustering
algorithm to accomplish this task, we first set the lowest possible
bar. We observed the naive solution was not ideal. While the arbi-
trary assignment of sequences would not be costly, it would have
come at the cost of the accuracy of the returned alignment. Thus a
deliberate algorithm was sought for.

We took inspiration from the Feng-Doolittle progressive align-
ment approach [11]. The Feng-Doolittle algorithm uses classical
computers to first group the clusters by similarity, then uses dy-
namic programming methods to merge the sequences following
their local alignments [11], producing an approximate MSA. We
used a simplistic approach, which was in line with a similarly in-
spired hierarchical clustering algorithm developed in 1988 [6].

More specifically, we adapted the ALFATClust algorithm and
treated the clustering problem as a question of finding the nearest
neighbor [3]. It used the Leiden algorithm to localize each clus-
ter, connecting "communities" of these clusters based on relative
similarity [39]. This differs from the greedy approach taken by
most existing software tools, which are reliant on a limited set of
parameters (thereby producing not ideal alignments).

To approximate the difference between sequences prior to clus-
tering, ALFATClust uses the Mash (sample-based) technique [3].
While preliminary studies have shown the alternate, unsupervised
learning-based algorithms, such as MeShClust, are able to process
these sequences more rapidly [20], these algorithms return an un-
usually low number of clusters (with larger numbers of sequences
per cluster) [3]. This is contrary to one of the primary objectives
of MAQ, which seeks to reduce the total spin usage once these
datasets are passed into the quantum annealers. The ALFATClust
method holds its own against other algorithms that do not employ
the Mash heuristic, demonstrating its viability for selection for our
purposes [3].

Following initial testing, it was revealed that ALFATClust occa-
sionally returns clusters that contain a small number of sequences
(e.g. a 2-sequence dataset), for which calls on a quantum annealer
may be deemed unnecessary. To remedy this, we introduced a
minimum cluster threshold size. If a cluster size did not meet the
threshold, it would be appended to the next cluster, the entirety of
which was then aligned locally.

To create a standard of comparison across each subsequent se-
quence, we introduced a function to identify the centers of each
of the clusters. The center was defined as a singular sequence in
the group with the lowest total distance when compared against
all other sequences in the cluster. This center re-emerges in the
post-processing stage to aid in the merging of cluster alignments.

The Mash v.1.14 package was used to conduct preliminary es-
timations on the distances between each of the sequences [31].
The subsequent data was analyzed using the NumPy v.1.22.4 [14],
SciPy v.1.8.1 [41], and Pandas v.1.4.2 packages [37]. The clustering
algorithm calls on the Leiden algorithm v.0.8.10 package [39] and
Python igraph v.0.9.11 package [7].

2.3 Main Algorithm
Each cluster is then passed through the main algorithm, with the
center from a previously aligned sequence appended to the cluster
for later merging. To implement the MSA problem in the annealing
algorithm, we defined the problem space, developing the Hamilton-
ian for the distance minimization problem with constraints. The
algorithms were thusly based on this problem formulation. While
selecting the algorithm for the body, we considered three sets of
variables: appropriate use of the (1) objective, (2) weights and penal-
ties, and (3) constraints. Quantum spin usage was a secondary
driving factor.

We defined (1) the objective to be the minimization the over-
all distance between the sequences. Thus, in constructing (2) the
weights matrix, an effective method of comparison and storage
must be used. Full penalties are applied in alignments where the
elements in corresponding positions do not match. To avoid the
insertion of unnecessary gaps, a partial penalty for these gaps are
included. After the weights matrix in the sequences is found, (3)
constraints may be applied. These constraints would be dependent
on the approach.

We considered two potential approaches to problem formula-
tion. We began by defining the parameters of the problem. When
given a L-sized set of sequences with maximum sequence length
N , the naive solution is to use a systematic brute-force approach.
Every element in each sequence will compared against every other
element in all other sequences. In this case, every possible pairing
of elements will require a corresponding spin value to be stored.
This requires a system on the magnitude of O(N L). This is by all
means infeasible on current hardware, especially after gaps are
inserted to account for element deletions or insertions (a biological
phenomenon) [24].

After further research, we determined a secondary, more effec-
tive approach. Oscar Lindvall proposed using the Column Align-
ment Formulation (CAF) approach to align the sequences (Figure 4).
It may be visualized using a table with L rows and someC columns.
Given some user-defined parameter G, representing the maximum
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Figure 4: CAF aligns sequences by assigning the elements in
each sequence a column and inserting gaps into any column
spaces with no elements [24].

number of gaps that may be inserted into the sequence to shift
corresponding sections,C can be set equal to N +G . Every row rep-
resents a single sequence, and every column a single position. The
goal, then, is to find the positions in every row where an element in
the sequence can be placed, such that the number of differences per
column is minimized. We assumeG is significantly small relative to
N , the maximum length of the sequence. In this case, the number
of spins that must be represented at any point (that is, the number
of qubits needed) is withinO(LN 2) [24], a reduction to manageable
polynomial magnitude.

We used the CAF approach proposed by Lindvall, applying some
pre-defined penalty д for the insertion of empty spaces in the se-
quences [24]. Per Lindvall’s proposed algorithm, we constructed the
matrix by comparing the sequences against one another each other,
resulting in weights w(s1,n1,s2,n2) for every pairing of elements
[24].

2.4 Post-Processing Development: Dynamic
Programming

The output of the main algorithm is a matrix, where each row
represents a sequence and each column a position [24]. The first ’1’
in the row is where the first element in the corresponding sequence
is placed, the second ’1’ is where the second element is placed, and
so on. If a ’0’ exists in the matrix, then a gap has been inserted
in that position. We authored a simple method to interpret these
results and transform them into readable strings.

However, the process at this step is incomplete. Alignments have
only been made for the individual clusters. Recall that the align-
ment contains the center of the previous cluster. Using comparisons
between the gaps inserted in the center in this and the previous
iteration of the algorithm, we dynamically merge the clusters to-
gether, such that after merging, the current cluster is immediately
forgotten from the quantum annealer.

3 RESULTS & COMPLEXITY ANALYSIS
To properly analyze the preliminary results returned by this modi-
fied algorithm, we reiterate that the main goals of this project were
to

(1) Introduce classical-inspired heuristics to rudimentary quan-
tum algorithms, and

(2) Reduce the spin usage per call of the quantum annealer.
In order to approximate the effectiveness of the algorithm in

achieving this end, we conduct a rough space complexity analy-
sis of the key impacts of (1) the weights determination function,
(2) the quantum-dependent component, and (3) the merging func-
tion. These three areas have been impacted most strongly by the
modifications.

3.1 Analysis of Weights Matrix Function
Let us consider an input dataset of L sequences, with a maximum
sequence length of N and G inserted gaps per sequence. We first
consider the characteristics of the initial algorithm for comparison.
The creation of the weights matrix is especially consuming, since
it requires storage of the comparisons between every individual
element in the dataset. Since every possible pair of elements in
distinct sequences is compared, the space complexity may roughly
be given by

O(
N !

2!(N − 2)!
×

L!
2!(L − 2)!

)

≃ O(
N (N − 1)

2
×
L(L − 1)

2
)

≃ O(N 2L2)

(1)

Let the clustering algorithm reduce the dataset to some number
of clusters, such that the largest cluster has k sequences, where
k << L. The weights matrix determination function is then reap-
plied to this reduced sample size, resulting in a complexity of

O(N 2k2)

per cluster. However, the weights matrix must be applied at most k
times. Therefore, the overall complexity of the weights matrix is
given by

O(N 2k2 ×
L

k
) ≃ O(N 2Lk). (2)

Equation 2 presents a linear advantage over the initial weights
matrix development requirements. However, this advantage is par-
tially offset by the ALFATClust algorithm introduced during the
pre-processing stage. Nevertheless, the ALFATClust’s application
of the Mash approximation for distance estimation cuts down sig-
nificantly on the initial O(N 2L2) space complexity [3].

3.2 Analysis of Alignment Algorithm
Secondly, we consider the spin usage during the sequence align-
ment on clusters. Spin usage is a quantitative approximation of the
number of nodes that will be used on the quantum annealer during
computation. Recall we seek to reduce this usage per call of the
quantum annealer.

The use of the Column Alignment Formulation (CAF) method
already introduces a significant reduction on possible spin usage.
The spin values – and resultant alignment – is stored in somematrix,
where the number of columns is equal to the sum of the length of
the sequence and number of gaps

C = N +G . (3)

Thus, using Equation 3, we conclude the spin usage S is given by

S = C
L∑
i=1

Ni (4)

where N1...NL are the lengths of the sequences [24]. That is, the
spin usage may be roughly described as
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S ∈ O(CLN )

= O(LN (N +G)

= O(L(N 2 + NG)

≃ O(LN 2)

(5)

where it is assumed G << L [24].
We now consider the spin usage on a reduced number of se-

quences, given by k . Following a similar line of reasoning, the spin
usage when run on a single cluster may be given by

O(kN 2) << O(LN 2) (6)
Observe that the total spin usage (on the magnitude ofO(kN 2 ×

L
k ) ≃ O(LN 2) is not representative of the maximum spin usage at a
single point, as the quantum annealer is called L/k distinct times.
It is worth noting that this rough complexity analysis treats the
processing time of the inputs as a black box, thereby not accounting
for the space or time needed to translate the input system onto
the corresponding architecture (that is, node arrangement) for the
annealer. This approach is nonetheless effective, as it indirectly
implies the net node usage on the quantum annealer. Therefore, it
follows from this reasoning that an approximate linear advantage
is achieved in spin usage.

3.3 Analysis of Merging Function
Lastly, we analyze the function that progressivelymerges the aligned
clusters. The local alignments are stored in matrices containing the
elements and gaps with their corresponding positions. These ma-
trices have a maximum size O(kC), meaning the space complexity
for n clusters may be described as

n∑
i=0

kiC

≃ O(LC)

≃ O(L(N +G))

≃ O(LN + LG)

≃ O(LN )

(7)

These clusters are aligned locally. The center of the previously
aligned cluster is included in the alignment of the new cluster.When
merging, this center serves as the metric of comparison and the
entire sequence is iterated through at least once, with a maximum
length of N , resulting in a minimum baseline runtime of O(N ).
Additionally, any gaps (G) that are inserted are then propagated
throughout the remainder of the corresponding alignment (includ-
ing through the compiled sequences in all previous alignments).
Thus, over n clusters, the total running time is approximately

O(N ) +

n∑
j=0

kGj

≃ O(N ) +O(kGn(n + 1)

≃ O(N ) +O(kGn2)

≃ O(N + kGn2)

(8)

In the worst case scenario, to draw an upper bound on the run-
time, n = L and k = 1. Then, the worst case runtime is roughly

O(N +GL2) (9)

4 TESTING THE ALGORITHM
The developed algorithm, named MAQ, was run on a small, sample
dataset for comparison (Table 2). Throughout the development pro-
cess, the algorithm was repeatedly tested on this reduced dataset.
Each sequence in the dataset was a derivation of some "base" se-
quence that represented some accepted sequence, along with an
identical sequence "control" that ensured the most basic alignment
(of the same sequences) could be achieved. Each subsequent se-
quence then contained at least one fundamental mutation that may
occur in generic sequences (e.g. insertion, deletion, or point muta-
tions). The sequences are identified in Table 2 accordingly. When
run on ALFATClust, the dataset is clustered into three distinct sets
of sequences, making it ideal to test the clustering-based MAQ
algorithm.

Table 2: Alignment returned by MAQ algorithm using sam-
ple dataset (created by author).

ID Sequence Alignment
Base - N V R L M L R L
Control - N V R L M L R L
Insertion M N V R L M L R L
Deletion - N - R L M L R L
Point - N V M L R L N L
InsertionAndDeletion M N V R L - R - L

Table 3: Alignment returned by Oscar Lindvall’s algorithm
[24] using sample dataset (created by author).

ID Sequence Alignment
Base N V - R L M L R L
Control N - V R L M L R L
Insertion M N V R L M L R L
Deletion N - R L - M L R L
Point N - V M L R L N L
InsertionAndDeletion M N V - R - L R L

Table 4: Alignment returned by Kalign [23] using sample
dataset (created by author).

ID Sequence Alignment
Base - N V R L M L R L
Control - N V R L M L R L
Insertion M N V R L M L R L
Deletion - - N R L M L R L
Point - N V M L R L N L
InsertionAndDeletion M N V R L R L - -
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4.1 Metrics of Comparison
We firstly define the metrics used to compare these three MSA tools.
We quantify the effectiveness of the algorithm by considering the
alignment’s deviation from the norm. The analysis is considered
by column (following the CAF methodology), with pairwise com-
parisons conducted. In other words, we use a sum-of-pairs scoring
method. For every pair of elements that differ in the same column,
the total score for the alignment is incremented by +1, although
differences between base pairs or amino acids and gaps will have
no penalty (an adjustable parameter during the development of the
problem space). An ideal alignment will have a total score of 0. The
greater the alignment score, the less effective the alignment.

We now define this alignment score formally. Let us label the
sequences in the final alignment from {s0, s1, ...., sL}, organized in
a matrix containingC columns and L sequences. Note these aligned
sequences include any gaps inserted after the dataset is processed
using the alignment algorithm. Then, construct a new matrix A
with dimensionsC × L × L, where the element ac,i, j ∈ A equals 1 if
the cth element of sequences si and sj are not equivalent and are
not gaps and 1 otherwise. Then, the alignment score is defined as

C∑
c=1

L∑
i=1

L∑
j=i

Ac,i, j . (10)

For example, consider the set of sequences AT ,T . An example
alignment may be seen in Table 5. Observe that the first column has
3 pairs of alignments that do not match. The pair (A,T ) has weight
+1, while the pairs (A,−), (−,T ) do not match but contain gaps, so
these differences are weighted at 0. Observe that the second column
does not contain any pairwise differences. Using Equation 10, we
find the score of the alignment in Table 5 is 1.

Table 5: Sample genetic sequence alignment, with a resul-
tant alignment score of 1 (created by author).

A T
- T
T T

4.2 Comparing with Existing Algorithms
We conducted preliminary tests on MAQ and compared the results
obtained against results from two other algorithms: the unmodified
Lindvall algorithm and a classical algorithm that uses similar pro-
gressive techniques. Much like how MAQ clusters sequences into
local groups prior to alignment, Kalign focuses on alignments in
local regions [25], employing a heuristic version of the Wu-Manber
string (sequence) alignment algorithm. Kalign was shown to be
significantly more accurate than other methods on large datasets,
especially when compared against popular methods, such as Bal-
ibase and Prefab [23]. The algorithm was an estimated 10 times
faster than ClustalW, an algorithm that makes use of tree-like data
structures (arguably a more sophisticated form of clustering) to
align the sequences [38].

After the test dataset of sequences (as seen in Table 2) was aligned
on the three algorithms (MAQ, Lindvall’s, and Kalign), the align-
ment scores were calculated using Equation 10 and organized in
Table 6.

Table 6: MAQ is able to return an alignment with competi-
tive alignment scores on relatively small sets of sequences
(created by author).

Algorithm Alignment Score by Column Total1 2 3 4 5 6 7 8 9
MAQ 0 0 0 5 0 4 5 4 0 18
Lindvall 8 2 4 7 4 4 0 5 0 34
Kalign 0 0 5 5 0 8 0 4 0 22

5 MAJOR CONCLUSIONS
The world of bioinformatics shapes societal responses to disease.
A significant part of this understanding arises from pattern iden-
tification, which may be used to find information to predict how
patients may respond to various diseases or treatments. This poses
a series of sequence-based problems that are solvable on algorithms.
Among these, MSA plays a significant role. After all, comparison
of large sets of genetic or protein sequences is reliant on the as-
surance that these sets have been aligned in a logical manner. In
spite of its relevance, the problem is NP-complete, which speaks
to the need for the development of algorithms that are capable of
stepping beyond the 0’s and 1’s of today’s classical computers. Our
developed algorithm, MAQ, is one step in such this direction.

The application of quantum computing to problems is not new
[27]. Over the years, algorithms for tasks such as genetic sequencing
and protein structure prediction have been proposed [27]. However,
many are heavily restricted by spin usage and the relatively new
nature of the field. MAQ introduces a classical-inspired approach
reduces the spin usage per call of the quantum annealer.

The algorithm first clusters the sequences using ALFATClust [3].
The reduced sequence sets are then compared and aligned on the
main algorithm, modified from Oscar Lindvall’s approach [24]. The
resultant alignments are then dynamically merged based on the
relative spacing of the center sequences of each cluster. The final,
progressively aligned alignment is then returned to the user.

A linear advantage of O(L/k), given L total sequences and k
clusters, is achieved in the reduction of spin usage per call of the
quantum computer (Equation 2). However, added complexity due
to the addition of the clustering step and repetitive calls to the quan-
tum annealer adds to the overarching running time. Nonetheless,
the spin usage of each single call on quantum annealers has been
reduced. This allows for the adjustment of large datasets for cur-
rent quantum hardware that has yet to be able to handle significant
space usage without significant loss of information.

Furthermore, when run on a test dataset, MAQ was shown to be
comparable to existing MSA algorithms, including Lindvall’s initial
algorithm and Kalign. For this specific dataset, MAQ performed
better, with an alignment score of 18, relative to the scores of 34
and 22 for Lindvall’s algorithm and Kalign, respectively. Thus, it is
comparable to existing algorithms.
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6 DISCUSSION ANDWIDER APPLICATIONS
Onemust caution that the advantage achieved byMAQ is dependent
on the characteristics of the data. The viability of a clustering-based
method may be determined using the rank of the set of sequences
(that is, how similar the sequences are to each other, where lower
rank suggests larger similarity). The lower the rank of the set, the
more likely the results will resemble that of Lindvall’s algorithm,
since the number of clusters is reduced. MAQ assumes there exists
sufficient distinctions between each sequence in the set such that
they may be clustered into a reasonable number of subsets. In other
words, there is moderate variability between the sequences. In the
case all of the sequences are nearly identical (say, with an estimated
similarity of > 0.99, the clustering may be deemed ineffective.
Consider the alternative extreme. In the case the sequences have
unusually high rank (where the variability between the sequences
is high), the number of clusters will be close to the initial number of
sequences, and the impact of the clustering algorithm will be called
into question. One may argue the sequences in these extreme cases
should instead be grouped by the order it is read in from the file.
This would consume fewer resources.

Future research is needed to quantify the actual effectiveness
of clustering prior to alignment. This is especially important since
the clustering algorithm is costly, as it is itself tackling a NP-hard
problem [26]. further study may reveal a definitive response on
whether the cost of clustering the sequences exceeds the benefits of
an improvement in alignment when compared against, for instance,
alignment of random groupings of sequences.

Furthermore, futureMAQ versionsmay explore other algorithms,
including those that use K-means clustering, where the number
of clusters is predefined. Then, the approximate reduction of the
spin usage per call on the quantum annealers may be approximated
with greater certainty. Granted, although the number of cluster will
be guaranteed (including for sets with low rank), the size of these
clusters will still be dependent on user parameters.

This algorithm deserves further revisitation. Tackling MAQ as
three distinct components that funnel into one another presents
an opportunity for improvement. Additional research is needed to
investigate approaches to consolidating sequence clustering and
alignment, especially with regards to the creation of the weights
matrix (a costly process). For example, the pairwise distance of
sequences is first estimated using the Mash heuristic during the
clustering pre-processing phase. The pairwise comparisons are
then completed a second time while creating the problem space
the quantum annealer will solve (although the exact mechanics
differ). Thus, a standalone clustering algorithm may not be the
best integration into MAQ. Rather, future versions of MAQ may
look to consolidate these pairwise comparisons to reduce overall
iterations through the sequences. Alternative approaches should
also be studied.

Additionally, when run on small datasets, the quantum annealing-
based algorithms may regularly return different results. This is
likely the result of multiple "lowest energy state" configurations. In
MAQ, these differences may be propagated across the clusters, mag-
nifying minor decisions early on in the alignment process between
mathematically-identical alignment states. For each cluster aligned,
there is no guarantee that the arbitrarily chosen state will result

in the lowest alignment score across the total alignment. It merely
guarantees a low alignment score locally. In order words, the dy-
namic merging process assumes all previous alignments are ideal,
an assumption that does not always hold true. Despite this, this
characteristic of the algorithm may be harnessed as an advantage.
For example, rather than returning a single plausible alignment,
several alignments – one corresponding to each combination of the
ideal, local solutions – may instead be simultaneously compared
by the algorithm. This may open the door for a more accurate fi-
nal solution to be returned. Further research is needed to explore
alignment algorithms that may make the most of the existence of a
set of plausible local alignment results.

MAQ demonstrates the viability of quantum computing as a
supporting system for studies into computational biology. This is
a part of the wider driving force that dictates the possible paths
of research development. After all, MSA is just one of many op-
timization problems in bioinformatics. Genetic engineering and
sequencing, for example, are heavily reliant on the capabilities of
existing technology. These capabilities are defined by the accuracy
and accessibility of these tools. As the accessibility of quantum
computers increases, a rising number of algorithms – including
MAQ – are bridging the gap between quantum computing and
other areas.

These identified areas have the potential to impact millions of
human lives. Chief among them are epidemiological and phenolog-
ical studies. In particular, comparison of these sequences permits
for a stronger understanding of the human genome. More rapid
sequencing tools will help translate compiled genomic data into
medically useful information [13]. This includes a better approach
to treatment response prediction – including chemotherapy – and
phenology determination of disease strains. Through extensive mul-
tiple sequence analysis (made possible through alignment), medical
professionals’ understanding of the genetic patterns corresponding
to phenotypical characteristics may be expanded. These develop-
ments have the potential to impact the 33.4 million individuals who
pass through the US hospital system annually [2], along with the
countless others who use any form of healthcare service. In order
to achieve this, however, refinement of the quantum annealing pro-
cess and algorithms must be conducted. As problem sizes continue
to grow and the need for algorithms with lower space complexity
and runtimes continues, heuristics such as that taken by MAQ will
continue to emerge, marking this as an area of strong potential,
worthy of further research.

7 STUDENT REFLECTION
MAQ was the result of a 9-month student research project I (the au-
thor) conducted. The investigative project explored the plausibility
of applying quantum computing as a tool. In particular, I focused on
addressing current limitations of the quantum hardware. However,
arriving at this focus involved a rather indirect path consisting of a
series of decisions.

My initial research had led me into a more abstract form of
string alignment. This pure mathematics problem approached the
situation via graph theory and employed techniques beyond the
scope of this paper. I had initially begun with the intention of apply-
ing my previous understanding of quantum-inspired and quantum
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computing algorithms to the project. Yet these purely theoretical
subjects felt disconnected from ongoing problems in the world, and
I struggled to identify a path forwards.

Over time, as the research plan began to solidify, I encountered
an increasing number of applications for these algorithms. The
puzzle pieces began to fall into place as I read about the application
of MSA algorithms to genetic sequencing. I found I was revisiting
a subject that had fascinated me years prior, and my appreciation
for interdisciplinary studies grew.

This played a role in reshaping my long-term plans for study.
In particular, my focus transitioned from pure mathematics and
theoretical computer science to computational biology. While the
two former fields are still on my radar as fields of interest, I rec-
ognize computational biology will likely play a larger role in the
direction I take for future endeavors. Following conversations with
a number of current graduate students, professors, and researchers
in the field, I hope to go into and remain in research and academia
following my college and (ideally) graduate studies.

Nevertheless, I recognize this research project is merely a small
glimpse of what is plausible in the realms of bioinformatics and
quantum computing. Even as I have gained a stronger understand-
ing of algorithmic thinking, implementing quantum annealing, and
the mathematics surrounding the fields, I realize I have much more
left to learn. I have no intention of stopping my curiosity, and I
hope to continue to expand my understanding of what is possible
over the next few decades.

ACKNOWLEDGEMENTS
Thank you to Mr. Robert Gotwals for providing feedback and guid-
ance throughout the research process.

REFERENCES
[1] 2018. Members selected for the Research Program for the development of a

quantum annealing machine enabling high-efficiency, high-speed processing.
https://www.nec.com/en/press/201812/global_20181212_03.html

[2] 2022. Number of individuals who pass through the US hospital system annually.
[3] Jimmy Ka Chiu and Rick Twee-Hee Ong. 2022. Clustering biological sequences

with dynamic sequence similarity threshold. BMC Bioinformatics 23, 1 (2022).
https://doi.org/10.1186/s12859-022-04643-9

[4] I. L. Chuang, R. Laflamme, P.W. Shor, andW. H. Zurek. 1995. Quantum computers,
factoring, and decoherence. Science 270, 5242 (1995), 1633–1635. https://doi.org/
10.1126/science.270.5242.1633

[5] Peter JA Cock, Tiago Antao, Jeffrey T Chang, Brad A Chapman, Cymon J Cox, An-
drew Dalke, Iddo Friedberg, Thomas Hamelryck, Frank Kauff, Bartek Wilczynski,
et al. 2009. Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics 25, 11 (2009), 1422–1423.

[6] F. Corpet. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic
Acids Research 16, 22 (1988), 10881–10890. https://doi.org/10.1093/nar/16.22.10881

[7] Gabor Csardi and Tamas Nepusz. 2006. The igraph software package for complex
network research. InterJournal Complex Systems (2006), 1695. https://igraph.org

[8] D-Wave. [n. d.]. What is quantum annealing? https://docs.dwavesys.com/docs/
latest/c_gs_2.html

[9] CemDilmegani. 2019. QuantumAnnealing in 2022: Practical quantum computing.
https://research.aimultiple.com/quantum-annealing/

[10] Marco Fellous-Asiani, Jing Hao Chai, Robert S. Whitney, Alexia Auffeves, and
Hui Khoon Ng. 2021. Limitations in quantum computing from resource con-
straints. PRX Quantum 2, 4 (2021). https://doi.org/10.1103/prxquantum.2.040335

[11] Da-Fei Feng and Russell F. Doolittle. 1987. Progressive sequence alignment as a
prerequisitetto correct phylogenetic trees. Journal of Molecular Evolution 25, 4
(1987), 351–360. https://doi.org/10.1007/bf02603120

[12] Konstantinos Giannakis, Christos Papalitsas, Georgia Theocharopoulou, Sofia
Fanarioti, and Theodore Andronikos. 2019. A Quantum-inspired optimization
Heuristic for theMultiple Sequence Alignment Problem in Bio-computing. In 2019
10th International Conference on Information, Intelligence, Systems and Applications
(IISA). 1–8. https://doi.org/10.1109/IISA.2019.8900740

[13] Claudia Gonzaga-Jauregui, James R. Lupski, and Richard A. Gibbs. 2012. Human
genome sequencing in health and disease. Annual Review of Medicine 63, 1 (2012),
35–61. https://doi.org/10.1146/annurev-med-051010-162644

[14] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.
Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. https:
//doi.org/10.1038/s41586-020-2649-2

[15] Halsted R. Holman. 2020. The relation of the chronic disease epidemic to the
Health Care Crisis. ACR Open Rheumatology 2, 3 (2020), 167–173. https://doi.
org/10.1002/acr2.11114

[16] Sandeep Hosangadi. 2012. Distance Measures for Sequences. arXiv (Aug 2012).
https://doi.org/10.48550/arXiv.1208.5713

[17] Ming Huang, Nilay D. Shah, and Lixia Yao. 2019. Evaluating global and lo-
cal sequence alignment methods for comparing patient medical records. BMC
Medical Informatics and Decision Making 19, S6 (2019). https://doi.org/10.1186/
s12911-019-0965-y

[18] "D-Wave Systems Inc.". 2022 [Online]. D-Wave Systems Dimod Package. https:
//github.com/dwavesystems/dimod

[19] "D-Wave Systems Inc.". 2022 [Online]. D-Wave Systems Ocean SDK. https:
//github.com/dwavesystems/dwave-ocean-sdk

[20] Benjamin T James, Brian B Luczak, and Hani Z Girgis. 2018. Meshclust: An
intelligent tool for clustering DNA sequences. Nucleic Acids Research 46, 14
(2018). https://doi.org/10.1093/nar/gky315

[21] Scott Johnstun and Jean-François Van Huele. 2021. Understanding and compen-
sating for noise on IBM Quantum Computers. American Journal of Physics 89, 10
(2021), 935–942. https://doi.org/10.1119/10.0006204

[22] Nikolai Klebanov. 2018. Genetic predisposition to infectious disease. Cureus
(2018). https://doi.org/10.7759/cureus.3210

[23] Timo Lassmann and Erik LL Sonnhammer. 2005. Kalign – an accurate and
fast multiple sequence alignment algorithm. BMC Bioinformatics 6, 1 (2005).
https://doi.org/10.1186/1471-2105-6-298

[24] Oscar Bulancea Lindvall. 2019. Quantum Methods for Sequence Alignment and
Metagenomics. KTH Royal Institute of Technology (2019). https://doi.org/smash/
get/diva2:1345195/FULLTEXT02

[25] Fábio Madeira, Matt Pearce, Adrian R Tivey, Prasad Basutkar, Joon Lee, Ossama
Edbali, Nandana Madhusoodanan, Anton Kolesnikov, and Rodrigo Lopez. 2022.
Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic
Acids Research 50, W1 (2022). https://doi.org/10.1093/nar/gkac240

[26] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. 2012. The planar
K-means problem is NP-hard. Theoretical Computer Science 442 (2012), 13–21.
https://doi.org/10.1016/j.tcs.2010.05.034

[27] Vivien Marx. 2021. Biology begins to tangle with quantum computing. Nature
Methods 18, 7 (2021), 715–719. https://doi.org/10.1038/s41592-021-01199-z

[28] FN Muhamad, RB Ahmad, SM Asi, and MNMurad. 2018. Performance analysis of
Needleman-Wunsch algorithm (global) and Smith-Waterman algorithm (local) in
reducing search space and time for DNA sequence alignment. Journal of Physics:
Conference Series 1019 (2018), 012085. https://doi.org/10.1088/1742-6596/1019/1/
012085

[29] Saul B. Needleman and Christian D. Wunsch. 1970. A general method applicable
to the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology 48, 3 (1970), 443–453. https://doi.org/10.1016/0022-2836(70)
90057-4

[30] Ann Obata. 2022. Companies building and exploring applica-
tions with quantum annealing. https://quantumzeitgeist.com/
companies-building-and-exploring-applications-with-quantum-annealing/

[31] Brian D. Ondov, Todd J. Treangen, Páll Melsted, Adam B. Mallonee, Nicholas H.
Bergman, Sergey Koren, and Adam M. Phillippy. 2016. MASH: Fast genome and
metagenome distance estimation using MinHash. Genome Biology 17, 1 (2016).
https://doi.org/10.1186/s13059-016-0997-x

[32] Kathryn A. Phillips, Julia R. Trosman, Robin K. Kelley, Mark J. Pletcher, Michael P.
Douglas, and Christine B. Weldon. 2014. Genomic sequencing: Assessing the
health care system, policy, and big-data implications. Health Affairs 33, 7 (2014),
1246–1253. https://doi.org/10.1377/hlthaff.2014.0020

[33] Max Roser and Hannah Ritchie. 2021. Burden of Disease. Our World in Data
(2021). https://ourworldindata.org/burden-of-disease.

[34] Jeong Seop Sim and Kunsoo Park. 2003. The consensus string problem for
a metric is NP-complete. Journal of Discrete Algorithms 1, 1 (2003), 111–117.
https://doi.org/10.1016/s1570-8667(03)00011-x

[35] Andrew Steane. 1997. Quantum Computing. arXiv (Aug 1997). https://doi.org/
10.48550/arXiv.quant-ph/9708022

[36] Ewin Tang. 2019. A quantum-inspired classical algorithm for recommendation
systems. Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing (2019). https://doi.org/10.1145/3313276.3316310

[37] The Pandas Development Team. 2020. pandas-dev/pandas: Pandas. https:
//doi.org/10.5281/zenodo.3509134

Journal of Computational Science Education Volume 14, Issue 1

July 2023 39

https://www.nec.com/en/press/201812/global_20181212_03.html
https://doi.org/10.1186/s12859-022-04643-9
https://doi.org/10.1126/science.270.5242.1633
https://doi.org/10.1126/science.270.5242.1633
https://doi.org/10.1093/nar/16.22.10881
https://igraph.org
https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://docs.dwavesys.com/docs/latest/c_gs_2.html
https://research.aimultiple.com/quantum-annealing/
https://doi.org/10.1007/bf02603120
https://doi.org/10.1109/IISA.2019.8900740
https://doi.org/10.1146/annurev-med-051010-162644
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1002/acr2.11114
https://doi.org/10.1002/acr2.11114
https://doi.org/10.48550/arXiv.1208.5713
https://doi.org/10.1186/s12911-019-0965-y
https://doi.org/10.1186/s12911-019-0965-y
https://github.com/dwavesystems/dimod
https://github.com/dwavesystems/dimod
https://github.com/dwavesystems/dwave-ocean-sdk
https://github.com/dwavesystems/dwave-ocean-sdk
https://doi.org/10.1093/nar/gky315
https://doi.org/10.1119/10.0006204
https://doi.org/10.7759/cureus.3210
https://doi.org/10.1186/1471-2105-6-298
https://doi.org/smash/get/diva2:1345195/FULLTEXT02
https://doi.org/smash/get/diva2:1345195/FULLTEXT02
https://doi.org/10.1093/nar/gkac240
https://doi.org/10.1016/j.tcs.2010.05.034
https://doi.org/10.1038/s41592-021-01199-z
https://doi.org/10.1088/1742-6596/1019/1/012085
https://doi.org/10.1088/1742-6596/1019/1/012085
https://doi.org/10.1016/0022-2836(70)90057-4
https://doi.org/10.1016/0022-2836(70)90057-4
https://quantumzeitgeist.com/companies-building-and-exploring-applications-with-quantum-annealing/
https://quantumzeitgeist.com/companies-building-and-exploring-applications-with-quantum-annealing/
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1377/hlthaff.2014.0020
https://doi.org/10.1016/s1570-8667(03)00011-x
https://doi.org/10.48550/arXiv.quant-ph/9708022
https://doi.org/10.48550/arXiv.quant-ph/9708022
https://doi.org/10.1145/3313276.3316310
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134


[38] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson. 1994. Clustal W:
Improving the sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix choice.
Nucleic Acids Research 22, 22 (1994), 4673–4680. https://doi.org/10.1093/nar/22.
22.4673

[39] V. A. Traag, L. Waltman, and N. J. van Eck. 2019. From Louvain to Leiden:
Guaranteeing well-connected communities. Scientific Reports 9, 1 (2019). https:
//doi.org/10.1038/s41598-019-41695-z

[40] D. Ventura and T. Martinez. 1998. Quantum associative memory with exponential
capacity. 1998 IEEE International Joint Conference on Neural Networks Proceedings.
IEEE World Congress on Computational Intelligence (Cat. No.98CH36227) (1998).
https://doi.org/10.1109/ijcnn.1998.682319

[41] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,

Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental Al-
gorithms for Scientific Computing in Python. Nature Methods 17 (2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[42] Yingying Wang, Hongyan Wu, and Yunpeng Cai. 2018. A benchmark study of
sequence alignment methods for protein clustering. BMC Bioinformatics 19, S19
(2018). https://doi.org/10.1186/s12859-018-2524-4

[43] Dennis Willsch, Madita Willsch, Carlos D. Gonzalez Calaza, Fengping Jin, Hans
De Raedt, Marika Svensson, and Kristel Michielsen. 2022. Benchmarking advan-
tage and D-wave 2000Q quantum annealers with exact cover problems. Quantum
Information Processing 21, 4 (2022). https://doi.org/10.1007/s11128-022-03476-y

[44] Shenggen Zheng, Daowen Qiu, and Jozef Gruska. 2017. Time-space complexity
advantages for quantum computing. Theory and Practice of Natural Computing
(2017), 305–317. https://doi.org/10.1007/978-3-319-71069-3_24

Volume 14, Issue 1 Journal of Computational Science Education

40 July 2023

https://doi.org/10.1093/nar/22.22.4673
https://doi.org/10.1093/nar/22.22.4673
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1038/s41598-019-41695-z
https://doi.org/10.1109/ijcnn.1998.682319
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1186/s12859-018-2524-4
https://doi.org/10.1007/s11128-022-03476-y
https://doi.org/10.1007/978-3-319-71069-3_24



