Journal of Computational Science Education

Volume 12, Issue 1

Performance Analysis of the Parallel CFD Code for Turbulent
Mixing Simulations

Tulin Kaman*
Department of Mathematical Sciences
University of Arkansas

Alaina Edwards
Department of Mathematical Sciences
University of Arkansas

John McGarigal
Department of Mechanical Engr.
University of Arkansas

Fayetteville, AR Fayetteville, AR Fayetteville, AR
tkaman@uark.edu aje004@uark.edu jamcgari@uark.edu
ABSTRACT These problems are deeply multiscale. The level of scales that are

Understanding turbulence and mixing due to the hydrodynamic
instabilities plays an important role in a wide range of science and
engineering applications. Numerical simulations of three dimen-
sional turbulent mixing help us to predict the dynamics of two
fluids of different densities, one over the other. The focus of this
work is to optimize and improve the computational performance of
the numerical simulations for the compressible turbulent mixing on
Blue Waters, the petascale supercomputer at the National Center
for Supercomputing Applications. In this paper, we study the effect
of the programming models on time to solution. The hybrid pro-
gramming model, which is a combination of parallel programming
models, becomes a dominant approach. The most preferable hybrid
model is the one that involves the Message Passing Interface (MPI),
such as MPI + Pthreads, MPI + OpenMP, MPI + MPI-3 shared mem-
ory programming, and others with accelerator support. Among all
choices, we choose the hybrid programming model that is based
on MPI + OpenMP. We extend the purely MPI parallelized code
with OpenMP parallelism and develop the hybrid version of the
code. This new hybrid implementation of the code is set up in a
way that multiple MPI processes handle the interface propagation,
whereas multiple OpenMP threads handle the high order weighted
essentially non-oscillatory numerical scheme.

KEYWORDS

Turbulent Mixing, Numerical Simulations, Performance Analysis,
Distributed/Shared memory programming

1 INTRODUCTION

Turbulent mixing flows arise in a wide range of science and engi-
neering applications, from climate studies to all forms of fusion,
whether the confinement is inertial, gravitational or magnetic. The
numerical simulations help us to understand the dynamics of turbu-
lent mixing. Turbulent mixing due to Rayleigh-Taylor (RT) instabil-
ity arises at the interface between two fluids of different densities
whenever the pressure gradient opposes the density gradient.

*Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Copyright ©JOCSE,
a supported publication of the Shodor Education Foundation Inc.

© 2021 Journal of Computational Science Education
https://doi.org/10.22369/issn.2153-4136/12/1/7

January 2021

desired to be resolved identifies the characteristic properties of the
numerical approach, such as Direct Numerical Simulations (DNS),
Large Eddy Simulations (LES), and Reynolds Averaged Navier Stokes
(RANS). With the power of today’s HPC systems, resolving all tur-
bulence length scales is handled by DNS [14]. RANS resolves length
scales sufficient to specify the problem geometry. Among these
three approaches, DNS has the highest computational cost, and
RANS has the lowest. The use of LES reduces the computational
cost of the DNS and resolves some but not all length scales. LES
was first proposed by Smagorinsky [21] for the study of the dynam-
ics of the atmosphere’s general circulation. In LES, the unresolved
smaller-scale motions are modeled by subgrid scale (SGS). The
multi-species compressible Navier-Stokes equation, filtered at a
grid level, is solved, so that the LES defines SGS terms (such as the
Reynolds stress) as a source. These source terms are modeled as
gradient diffusion terms, and otherwise coefficients such as tur-
bulent viscosity, mass, and thermal diffusivity are recovered in a
dynamic manner from the solution itself. This is called a dynamic
SGS model. The missing coefficients are computed locally in the
simulation [2].

Front tracking (FT) is the technique of storing and dynami-
cally evolving a meshed front that partitions a simulation domain
into two or more regions, each representing a different material,
or physics model. Front tracking is the unique method presently
demonstrated to avoid systematic errors in an important class of
problems revolving around turbulent mixing [5]. The sharp resolu-
tion of interfaces and steep gradients occurs in a variety of applica-
tions, such as primary breakup of a liquid jet [1], forecasting of cloud
boundaries [7], target design of muon collider in high energy parti-
cle accelerators [4], and electrocardia [23]. The FT/LES/SGS combi-
nation has previously been validated for macro, meso, and micro
scale observables. By this, This means that diagnostics with compar-
ison to experimental data have been applied to assess the solution
accuracy of the turbulent mixing flow at the macro/meso/micro
length scales. Thus, the simulations have achieved agreement with
experimental measurements in the overall size of the mixing zone
(macro), the coherent bubble structure within it (meso), and molec-
ular level mixing (micro) as recorded by chemical reactions [5, 12].

The simulation package, FronTier, has the implementation of all
these algorithms. FronTier supports a range of physics, including
compressible and incompressible flow, turbulence models, fluid-
structure interactions, phase transitions, and crystal growth, each
with its own validation and verification studies [3]. It is parallelized
with a tensor product domain decomposition. MPI is used to pass
states and interface data from one processor to another. FronTier

ISSN 2153-4136 49

https://doi.org/10.22369/issn.2153-4136/12/1/7

Volume 12, Issue 1

has adopted object oriented programming. Many major front track-
ing functionalities have been modularized to allow users to call
them with a minimal knowledge of internal operation and coding.
An API to modularize the front tracking and to make it available to
other simulation codes is constructed [13]. We extend the purely
MPI parallelized code with OpenMP parallelism and develop the
hybrid version of the code. The focus is to optimize and improve the
computational performance and increase the scalability to perform
high resolution numerical simulations efficiently on high perfor-
mance computing systems.

The organization of this paper is as follows. In Section 2, we de-
scribe the model problem, Rayleigh-Taylor instability. In Section 3,
we present the strong and weak scaling analysis of the purely MPI
parallel version of the code and introduce the profiling tool Tuning
and Analysis Tool (TAU) that is used to analyze the runtime behav-
ior of the program. We show how to instrument the FronTier code
using TAU and present performance results. In Section 4, we intro-
duce the hybrid programming model, which is a combination MPI
+ OpenMP parallel programming model and compare the purely
MPI and hybrid models. Section 5 presents reflections on how the
research activities as Blue Waters Interns influence the students’
future careers.

2 PROBLEM DESCRIPTION

The study of the turbulent mixing problem in Rayleigh-Taylor aims
for macro level validation and to predict the overall dimensionless
growth rate of the mixing zone. The growth rate is defined by
the formula h, = ajAgt? for the penetration distance hy, of the
light fluid into the heavy fluid, g being the acceleration force that
defines the instability, and A = (p; —p2)/(p1+p2) the dimensionless
buoyancy correction to gravity, depending on the density difference
between the two fluids. Here, p1 denotes the heavy fluid density, and
p2 denotes the light fluid density. The determination of the growth
rate oy, has been the source of considerable interest. The numerical
simulations are conducted to predict the quantity of interest on
the growth rate of the mixing zone. The uncertainty quantification
analysis associated with initial conditions, the sensitivity analysis
to the parameters such as the initial mass diffusion layer thickness,
and the effect of initial conditions and parameters to the quantity
of interest o, were studied in comparison with experimental data
and presented in [9-12, 24]. The problem with single-mode, multi-
mode, and random initial perturbations is presented in Figure 1.
Here, the validation and verification studies are out of the scope of
this paper. The focus is to optimize and improve the computational
performance of the FronTier software package for the Rayleigh-
Taylor turbulent mixing problem on the Blue Waters petascale
supercomputer.

For the numerical simulations of multiphase flows, one of the
advantages of the front tracking method is in dealing with the con-
tact discontinuities. The front tracking method is used to solve the
conservation laws with discontinuities between fluids. The mathe-
matical formulation is based on the filtered Navier-Stokes equations
for the multiphase flows [10]. These equations are the governing
equations of LES simulations. In the equations of continuity, mo-
mentum, energy, and concentration (1) - (4), the variables that have
been filtered on the grid scale are denoted by the overbar. There

50 ISSN 2153-4136

Journal of Computational Science Education

Figure 1: Images of the single-mode, uniform and random
multi-mode Rayleigh-Taylor instabilities.

is also a density-weighted filtering operation, which is denoted by
the tilde. The Favre-filtered continuity equation (1) is obtained by
first applying the grid scale onto the continuity equation

9 opoi

=4 =0,

ot ox;

then the density-weighted filtering v; = @

For the compressible flows, the Favre-filtered continuity, mo-
mentum, energy, and concentration equations are obtained as

dp dpu;
— 4+ — =0 1
ot 0x; ()
9py; 9(puiv; +poiy) _ ddij @)
ot Ox; Ox;
OE 9E+p)o _ 0dyo & (_oT
o9k = + —(k—
ot dx; Ox; Ox; \ Ox;

®)

1 1

2 -yt
ox; \h T EPE

ks =2 [5pE 4
o ox ox \P7 ox)

pY . ap¥o; 8 (_~a€/>
where p, zTi,E,ﬁ, and ¥ are the filtered variables for total mass
density, the velocity, the total specific energy, the pressure, and the

mass fraction. The total specific energy is

E = pe + pogt/2.
fl;, and E are the partial specific enthalpy of each species defined
by

Hy=e+=. H=q+

s

IS
ol

where €, and e; are the specific internal energy of each species.
i K, and D are the filtered temperature, the heat conductivity, and
the kinematic mass diffusivity. The viscous stress tensor, d;;, in
momentum and energy equations is expressed as

— _(({o5 05\ 205%
dij = — +— |- -0
ij=vd ((6xj " Ox; 3 Oxp Y]

January 2021

Journal of Computational Science Education

where Vg = pvg is the filtered dynamic viscosity.

The stable and higher order WENO (Weighted Essentially Non-
Oscillatory) scheme [19] is used for solving the Favre-averaged
Navier-Stokes equations. In this section, the WENO scheme is
briefly explained. The main features of the WENO finite difference
methods, finite volume methods, and the discontinuous Galerkin
finite element methods for computational fluid dynamics can be
found in Shu’s paper [20]. The flux-averaged WENO method uses lo-
cal Lax-Friedrichs flux-splitting and a characteristic decomposition
of the variables and fluxes. The fluxes in x, y, and z are calculated
separately. High order accurate and non-oscillatory scheme flux re-
construction uses a convex combination of k candidate stencils [8].
For k = 3, the fifth (2k — 1) order finite difference WENO scheme
approximates the derivative F(U)y at a point x;,

1 - R
F(U)xlx=x; E(Fiﬂ/z = Fi_12) (5

where U is the state vector, F(U) is the flux, and ﬁiﬂ/z and ﬁi—l/z
are the right and left fluxes. The fifth order WENO scheme uses
three stencils,

3
Fiv1/2 = Z “iFi(i)l/z
j=1

with three third order fluxes I:“i(i)l /2

For hyperbolic conservation equations, the nonlinear part of
WENO is carried out in local characteristics fields. The implemen-
tation starts by computing the average state Uy, 1/, j,k using the
average, then the left and right eigenvectors and eigenvalues of
the Jacobian F’(U; 4 /2,j,k) at the average state. One can project
the conservative fields and the fluxes onto the local characteristic
fields using the left eigenvectors matrix and compute the left and
right fluxes in characteristic field. Then, project back the numerical
fluxes in the physical space using the right eigenvector matrix. We
perform the same steps for the other two directions in y and z
using the average states U j;1/2 k and Uj j k+1/2- In the next sec-
tion, we will observe that WENO flux computation is the most time
consuming in our simulations.

and the nonlinear weights w;.

3 PERFORMANCE STUDIES

Our primary goal is to achieve performance improvements of the
numerical simulations for hydrodynamic instabilities. We start with
identifying the parts of the code that are time consuming. For this,
we take advantage of the available performance analysis tools on
Blue Waters. The first tool used for profiling is the Cray Perfor-
mance and Analysis Tools (CPMAT). CPMAT is equipped with
several components used in preparing any project for performance
analysis. CPMAT is able to gather data during the program execu-
tion, and the data can be processed and analyzed for presentation
to the user on its own graphical user interface, Cray Apprentice2.
The details of how the code was prepared and how the analysis
was carried out can be found in Blue Waters’ user guide, but, in
essence, any performance analysis process has three main steps:
code instrumentation, execution, and data analysis. Apprentice2 is
used for visualizing and exploring the data for analysis.

There are other profiling tools on the system, such as PAPI, Perf-
Suite, and TAU [15]. Among these profiling tools, we choose TAU,
which is a comprehensive code profile tool with additional features

January 2021

Volume 12, Issue 1

X/ cFluid+pat+23662-10622t.ap2
File Compare View Help

= About Apprentice2 @ | = <Flidspats 23662 106221952 O |
&H D MK
[overvien ©

(\ Profile o

cru

Function/Region Profile
Memory Utilization

Process HiMem (MBytes) 2444

10011 | ___ (10011
10101 10101

Data Movement

-1-

Load Imbalance

Programming Model
2.19%

Wallclock time: 1688.364156s

cFluickpat+23662-10622t. ap2 (60,360, 226,648 events in 10.198s)

Figure 2: CPMAT Apprentice2 visualization.

for our performance analysis. In Section 3.3, the portable, robust,
and parallel scalable TAU tool [18] is introduced for the perfor-
mance instrumentation, measurement, analysis, and visualization.
The Blue Waters system is a Cray XE/XK hybrid machine com-
posed of AMD 6276 “Interlagos” processors and NVIDIA GK110
(K20X) “Kepler” accelerators, all connected by the Cray Gemini
torus interconnect [15]. The XE node has 2 Interlagos processors,
and each processor has 16 bulldozer cores, as shown in Figure 3.
Each bulldozer core’s memory is 4GB, and the total node memory
is 128GB. In the distributed memory parallel programming model
with MPI, we observe that the memory footprint per integer core
is enough to fit in memory, and we could use all 32 integer cores
available on an XE node. We vary the number of MPI processes
per node by setting the “-N” parameter in a job script file to inves-
tigate the effect of the processors per node (ppn) on the runtime.
In Table 1, the time to solution on problem size 64 X 64 X 256 with
different processors per node is presented. The system default task
placement for MPI processes is used in pure MPI runs. The effi-
ciency per MPI process is virtually unaffected when changing the
processors per node from 32 to 8 integer cores, and we observe a
6% loss of efficiency using 4 processors on 8 nodes. See Table 1.

. XEG6 node

Interlagos
Processor

NUMA
domain

Bulldozer
core

Integer
core

Floating point
unit

Figure 3: Cray XE6 node type on Blue Waters. Courtesy of
Aaron Weeden, Blue Waters Petascale Institute notes.

ISSN 2153-4136 51

Volume 12, Issue 1

Table 1: Time to solution on 32 MPI processes. #PPN is the
processes per node.

#Node #PPN Time (seconds)

1 32 254
2 16 254
4 8 252
8 4 237

The runtime behavior is investigated by running weak and strong
scaling analyses. The simulations are performed on a domain 1 X
1 X 4 cm with a single grid spacing Ax = Ay = Az. The number of
grids in the z direction is four times the number of the grids in the
x and y directions. The weak and strong scaling analyses are all
performed using 32 processors per node in pure MPI jobs.

3.1 Weak Scaling

We conduct a weak scaling study and run simulations on four dif-
ferent grids: 64 X 64 X 256, 128 X 128 X 512, 256 X 256 X 1,024, and
512 512X 2,048, using 32, 256, 2,048, and 16,384 cores, respectively,
so that the amount of computation remains constant per core. The
problem size on each MPI process is fixed and has 32 grid points in
each direction. The runtimes for these problems are reported in Ta-
ble 2, and they include both computation and communication. The
explicit nature of the algorithm described in Section 2 contributes
to the very good weak scaling as shown in Figure 4. The results
for weak scaling indicate that the amount of communication in-
creases 5% from 32 cores to 16,384 cores due to the communication
overhead.

Table 2: Weak scaling for RT simulations. The grid resolu-
tion per MPI process is 32 X 32 X 32.

Grid #Processes Actual Ideal
Time to Solution
64 X 64 X 256 32 254 254
128 X 128 X 512 256 263 254
256 X 256 X 1,024 2,048 266 254

512 X 512 X 2,048 16,384 269 254

3.2 Strong Scaling

To do a strong scaling analysis, we fix the total problem size while
the resources are increased. The resolution of the computational
grids 64 X 64 X 256 (coarse) and 256 X 256 X 1,024 (medium) run
with a number of processes from 32 to 256 and from 1,024 to 8,192,
respectively. Table 3 shows that the efficiency results drop to below
65% and 50% for the coarse and medium meshes. The simulations
of Rayleigh-Taylor instability on the coarse and medium grid reso-
lution are performed on processes with 2 threads (hybrid).

52 ISSN 2153-4136

Journal of Computational Science Education

Weak Scaling

—e—Actual Ideal

Time to solution (sec)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Number of processes

Figure 4: Runtimes under weak scaling,.

Table 3: Strong scaling for RT simulations at grid resolutions
of the coarse (C) and the medium (M) meshes.

Actual Ideal
Time to Solution

#Processes Efficiency

cC M |Cc M| C M| C M

32 1,024 | 254 424 | 254 424 | 100% 100%
64 2,048 | 153 266 | 127 212 | 83% 80%
128 4,096 | 81 200 | 63.5 106 | 79% 53%
256 8,192 | 51 113 | 3275 53 63% 47%

Strong Scaling
700
—e—Actual Ideal
600
500
400

300

200

Time to solution (sec)

100

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Number of processes

Figure 5: Runtimes under strong scaling for the medium
mesh.

3.3 Profiling and Performance Analysis

In this section, we introduce the portable, robust, and parallel scal-
able TAU tool [18], which is used for performance instrumenta-
tion, measurement, analysis, and visualization. There are several
options for instrumentation to observe the performance measure-
ment, such as source-based, preprocessor-based, compiler-based,
wrapper library-based, binary, interpreter-based, component-based,
virtual machine-based, multi-level selective instrumentation, and
TAU_COMPILER. The details of the instrumentation options are
presented in [18].

January 2021

Journal of Computational Science Education

Profiling consists of three stages: (i) compiling and linking the
program with profiling enabled, (ii) executing the program to gener-
ate a profile data file, and (iii) running the profiler to analyze the data.
Without any code modification, by compiling the program with a
debug symbol (“-g ”), a code developer can extract performance data
measurements with minimal effort. TAU supports parallel profil-
ing. Automatic instrumentation of the code using TAU’s compilers
(tau_cxx, tau_cc, tau_f90) and the visualization tool (ParaProf) help
users to collect, analyze and visualize the performance data on
thousands of processes. The TAU measurement system provides
a profile data structure for each node/context/thread. Once com-
piling and building the executable with TAU compilers is done,
we execute the new program to generate the profile data for each
MPI process. The production of parallel profiles for thousands of
processes requires an analysis tool to handle the performance infor-
mation. TAU’s scalable parallel performance profile analysis tool
is called ParaProf. ParaProf provides a graphical interface to dis-
play all performance analysis results. ParaProf’s 3D visualization
option shows the spread of performance data across routines and
processes. Figure 6 shows the profile data for the numerical sim-
ulation of Rayleigh-Taylor Instability. It helps in interpreting the
performance data and presenting the time spent for each routine
and process at once. TAU supports several types of performance
profiles, such as flat, callpath, callsite, and phase profiles. The flat
profile helps us to learn more about the time spent in an event,
exclusive/inclusive, number of calls, and number of child calls. The
profiling shows how much total time was spent in each routine.
The exclusive and inclusive times show the statistics for each func-
tion. The exclusive time is the amount of time spent within that
function, excluding the time spent in all child functions called from
that function. The inclusive time is the amount of time spent within
that function and all its child functions. The mean inclusive and
exclusive times for a parallel test are presented in Figure 7. The
bar graphs show the spread of performance data across routines
on each process. In Figure 7, it is observed that the most time-
consuming (blue bar graph, 34%) is the WENO flux computation.
Each bar shows the mean exclusive time for routines and gives us
an idea of how much time was spent in different routines. In the
Comparison Window, Figure 8, we compare four coarse grid runs
with a number of processes from 32 to 256. We have taken several
steps to optimize the part of the code and work on the enhancement
of the computational performance of the WENO flux computation
in the weno5_get_flux routine.

4 HYBRID PARALLEL SCHEME

Code developers investigate the fastest programming model to han-
dle computationally expensive simulations on clusters. An efficient
programming model of the clusters of shared memory parallelism
(SMP) is needed to handle large scale simulations. The parallel
programming model could be purely MPI parallel or hybrid, de-
pending on the application code. Hybrid programming with the
MPI parallel scheme for internode communications and a shared
memory programming for intranode communication is a prefer-
able approach [6]. Available programming options for the shared
memory parallelism are MPI-3, OpenMP, and OpenMP 4.0 / Ope-
nACC for accelerator support. We investigate the usage of shared

January 2021

Volume 12, Issue 1

memory parallelism within the MPI processes for the best perfor-
mance. Among the shared programming model options, we choose
OpenMP for the intranode communication. OpenMP’s application
programming interface (API) supports the shared memory multi-
processing programming in C, C++, and Fortran. It is available since
1997 and is being actively developed to standardize directive-based,
multi-language, high-level parallelism that is highly scalable and
portable.

We first assess the performance of the code on the Blue Waters
HPC platform using four different compilers: Cray, PGI, GNU, and
Intel. The compiling and linking is performed using wrappers such
as “ftn” for Fortran, “cc” for C, and “CC” for C++. To invoke the
compiler, we set the programming environment corresponding
to the specific compiler suite. Using the wrapper scripts and the
compilers’ default options provided on the system, a difference
in times is observed. We observe that the PGI (Portland Group)
compiler performed the best among all the compiler suites, as shown
in Figure 4. There are many compiler options that can be used in the
compilation process, and we use the default options that come with
the wrappers. For the OpenMP directives and pragmas, “-h omp”
for Cray, “-mp=nonuma” for PGI, and “-fopenmp” for GNU and
Intel are provided additionally to the wrapper scripts for compiling
the newly developed OpenMP implementation.

Table 4: Compiler performance on the application code.

#Processes MPI Distribution Time (seconds)

Cray PGI GNU Intel

2,048 8 X 8x32 285 250 266 263
4,096 8 X 8 X 64 208 192 200 198
8,192 16 X 16 X 32 104 88 113 90

On Blue Waters, the maximum number of threads per node is
32. When running a hybrid (MPI+OpenMP) program, we first set
the number of threads per process using the environment vari-
able OMP_NUM_THREADS. In addition, the number of threads
per process should be set using the depth parameter (“-d”) in the
run command. The depth parameter sets the number of OpenMP
threads per MPI task, and it should have the exact same value as
the environment variable OMP_NUM_THREADS. We specify the
total number of MPI tasks for the job using the “-N” parameter, and
the value for -N multiplied by the value for -d should not exceed
32 on Blue Waters.

The implementation of the WENO scheme described in Section 2
has a parallel region where we calculate the local eigenvalues,
average state, right eigenvector matrix R, ; 4, and its left counterpart
Liid = R_mll. 4 at the mid-points. We transform the conservative
fields, its differences, and flux differences to local characteristic field
by multiplying them with L,,;4, and we compute the numerical
fluxes in each characteristic field. The last step is to project back
the numerical fluxes in the physical space by multiplying them
with the right eigenvector matrix R,,;4. In this part of the code,
the variables are scoped by using private and shared OpenMP data
scope attribute clauses with the parallel directive.

In Figure 9, the time to solution using purely MPI and hybrid
parallel schemes are compared. In the hybrid parallel scheme, the

ISSN 2153-4136 53

Volume 12, Issue 1

i

TAU: ParaProf: 3D Visualizer: rt3d-tau-m-BEFORE.ppk

Journal of Computational Science Education

Triangle Mesh
© Bar Plot
Scatter Plot

Topology Plot

Height Metric
Exclusive |~ me | ~
Color Metric

Exclusive |~ me | ~

weno5_get flux [{/u/eot/tkaman/Pr¢
Function

Thread

Height value 298.925 seconds

Color value ~ 298.925 seconds

Scales Plot Color Render

Orientation

V| Show Axes

Font Size SE w

Label Length

Figure 6: TAU’s ParaProf 3D visualization shows the spread of performance data across routines and processes.

number of threads in OpenMP parallelism is set to two. The num-
ber of threads is controlled by setting the OMP_NUM_THREADS
environment variable and giving the depth with “-d" option in run-
ning. For the hybrid case, the jobs run with 16 MPI processes per
node and 2 OpenMP threads per process ("-N 16 -d 2 ”). Figure 10
shows the performance improvement in the hybrid case with the
inclusive time on the coarse grid. The mean exclusive time spent
in the weno5_get_f1lux routine dropped from 302 seconds to 242
seconds, and the mean inclusive time is reduced by 20%. On the
medium grid, we observe the pure MPI model is faster than the
hybrid model. The newly developed version of the program with
two OpenMP threads inside of each MPI task is slower than the
pure MPI version as shown in Figure 11.

5 INTERNSHIP REFLECTION

The goal of the project is not only to investigate the effect of the
parallel programming models on time to solution for the numerical
simulations of compressible turbulent mixing, but also to engage the
undergraduate students in petascale computing research in the area
of computational fluid dynamics. The Blue Waters interns, Edwards
and McGarigal, had little-to-no experience in Unix, programming
in C, or parallel computing before starting this research project.
A two-week intensive Petascale Institute at the National Center
for Supercomputing Applications at the University of Illinois at
Urbana-Champaign helped them to develop the basic skills needed
to start this research. Within one year, they gained experience

54 ISSN 2153-4136

in the usage of Blue Waters, distributed/shared parallel program-
ming models, visualization, and performance tools. During their
internship program, they were selected to attend the International
Conference for High Performance Computing, Networking, Stor-
age, and Analysis as student volunteers. There, they were able to
make many significant connections to help propel them into their
future careers. Edwards and McGarigal presented their first poster
at the American Physics Society Conference for Undergraduate
Women in Physics, which was held at the Texas A&M University
at Corpus Christi and at the 2019 Annual Meeting of the Arkansas
Academy of Science (AAS), which was held at Fort Collins, respec-
tively. Their poster at AAS received the first place undergraduate
poster in computer science and was also selected to be presented
at the 2019 Blue Waters Symposium.

When the mentor created two Blue Waters internship positions
for the two University of Arkansas students who were interested in
developing skills in modeling, simulations, and high performance
computing, she planned a weekly schedule for her directed read-
ing course. This course was a one-on-one independent study to
cover the topics from hydrodynamics instabilities to parallel per-
formance systems. The directed readings were designed to help the
students to see the big picture, provide an overview of the state of
the project, and guide them. The papers of Zhou [25, 26] on the
basic properties of the flow, turbulence, and mixing induced by
hydrodynamic instabilities, Sameer [16, 18] on a TAU user’s guide,
and Shu [19, 20] on numerical schemes were read throughout the
first semester. In the second semester, the interns’ main duties were

January 2021

Journal of Computational Science Education Volume 12, Issue 1

TAU: ParaProf: Mean - rt3d-tau-BEFORE.ppk

Metric: TIME
Value: Inclusive
Units: seconds

879.64 INEE——] .TAU application
879.601 IEE—— a2 in [{/u/eot/tkaman/Projects /FT1/cFluid /cFluid.cpp} {62,0}]
852,794 |y gas_driver [{/u/eot/tkaman/Projects /FTI/cFluid /cFluid.cpp} {2(
574.537 [G_CARTESIAN::solve(double) [{/u/eot/tkaman/Projects/FTI/cFl
el G_CARTESIAN::computeAdvection() [{/u/eot/tkaman/Projects/f
570.815 G_CARTESIAN::solveRungeKutta(int) [{/u/eot/tkaman/Projects/
503.705 G_CARTESIAN::compute MeshFlux(SWEEP, FSWEEP*, double) [{/1
319.868 [l G_CARTESIAN::addFluxInDirection(int, SWEEP*, FSWEEP*, doubl
319.868 [| G_CARTESIAN::addFluxInDirection3d(int, SWEEP*, FSWEEP*, do
304.379 [l G_CARTESIAN::numericalFlux(void*, SWEEP*, FSWEEP*, int) [{/u
304.157 [] WENO_flux(void*, SWEEP*, FSWEEP*, int) [{/u/eot/tkaman/Proje
302.801] wenoS5_get_flux [{/u/eot/tkaman/Projects /FT1/cFluid /cFweno.c|
273.021 [void FT_Propagate(Front *) C [{fmap.c} {72,9}-{117,1}]
205.53 [l int FrontAdvance(double, double *, Front *, Front **, POINTER)

TAU: ParaProf: Mean - rt3d-tau-BEFORE.ppk

Metric: TIME
Value: Exclusive
Units: seconds

302.171 | weno5_get_flux [{/u/eot/tkaman/Projects/FTI/cFluid /cFweno.c|
101.144 [MPI_Recv()
77.176¢ |l G_CARTESIAN::get_ghost_state(SWEEP, int, int) [{/u/eot/tkamar
76.918 [MPLBarrier()
. MPI_Allreduce()
44.295 [___] G_CARTESIAN::get_normal_from_front() [{/u/eot/tkaman/Proje:
|
[

int check_and_unset_bad_comp(int ¥, int *, INTERFACE *) C [{fc

boolean check_and_repair_crx(INTERFACE *, int *, int *) C [{fgk

[E G_CARTESIAN::addMeshFluxToVst(SWEEP*, FSWEEP, double) [{,

9 [0 G_CARTESIAN::addFluxInDirection3d(int, SWEEP*, FSWEEP*, do
9.58 [void communicate_new_points_moved(Front *, int, MOVED_ADI
H boolean fill_comp_from_prev_intfcINTERFACE *, int *, int *) C [

[void remove_unphysical_crxings(int *, int *, int *, INTERFACE *,

[int record_unphysical_ips(int *, int *, INTERFACE *, int **) C [{fc

TAU: ParaProf: Mean - rt3d-tau-BEFORE.ppk

Metric: TIME
Value: Exclusive percent

34.352% | o] weno5_get_flux [{/u/eot/tkaman/Projects /FT1/cFluid /cFweno.c|
11.498% [— MPI_Recv()
9.945% [int check_and_unset_bad_comp(int *, int *, INTERFACE *) C [{fc
8.774% |l G_CARTESIAN::get_ghost_state(SWEEP, int, int) [{/u/eot/tkamar
8.744% "1 MPI_Barrier()
6.143% [Emmmmm MPI_Allreduce()
5.036% [___1 G_CARTESIAN::get_normal_from_front() [{/u/eot/tkaman/Proje:
4.951% [Ema] boolean check_and_repair_crx(INTERFACE *, int *, int *) C [{fgt

1.781% [@ G_CARTESIAN::addMeshFluxToVst(SWEEP*, FSWEEP, double) [{,
1.333% [G_CARTESIAN::addFluxinDirection3d(int, SWEEP*, FSWEEP*, do
1.089% [void communicate_new_points_moved(Front *, int, MOVED_ADI
1.057% [boolean fill_comp_from_prev_intfc(INTERFACE *, int *, int *) C [
0.912% [void remove_unphysical_crxings(int *, int *, int *, INTERFACE *,
0.881% Ia int record_unphysical_ips(int *, int *, INTERFACE *, int **) C [{fc

0.812% void copy_tris(SURFACE *, SURFACE *) C [{int3d.c} {369,1}-{50

Figure 7: The mean inclusive time, exclusive time, and exclusive percent.

January 2021 ISSN 2153-4136 55

Volume 12, Issue 1

Journal of Computational Science Education

ParaProf: Comparison Window

Metric: TIME
Value: Exclusive
Units: seconds

| rt3d-tau-np32.ppk - Mean
M rt3d-tau-np64.ppk - Mean
[E rt3d-tau-np128.ppk - Mean
M rt3d-tau-np256.ppk - Mean

302,171 b |
152.021 (50.31%) —

76.607 (25.352%)

38.524 (12.749%) |l

101.144
69.321 (68.537%) (mm——"
49.511 (48.951%) [
34.381(33.992%) [l

e weno5_get_flux [{/u/eot/tkaman/Projects/FTI/cFluid /cFweno.cpp} {75,0}]

MPI_Recv()

Figure 8: TAU’s ParaProf Comparison Window shows the mean exclusive time.

TAU: ParaProf: Histogram: rt3d-tau-BEFORE.ppk

weno5_get_flux
[{/u/eot/tkaman/Projects/FTI/cFluid/cFweno.cpp} {75,0}]

9.0

85
8.0
7.5

7.0
6.5

6.0
55
7y
B 50

_E 45

4.0

35

3.0

25

2.0

15

1.0

0.5

0.0/ L - - - - = =
300.222 300.808 301.395 301.981 302.567 303.154 303.74 304.326 304.913 305.499
Exclusive TIME (seconds)

TAU: ParaProf: Histogram: rt3d-tau-AFTER ppk

weno5_get_flux
[{/u/eot/tkaman/Projects/FTI/cFluid/cFweno.cpp} {75,0}]
10.5

10.0
9.5
9.0

85
8.0

7.5
7.0

6.5
6.0
5.5
5.0
4.5
4.0
35
3.0
25
2.0
15
1.0
05

Threads

240:001 240:887 241:773 242:658 243:544 Z44'43 245:315 Z4E:ZU1 247.086 247.972
Exclusive TIME (seconds)

Figure 9: Comparing the performance of the weno5_get_flux routine using TAU’s histogram function on the coarse grid.

to conduct simulations and analyze the results. To be eligible to
complete the duties in a limited time, students must have met the
requirements, such as being fluent in C/C++ programming, hav-
ing experience with modeling and simulations, and having basic
knowledge in parallel computing and computational fluid dynamics.
The learning curve, the learner’s performance on a task, and the
number of attempts and time required for the task had taken more
time than planned. In hindsight, it would have been better to add
two levels of participation to the research program as learners and
apprentices before their internships, as in the XSEDE EMPOWER
(Expert Mentoring Producing Opportunities for Work, Education,
and Research) program [17]. This way, the students would have
first focused on strengthening their ability to handle challenges and
taking steps on completing the assigned tasks. In a learner level, a
student could have spend more time developing necessary skills
to contribute to the work of Blue Waters through online tutorials,
workshops, and self learning in programming. At the apprentice

56

ISSN 2153-4136

level, a student could have transformed the knowledge into skills
and have the chance to apply the new skills with some additional
trainings in debugging and performance tools to do the assigned
tasks. After completing these two levels in two semesters, in their
second year the students could have performed more independent
work and became more fully engaged in research.

After their research experience in the computational and applied
mathematics group of Kaman, the students pursue graduate studies
and continue to work on computational science research projects.
Edwards was one of the ten students accepted to the Oak Ridge
National Laboratory Pathways to Computing Internship Program
to learn and develop the next-generation explicit methods for radia-
tion transport in astrophysics and explore programming models for
GPUs supported on the fastest supercomputer in the world, Sum-
mit [22]. McGarigal started a new internship at HP as part of the
test automation team, working on designing the robot framework
for computers. The Blue Waters Student Internship Program helped

January 2021

Journal of Computational Science Education

ParaProf: Comparison Window

IO rt3d-tau-BEFORE.ppk - Mean
M r:3d-tau-AFTER.ppk - Mean

Metric: TIME
Value: Inclusive
Units: seconds

87964] o
700,681 (80.679%) ey 1 AU 2PPlIC2TION

705.7695 go(éu.e 70%) | (main [{/u/eot/tkaman/Projects/FTI/cFlu

. e —
685.502929(20,687%) I Jas_driver [{/u/eot/tkaman/Projects/FT

574.537] .
464.668 (80.877%) G_CARTESIAN::solve(double) [{/u/eot/tk

s70.816 e , :
461587 (30.864%) m— C~CARTESIAN: computeAdvectiond [{/u,

570.815 [)
461.587 (80.864%) G_CARTESIAN::solveRungeKutta(int) [{/u

503.705] .
405.19 (80.442% [G_CARTESIAN::computeMeshFlux(SWEEF

319.868] .
257.535 (80.513%) (mmmm—] G_CARTESIAN::addFluxinDirection(int, S\

319.868 . o
257.534 (80.513%) [m—] G_CARTESIAN::addFluxInDirection3d(int

304.379 . s id*
244.73 (80.403%) — G_CARTESIAN::numericalFlux(void*, SWE

304.157] . . .
244.559 (80.406%) (mmmm——"] WENO_flux(void*, SWEEP*, FSWEEP*, int)

801 EE] ‘
243 4473(()820830;8%) E— weno5_get_flux [{/u/eot/tkaman/Projec

Figure 10: TAU’s ParaProf Comparison Window shows the
mean inclusive time before and after optimizing WENO flux
on the coarse grid.

Time to Solution
250

200

150

100

) I
0

4096 8192

Q

m Pure MPI m Hybrid

Figure 11: Comparison of purely MPI and hybrid models on
the medium grid.

two University of Arkansas undergraduate students to develop
strong computational skills in high performance computing and
reflect their perspective of how they can advance their knowledge
and skills for their future career.

6 CONCLUSIONS

Numerical simulations of turbulent mixing are computationally ex-
pensive and require efficient usage of high performance computing
systems. The scalability of the purely MPI application code shows
very good weak, and acceptable strong, scalability properties. We
collect performance data to identify the most time consuming parts
of the application code using the performance measurement and
analysis tool TAU, whose performance system identifies that the

January 2021

Volume 12, Issue 1

high order accurate weighted essentially non-oscillatory numeri-
cal scheme is the computationally expensive part of the code. The
flux computation starts with i) computing the average state, the
left and right eigenvectors and eigenvalues of the Jacobian at the
average state, ii) projecting the conservative fields and fluxes onto
the local characteristic fields using the left eigenvectors matrix, iii)
computing the left and right fluxes in characteristic field, and iv)
projecting back the numerical fluxes in the physical space using
the right eigenvector matrix. These computations are performed
in a loop that is ideal for shared memory parallelism. In order to
do that, we use the hybrid parallel model with MPI and OpenMP,
where MPI is used for internode communication to pass states and
interface data from one processor to another, and OpenMP is used
for intranode communication to distribute the work equally to each
thread. With the hybrid model, a performance improvement on the
coarse grid is observed, and the total time to solution is reduced
by 20%. However, the pure MPI implementation shows the best
scalability on the medium grid on Blue Waters. The good weak
and strong scalability of the pure MPI model is because of the op-
timized work distribution between processes. The problems with
OpenMP performance could be due to the memory access and cache
use. The use of “numactl”, the core layout, plays an important role
to achieve scalability. To avoid the bottlenecks with memory and
cache, the task placement to distribute MPI processes and threads
per processes will be investigated in the future.

ACKNOWLEDGMENTS

This work was supported by a grant from the Shodor Education
Foundation through the Blue Waters Student Internship Program.
This research is part of the Blue Waters sustained-petascale com-
puting project, which is supported by the National Science Foun-
dation (awards OCI-0725070 and ACI-1238993) and the state of
Illinois. Blue Waters is a joint effort of the University of Illinois at
Urbana-Champaign and its National Center for Supercomputing
Applications.

REFERENCES

[1] W.Bo, X. Liu, J. Glimm, and X. Li. 2011. A robust front tracking method: Verifi-
cation and application to simulation of the primary breakup of a liquid jet. SIAM
9. Sci. Comput. 33 (2011), 1505-1524.

[2] M. Germano, U. Piomelli, P. Moin, and W. H. Cabot. 1991. A dynamic subgrid
scale eddy viscosity model. Phys. Fluids A 3 (1991), 1760-1765.

[3] J. Glimm, B. Cheng, D. H. Sharp, and T. Kaman. 2020. A crisis for the verification
and validation of turbulence simulations. Physica D: Nonlinear Phenomena 404
(2020), 132346. https://doi.org/10.1016/j.physd.2020.132346

[4] J. Glimm, H. Kirk, X. L. Li, J. Pinezich, R. Samulyak, and N. Simos. 2000. Simulation
of 3D fluid jets with application to the Muon Collider target design. In Advances
in Fluid Mechanics I, M. Rahman and C. A. Brebbia (Eds.). Vol. 26. WIT Press,
Southampton, Boston, 191-200.

[5] J. Glimm, D. H. Sharp, T. Kaman, and H. Lim. 2013. New Directions for Rayleigh-
Taylor Mixing. Phil. Trans. R. Soc. A 371 (2013), 20120183. https://doi.org/10.1098/
rsta.2012.0183 Los Alamos National Laboratory Preprint LA-UR 11-00423 and
Stony Brook University Preprint SUNYSB-AMS-11-01.

[6] Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian Barrett, Ron
Brightwell, William D Gropp, Laxmikant V Kale, and Rajeev Thakur. 2013. MPI
+ MPI: A new hybrid approach to parallel programming with MPI plus shared
memory. Computing (Vienna/New York) 95, 12 (2013), 1121-1136. https://doi.org/
10.1007/500607-013-0324-2

[7] Ya-Ting Huang and J. Glimm. 2017. A Novel methodology of stochastic short
term forecasting of cloud boundaries. J. Uncertainty Quantification 5 (2017),
1279-1294.

[8] G.Jiang and C.-W. Shu. 1996. Efficient Implementation of Weighted ENO schemes.
J. Comput. Phys. 126 (1996), 202-228.

ISSN 2153-4136 57

https://doi.org/10.1016/j.physd.2020.132346
https://doi.org/10.1098/rsta.2012.0183
https://doi.org/10.1098/rsta.2012.0183
https://doi.org/10.1007/s00607-013-0324-2
https://doi.org/10.1007/s00607-013-0324-2

Volume 12, Issue 1

[9] T.Kaman. 2019. Model calibration for turbulent mixing simulations. In The 16th

[10

[11

[12

[13

[14

[15

[16

]

]

]

]

]

]

International Workshop on the Physics of Compressible Turbulent Mixing, I Houas
G. Jourdan and C. Mariani (Eds.). IUSTI UMR 7343, 129-132.

T. Kaman, J. Glimm, and D. H. Sharp. 2010. Initial Conditions for Turbulent Mixing
Simulations. Condensed Matter Physics 13 (2010), 43401. Stony Brook Univer-
sity Preprint number SUNYSB-AMS-10-03 and Los Alamos National Laboratory
Preprint number LA-UR 10-03424.

T. Kaman, R Kaufman, J. Glimm, and D Sharp. 2012. Uncertainty Quantification
for Turbulent Mixing Flows: Rayleigh-Taylor Instability. IFIP Advances in Infor-
mation and Communication Technology 377 (01 2012). https://doi.org/10.1007/
978-3-642-32677-6_14

T. Kaman, H. Lim, Y. Yu, D. Wang, Y. Hu, J.-D. Kim, Y. Li, L. Wu, J. Glimm, X.
Jiao, X.-L. Li, and R. Samulyak. 2011. A Numerical Method for the Simulation
of Turbulent Mixing and its Basis in Mathematical Theory. In Lecture Notes
on Numerical Methods for Hyperbolic Equations: Theory and Applications: Short
Course Book. CRC/Balkema, London, 105-129. Stony Brook University Preprint
SUNYSB-AMS-11-02.

R. Kaufman, H. Lim, and J. Glimm. 2016. Conservative front tracking: the al-
gorithm, the rationale and the APL Bulletin of the Institute of Mathematics,
Academia Sinica New Series 11 (2016), 115-130. Stony Brook University Preprint
SUNYSB-AMS-15-01.

Parviz Moin and Krishnan Mahesh. 1998. DIRECT NUMERICAL SIMU-
LATION: A Tool in Turbulence Research. Annual Review of Fluid Me-
chanics 30, 1 (1998), 539-578. https://doi.org/10.1146/annurev.fluid.30.1.539
arXiv:https://doi.org/10.1146/annurev.fluid.30.1.539

University of Illinois at Urbana-Champaign National Center for Supercomput-
ing Applications. 2019. Blue Waters Blue Waters. (2019). https://bluewaters.ncsa.
illinois.edu

Department of Computer and University of Oregon Advanced Computing Lab-
oratory Information Science. 2020. TAU User Guide. (2020). https://www.cs.

58 ISSN 2153-4136

[17

(18]

[19

Journal of Computational Science Education

uoregon.edu/research/tau/docs/newguide/bk01.html

Extreme Science and Engineering Discovery Environment. 2020. XSEDE. (2020).
http://computationalscience.org/xsede-empower

Sameer S. Shende and Allen D. Malony. 2006. The Tau Parallel Perfor-
mance System. The International Journal of High Performance Computing
Applications 20, 2 (2006), 287-311. https://doi.org/10.1177/1094342006064482
arXiv:https://doi.org/10.1177/1094342006064482

Chi-Wang Shu. 1998. Essentially non-oscillatory and weighted essentially non-
oscillatory schemes for hyperbolic conservation laws. In Advanced Numerical
Approximation of Nonlinear Hyperbolic Equations, A. Quarteroni (Ed.). Lecture
Notes in Mathematics, Vol. 1697. Springer, 325-432.

Chi-Wang Shu. 2003. High-order Finite Difference and Finite Volume WENO
Schemes and Discontinuous Galerkin Methods for CFD. International Journal
of Computational Fluid Dynamics 17, 2 (2003), 107-118. https://doi.org/10.1080/
1061856031000104851 arXiv:https://doi.org/10.1080/1061856031000104851

[21] J. Smagorinsky. 1963. General Circulation Experiments with the Primitive Equa-

[22]
(23]

[24]

tions. Mon. Weather Rev. 91 (1963), 99-165.

TOP500.0rg. 2019. TOP 500 list. (2019).

Shuai Xue. 2015. A Sharp Boundary Model for Electrocardiac Simulations. Ph.D.
Dissertation. State Univ. of New York at Stony Brook.

H. Zhang, T. Kaman, D. She, B. Cheng, J. Glimm, and D. H. Sharp. 2018. V&V
for turbulent mixing in the intermediate asymptotic regime. Pure and Applied
Mathematics Quarterly 14 (2018), 193-222. Los Alamos National Laboratory
preprint LA-UR-18-22134.

Y. Zhou. 2017. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow,
turbulence, and mixing I. Physics Reports 720-722 (2017), 1-136.

Y. Zhou. 2017. Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow,
turbulence, and mixing II. Physics Reports 723-725 (2017), 1-160.

January 2021

https://doi.org/10.1007/978-3-642-32677-6_14
https://doi.org/10.1007/978-3-642-32677-6_14
https://doi.org/10.1146/annurev.fluid.30.1.539
http://arxiv.org/abs/https://doi.org/10.1146/annurev.fluid.30.1.539
https://bluewaters.ncsa.illinois.edu
https://bluewaters.ncsa.illinois.edu
https://www.cs.uoregon.edu/research/tau/docs/newguide/bk01.html
https://www.cs.uoregon.edu/research/tau/docs/newguide/bk01.html
http://computationalscience.org/xsede-empower
https://doi.org/10.1177/1094342006064482
http://arxiv.org/abs/https://doi.org/10.1177/1094342006064482
https://doi.org/10.1080/1061856031000104851
https://doi.org/10.1080/1061856031000104851
http://arxiv.org/abs/https://doi.org/10.1080/1061856031000104851

	Abstract
	1 Introduction
	2 Problem Description
	3 Performance Studies
	3.1 Weak Scaling
	3.2 Strong Scaling
	3.3 Profiling and Performance Analysis

	4 Hybrid Parallel Scheme
	5 Internship Reflection
	6 Conclusions
	Acknowledgments
	References

