
Computational Biology as a Compelling Pedagogical Tool 
in Computer Science Education 

Vijayalakshmi Saravanani 
Rochester Institute of Technology 

Rochester, USA  
vsavse@rit.edu 

Anpalagan Alagan 
Ryerson University 
Toronto, Canada 

alagan@ee.ryerson.ca 

Kshirasagar Naik 
University of Waterloo 

Waterloo, Canada 
snaik@uwaterloo.edu 

 
 

ABSTRACT 
High-performance computing (HPC), and parallel and distributed 
computing (PDC) are widely discussed topics in computer science 
(CS) and computer engineering (CE) education. In the past decade, 
high-performance computing has also contributed significantly to 
addressing complex problems in bio-engineering, healthcare and 
systems biology. Therefore, computational biology applications 
provide several compelling examples that can be potent 
pedagogical tools in teaching high-performance computing. In this 
paper, we introduce a novel course curriculum to teach high-
performance, parallel and distributed computing to senior graduate 
students (PhD) in a hands-on setup through examples drawn from 
a wealth of areas in computational biology. We introduce the 
concepts of parallel programming, algorithms and architectures and 
implementations via carefully chosen examples from 
computational biology. We believe that this course curriculum will 
provide students an engaging and refreshing introduction to this 
well-established domain. 

Keywords 
Pedagogical Tools · High-Performance Computing (HPC) · 
Parallel and Distributed Computing (PDC) · Computational 
Biology. 

1. INTRODUCTION 
Over the last few years, computational biology has revolutionized 
medical research, bringing in novel analysis tools that accelerate 
diagnosis and drug discovery. The enormous amount of 
experimental data generated by the human genome project, 
proteomics, and clinical research has fostered this revolution by 
enabling extremely accurate, albeit complex models for various 
biological phenomena. The analysis of these models requires high 
processing power and time to find accurate solutions, making them 
attractive candidates for parallelization. For example, high-
performance parallel computing has successfully contributed to the 
understanding of protein dynamics [1], ion channels and cellular 
reaction kinetics [2], resulting in several specialized high-

throughput tools such as GROMACS, a parallelized molecular 
simulation toolkit [3]. Further, novel projects such as  
 
Folding@home [4] have enabled the pooling of distributed 
computing resources from around the world to analyze proteins.  
Recently, bioengineers have begun focusing on reverse engineering 
biological systems, by reconstructing gene and metabolic networks 
that describe the interactions between various genes and protein 
from experimental data. This relatively new area of research 
requires novel computational tools due to the vastly heterogeneous 
nature of the data involved [5]. While computer scientists have been 
able to contribute to improving the performance and accuracy of 
biological analysis, the striking applications found in the domain 
can also serve to provide a wealth of motivation for computer 
scientists. In addition, there are several different methods of 
implementing these applications, some more easily parallelized 
than others did (and the best implementation can depend on the 
application). Therefore, they provide an excellent opportunity for 
computer science students to gain insight into issues faced by 
programmers of parallel algorithms. For this reason, we believe that 
biomedical applications can be a powerful tool in teaching parallel 
and distributed computing. In this paper, we propose a novel course 
curriculum that introduces parallel and distributed computing to 
senior graduate students in a hands-on manner through a set of 
carefully chosen computational biology applications. We also 
propose several sample research term projects that can be carried 
out as a direct extension of the learning outcomes of this course. 

1.1 Contribution and Related Work  
The ACM and NSF/TCPP guidelines recommend that parallel 
computing is introduced in CS and CE courses from early stages 
[28][29]. As parallelism and multi-core computing becomes more 
accessible, academic institutions in India are exploring the 
introduction of interdisciplinary concepts in CS and CE education. 
In this context, several courses have been developed to teach the 
parallel computing programming concepts with real-world 
examples [30] [31] [32] [33]. The first author has also introduced a 
course teaching parallelism with hands-on experimental learning 
activities as a member of the Board of Studies (BoS)/Curriculum 
Design Committee at Amrita/VIT University, India in 2005-2009. 
In this course, the author piloted a new course introducing certain 
concepts in HPC and PDC using real-world applications, including 
those in computational biology. Drawing upon this experience, the 
key contribution of this paper is the design of an interdisciplinary 
course curriculum that uses problems in computational biology as 
educational tools in computer science education. Currently, several 
courses designed for biology majors focusing on the fundamentals 
of parallel and distributed computing [6] [7]. Recently, courses 
incorporating high-performance computing for medical 
applications have also been developed [8]. Advanced courses in 
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computational biology have also been targeted towards CS 
graduate students specializing in biological computation [9]. 
However, there has been little attention to the pedagogical value 
that computer scientists can draw from the biological application 
domain. The curriculum proposed in this paper fills this gap, while 
bringing in several advantages. First, it serves to provide students 
with an insight on programming choices regarding how much 
parallelization is required, based on the application. Second, it 
promotes interdisciplinary thinking among computer science 
graduate students and will be particularly valuable to computer 
scientists who wish to make a career transition into the 
computational biology domain. Finally, this course does not require 
expensive parallel computing resources, and can easily be taught 
using FPGAs and commonly available desktop/laptop GPUs. 
Further, the use of biological problems such as protein folding as 
examples to teach parallel computing enables the use of a wealth of 
tools that pool worldwide distributed computing resources such as 
the Folding@home project [4].  

2. HPC IN COMPUTATIONAL BIOLOGY 
While several fields can be used to supply examples for the 
application of HPC and PDC, computational biology provides a 
large variety of problems that are both complex and challenging 
even at a research level. This diversity in the availability of HPC 
and PDC applications in computational biology is the primary 
reason for choosing this domain. In addition, since the course is 
taught to senior graduate students, we hope that the large number 
of open problems in this emerging area will inspire students to 
explore this interdisciplinary area for their research. 
Over the last two decades, there have been significant advances in 
biomedical sciences, computational biology, drug discovery and 
systems biology with the introduction of high-performance 
computing technologies. The tremendous increase in 
computational power of the desktop to high-end computing devices 
such as supercomputers, clusters, and grids due to the end of 
Dennard scaling and Moore’s law has opened up great 
opportunities in the simulation of relevant biological systems for 
applications in bioinformatics and computational biology. In this 
section, we introduce the applications of high-performance systems 
in computational biology. Among them, we introduce relevant 
biomedical problems such as heterogeneous computing, GPU 
architecture and large-scale distributed computing has been 
successfully applied [11]. We also point out the pedagogical value 
associated with these problems for computer science students. We 
will later draw upon these areas to construct specific application 
examples to teach high-performance computing. 

2.1 Big Data Analytics 
Owing to advances in genome projects, proteomics, high-resolution 
imaging and the rapid digitization of patient clinical records, there 
has been an explosion in the volume of biological and medical data 
sets. The optimal use of this data is a major challenge in biomedical 
research, requiring the development of more sophisticated 
architectures and tools. A key question that remains in 
computational biology research is how to extract information, 
construct models and reverse-engineer biological networks from 
the massive amount of vastly heterogeneous data [5]. However, 
dealing with biological networks, while extremely effective, is also 
computationally intensive. Here, the integration of big data tools 
with high-performance and parallel processing techniques have 
been proposed [10]. From a pedagogical perspective, biomedical 
big data applications can be effective in teaching efficient 
parallelization and introducing massively parallel processing 
(MPP) tools. 

2.2 GPU Computing  
The recent explosion in the availability of cheap graphical 
processing units (GPU) from PCs to heterogeneous computing 
platforms where they perform massively parallel have introduced a 
new facet of high-performance computing. This fact has attracted 
many researchers to use GPU computing platforms for wider 
applications, in particular, biomedical engineering. Similarly, bio-
inspired algorithms such as the genetic algorithm and ANT Colony 
optimization [12] [13] [14] have been effectively implemented on 
GPUs which drastically reduce the communication overhead 
between the CPU and GPU. Problems like the analysis of biological 
DNA sequences can be effective in teaching CUDA [15] [16] [17] 
as well as a good source for discussion of the concerns involved in 
GPU programming and parallel programming in general. They can 
also be used to motivate a framework for easily parallelizing 
genetic algorithms. CUDA makes it simple for programmers with 
only a basic understanding of genetic algorithms to code their own 
genetic algorithms to run on NVIDIA GPUs.  

2.3 Distributed Computing  
Distributed computing allows for the utilization of vast amounts of 
computational power to tackle challenges in medical and 
computational biology. In particular, the biggest challenge in 
computational biology is simulating proteins due to their great 
complexity. Analysis of the folding of complex proteins requires 
the fastest CPUs and supercomputers. Recently, idle computing 
resources worldwide have been pooled to carry out this analysis, 
creating a massively distributed computing setup [4]. The key 
challenge in this distributed computing setup is to exploit 
parallelism, where it is often difficult to subdivide jobs and extract 
work from all jobs. Similarly, another challenge is to have efficient 
algorithms to exploit the available computing power. We believe 
that the protein-folding problem can help introduce concepts such 
as large-scale distributed computing architectures and algorithms, 
as well as network security, novel simulation methods and client-
server architectures.  

3. COURSE DESCRIPTION 
In this section, we outline the proposed course curriculum, ”High 
Performance Computing through Computational 
Biology”(HPCCB), where students will be introduced to various 
concepts in high-performance computing in a hands-on manner 
using examples from computational biology. This course will allow 
students to learn high-performance computing through direct 
application as well as carry out design projects from concept to 
realization. First, we provide an outline of the learning objectives, 
teaching methodology and a brief description of the biological 
applications chosen, with particular emphasis on their value in 
illustrating specific HPC concepts. Second, we provide criteria for 
course evaluation, including laboratory work and research term 
projects. Finally, we outline the process of evaluating the success 
of the course via direct feedback from students. 

3.1 Prerequisites  
This course is mainly designed for senior graduate students at the 
PhD level. Postgraduate students pursuing Master degrees may also 
register for this course if they have an individual study plan where 
this particular course is relevant. This course will require basic 
Linux competence and advanced programming skills. Basic 
knowledge and/or exposure to biological, high data-intensive and 
computationally intensive applications will be useful. 
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3.2 Course Development and Learning 
Outcomes 
Figure 1 shows the design and development cycle of the HPCCB 
course. This course can be taught at the senior graduate (PhD) level 
as well as at the Masters level, with slightly different approaches. 
We begin by analyzing the preparedness of the 

 

Figure 1 HPC through computational biology: course design 
cycle class, in terms of prior course work in CS as well as 
exposure to interdisciplinary domains. For graduate classes with 
a strong fundamental background in CS, the course can be 
tailored to be predominantly application-inspired (focusing on 
interdisciplinary research problems) to provide a different flavor 
to traditional concepts. For classes that are composed primarily 
of students at the Masters level, bridging material needs to be 
provided to supplement the application-based teaching of 
concepts with traditional CS problems and examples. Based on 
the above assessment, we define the learning outcomes of the 
course. While specific learning outcomes may vary, a general 
baseline can be as follows:  
Students should be able to: 

– Define different kinds of parallel architectures, like processor 
arrays, shared and distributed memory multiprocessors, 
reconfigurable computing processors and supercomputer 
architecture, 

– Analyze an application for parallelization potential, 
– Design/select algorithms for the high-performance 

computing requirements of the application, 
– Assess the scale of bio-specific tools and libraries for parallel 

and distributed computing, 
– Implement commonly used HPC platforms and parallel 

programming models using appropriate programming 
languages, 

– Measure, assess and analyze the performance of the designed 
HPC solution and optimize HPC codes, and, 

– Perceive the larger role of HPC in computational biology, 
through examples and detailed term research projects. 

Other learning outcomes for application-oriented classes may 
include:  
Students should be able to: 

– Effectively utilize the visualization techniques to present the 
results, 

– Provide experience in technical communication (both oral 
and written), 

– Design prototype for computational biology software or 
bioengineering devices, 

– Evaluate the economic considerations related to HPC-based 
bioengineering designs, such as market analysis and 
budgeting, 

– Apply the regulatory rules important in biomedical devices 
such as FDA regulations etc., and, 

– Value the ethical considerations of biological research, 
devices, and treatments on individuals, industries and society, 
as well as ethical considerations involved in collecting and 
processing big data. 

At this stage, interdisciplinary programs may choose to provide 
an increased weightage to biological applications, while 
traditional CS programs may want to balance out the application 
examples with core CS examples. As a baseline, we recommend 
that at least 60% of the examples chosen in the course be based 
on biological applications, to exploit the full pedagogical value of 
application-based teaching. We also recommend that 
interdisciplinary HPC and CS instructors are trained in the 
pedagogical perspectives as shown in Fig. 2. In particular, 
instructors must be exposed to laboratory-based hands-on 
teaching techniques, which they must employ to guide students 
towards developing parallel thinking by working on specific 
application studies in the laboratory. Further, the instructors must 
obtain exposure to the state-of-the-art computational techniques 
used in biological applications prior to teaching the course. Once 
HPC is introduced to the class through the suggested 
computational biology applications, research areas that can be 
extended into term projects are selected. In the final stage, the 
proposed curriculum is implemented with regular feedback to 
evaluate learning outcomes to further fine-tune the course. 

3.3 Infrastructure  
An important aspect of course development involves assessing 
the computational infrastructure necessary to conduct the course 
laboratory and research term projects. With the widespread 
availability of desktop and laptop GPUs, the infrastructure 
requirements for this course are minimal. The following are the 
minimum infrastructure requirements for the course. 
 

– LAM/MPI, OpenMP, OpenCL, and CUDA 
– 16 dual 450Mhz Pentium II Linux PCs 

We recommend that computers/clusters with higher 
specifications be made available when possible. 
 

4. SAMPLE COURSE OUTLINE AND 
DESCRIPTION 
We now provide a sample course outline that details the HPC 
concepts that can be covered in a one-semester course, along with 
the suggested bioengineering applications to introduce them. 
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Figure 2. Teaching perspectives for HPC and Computational 
Biology course  
 
4.1 Parallel Computation in Biological 
Applications 
This section will comprise of a literature review on the basics of 
high-performance and PDC applications. Here we will introduce 
the real-world applications of HPC, with specific focus on 
computational biology and bioengineering, with surveys and 
extracts from texts like [18]. We will also introduce the basic 
concepts and terminology in HPC and parallel processing. 

Section Summary 
– High-performance computing and biological networks 
– HPC architecture and Parallel processing  

4.2 Parallel Implementation  
In this section, we will introduce the problem of analyzing DNA 
sequences collected from large genome projects. One problem in 
the analysis of biological DNA sequences is the alignment of long 
sequences to identify regions that are matched and mismatched 
[19] [20]. This is accomplished by implementing a dynamic 
programming problem that provides a pair-wise comparison of 
sequences. The major problem when processing a long sequence 
of the whole genome is to meet the requirements of computer 
memory and execution time i.e. memory and CPU intensive 
application. Therefore, parallel implementations of this dynamic 
programming algorithm are necessary, as described in [19]. 
Through this problem, we introduce the concepts of parallel 
architectures and programming, along with data parallelization 
like SIMD and MIMD.  
 
Section Summary 

– Biological sequence analysis algorithm 
– Parallel sequencing analysis methods: SIMD, MIMD 
– Parallel biological tools 
– References: [19], [20]  

4.3 Massively/Embarrassingly Parallel 
Solutions to Computational Biology Problems 
In this section, we use the problem of molecular sequence 
analysis to introduce the concept of hybrid SIMD-MIMD 
architectures. We attempt to provide insight into the process by 

which a programmer must determine the extent and scale of 
parallelization required for an application. We also introduce 
several mapping techniques to reduce the complexity of the 
sequence alignment. Through this example, we also briefly 
introduce the concept of performance evaluation. 

Section Summary 
– Hybrid SIMD-MIMD architecture 
– Levels of parallelization fine and coarse-grained, and 

implementation choices 
– Mapping techniques,  
– Reference paper: [21] 

4.4 Multithreaded/Multi-core Parallel 
Implementation 
In this section, we return to [19] motivate the idea of 
multithreaded parallel programming implementations. We 
further use the problem in [22], where a protein threading 
problem is formulated as a Mixed Integer Program (MIP) to 
describe the advantages of multithreading. In this example, 
students will learn multithreading by decomposing the MIP into 
sub-tasks and implementing them in a multi-core parallelized 
setting. Further, this MIP can also be viewed as the shortest path 
problem. Through this problem, students will gain an in-depth 
insight into parallel multithreading/multi-core parallel 
implementations as well as a flavor for optimization problems 
such as linear programming (LP), MIP and shortest path 
problems.  
 
Section Summary 

– A multithreaded parallel implementation, parallel execution 
model 

– Solving protein threading problem in parallel [22] 
– Reference paper: [19], [22]  

4.5 Performance Improvement using 
Distributed Computing Environments  
In this segment, we introduce performance optimization for 
parallel codes by considering the example of the Clustal W 
algorithm for multiple sequence alignment. This algorithm 
involves a pairwise comparison stage followed by the 
construction of a guided tree, which is then used for progressive 
alignment. Each stage of this algorithm needs to be optimized to 
reduce computational complexity. Through this example, 
students will learn to measure the performance of their parallel 
implementations and optimize the code to improve performance. 
Further, parallel clustering algorithms will also be introduced. 
This problem will also use OpenMP, OpenCL and CUDA 
programming, thereby providing a succinct overview of these 
techniques.  
Section Summary 

– Measure and assess the performance of parallel 
implementations 

– Parallel code optimization, parallel clustering 
– OpenMP, OpenCL, and CUDA programming techniques 
– Reference paper: [23] 
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4.6 Big Data and Parallel Computing using 
Genomics and Computational Biology 
In this section, a large-scale search problem involving big-data 
will be introduced with the help of genomics data sets. Various 
search algorithms like GeneWise and GeneMatcher [24] will be 
introduced, with emphasis on performance analysis for parallel 
big-data implementations.  
Section Summary 

– Genomics introduction 
– Various genome algorithms 
– Performance analysis 
– Reference paper: [24] 

4.7 High-performance algorithms in 
Computational Biology 
The examples suggested in the above segments will be revisited 
to understand SMP and CMP deployments and introduce 
advanced concepts in algorithm complexity analysis. 
Section Summary  

– SMP and CMP machine deployment 
– Complexity algorithm analysis 

4.8 Parallel and Distributed Memory 
Architecture 
In this section, we use the problem of gene linkage analysis to 
introduce the concept of distributed memory architectures. 
Linkage analysis software like Genehunter [25] efficiently 
distribute both computation and memory. Students will learn 
these parallelization approaches, including assessment of 
memory requirements and memory architectures through this 
problem.  
 
Section Summary 

– Memory architecture for parallel bioengineering 
– Memory requirements 
– Parallelization approach and methods 
–  Reference paper: [25]  

5. RESEARCH PROJECT 
This advanced elective course focuses on interdisciplinary 
teaching approach similar to other existing courses. Our unique 
approach is to satisfy the current computing demand and train our 
students in the research and scientific-orientation. In this context, 
we provide the final project based on the research problems with 
the perspectives of computational biology. The references 
provided in each of the above sections can be extended into 
excellent implementation projects in HPC as well as 
computational biology. The design project component is 
intentionally kept open-ended, with no predefined solution. 
Project outcomes can be hardware, software or review-based.  

For example, Fig. 3 represents the basic flow of genetic 
information and how it gets manifested at the population level in 
bacteria. At each stage we need high-throughput computational 
programs to simulate various processes involved. 

 

Figure 3. Basic flow of genetic information in bacteria [34] 

One of the main challenges in implementing biological high-
performance computing is to develop platforms for efficient 
analysis by choosing the right architectures and implementations. 
The implementation project will provide students with hands-on 
experience in applying the learning outcomes of this course to 
real-world computational biology problems. Students may, in 
consultation with the course instructor, choose research projects 
related to various topics in course outline or topics that are of 
interest to their doctoral research, in the case of students at the 
PhD level. Depending on the size of the class, research projects 
may be carried out in teams or individually. A research design 
project typically includes collecting data/information, using tools 
to analyze the data, using various methods and algorithms, and 
quantifying the effectiveness of the proposed solution. Potential 
research topics will be listed during first two weeks of a term, 
considering the preparedness and specific research interests of the 
graduate students taking the course. This research project will 
help students in the following activities: 

– Apply theoretical knowledge to identify, formulate and solve 
real-world biological problems, 

– Design devices, software, or experimental apparatus related 
to biomedical applications or research, 

– Experience the end-to-end design process in real-world 
applications,  

– Test solutions by designing suitable experiments, 
– Plan and manage a research project, including building 

teamwork strategies, 
– Gain experience in working independently or as part of 

interdisciplinary teams, and 
– Effectively communicate and document research progress 

and outcomes. 

6. ASSESSMENT METHODOLOGY 
Students are evaluated on their progress towards the course 
learning outcomes based on the following criteria: 

– Demonstration of a computational biology software, device-
prototype or study as part of a term research project, 

– Submission of assignments and laboratory reports, 
– Submission of a final project report that includes theoretical 

modelling and related observations, 
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– Short oral presentation of the outcomes of the term project, 
and  

– Final examination. 

In Table 1, we summarize the weightage assigned to different 
facets of the course in the evaluation process. 

Table 1. Grading Breakdown 

Item Weightage 

Assignments 10% 

Research Project 40% 

Laboratory Modules 20% 

Final Exam 30% 

 
 

Table 2. Laboratories and Assignments 

Topic No. of 
Hours 

Assignments/Labs 

Parallel architecture and 
system models 

2 Reference [27] 

Introduction to HPC in 
Biological applications 

5 Paper review 

Teaching parallel  
programmingtechniques 
MPI, Pthreads and OpenMP, 
Biotools/libraries 

6 Lab 1-Lab 4 

Analyze data intensive and 
computationally intensive 
applications 

3 Lab 5 

Data visualization 3 Lab 6 

Big Data Infrastructure 4 Hadoop Eco
 system, 
HDFS 

HPC in Big Data 4 Lab 7 

Statistical modeling for data 2 Linear, logical 
regression, 
Bayesian models 

Research project 40 Chosen by student 
in consultation 
with 
instructor 

  
In Table 2, we list various laboratory modules along with the 
number of hours assigned to them. Note that students are expected 
to spend at least 40 hours over the semester working on their chosen 
research project. We also provide the rubrics for assessment of the 
course research project in Appendix A. 

7. REFERENCE MATERIAL 
To accomplish the learning outcomes in Section 3.2, we choose a 
set of examples, drawn primarily from current literature in 
computational biology, and supplemented from traditional 
textbooks like [26], to cover the essentials of parallel and 
distributed high-performance computing. We note that specific 
references pertaining to the chosen biological applications and 
their HPC implementations have been provided under each 
subsection of the course outline in Section 4. This material can be 
replaced or augmented with current literature relevant to the 
research interests of the students taking the course. Considering 
the practical and demonstrative nature of the course, the use of 
online interactive books is worth mentioning. While we do not 
recommend any specific online textbooks, some interactive 
programming books can be used as a good source of practice 
material [27]. With several iterations of this course, we will work 
towards the design of an interactive online book where we will 
introduce parallel and distributed computing through examples 
and exercises from biological applications. Students will then be 
able to access this material both on-campus as well as remotely 
and will be able to work on the exercises and projects designed 
for them online.  

8. FEEDBACK MODEL 
The level of student engagement and satisfaction with the 
learning outcomes of the course can be analyzed by conducting 
two surveys during the term, and one survey after the end of the 
term. The first survey can be conducted in one month of the 
course and the second survey in three months of the course. The 
first two surveys may be replaced by a single survey for 
universities following the quarter system with shorter terms. 
Students can be asked to rate the course on a scale of 0 to10 on a 
variety of topics, including but not limited to, their satisfaction 
with the course instructor, laboratories, assignments, choice of 
research projects, amount of time invested into the course, 
difficulty level of the course and usefulness of the assigned 
textbooks and reference material. In addition, students may also 
be asked to provide suggestions on how the course can be 
improved both in the short term that is, during the same semester, 
and in the long term, that is, in subsequent iterations. This 
feedback will then be used as a pivot to improve the course 
structure to cater the students’ needs in the particular term, as well 
as to refine the course development process as laid out in Fig. 1 
in the subsequent terms.  

9. COURSE EXPERIENCES AND 
EVALUATION 
We now detail the experiences and evaluation results of the first 
author in introducing a similar curriculum, and describe how 
these experiences have contributed to the shaping of the 
curriculum presented in this paper. The first author introduced an 
interdisciplinary course on HPC and PDC when she was a faculty 
and member of the Board of Studies (BoS)/curriculum design 
committee at Amrita/VIT, India in 2005-2009. In this course, 
senior undergraduate engineering students in their final year were 
introduced to HPC and PDC concepts through real-world 
examples drawn from multiple domains, including computational 
biology. As the course involves learning HPC and PDC concepts 
directly via implementation of problems at the research-level, the 
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feedback received indicated that this course was too involved at 
the undergraduate level. Therefore, the author reintroduced this 
curriculum in 2010 as an advanced elective for graduate students 
(PhD) who have taken prior courses on the foundations of HPC, 
and could draw value from the interdisciplinary flavor of this 
course. This course, comprising of 9 students, was well-received 
with an average rating of 95%. Several students attending the 
course also chose to pursue interdisciplinary HPC-based term and 
thesis projects supervised by the first author. Initially, the author 
faced various difficulties such as getting proper training in HPC, 
lack of proper textbooks and lack of HPC tools to support the 
computational needs at the university. However, now the author’s 
institute has received the funding from Intel to support the 
infrastructure needs and the management streamlined the other 
issues as well. We also taught the project based proposed course, 
which is mentioned in Section.5, was well received by Ph.D. 
students with an average rating of 90%.  

10. CONCLUSION 
In this paper, we present a novel course designed to teach high 
performance parallel and distributed computing to graduate 
students directly via hands-on applications drawn from 
computational biology. While HPC successfully contributed to 
solving several biological problems, we believe that computer 
scientists can conversely draw enormous pedagogical value from 
biological examples and problems. Motivated by this, we 
presented a course curriculum where HPC is introduced almost 
entirely via hands-on application examples. We first summarize 
the main trends in HPC applied to biomedical engineering and 
computational biology. We demonstrate several successful 
stories and application fields, in which relevant biological 
problems have been solved (or are being targeted) using the 
computational power available in current processors. We then 
provide a detailed description of the course and suggested 
examples to be used in the course. We would also like to point 
out some potential implementation challenges in terms of the high 
learning curve in emerging programming models. We believe that 
this course can inspire students to undertake investigations into 
improving the performance on HPC systems motivated by 
computational biology problems. This will be of high technical 
interest in the computer science community as biological 
applications have novel computational patterns that can lead the 
next generation of high-performance heterogeneous computing 
systems. 
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Appendix A: Rubric for Research Project Evaluation 
Criteria Poor Average Excellent 

i Corresponding/First Author: Vijayalakshmi Saravanan, Rochester Institute 
of Technology, NY. Email:vsavse@rit.edu 

Abstract Not precise or 
succinct, one 
or more 
elements 
missing 

Contains the 
topic under 
investigation, 
but does not 
clearly 
summarize 
the 
conclusion 
and/or 
methodology 
of 
investigation. 

Clearly states 
the topic of 
investigation, 
how the 
investigation 
was undertaken 
and the 
conclusions. 

Introduction 
and 
relevance of 
application, 
device, 
prototype or 
study 

Little or no 
description, 
little or no 
attempt to 
explain the 
significance 
of the 
application, 
device, 
prototype or 
study 

Some 
description 
of device, 
some attempt 
to explain the 
significance 
of the 
application, 
device, 
prototype or 
study 

application, 
device, 
prototype or 
study is clearly 
described, 
clearly explains 
the significance 
and application 
of developed 
application, 
device, 
prototype or 
study, places 
the problem in 
the context of 
relevant 
literature 

Blue prints
 and 
Block 
Diagrams 

Unreasonably 
sized and 
spaced, either 
incorrectly 
captioned or 
not captioned 
at all 

Most are 
appropriately 
sized and 
spaced, most 
are properly 
captioned 

All block 
diagrams have 
a specific 
purpose, all 
appropriately 
sized and 
spaced, all 
properly 
captioned 

Proced
ure  

Method not 
described 
clearly, omits 
crucial 
details 

Method 
described 
fairly clearly, 
some 
important 
details 
omitted 

Provides a 
detailed and 
comprehensive 
description of 
the 
implementation 

Demonstrati
on 

Unclear
 demon- 
stration/quest
ions not 
answered 

Better 
description/s
ome 
questions 
answered 

Excellent and 
clear 
demonstration/
most questions 
answered 
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