
Computational Biology as a Compelling Pedagogical Tool
in Computer Science Education

Vijayalakshmi Saravanani
Rochester Institute of Technology

Rochester, USA
vsavse@rit.edu

Anpalagan Alagan
Ryerson University
Toronto, Canada

alagan@ee.ryerson.ca

Kshirasagar Naik
University of Waterloo

Waterloo, Canada
snaik@uwaterloo.edu

ABSTRACT
High-performance computing (HPC), and parallel and distributed
computing (PDC) are widely discussed topics in computer science
(CS) and computer engineering (CE) education. In the past decade,
high-performance computing has also contributed significantly to
addressing complex problems in bio-engineering, healthcare and
systems biology. Therefore, computational biology applications
provide several compelling examples that can be potent
pedagogical tools in teaching high-performance computing. In this
paper, we introduce a novel course curriculum to teach high-
performance, parallel and distributed computing to senior graduate
students (PhD) in a hands-on setup through examples drawn from
a wealth of areas in computational biology. We introduce the
concepts of parallel programming, algorithms and architectures and
implementations via carefully chosen examples from
computational biology. We believe that this course curriculum will
provide students an engaging and refreshing introduction to this
well-established domain.

Keywords
Pedagogical Tools · High-Performance Computing (HPC) ·
Parallel and Distributed Computing (PDC) · Computational
Biology.

1. INTRODUCTION
Over the last few years, computational biology has revolutionized
medical research, bringing in novel analysis tools that accelerate
diagnosis and drug discovery. The enormous amount of
experimental data generated by the human genome project,
proteomics, and clinical research has fostered this revolution by
enabling extremely accurate, albeit complex models for various
biological phenomena. The analysis of these models requires high
processing power and time to find accurate solutions, making them
attractive candidates for parallelization. For example, high-
performance parallel computing has successfully contributed to the
understanding of protein dynamics [1], ion channels and cellular
reaction kinetics [2], resulting in several specialized high-

throughput tools such as GROMACS, a parallelized molecular
simulation toolkit [3]. Further, novel projects such as

Folding@home [4] have enabled the pooling of distributed
computing resources from around the world to analyze proteins.
Recently, bioengineers have begun focusing on reverse engineering
biological systems, by reconstructing gene and metabolic networks
that describe the interactions between various genes and protein
from experimental data. This relatively new area of research
requires novel computational tools due to the vastly heterogeneous
nature of the data involved [5]. While computer scientists have been
able to contribute to improving the performance and accuracy of
biological analysis, the striking applications found in the domain
can also serve to provide a wealth of motivation for computer
scientists. In addition, there are several different methods of
implementing these applications, some more easily parallelized
than others did (and the best implementation can depend on the
application). Therefore, they provide an excellent opportunity for
computer science students to gain insight into issues faced by
programmers of parallel algorithms. For this reason, we believe that
biomedical applications can be a powerful tool in teaching parallel
and distributed computing. In this paper, we propose a novel course
curriculum that introduces parallel and distributed computing to
senior graduate students in a hands-on manner through a set of
carefully chosen computational biology applications. We also
propose several sample research term projects that can be carried
out as a direct extension of the learning outcomes of this course.

1.1 Contribution and Related Work
The ACM and NSF/TCPP guidelines recommend that parallel
computing is introduced in CS and CE courses from early stages
[28][29]. As parallelism and multi-core computing becomes more
accessible, academic institutions in India are exploring the
introduction of interdisciplinary concepts in CS and CE education.
In this context, several courses have been developed to teach the
parallel computing programming concepts with real-world
examples [30] [31] [32] [33]. The first author has also introduced a
course teaching parallelism with hands-on experimental learning
activities as a member of the Board of Studies (BoS)/Curriculum
Design Committee at Amrita/VIT University, India in 2005-2009.
In this course, the author piloted a new course introducing certain
concepts in HPC and PDC using real-world applications, including
those in computational biology. Drawing upon this experience, the
key contribution of this paper is the design of an interdisciplinary
course curriculum that uses problems in computational biology as
educational tools in computer science education. Currently, several
courses designed for biology majors focusing on the fundamentals
of parallel and distributed computing [6] [7]. Recently, courses
incorporating high-performance computing for medical
applications have also been developed [8]. Advanced courses in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Copyright ©JOCSE, a
supported publication of the Shodor Education Foundation Inc.

© 2020 Journal of Computational Science Education
DOI: https://doi.org/10.22369/issn.2153-4136/11/1/8

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 45

computational biology have also been targeted towards CS
graduate students specializing in biological computation [9].
However, there has been little attention to the pedagogical value
that computer scientists can draw from the biological application
domain. The curriculum proposed in this paper fills this gap, while
bringing in several advantages. First, it serves to provide students
with an insight on programming choices regarding how much
parallelization is required, based on the application. Second, it
promotes interdisciplinary thinking among computer science
graduate students and will be particularly valuable to computer
scientists who wish to make a career transition into the
computational biology domain. Finally, this course does not require
expensive parallel computing resources, and can easily be taught
using FPGAs and commonly available desktop/laptop GPUs.
Further, the use of biological problems such as protein folding as
examples to teach parallel computing enables the use of a wealth of
tools that pool worldwide distributed computing resources such as
the Folding@home project [4].

2. HPC IN COMPUTATIONAL BIOLOGY
While several fields can be used to supply examples for the
application of HPC and PDC, computational biology provides a
large variety of problems that are both complex and challenging
even at a research level. This diversity in the availability of HPC
and PDC applications in computational biology is the primary
reason for choosing this domain. In addition, since the course is
taught to senior graduate students, we hope that the large number
of open problems in this emerging area will inspire students to
explore this interdisciplinary area for their research.
Over the last two decades, there have been significant advances in
biomedical sciences, computational biology, drug discovery and
systems biology with the introduction of high-performance
computing technologies. The tremendous increase in
computational power of the desktop to high-end computing devices
such as supercomputers, clusters, and grids due to the end of
Dennard scaling and Moore’s law has opened up great
opportunities in the simulation of relevant biological systems for
applications in bioinformatics and computational biology. In this
section, we introduce the applications of high-performance systems
in computational biology. Among them, we introduce relevant
biomedical problems such as heterogeneous computing, GPU
architecture and large-scale distributed computing has been
successfully applied [11]. We also point out the pedagogical value
associated with these problems for computer science students. We
will later draw upon these areas to construct specific application
examples to teach high-performance computing.

2.1 Big Data Analytics
Owing to advances in genome projects, proteomics, high-resolution
imaging and the rapid digitization of patient clinical records, there
has been an explosion in the volume of biological and medical data
sets. The optimal use of this data is a major challenge in biomedical
research, requiring the development of more sophisticated
architectures and tools. A key question that remains in
computational biology research is how to extract information,
construct models and reverse-engineer biological networks from
the massive amount of vastly heterogeneous data [5]. However,
dealing with biological networks, while extremely effective, is also
computationally intensive. Here, the integration of big data tools
with high-performance and parallel processing techniques have
been proposed [10]. From a pedagogical perspective, biomedical
big data applications can be effective in teaching efficient
parallelization and introducing massively parallel processing
(MPP) tools.

2.2 GPU Computing
The recent explosion in the availability of cheap graphical
processing units (GPU) from PCs to heterogeneous computing
platforms where they perform massively parallel have introduced a
new facet of high-performance computing. This fact has attracted
many researchers to use GPU computing platforms for wider
applications, in particular, biomedical engineering. Similarly, bio-
inspired algorithms such as the genetic algorithm and ANT Colony
optimization [12] [13] [14] have been effectively implemented on
GPUs which drastically reduce the communication overhead
between the CPU and GPU. Problems like the analysis of biological
DNA sequences can be effective in teaching CUDA [15] [16] [17]
as well as a good source for discussion of the concerns involved in
GPU programming and parallel programming in general. They can
also be used to motivate a framework for easily parallelizing
genetic algorithms. CUDA makes it simple for programmers with
only a basic understanding of genetic algorithms to code their own
genetic algorithms to run on NVIDIA GPUs.

2.3 Distributed Computing
Distributed computing allows for the utilization of vast amounts of
computational power to tackle challenges in medical and
computational biology. In particular, the biggest challenge in
computational biology is simulating proteins due to their great
complexity. Analysis of the folding of complex proteins requires
the fastest CPUs and supercomputers. Recently, idle computing
resources worldwide have been pooled to carry out this analysis,
creating a massively distributed computing setup [4]. The key
challenge in this distributed computing setup is to exploit
parallelism, where it is often difficult to subdivide jobs and extract
work from all jobs. Similarly, another challenge is to have efficient
algorithms to exploit the available computing power. We believe
that the protein-folding problem can help introduce concepts such
as large-scale distributed computing architectures and algorithms,
as well as network security, novel simulation methods and client-
server architectures.

3. COURSE DESCRIPTION
In this section, we outline the proposed course curriculum, ”High
Performance Computing through Computational
Biology”(HPCCB), where students will be introduced to various
concepts in high-performance computing in a hands-on manner
using examples from computational biology. This course will allow
students to learn high-performance computing through direct
application as well as carry out design projects from concept to
realization. First, we provide an outline of the learning objectives,
teaching methodology and a brief description of the biological
applications chosen, with particular emphasis on their value in
illustrating specific HPC concepts. Second, we provide criteria for
course evaluation, including laboratory work and research term
projects. Finally, we outline the process of evaluating the success
of the course via direct feedback from students.

3.1 Prerequisites
This course is mainly designed for senior graduate students at the
PhD level. Postgraduate students pursuing Master degrees may also
register for this course if they have an individual study plan where
this particular course is relevant. This course will require basic
Linux competence and advanced programming skills. Basic
knowledge and/or exposure to biological, high data-intensive and
computationally intensive applications will be useful.

Volume 11, Issue 1 Journal of Computational Science Education

46 ISSN 2153-4136 January 2020

3.2 Course Development and Learning
Outcomes
Figure 1 shows the design and development cycle of the HPCCB
course. This course can be taught at the senior graduate (PhD) level
as well as at the Masters level, with slightly different approaches.
We begin by analyzing the preparedness of the

Figure 1 HPC through computational biology: course design
cycle class, in terms of prior course work in CS as well as
exposure to interdisciplinary domains. For graduate classes with
a strong fundamental background in CS, the course can be
tailored to be predominantly application-inspired (focusing on
interdisciplinary research problems) to provide a different flavor
to traditional concepts. For classes that are composed primarily
of students at the Masters level, bridging material needs to be
provided to supplement the application-based teaching of
concepts with traditional CS problems and examples. Based on
the above assessment, we define the learning outcomes of the
course. While specific learning outcomes may vary, a general
baseline can be as follows:
Students should be able to:

– Define different kinds of parallel architectures, like processor
arrays, shared and distributed memory multiprocessors,
reconfigurable computing processors and supercomputer
architecture,

– Analyze an application for parallelization potential,
– Design/select algorithms for the high-performance

computing requirements of the application,
– Assess the scale of bio-specific tools and libraries for parallel

and distributed computing,
– Implement commonly used HPC platforms and parallel

programming models using appropriate programming
languages,

– Measure, assess and analyze the performance of the designed
HPC solution and optimize HPC codes, and,

– Perceive the larger role of HPC in computational biology,
through examples and detailed term research projects.

Other learning outcomes for application-oriented classes may
include:
Students should be able to:

– Effectively utilize the visualization techniques to present the
results,

– Provide experience in technical communication (both oral
and written),

– Design prototype for computational biology software or
bioengineering devices,

– Evaluate the economic considerations related to HPC-based
bioengineering designs, such as market analysis and
budgeting,

– Apply the regulatory rules important in biomedical devices
such as FDA regulations etc., and,

– Value the ethical considerations of biological research,
devices, and treatments on individuals, industries and society,
as well as ethical considerations involved in collecting and
processing big data.

At this stage, interdisciplinary programs may choose to provide
an increased weightage to biological applications, while
traditional CS programs may want to balance out the application
examples with core CS examples. As a baseline, we recommend
that at least 60% of the examples chosen in the course be based
on biological applications, to exploit the full pedagogical value of
application-based teaching. We also recommend that
interdisciplinary HPC and CS instructors are trained in the
pedagogical perspectives as shown in Fig. 2. In particular,
instructors must be exposed to laboratory-based hands-on
teaching techniques, which they must employ to guide students
towards developing parallel thinking by working on specific
application studies in the laboratory. Further, the instructors must
obtain exposure to the state-of-the-art computational techniques
used in biological applications prior to teaching the course. Once
HPC is introduced to the class through the suggested
computational biology applications, research areas that can be
extended into term projects are selected. In the final stage, the
proposed curriculum is implemented with regular feedback to
evaluate learning outcomes to further fine-tune the course.

3.3 Infrastructure
An important aspect of course development involves assessing
the computational infrastructure necessary to conduct the course
laboratory and research term projects. With the widespread
availability of desktop and laptop GPUs, the infrastructure
requirements for this course are minimal. The following are the
minimum infrastructure requirements for the course.

– LAM/MPI, OpenMP, OpenCL, and CUDA
– 16 dual 450Mhz Pentium II Linux PCs

We recommend that computers/clusters with higher
specifications be made available when possible.

4. SAMPLE COURSE OUTLINE AND
DESCRIPTION
We now provide a sample course outline that details the HPC
concepts that can be covered in a one-semester course, along with
the suggested bioengineering applications to introduce them.

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 47

Figure 2. Teaching perspectives for HPC and Computational
Biology course

4.1 Parallel Computation in Biological
Applications
This section will comprise of a literature review on the basics of
high-performance and PDC applications. Here we will introduce
the real-world applications of HPC, with specific focus on
computational biology and bioengineering, with surveys and
extracts from texts like [18]. We will also introduce the basic
concepts and terminology in HPC and parallel processing.

Section Summary
– High-performance computing and biological networks
– HPC architecture and Parallel processing

4.2 Parallel Implementation
In this section, we will introduce the problem of analyzing DNA
sequences collected from large genome projects. One problem in
the analysis of biological DNA sequences is the alignment of long
sequences to identify regions that are matched and mismatched
[19] [20]. This is accomplished by implementing a dynamic
programming problem that provides a pair-wise comparison of
sequences. The major problem when processing a long sequence
of the whole genome is to meet the requirements of computer
memory and execution time i.e. memory and CPU intensive
application. Therefore, parallel implementations of this dynamic
programming algorithm are necessary, as described in [19].
Through this problem, we introduce the concepts of parallel
architectures and programming, along with data parallelization
like SIMD and MIMD.

Section Summary

– Biological sequence analysis algorithm
– Parallel sequencing analysis methods: SIMD, MIMD
– Parallel biological tools
– References: [19], [20]

4.3 Massively/Embarrassingly Parallel
Solutions to Computational Biology Problems
In this section, we use the problem of molecular sequence
analysis to introduce the concept of hybrid SIMD-MIMD
architectures. We attempt to provide insight into the process by

which a programmer must determine the extent and scale of
parallelization required for an application. We also introduce
several mapping techniques to reduce the complexity of the
sequence alignment. Through this example, we also briefly
introduce the concept of performance evaluation.

Section Summary
– Hybrid SIMD-MIMD architecture
– Levels of parallelization fine and coarse-grained, and

implementation choices
– Mapping techniques,
– Reference paper: [21]

4.4 Multithreaded/Multi-core Parallel
Implementation
In this section, we return to [19] motivate the idea of
multithreaded parallel programming implementations. We
further use the problem in [22], where a protein threading
problem is formulated as a Mixed Integer Program (MIP) to
describe the advantages of multithreading. In this example,
students will learn multithreading by decomposing the MIP into
sub-tasks and implementing them in a multi-core parallelized
setting. Further, this MIP can also be viewed as the shortest path
problem. Through this problem, students will gain an in-depth
insight into parallel multithreading/multi-core parallel
implementations as well as a flavor for optimization problems
such as linear programming (LP), MIP and shortest path
problems.

Section Summary

– A multithreaded parallel implementation, parallel execution
model

– Solving protein threading problem in parallel [22]
– Reference paper: [19], [22]

4.5 Performance Improvement using
Distributed Computing Environments
In this segment, we introduce performance optimization for
parallel codes by considering the example of the Clustal W
algorithm for multiple sequence alignment. This algorithm
involves a pairwise comparison stage followed by the
construction of a guided tree, which is then used for progressive
alignment. Each stage of this algorithm needs to be optimized to
reduce computational complexity. Through this example,
students will learn to measure the performance of their parallel
implementations and optimize the code to improve performance.
Further, parallel clustering algorithms will also be introduced.
This problem will also use OpenMP, OpenCL and CUDA
programming, thereby providing a succinct overview of these
techniques.
Section Summary

– Measure and assess the performance of parallel
implementations

– Parallel code optimization, parallel clustering
– OpenMP, OpenCL, and CUDA programming techniques
– Reference paper: [23]

Volume 11, Issue 1 Journal of Computational Science Education

48 ISSN 2153-4136 January 2020

4.6 Big Data and Parallel Computing using
Genomics and Computational Biology
In this section, a large-scale search problem involving big-data
will be introduced with the help of genomics data sets. Various
search algorithms like GeneWise and GeneMatcher [24] will be
introduced, with emphasis on performance analysis for parallel
big-data implementations.
Section Summary

– Genomics introduction
– Various genome algorithms
– Performance analysis
– Reference paper: [24]

4.7 High-performance algorithms in
Computational Biology
The examples suggested in the above segments will be revisited
to understand SMP and CMP deployments and introduce
advanced concepts in algorithm complexity analysis.
Section Summary

– SMP and CMP machine deployment
– Complexity algorithm analysis

4.8 Parallel and Distributed Memory
Architecture
In this section, we use the problem of gene linkage analysis to
introduce the concept of distributed memory architectures.
Linkage analysis software like Genehunter [25] efficiently
distribute both computation and memory. Students will learn
these parallelization approaches, including assessment of
memory requirements and memory architectures through this
problem.

Section Summary

– Memory architecture for parallel bioengineering
– Memory requirements
– Parallelization approach and methods
– Reference paper: [25]

5. RESEARCH PROJECT
This advanced elective course focuses on interdisciplinary
teaching approach similar to other existing courses. Our unique
approach is to satisfy the current computing demand and train our
students in the research and scientific-orientation. In this context,
we provide the final project based on the research problems with
the perspectives of computational biology. The references
provided in each of the above sections can be extended into
excellent implementation projects in HPC as well as
computational biology. The design project component is
intentionally kept open-ended, with no predefined solution.
Project outcomes can be hardware, software or review-based.

For example, Fig. 3 represents the basic flow of genetic
information and how it gets manifested at the population level in
bacteria. At each stage we need high-throughput computational
programs to simulate various processes involved.

Figure 3. Basic flow of genetic information in bacteria [34]

One of the main challenges in implementing biological high-
performance computing is to develop platforms for efficient
analysis by choosing the right architectures and implementations.
The implementation project will provide students with hands-on
experience in applying the learning outcomes of this course to
real-world computational biology problems. Students may, in
consultation with the course instructor, choose research projects
related to various topics in course outline or topics that are of
interest to their doctoral research, in the case of students at the
PhD level. Depending on the size of the class, research projects
may be carried out in teams or individually. A research design
project typically includes collecting data/information, using tools
to analyze the data, using various methods and algorithms, and
quantifying the effectiveness of the proposed solution. Potential
research topics will be listed during first two weeks of a term,
considering the preparedness and specific research interests of the
graduate students taking the course. This research project will
help students in the following activities:

– Apply theoretical knowledge to identify, formulate and solve
real-world biological problems,

– Design devices, software, or experimental apparatus related
to biomedical applications or research,

– Experience the end-to-end design process in real-world
applications,

– Test solutions by designing suitable experiments,
– Plan and manage a research project, including building

teamwork strategies,
– Gain experience in working independently or as part of

interdisciplinary teams, and
– Effectively communicate and document research progress

and outcomes.

6. ASSESSMENT METHODOLOGY
Students are evaluated on their progress towards the course
learning outcomes based on the following criteria:

– Demonstration of a computational biology software, device-
prototype or study as part of a term research project,

– Submission of assignments and laboratory reports,
– Submission of a final project report that includes theoretical

modelling and related observations,

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 49

– Short oral presentation of the outcomes of the term project,
and

– Final examination.

In Table 1, we summarize the weightage assigned to different
facets of the course in the evaluation process.

Table 1. Grading Breakdown

Item Weightage

Assignments 10%

Research Project 40%

Laboratory Modules 20%

Final Exam 30%

Table 2. Laboratories and Assignments

Topic No. of
Hours

Assignments/Labs

Parallel architecture and
system models

2 Reference [27]

Introduction to HPC in
Biological applications

5 Paper review

Teaching parallel
programmingtechniques
MPI, Pthreads and OpenMP,
Biotools/libraries

6 Lab 1-Lab 4

Analyze data intensive and
computationally intensive
applications

3 Lab 5

Data visualization 3 Lab 6

Big Data Infrastructure 4 Hadoop Eco
 system,
HDFS

HPC in Big Data 4 Lab 7

Statistical modeling for data 2 Linear, logical
regression,
Bayesian models

Research project 40 Chosen by student
in consultation
with
instructor

In Table 2, we list various laboratory modules along with the
number of hours assigned to them. Note that students are expected
to spend at least 40 hours over the semester working on their chosen
research project. We also provide the rubrics for assessment of the
course research project in Appendix A.

7. REFERENCE MATERIAL
To accomplish the learning outcomes in Section 3.2, we choose a
set of examples, drawn primarily from current literature in
computational biology, and supplemented from traditional
textbooks like [26], to cover the essentials of parallel and
distributed high-performance computing. We note that specific
references pertaining to the chosen biological applications and
their HPC implementations have been provided under each
subsection of the course outline in Section 4. This material can be
replaced or augmented with current literature relevant to the
research interests of the students taking the course. Considering
the practical and demonstrative nature of the course, the use of
online interactive books is worth mentioning. While we do not
recommend any specific online textbooks, some interactive
programming books can be used as a good source of practice
material [27]. With several iterations of this course, we will work
towards the design of an interactive online book where we will
introduce parallel and distributed computing through examples
and exercises from biological applications. Students will then be
able to access this material both on-campus as well as remotely
and will be able to work on the exercises and projects designed
for them online.

8. FEEDBACK MODEL
The level of student engagement and satisfaction with the
learning outcomes of the course can be analyzed by conducting
two surveys during the term, and one survey after the end of the
term. The first survey can be conducted in one month of the
course and the second survey in three months of the course. The
first two surveys may be replaced by a single survey for
universities following the quarter system with shorter terms.
Students can be asked to rate the course on a scale of 0 to10 on a
variety of topics, including but not limited to, their satisfaction
with the course instructor, laboratories, assignments, choice of
research projects, amount of time invested into the course,
difficulty level of the course and usefulness of the assigned
textbooks and reference material. In addition, students may also
be asked to provide suggestions on how the course can be
improved both in the short term that is, during the same semester,
and in the long term, that is, in subsequent iterations. This
feedback will then be used as a pivot to improve the course
structure to cater the students’ needs in the particular term, as well
as to refine the course development process as laid out in Fig. 1
in the subsequent terms.

9. COURSE EXPERIENCES AND
EVALUATION
We now detail the experiences and evaluation results of the first
author in introducing a similar curriculum, and describe how
these experiences have contributed to the shaping of the
curriculum presented in this paper. The first author introduced an
interdisciplinary course on HPC and PDC when she was a faculty
and member of the Board of Studies (BoS)/curriculum design
committee at Amrita/VIT, India in 2005-2009. In this course,
senior undergraduate engineering students in their final year were
introduced to HPC and PDC concepts through real-world
examples drawn from multiple domains, including computational
biology. As the course involves learning HPC and PDC concepts
directly via implementation of problems at the research-level, the

Volume 11, Issue 1 Journal of Computational Science Education

50 ISSN 2153-4136 January 2020

feedback received indicated that this course was too involved at
the undergraduate level. Therefore, the author reintroduced this
curriculum in 2010 as an advanced elective for graduate students
(PhD) who have taken prior courses on the foundations of HPC,
and could draw value from the interdisciplinary flavor of this
course. This course, comprising of 9 students, was well-received
with an average rating of 95%. Several students attending the
course also chose to pursue interdisciplinary HPC-based term and
thesis projects supervised by the first author. Initially, the author
faced various difficulties such as getting proper training in HPC,
lack of proper textbooks and lack of HPC tools to support the
computational needs at the university. However, now the author’s
institute has received the funding from Intel to support the
infrastructure needs and the management streamlined the other
issues as well. We also taught the project based proposed course,
which is mentioned in Section.5, was well received by Ph.D.
students with an average rating of 90%.

10. CONCLUSION
In this paper, we present a novel course designed to teach high
performance parallel and distributed computing to graduate
students directly via hands-on applications drawn from
computational biology. While HPC successfully contributed to
solving several biological problems, we believe that computer
scientists can conversely draw enormous pedagogical value from
biological examples and problems. Motivated by this, we
presented a course curriculum where HPC is introduced almost
entirely via hands-on application examples. We first summarize
the main trends in HPC applied to biomedical engineering and
computational biology. We demonstrate several successful
stories and application fields, in which relevant biological
problems have been solved (or are being targeted) using the
computational power available in current processors. We then
provide a detailed description of the course and suggested
examples to be used in the course. We would also like to point
out some potential implementation challenges in terms of the high
learning curve in emerging programming models. We believe that
this course can inspire students to undertake investigations into
improving the performance on HPC systems motivated by
computational biology problems. This will be of high technical
interest in the computer science community as biological
applications have novel computational patterns that can lead the
next generation of high-performance heterogeneous computing
systems.

11. References
[1] Sanbonmatsu, K. Y., and C-S. Tung. High performance

computing in biology: multimillionatom simulations of
nanoscale systems. Journal of structural biology 157.3
(2007): 470-480.

[2] Stevens, R. (2002, September). Biology and High-
Performance Computing. In UK-HPCUsers Meeting.
http://www.cels.anl.gov/about/people/files/UK-BIO-HPC-
final1.pdf

[3] Pronk, Sander, et al. GROMACS 4.5: a high-throughput and
highly parallel open sourcemolecular simulation toolkit.
Bioinformatics (2013).

[4] Pande, Vijay S., et al. (2003). Atomistic protein folding
simulations on the submillisecondtime scale using
worldwide distributed computing. Biopolymers 68.1 91-
109.

[5] Lee, W.P., Tzou, W.S. (2009). Computational methods for
discovering gene networks from expression data. Briefings
in Bioinformatics 10 (4):408-423.

[6] http://ocw.mit.edu/courses/electrical-engineering-and-
computer-science/6-047computational-biology-fall-2015/.

[7] https://biology.ufl.edu/files/ZOO4926-6927-CompBio-
Basic-Res-Comp-Skills.pdf.

[8] Fundamentals of High-Performance Computing for Public
Health. Columbia University School of Public Health.
https://www.mailman.columbia.edu/public-
healthnow/news/big-data-academy-public-health-
supercomputing.

[9] CMSC 838T: Advanced Topics in Programming Languages
- Systems Software for High-performance Computing,
Emphasis on Bioinformatics Applications. University of
Maryland.
http://www.cs.umd.edu/class/spring2003/cmsc838t/.

[10] Marx, Vivien. Biology: The big challenges of big data.
Nature 498.7453 (2013): 255-260.

[11] Garland, M., Kirk, D.B.: Understanding throughput-oriented
Architectures. Communications of the ACM 53, 5866
(2010)

[12] Wong, M. L., Wong, T. T., and Fok, K. L. (2005,
September). Parallel evolutionary algorithms on graphics
processing unit. In 2005 IEEE Congress on Evolutionary
Computation (Vol. 3, pp. 2286-2293). IEEE.

[13] Manfrin, M., Birattari, M., Stutzle, T., Dorigo, M.: Parallel
ant colony optimization forthe traveling salesman problem.
In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli,
A., Poli, R., Stutzle, T. (eds.) ANTS 2006. LNCS, vol. 4150,
pp. 224234. Springer, Heidelberg (2006)

[14] Cecilia, J.M., Garcia, J.M., Ujaldon, M., Nisbet, A., Amos,
M.: Parallelization strategiesfor ant colony optimization on
GPUs. In: NIDISC 2011: 14th International Workshop on
Nature Inspired Distributed Computing. Proc. 25th
International Parallel and Distributed Processing
Symposium (IPDPS 2011), Anchorage, Alaska, USA (May
2011)

[15] Wong, M. L., and Wong, T. T. (2009). Implementation of
parallel genetic algorithms ongraphics processing units. In
Intelligent and Evolutionary Systems (pp. 197-216).
Springer Berlin Heidelberg.

[16] Pospichal, P., Jaros, J., and Schwarz, J. (2010, April).
Parallel genetic algorithm on thecuda architecture. In
European Conference on the Applications of Evolutionary
Computation (pp. 442-451). Springer Berlin Heidelberg.

[17] Garland, M., Le Grand, S., Nickolls, J., Anderson, J.,
Hardwick, J., Morton, S., Phillips, E., Zhang, Y., Volkov,
V.: Parallel Computing Experiences with CUDA. IEEE
Micro 28, 1327 (2008)

[18] Aluru, Srinivas, ed. Handbook of computational molecular
biology. CRC Press, 2005.

[19] Martins, Wellington S., et al. ”Whole genome alignment
using a multithreaded parallel implementation.” Symposium
on Computer Architecture and High Performance
Computing. 2001.

[20] Yap, Tieng K., Ophir Frieder, and Robert L. Martino.
”Parallel computation in biologicalsequence analysis.”
IEEE Transactions on Parallel and Distributed Systems 9.3
(1998): 283-294.

[21] Schmidt, Bertil, Heiko Schrder, and Manfred Schimmler.
”Massively Parallel Solutions forMolecular Sequence
Analysis.” ipdps. 2002.

[22] Yanev, Nicola, and Rumen Andonov. ”Solving the protein
threading problem in parallel.”Parallel and Distributed

Journal of Computational Science Education Volume 11, Issue 1

January 2020 ISSN 2153-4136 51

Processing Symposium, 2003. Proceedings. International.
IEEE, 2003.

[23] Mikhailov, Dmitri, Haruna Cofer, and Roberto Gomperts.
”Performance optimization ofclustal w: Parallel clustal w, ht
clustal, and multiclustal.” SGI ChemBio (2001).

[24] Mo, Yi, Moira Regelson, and Mike Sievers. ”A Study of
GeneWise with the DrosophilaAdh Region.” 13th Annual
Genome Sequencing and Analysis Conference. 2001.

[25] Conant, Gavin C., et al. ”Parallel genehunter:
Implementation of a linkage analysis packagefor distributed-
memory architectures.” Journal of Parallel and Distributed
Computing 63.7 (2003): 674-682.

[26] Jeffers, Jim, and James Reinders. High Performance
Parallelism Pearls Volume Two: Multicore and Many-core
Programming Approaches. Morgan Kaufmann, 2015.

[27] K. Hwang, G. C. Fox, and J. J. Dongarra, Distributed and
Cloud Computing: From ParallelProcessing to the Internet
of Things, Elsevier, 2012.

[28] Joint Task Force on Computing Curricula, Association for
Computing Machinery (ACM) and IEEE Computer Society,
Computer Science Curricula 2013: Curriculum Guidelines
for Undergraduate Degree Programs in Computer Science.
New York, NY, USA: ACM,

2013.
[29] S. K. Prasad, A. Chtchelkanova, S. Das, F. Dehne, M.

Gouda, A. Gupta, J. Jaja, K. Kant,
A. La Salle, R. LeBlanc, M. Lumsdaine, D. Padua, M.
Parashar, V. Prasanna, Y. Robert, A. Rosenberg, S. Sahni, B.
Shirazi, A. Sussman, C. Weems, and J. Wu, NSF/IEEE-
TCPP curriculum initiative on parallel and distributed
computing: Core topics for undergraduates, in Proceedings
of the 42Nd ACM Technical Symposium on Computer
Science Education, ser. SIGCSE 11. New York, NY, USA:
ACM, 2011, pp. 617618.

[30] R. Brown, E. Shoop, J. Adams, C. Clifton, M. Gardner, M.
Haupt, and P. Hinsbeeck, Strategies for preparing computer
science students for the multicore world, in Proceedings of
the 2010 ITiCSE Working Group Reports, ser. ITiCSE-
WGR 10. New York, NY, USA: ACM, 2010, pp. 97115.

[31] A. Fitz Gibbon, D. A. Joiner, H. Neeman, C. Peck, and S.
Thompson, Teaching high performance computing to
undergraduate faculty and undergraduate students, in
Proceedings of the 2010 TeraGrid Conference, ser. TG 10.
New York, NY, USA: ACM, 2010, pp. 7:17:7.

[32] J. Adams, R. Brown, and E. Shoop, Patterns and exemplars:
Compelling strategies for teaching parallel and distributed
computing to CS undergraduates, in IEEE International
Parallel and Distributed Processing Symposium Workshops
PhD Forum (IPDPSW), May 2013, pp. 12441251.

[33] Eduardo Csar, Ana Corts, Antonio Espinosa, Toms
Margalef, Juan Carlos Moure, AnnaSikora, Remo Suppi,
“Introducing computational thinking, parallel programming
and performance engineering in interdisciplinary studies,” J.
Parallel Distrib. Comput. 105, 2017, pp. 116-126.

[34] Rick Stevens, Biology and High-Performance computing
https://pdfs.semanticscholar.org/presentation/cd70/536ba60
11018539eda74dddaede95cca893b.pdf

Appendix A: Rubric for Research Project Evaluation
Criteria Poor Average Excellent

i Corresponding/First Author: Vijayalakshmi Saravanan, Rochester Institute
of Technology, NY. Email:vsavse@rit.edu

Abstract Not precise or
succinct, one
or more
elements
missing

Contains the
topic under
investigation,
but does not
clearly
summarize
the
conclusion
and/or
methodology
of
investigation.

Clearly states
the topic of
investigation,
how the
investigation
was undertaken
and the
conclusions.

Introduction
and
relevance of
application,
device,
prototype or
study

Little or no
description,
little or no
attempt to
explain the
significance
of the
application,
device,
prototype or
study

Some
description
of device,
some attempt
to explain the
significance
of the
application,
device,
prototype or
study

application,
device,
prototype or
study is clearly
described,
clearly explains
the significance
and application
of developed
application,
device,
prototype or
study, places
the problem in
the context of
relevant
literature

Blue prints
 and
Block
Diagrams

Unreasonably
sized and
spaced, either
incorrectly
captioned or
not captioned
at all

Most are
appropriately
sized and
spaced, most
are properly
captioned

All block
diagrams have
a specific
purpose, all
appropriately
sized and
spaced, all
properly
captioned

Proced
ure

Method not
described
clearly, omits
crucial
details

Method
described
fairly clearly,
some
important
details
omitted

Provides a
detailed and
comprehensive
description of
the
implementation

Demonstrati
on

Unclear
 demon-
stration/quest
ions not
answered

Better
description/s
ome
questions
answered

Excellent and
clear
demonstration/
most questions
answered

Volume 11, Issue 1 Journal of Computational Science Education

52 ISSN 2153-4136 January 2020

