
Student Outcomes in Parallelizing Recursive Matrix
Multiply

Chris Fietkiewicz
Electrical Engineering and Computer

Science Department
Case Western Reserve University

Cleveland, OH 44106 USA
001-216-368-8829

chris.fietkiewicz@case.edu

ABSTRACT
Students in a course on high performance computing were assigned
the task of parallelizing an algorithm for recursive matrix
multiplication. The objectives of the assignment were to: (1) design
a basic approach for incorporating parallel programming into a
recursive algorithm, and (2) optimize the speedup. Pseudocode was
provided for recursive matrix multiplication, and students were
required to first implement a serial version before implementing a
parallel version. The parallel version had the following
requirements: (1) use OpenMP to perform multithreading, and (2)
use exactly 4 threads, where each thread computes one quadrant of
the array product. Using a class size of 23 students, including
undergraduate and graduate, approximately 70% of the students
designed valid parallel solutions, and 13% achieved the optimal
speedup of 4×. Common errors included recursively creating
excessive threads, failing to parallelize all possible mathematical
operations, and poor use of compiler directives for OpenMP.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education - Computer Science Education, Curriculum

General Terms
Algorithms, Performance, Design.

Keywords
Parallel programming, OpenMP, recursion, matrix multiply.

1. INTRODUCTION
Matrix multiplication is a common application in high performance
computing and is often used for benchmarking in distributed
systems. The standard iterative, loop-based algorithm is easily
parallelized, and we have previously used this as an elementary
application of multithreaded programming in a course on high
performance computing. Alternatively, a recursive approach serves
as a basis for algorithms that are faster than the O(N3) time of the
standard iterative algorithm [1]. We introduced recursive matrix
multiply as an exercise for designing a parallel program and to have
students use an application that contrasts with a previous
experience using the standard iterative, loop-based algorithm.

Certain constraints were given regarding the parallelization such
that the solution would be different from common, public sources.

2. METHODS
The class was taught during the Spring semester of 2018 at Case
Western Reserve University in Cleveland, Ohio. The total
enrollment was 23 students, including undergraduate, graduate, and
non-degree students. Table 1 shows the distribution of students by
level, including subcategories for undergraduate and graduate
students. Graduate students include Ph.D. and Master’s.
Undergraduates include juniors (3rd year) and seniors (4th year).
Results also include one student who was of non-degree status.
Though the course had been offered twice before, this was the first
time that the recursive algorithm was included in the content.
Survey data was collected to determine whether students had prior
experience with C programming and multithreading, and this data
was considered with regard to student outcomes.

Table 1. Distribution of students by level.

Level Number Portion

Ph.D. 4 17%

Master's 6 26%

Senior 10 44%

Junior 2 9%

Non-degree 1 4%

Total 23 100%

Prior to the assignment used in the present study, students had
already completed lectures and assignments on parallelizing the
standard iterative matrix multiply using the C language. Coverage
of the standard algorithm included techniques for cache
optimization, multiprocess programming using fork(), and
multithreading using OpenMP. To prepare students for
programming the recursive algorithm, lecture coverage included
three components: (1) a mathematical definition of the algorithm,
(2) a pseudocode implementation, and (3) a primer on coding and
debugging the primary recursive function.

 Recursive matrix multiply is defined [1] as

𝑪 = 𝐶%% 𝐶%&
𝐶&% 𝐶&&

= 𝑨×𝑩 = 𝐴%% 𝐴%&
𝐴&% 𝐴&&

× 𝐵%% 𝐵%&
𝐵&% 𝐵&&

𝑪 = 𝐴%%𝐵%% + 𝐴%&𝐵&% 𝐴%%𝐵%& + 𝐴%&𝐵&&
𝐴&%𝐵%% + 𝐴&&𝐵&% 𝐴&%𝐵%& + 𝐴&&𝐵&&

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

© 2019 Journal of Computational Science Education
DOI: https://doi.org/10.22369/issn.2153-4136/10/1/4

Journal of Computational Science Education Volume 10, Issue 1

January 2019 ISSN 2153-4136 21

where 𝐶,- is a subarray of 𝑪 with quadrant indexes i and j. As part
of the lecture, students were asked to perform a recursive
multiplication by hand using arbitrary arrays of size 4×4. In a
separate lecture, a pseudocode implementation was given for a
function multiply(A, B, C, size), where A, B, and C are square arrays
and size is the number of rows (and columns) of the arrays. The
pseudocode for a serial algorithm was given as shown below:

1. Base case: if size = 1, then 𝐶%% = 𝐴%%𝐵%%.

2. Otherwise: use a temporary array T and compute the
following:

• multiply(A11, B11, C11, size / 2)
• multiply(A11, B12, C12, size / 2)
• multiply(A21, B11, C21, size / 2)
• multiply(A21, B12, C22, size / 2)
• multiply(A12, B21, T11, size / 2)
• multiply(A12, B22, T12, size / 2)
• multiply(A22, B21, T21, size / 2)
• multiply(A22, B22, T22, size / 2)
• 𝐶%% = 𝐶%% + 𝑇%%
• 𝐶%& = 𝐶%& + 𝑇%&
• 𝐶&% = 𝐶&% + 𝑇&%
• 𝐶&& = 𝐶&& + 𝑇&&

Due to the complexity of the algorithm, another lecture was given
as a primer on coding and debugging the primary recursive
function. Students were advised to use a reduced algorithm in order
to test proper indexing and use of the temporary array T. As a test,
it was recommended that students first compute only one of the four
quadrants. An example was given in class for computing only C21
as follows:

𝑪 = 0 0
𝐴&%𝐵%% + 𝐴&&𝐵&% 0

An example of using this reduced algorithm was calculated by hand
in class using the same 4×4 array that was previously
demonstrated. Following the hand calculation, a discussion was
provided regarding how to properly associate the quadrant indexes
(i,j = [1, 2]) with array indexes in the range 0 to size – 1.

For the assignment, students were required to use the C language
to implement separate serial and parallel versions. The parallel
version had the following requirements: (1) use OpenMP to
perform multithreading, and (2) use exactly 4 threads, where each
thread computes one quadrant of the final array product. The first
requirement was given because students had already completed a
previous assignment in which the standard iterative algorithm was
parallelized using OpenMP. The second requirement differs from
other common approaches in which each call to multiply() is
performed on a separate thread. We required exactly 4 threads, with
one for each quadrant, for two reasons. First, this unusual approach
was intended to discourage the use of publicly available source
code. Second, it has the advantage of being appropriate for
development on commonly available 4-core CPUs.

For the parallelized implementation, students were required to
report the speedup which was defined as the ratio of the serial run
time to parallel run time. A solution was considered valid if it
achieved a speedup greater than 1×, up to 4×, as compared to the
serial version. Students were not told in advance what speedup ratio
could be expected.

3. RESULTS
All students achieved a successful serial implementation,
suggesting that adequate coverage was provided in class regarding
the algorithm and coding suggestions. Therefore, the outcomes
were evaluated according to five categories of reported speedup
values: (1) approximately 4×, (2) greater than 1× but less than 4×,
(3) no speedup or approximately 1×, (4) decrease in speed (less
than 1×), and (5) not applicable (N/A). The N/A category
represents students who reported unreasonable speedup values
above 4× that were due to errors. The results given in Table 2 show
that 70% of the students successfully achieved a speedup in
categories (1) or (2).

Table 2. Student outcomes categorized by speedup values.

Speedup Number Portion

4× 3 13%

Less than 4× 13 57%

1× 1 4%

Less than 1× 3 13%

N/A 3 13%

Total 23 100%

In analyzing the student outcomes, we considered the background
experience of the students. In addition to the academic levels listed
in Table 1, survey data showed that 57% of the class (n = 13) had
prior experience with C and multithreaded programming prior to
taking the course. Prior to the present assignment, however, all
students had completed five previous programming assignments.
All previous assignments required C programming, and two of the
previous assignments required the use of multithreaded
programming with OpenMP.

We determined that experience prior to the course was not a
determining factor for success in the present assignment. With
regard to academic experience, valid solutions were obtained by all
students in the two lowest experience levels: undergraduate juniors
and non-degree. Invalid solutions occurred for students in the three
highest levels: Ph.D., Master’s, and undergraduate seniors.

We also concluded that outcomes did not depend on prior
experience with C and multithreaded programming. For students
with valid solutions (n = 16), only 50% of those had prior
experience (n = 8). For students who did not have valid solutions
(n = 7), 71% of those had prior experience using C programming
(n = 5). Furthermore, of the students that lacked prior experience (n
= 10), 80% of them had valid solutions (n = 8), including one
student with an optimal speedup of 4×. This high success rate
among students without previous experience suggests that lectures
and previous class assignments were appropriate in preparing
students.

Among students with valid solutions, two particular factors
affected the speedup value. One significant factor was the specific
implementation for the temporary array T that was used for
intermediate calculations. We observed three basic approaches to
implementing the use of T: (1) allocating it privately within the
multiply() function, (2) allocating it as a single, full-sized array that
was shared among all threads, and (3) eliminating T altogether by
performing addition in the recursion base case. Approach (1) was
the most common and generally resulted in speedup values from

Volume 10, Issue 1 Journal of Computational Science Education

22 ISSN 2153-4136 January 2019

2× to 3×. All students who achieved optimal speedup of
approximately 4× used approach (3).

A second factor affecting the speedup in valid solutions was
whether the student actually parallelized the addition step C = C +
T. Several students neglected to include this operation in the
separate threads. While they still obtained a speedup, this error
significantly reduced the speedup from what was otherwise
possible. Interestingly, one student implemented a recursive
version of the addition step, as opposed to the ubiquitous use of for-
loops for this purpose. Unfortunately, this appears to have
significantly limited the speedup value.

Among the 30% of students that did not have valid solutions (n =
7), there were many different types of errors. The expected solution,
as explained in the assignment instructions, required the creation of
4 threads at the beginning of the program, with each thread making
an initial call to multiply(). In some cases, students mistakenly
created the 4 threads in the recursive function itself, resulting in an
excessive number of threads. For large array sizes, the effect was a
significant increase in run time. Another error that was observed
was poor use of OpenMP compiler directives. In previous
assignments using OpenMP, students were required to compare the
clauses “parallel” and “parallel for”. In the present assignment,
some students attempted to use the “parallel for” clause with a for-
loop to create the 4 threads. In all of these cases, the students
introduced some type of error with regard to the number of threads
that were created or the manner in which multiply() was called.

Some students (n = 3) reported unreasonably high speedup values
greater than 4× and were categorized as N/A in Table 2. Each of
these cases involved unique logic errors in the parallel
implementation. We do not report the specific errors here because
they were unique to each student. However, they all can be
described as parallelization errors in which less than 100% of the
required calculations were actually performed. Additionally,
another common factor in these cases was that students apparently
did not test their programs using appropriate array sizes. Their
programs actually produced correct results for sizes up to N = 4,
which happens to immediately lead to the recursion base case after
the recursive subdivision into separate quadrants. However, their
programs failed for N = 8 and higher.

In requiring students to first implement a serial version, we
intentionally gave them complete freedom in how to associate the
quadrant indexes (i,j = [1, 2]) with array indexes in the range 0 to
size – 1. An interesting observation is that several students included
mechanisms to preserve the quadrant indexing from the original
mathematical formulation. It is noteworthy that all of these attempts

were successful in the serial version, but some students’ designs
involved inefficiencies that limited the parallel version for large
arrays.

4. DISCUSSION
The assignment used in the present study was our first attempt at
requiring students to parallelize recursive matrix multiply. Our
intent was to provide experience in designing a parallel program
and to use an application that contrasts with a previous experience
using an iterative, loop-based algorithm. We consider the
requirements for parallelization to have been straight forward. We
conclude that the complexity of the algorithm posed the most
significant challenge in understanding how to apply parallel
programming techniques. It is important to consider the students’
backgrounds, and our survey data suggests that appropriate
preparation was given to the students prior to the assignment. This
preparation included previous lectures and programming
assignments on the topics of iterative matrix multiplication, C
programming, and multithreaded programming with OpenMP.
Additionally, the lecture on debugging may have also been
important. Overall, we consider the assignment to have been
successful in challenging students to work with an unusual
application using familiar techniques.

In the future, we hope to expand the assignment to require a more
detailed efficiency analysis. In the present study, we focused
exclusively on the students’ ability to implement valid parallel
solutions with at least some amount of speedup. However, we did
not require students to analyze and report on the efficiency of
smaller components of their implementation. Many students
casually accepted less than optimal speedup values, suggesting that
it was due to unavoidable issues, such as unknown aspects to using
recursion. In general, students did not analyze the efficiency of
separate components of the algorithm. For example, the utilization
of the T array involved a large amount of variability in students’
results. Additionally, several students did not parallelize the
summation of the C and T arrays. In future versions of the
assignment, we will consider adding a requirement to use multiple
approaches for comparison.

5. ACKNOWLEDGMENTS
This work made use of the High Performance Computing Resource
in the Core Facility for Advanced Research Computing at Case
Western Reserve University.

6. REFERENCES
[1] Weiss, M. 2012. Data Structures and Algorithm Analysis in

Java (3rd Edition). Addison-Wesley, Boston, MA.

Journal of Computational Science Education Volume 10, Issue 1

January 2019 ISSN 2153-4136 23

