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ABSTRACT 
Students in a course on high performance computing were assigned 
the task of parallelizing an algorithm for recursive matrix 
multiplication. The objectives of the assignment were to: (1) design 
a basic approach for incorporating parallel programming into a 
recursive algorithm, and (2) optimize the speedup. Pseudocode was 
provided for recursive matrix multiplication, and students were 
required to first implement a serial version before implementing a 
parallel version. The parallel version had the following 
requirements: (1) use OpenMP to perform multithreading, and (2) 
use exactly 4 threads, where each thread computes one quadrant of 
the array product. Using a class size of 23 students, including 
undergraduate and graduate, approximately 70% of the students 
designed valid parallel solutions, and 13% achieved the optimal 
speedup of 4×. Common errors included recursively creating 
excessive threads, failing to parallelize all possible mathematical 
operations, and poor use of compiler directives for OpenMP.   

Categories and Subject Descriptors 
K.3.2 [Computers and Education]: Computer and Information 
Science Education - Computer Science Education, Curriculum 

General Terms 
Algorithms, Performance, Design. 

Keywords 
Parallel programming, OpenMP, recursion, matrix multiply. 

1. INTRODUCTION 
Matrix multiplication is a common application in high performance 
computing and is often used for benchmarking in distributed 
systems. The standard iterative, loop-based algorithm is easily 
parallelized, and we have previously used this as an elementary 
application of multithreaded programming in a course on high 
performance computing. Alternatively, a recursive approach serves 
as a basis for algorithms that are faster than the O(N3) time of the 
standard iterative algorithm [1]. We introduced recursive matrix 
multiply as an exercise for designing a parallel program and to have 
students use an application that contrasts with a previous 
experience using the standard iterative, loop-based algorithm. 

Certain constraints were given regarding the parallelization such 
that the solution would be different from common, public sources. 

2. METHODS 
The class was taught during the Spring semester of 2018 at Case 
Western Reserve University in Cleveland, Ohio. The total 
enrollment was 23 students, including undergraduate, graduate, and 
non-degree students. Table 1 shows the distribution of students by 
level, including subcategories for undergraduate and graduate 
students. Graduate students include Ph.D. and Master’s. 
Undergraduates include juniors (3rd year) and seniors (4th year). 
Results also include one student who was of non-degree status. 
Though the course had been offered twice before, this was the first 
time that the recursive algorithm was included in the content. 
Survey data was collected to determine whether students had prior 
experience with C programming and multithreading, and this data 
was considered with regard to student outcomes. 

Table 1. Distribution of students by level. 

Level Number Portion 

Ph.D. 4 17% 

Master's 6 26% 

Senior 10 44% 

Junior 2 9% 

Non-degree 1 4% 

Total 23 100% 

 
Prior to the assignment used in the present study, students had 
already completed lectures and assignments on parallelizing the 
standard iterative matrix multiply using the C language. Coverage 
of the standard algorithm included techniques for cache 
optimization, multiprocess programming using fork(), and 
multithreading using OpenMP. To prepare students for 
programming the recursive algorithm, lecture coverage included 
three components: (1) a mathematical definition of the algorithm, 
(2) a pseudocode implementation, and (3) a primer on coding and 
debugging the primary recursive function. 

 Recursive matrix multiply is defined [1] as 

𝑪 = 𝐶%% 𝐶%&
𝐶&% 𝐶&&

= 𝑨×𝑩 = 𝐴%% 𝐴%&
𝐴&% 𝐴&&

× 𝐵%% 𝐵%&
𝐵&% 𝐵&&

 

𝑪 = 𝐴%%𝐵%% + 𝐴%&𝐵&% 𝐴%%𝐵%& + 𝐴%&𝐵&&
𝐴&%𝐵%% + 𝐴&&𝐵&% 𝐴&%𝐵%& + 𝐴&&𝐵&&
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where 𝐶,- is a subarray of 𝑪 with quadrant indexes i and j. As part 
of the lecture, students were asked to perform a recursive 
multiplication by hand using arbitrary arrays of size 4×4. In a 
separate lecture, a pseudocode implementation was given for a 
function multiply(A, B, C, size), where A, B, and C are square arrays 
and size is the number of rows (and columns) of the arrays. The 
pseudocode for a serial algorithm was given as shown below: 

1. Base case: if size = 1, then 𝐶%% = 𝐴%%𝐵%%. 

2. Otherwise: use a temporary array T and compute the 
following: 

• multiply(A11, B11, C11, size / 2) 
• multiply(A11, B12, C12, size / 2) 
• multiply(A21, B11, C21, size / 2) 
• multiply(A21, B12, C22, size / 2) 
• multiply(A12, B21, T11, size / 2) 
• multiply(A12, B22, T12, size / 2) 
• multiply(A22, B21, T21, size / 2) 
• multiply(A22, B22, T22, size / 2) 
• 𝐶%% = 𝐶%% + 𝑇%% 
• 𝐶%& = 𝐶%& + 𝑇%& 
• 𝐶&% = 𝐶&% + 𝑇&% 
• 𝐶&& = 𝐶&& + 𝑇&& 

 
Due to the complexity of the algorithm, another lecture was given 
as a primer on coding and debugging the primary recursive 
function. Students were advised to use a reduced algorithm in order 
to test proper indexing and use of the temporary array T. As a test, 
it was recommended that students first compute only one of the four 
quadrants. An example was given in class for computing only C21 
as follows: 

𝑪 = 0 0
𝐴&%𝐵%% + 𝐴&&𝐵&% 0  

An example of using this reduced algorithm was calculated by hand 
in class using the same 4×4 array that was previously 
demonstrated. Following the hand calculation, a discussion was 
provided regarding how to properly associate the quadrant indexes 
(i,j = [1, 2]) with array indexes in the range 0 to size – 1. 

For the assignment, students were required to use the C language 
to implement separate serial and parallel versions. The parallel 
version had the following requirements: (1) use OpenMP to 
perform multithreading, and (2) use exactly 4 threads, where each 
thread computes one quadrant of the final array product. The first 
requirement was given because students had already completed a 
previous assignment in which the standard iterative algorithm was 
parallelized using OpenMP. The second requirement differs from 
other common approaches in which each call to multiply() is 
performed on a separate thread. We required exactly 4 threads, with 
one for each quadrant, for two reasons. First, this unusual approach 
was intended to discourage the use of publicly available source 
code. Second, it has the advantage of being appropriate for 
development on commonly available 4-core CPUs. 

For the parallelized implementation, students were required to 
report the speedup which was defined as the ratio of the serial run 
time to parallel run time. A solution was considered valid if it 
achieved a speedup greater than 1×, up to 4×, as compared to the 
serial version. Students were not told in advance what speedup ratio 
could be expected. 

3. RESULTS 
All students achieved a successful serial implementation, 
suggesting that adequate coverage was provided in class regarding 
the algorithm and coding suggestions. Therefore, the outcomes 
were evaluated according to five categories of reported speedup 
values: (1) approximately 4×, (2) greater than 1× but less than 4×, 
(3) no speedup or approximately 1×, (4) decrease in speed (less 
than 1×), and (5) not applicable (N/A). The N/A category 
represents students who reported unreasonable speedup values 
above 4× that were due to errors. The results given in Table 2 show 
that 70% of the students successfully achieved a speedup in 
categories (1) or (2). 

Table 2. Student outcomes categorized by speedup values. 

Speedup Number Portion 

4× 3 13% 

Less than 4× 13 57% 

1× 1 4% 

Less than 1× 3 13% 

N/A 3 13% 

Total 23 100% 

 
In analyzing the student outcomes, we considered the background 
experience of the students. In addition to the academic levels listed 
in Table 1, survey data showed that 57% of the class (n = 13) had 
prior experience with C and multithreaded programming prior to 
taking the course. Prior to the present assignment, however, all 
students had completed five previous programming assignments. 
All previous assignments required C programming, and two of the 
previous assignments required the use of multithreaded 
programming with OpenMP. 

We determined that experience prior to the course was not a 
determining factor for success in the present assignment. With 
regard to academic experience, valid solutions were obtained by all 
students in the two lowest experience levels: undergraduate juniors 
and non-degree. Invalid solutions occurred for students in the three 
highest levels: Ph.D., Master’s, and undergraduate seniors. 

We also concluded that outcomes did not depend on prior 
experience with C and multithreaded programming. For students 
with valid solutions (n = 16), only 50% of those had prior 
experience (n = 8). For students who did not have valid solutions 
(n = 7), 71% of those had prior experience using C programming 
(n = 5). Furthermore, of the students that lacked prior experience (n 
= 10), 80% of them had valid solutions (n = 8), including one 
student with an optimal speedup of 4×. This high success rate 
among students without previous experience suggests that lectures 
and previous class assignments were appropriate in preparing 
students. 

Among students with valid solutions, two particular factors 
affected the speedup value. One significant factor was the specific 
implementation for the temporary array T that was used for 
intermediate calculations. We observed three basic approaches to 
implementing the use of T: (1) allocating it privately within the 
multiply() function, (2) allocating it as a single, full-sized array that 
was shared among all threads, and (3) eliminating T altogether by 
performing addition in the recursion base case. Approach (1) was 
the most common and generally resulted in speedup values from 
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2× to 3×. All students who achieved optimal speedup of 
approximately 4× used approach (3). 

A second factor affecting the speedup in valid solutions was 
whether the student actually parallelized the addition step C = C + 
T. Several students neglected to include this operation in the 
separate threads. While they still obtained a speedup, this error 
significantly reduced the speedup from what was otherwise 
possible. Interestingly, one student implemented a recursive 
version of the addition step, as opposed to the ubiquitous use of for-
loops for this purpose. Unfortunately, this appears to have 
significantly limited the speedup value. 

Among the 30% of students that did not have valid solutions (n = 
7), there were many different types of errors. The expected solution, 
as explained in the assignment instructions, required the creation of 
4 threads at the beginning of the program, with each thread making 
an initial call to multiply(). In some cases, students mistakenly 
created the 4 threads in the recursive function itself, resulting in an 
excessive number of threads. For large array sizes, the effect was a 
significant increase in run time. Another error that was observed 
was poor use of OpenMP compiler directives. In previous 
assignments using OpenMP, students were required to compare the 
clauses “parallel” and “parallel for”. In the present assignment, 
some students attempted to use the “parallel for” clause with a for-
loop to create the 4 threads. In all of these cases, the students 
introduced some type of error with regard to the number of threads 
that were created or the manner in which multiply() was called. 

Some students (n = 3) reported unreasonably high speedup values 
greater than 4× and were categorized as N/A in Table 2. Each of 
these cases involved unique logic errors in the parallel 
implementation. We do not report the specific errors here because 
they were unique to each student. However, they all can be 
described as parallelization errors in which less than 100% of the 
required calculations were actually performed. Additionally, 
another common factor in these cases was that students apparently 
did not test their programs using appropriate array sizes. Their 
programs actually produced correct results for sizes up to N = 4, 
which happens to immediately lead to the recursion base case after 
the recursive subdivision into separate quadrants. However, their 
programs failed for N = 8 and higher. 

In requiring students to first implement a serial version, we 
intentionally gave them complete freedom in how to associate the 
quadrant indexes (i,j = [1, 2]) with array indexes in the range 0 to 
size – 1. An interesting observation is that several students included 
mechanisms to preserve the quadrant indexing from the original 
mathematical formulation. It is noteworthy that all of these attempts 

were successful in the serial version, but some students’ designs 
involved inefficiencies that limited the parallel version for large 
arrays. 

4. DISCUSSION 
The assignment used in the present study was our first attempt at 
requiring students to parallelize recursive matrix multiply. Our 
intent was to provide experience in designing a parallel program 
and to use an application that contrasts with a previous experience 
using an iterative, loop-based algorithm. We consider the 
requirements for parallelization to have been straight forward. We 
conclude that the complexity of the algorithm posed the most 
significant challenge in understanding how to apply parallel 
programming techniques. It is important to consider the students’ 
backgrounds, and our survey data suggests that appropriate 
preparation was given to the students prior to the assignment. This 
preparation included previous lectures and programming 
assignments on the topics of iterative matrix multiplication, C 
programming, and multithreaded programming with OpenMP. 
Additionally, the lecture on debugging may have also been 
important. Overall, we consider the assignment to have been 
successful in challenging students to work with an unusual 
application using familiar techniques.  

In the future, we hope to expand the assignment to require a more 
detailed efficiency analysis. In the present study, we focused 
exclusively on the students’ ability to implement valid parallel 
solutions with at least some amount of speedup. However, we did 
not require students to analyze and report on the efficiency of 
smaller components of their implementation. Many students 
casually accepted less than optimal speedup values, suggesting that 
it was due to unavoidable issues, such as unknown aspects to using 
recursion. In general, students did not analyze the efficiency of 
separate components of the algorithm. For example, the utilization 
of the T array involved a large amount of variability in students’ 
results. Additionally, several students did not parallelize the 
summation of the C and T arrays. In future versions of the 
assignment, we will consider adding a requirement to use multiple 
approaches for comparison. 
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