
Parallelization of Particle-Particle, Particle-Mesh Method
within N-Body Simulation

Nicholas W. Nocito
Kean University, NJCSTM

1000 Morris Avenue
Union, NJ 07083

nociton@kean.edu

ABSTRACT
The N-Body problem has become an intricate part of the
computational sciences, and there has been rise to many methods
to solve and approximate the problem. The solution potentially

requires on the order of calculations each time step, therefore
efficient performance of these N-Body algorithms is very
significant [5]. This work describes the parallelization and
optimization of the Particle-Particle, Particle-Mesh (P3M)
algorithm within GalaxSeeHPC, an open-source N-Body
Simulation code. Upon successful profiling, MPI (Message
Passing Interface) routines were implemented into the population
of the density grid in the P3M method in GalaxSeeHPC. Each
problem size recorded different results, and for a problem set
dealing with 10,000 celestial bodies, speedups up to 10x were
achieved. However, in accordance to Amdahl’s Law, maximum
speedups for the code should have been closer to 16x. In order to
achieve maximum optimization, additional research is needed and
parallelization of the Fourier Transform routines could prove to be
rewarding. In conclusion, the GalaxSeeHPC Simulation was
successfully parallelized and obtained very respectable results,
while further optimization remains possible.

General Terms
Performance, algorithms, design

Keywords
N-Body, Message Passing Interface, Particle-Mesh, Fourier
Transform

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Copyright ©JOCSE, a supported
publication of the Shodor Education Foundation Inc.

1. INTRODUCTION
The N-body problem is an example of an algorithm that in simple
to explain to students, but that quickly grows in complexity and
need for resources. Dealing with the potential interactions
between particles in a distribution, the N-body problem would
ideally compute all possible interactions, and if every N objects
interacts with every other (N-1) objects, this results in N(N-1)

total possible interactions, growing as in complexity. This
category of problems has applications in many fields such as
astrophysics, molecular dynamics, fluid dynamics, and plasma
physics.[2] This paper applies the N-Body problem to the
simulation of celestial bodies in space, particularly in the case of
the “universe in a box” problem where the space being calculated
is assumed to be one unit cell out of an infinite expansion.

This research opportunity arose through my selection into the
Blue Waters Undergraduate Petascale Education Program. In
order to best prepare for the experience we received two weeks of
intensive training at the National Center for Supercomputing
Applications (NCSA), via the University of Illinois at Champagne
Urbana. During the training we were exposed to the world of
high performance computing and its architectures and
applications. We gained experience in shared-memory
parallelism with OpenMP, and distributed system parallelism with
MPI. In addition we were exposed to modern applications in
computing using GPU architectures. At the time of my research I
was a rising junior in Kean University’s Center for Science
Technology & Mathematics program, majoring in Computational
Applied Mathematics. My research and study was done under the
mentoring of my advisor, Dr. David Joiner, Kean University.
Prior to this summer I had taken multiple mathematics courses, a
calculus-based physics course, and a basic java computer
programming course.

2. BACKGROUND
2.1 The N-Body Problem
The N-Body problem is a classic physics problem dealing with the
interactions of particles. When we are dealing with more two or
more particles, each potentially interacts with every other particle,
and each force pair is equal and opposite giving N(N-1)/2 unique

forces. Unfortunately, the scaling then leans towards which
quickly accumulates when dealing with problems of large N. The
initial conditions are the mass, coordinates, and

Volume 1, Issue 1 Journal Of Computational Science Education

38 ISSN 2153-4136 December 2010

velocity of each particle, respectively. Because of the singularity
in the forces of close interactions a cutoff radius, sometimes call a
shield radius, is typically used to reduce the computational error
due to close interactions. Alternatively, a softening radius can be
added in the calculation of the potential. Both of these are options
in GalaxSeeHPC [1]

Shield Radius:

 (2.1)

Softened Potential:

 (2.2)

 (2.1)

2.2 Particle-Mesh Method
In the case of the “universe-in-a-box” problem, the N-body
problem is solved in a system with a “wrapped” geometry,
assuming that we are solving for a typical unit cell out of an
infinite expanse. The wrapped geometry in gravitational dynamics
is typically used to solve for large scale structure, where solving
for the entire universe is not practical, and one assumes that there
is mass immediately outside of the box that would affect the
evolution of the system. Such methods are also used in molecular
dynamics calculations, where it is necessary to maintain a
consistent bath of solvent molecules around a protein being
studied. The Particle-Particle Particle-Mesh method allows for the
use of a spectral technique assuming a periodic solution.

(2.3) Illustration of a “wrapped” world as is pertains to the code.
The distance between particle A and B represents the “ghost”
distance. Particle B does not exist because we are dealing with a
“wrapped” world. Therefore, the “real” distance is between
particle A and C.

Poisson’s Potential Energy equation is given by:

 (2.4)

The algorithm for the density population first begins with
incrementing through the array of coordinates and setting the
initial density grid to zero at each particle. Next we must find the
nearest grid point for each body of mass and “wrap” if needed.
After locating the nearest point the range around that grid point is
then calculated and we ensure that coordinates are broken by the
wrapping of any particles. The final part of the density
distribution is incremented through each of the bodies and
updating the density array with the values for the particle mesh.

Through a Fourier Transform, the solution to Poisson’s equation
becomes:

 (2.5)

In practice, an additional function is used to smooth out shorter
range forces and control the scale of the long range forces. This
function, called the influence function, is typically taken to be the
Fourier transform of the density function of a single particle in the
system during the density grid population [4].

 (2.6)

The basic procedure of the PM method is as follows: [6]

• Transform particle mass into density distribution
• Solve Poisson equation using FFT algorithm
• Calculate the force fields and interpolate to find forces
• Integrate to obtain positions and velocities
• Update time step

The Particle-Particle, Particle-Mesh (P3M) is a hybrid method for
approximating the solution to the N-body problem. PM methods
suffer from an inability to predict short range forces accurately, as
any nearby effects are “smoothed” out over nearby gridpoints.
The P3M method adds a nearest neighbor “particle-particle”
interaction that essentially divides the forces into short-range
forces, and long-range forces.[7] Short-range forces are
calculated using the direct force method which is the brute force
calculation using equation 1.1 from above. The longer range
forces are then calculated using the Particle-Mesh
approximation.[6] Getting an accurate solution efficiently
requires careful selection of the size scale of the density function

Journal Of Computational Science Education Volume 1, Issue 1

December 2010 ISSN 2153-4136 39

for each object in the density population, the influence function,
and the radius used to determine nearest neighbors. The hybrid
P3M method ideally results in a scaling of .[4]

2.3 GalaxSeeHPC
GalaxSeeHPC is a N-Body simulation source code. It requires an
UNIX-like environment, or a Cygwin-like environment for
windows applications. The code provides many options of
different force calculation techniques. You may chose the direct
force method, the Fourier Transform based P3M method or the
Barnes-Hut tree-based method. For the purpose of this paper we
will only discuss in detail the P3M method.

2.4 Message Passing Interface
With the occurrence of larger and larger problems needed to be
solved, comes the use and application of supercomputers. The
most widespread accepted parallel programming language is the
Message Passing Interface, or MPI.[8] Users of C or Fortran can
use MPI to pass messages between the nodes of the cluster. This
communication can spread out the computer’s work and
drastically alter the overall performance. If a code has to little
work or data the addition of MPI could potentially hurt
performance. Also, one must take into consideration the amount
of communication the nodes will have to have with each other.
Too much communication can also produce harmful effects on a
code.

3. PROFILING AND DESIGN
3.1 Profile
In order to attempt to optimize the performance of the code we
first began profiling GalaxSeeHPC under many different
conditions. The code was examined for various values of N, Final
Time, and grid size (the resolution of the mesh, higher the
resolution the more accurate). For use of GalaxSeeHPC it is best
to have the grid size set to a power of two; for example, 16, 32,
64, etc.

The implementation of the P3M algorithm in GalaxSeeHPC
follows three steps in the force calculation, population of a density
grid, FFT solution of Poisson’s equation on that grid, and
interpolation of forces from the Poisson solution back to
individual points, along with directly calculated nearest neighbor
corrections. Shown below is the percentage of the wall time (as
determined through the use of both hard coded timers and gprof)
taken up by the density population step. Note that for smaller grid
sizes, population of the density grid dominates the time required
for a force calculation—compared to the time required for the
FFT calculation for larger grid sizes. This suggests that for lower
resolution P3M grids, speedups on the order of 20 to 50 times
should be obtainable through parallelizing the density population
alone.

GRID SIZE N = 1,000 N = 5,000 N = 10,000

16 .97 .97 .96

32 .93 .94 .94

64 .73 .88 .91

128 .27 .56 .68

256 .08 .18 .24

(3.1) This figure portrays the percentage of total wall time which
the creation of the density grid was responsible for.

3.2 Parallelization
By examining the code further, clearly the last part of the density
creation loop had the highest potential for parallelization. The
statement we parallelized is said to embarrassingly parallel. A
code is said to be embarrassingly parallel if there are no channels
between tasks and each process can perform its duties without
communication with any other processes.[8] These types of
algorithms are usually the easiest to parallelize because of this
lack this ability to do work without interaction.

The next step after defining the subset of code to be parallelized is
design. A round-robin technique was used, where each node does
some work, and returns to do more based on its rank and world
size. The rank is each processor’s own unique ID number, so that
we have a way of distinguishing between nodes. The world size
is the total amount of processors initialized at run time. The
following three functions are the three most basic and important
functions when using the Message Passing interface.

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &world_size);

Mpi_Init is the function initializes the use of Message Passing
Interface. The MPI_Comm_rank and MPI_Comm_size determine
the processor id’s and total number of proccessors, respectively.
Rank and world_size are arbitrary variable names which hold the
IDs and total size. Now that we have MPI initialized we can
parallelize the code.

The initial parameters for the loop in the density grid creation was
as follows:

For(l = 0; l < theModel->n; l++)

This is a very basic loop incrementing by one and looping through
all the bodies of mass in the model. In using the round robin
technique we change the loop to the following:

For(l= rank; l<theModel-n; l += size)

Now each processor will begin its loop at its rank (ID) and
increment by the world size. The following diagram depicts the
round robin use of MPI.

Volume 1, Issue 1 Journal Of Computational Science Education

40 ISSN 2153-4136 December 2010

(3.3) Depicts the round robin technique in a group of 3 nodes.
Each node begins at its own ID and increments by the total
amount of nodes being used.

This type of parallelization is also referred to as data
decomposition. This is defined as when multiple tasks have same
responsibility but work on different sets of data.[3] As opposed to
functional decomposition where each task has its own set of
responsibilities.[3] Now the data is broken up, but we still need to
make sure every process receives the results of every other
process so that have the results of the entire density grid.

For this we will use one of MPI’s reduction commands.
MPI_Allreduce is a collective communication, so each processor
will receive the reduction results.[7] Below is the command along
with its necessary parameters.

MPI_Allreduce(
 Void* send_buffer, // = the send buffer
 Void* recv_buffer = the receive buffer
 Int cnt = the number of elements to reduce
 MPI_Datatype dtype = Element type
 MPI_Op op = Reduction Operator
 MPI_Comm comm. = Communicator
);

After reducing to a temporary buffer we can transfer all the results
back to each proccessors density array. The result is all the nodes
sharing the results of the density grid creation with each other.

4. RESULTS
After successfully profiling and parallelizing the code we were
able to see very significant results. Below are a few graphs
represents the increased speed up we received by running the code
with various amounts of nodes.

(4.1) Above are the optimization results when simulating a galaxy
of 10,000 stars. Below are the results when simulating 100,000
stars.

In the supercomputing world there exists Amdahl’s law which
accurately predicts the maximum speedup of parallelized code.
Amdahl’s law assumes we are trying to solve any problem of
constant size as quickly as possible, and can determine potential
speedup achievable as you increase the number of processors. [7]
The equation is simply that the maximum speedup is equal to one
over the fraction of the time spent in code that must be run
serially. For instance, if 10% of your compute time is from code
which can not be parallelized, then the maximum performance
you can achieve is 1/.10 or a speed up of 10x.

Journal Of Computational Science Education Volume 1, Issue 1

December 2010 ISSN 2153-4136 41

(4.2) Above are the Speedups of the Wall-times of GalaxSeeHPC
as a function of the # of processors. The speedup value is
calculated by divided the wall-time of P processors by the wall
time for one processor.

By examining graph (4.2) we see that our parallelized code for
10,000 bodies maxes out at around .1, which results in speedup of
10x. However, when we are dealing with 100,000 bodies we only
see a max of .29 with a speedup of 3.45x. We can take our results
from the above table (3.1), and apply them to Amdahl’s Law.
Therefore, for N = 10,000 bodies and a grid size of 32*32*32, the
maximum achievable speedup = (1) / (1-.94) or 16x. Although we
received a very impressive speedup of 10x for N = 10,000, we
weren’t able to totally optimize within accordance of Amdahl’s
Law’s projected maximum speedup of 16x.

If we examine table (3.1) further we notice as the grid resolution
becomes larger and larger (which increases accuracy), the
percentage of total time used in creating the density grid
decreases. This is because as the grid sizes increase so does the
time in calculating the Fourier Transform by the FFTW algorithm.
Therefore, our next task in fully optimizing performance of
GalaxSeeHPC should be the profiling and parallelization of the 3
dimensional Fourier Transform of the gravitational potentials.

5. CONCLUSION
5.1 Analysis
Our analysis shows that the current parallelization of
GalaxSeeHPC using the P3M method scales in accordance with
expectations, however, limited by the time required to perform the
FFT, which as of yet has not been implemented in parallel. The
results substantiate that the population of the density grid
consumes much CPU time, and that parallelization of the
algorithm can lead to improved performance.

Howbeit we achieved speedups of up to 10x; we must not
overlook that only one algorithm in the code was parallelized. To
obtain maximum performance we must continue to examine the

code for potential methods possible to execute in parallel. As
stating above, the next step would be optimizing the FFTW
algorithm, within GalaxSeeHPC’s PrepPPPM method. There is
now Message Passing algorithms available for the FFTW open
source libraries. Below is data which validates that in order to
reach maximum attainable speedups, implantation of the MPI-
based Fourier Transforms would be the next sensible phase.

#Procs 1 2 4 8 16 32

%Total
Time

3% 6% 11% 17% 22% 25%

(5.1) Above represents the direct proportionality of the
percentages of total wall time spent in PrepPPPM, and the number
of processors used in execution, for N = 10,000, and a Grid
Resolution of 32*32*32.

(5.2) The above graph is the Percentage of total time spent in
PrepPPPM as a function of the Grid Resolution. The time in
computing the Fourier Transform increases as the mesh size
increases.

Use of the GalaxSeeHPC Simulation will require a significant
amount of CPU time, and computing power. Time constraints and
computing resources necessary will depend on the actual problem
set. For instance, computing a simulation of a galaxy of 100,000
stars on one core, over the course of 15 billions years and a time
step of .1 million years would require a tremendous amount of
CPU time. Our earlier results, when running 100,000 stars for
100 time steps, required just over 6000 seconds to run. Therefore
running at 15 billion years with a time step of .1 would require
approximately 1500x more CPU time, which results in over 2584
hours!

5.2 Reflections
Through Blue Waters’ education program I received an invaluable
educational experience. This section describes the impact this
research internship had on my learning experience, and how to
potentially use this paper in undergraduate education so that
others may gain knowledge in high performance computing
applications.

Volume 1, Issue 1 Journal Of Computational Science Education

42 ISSN 2153-4136 December 2010

Firstly, one must master the basic mathematics and physics
concepts behind the simulation. The N-Body is calculated by
means of Newtown’s basic physics equations depicted in (2-1).
This governing equation should not take much mathematics
knowledge to comprehend, and I already had prior experience
with these physics concepts. The most abstract concept for me,
which is most likely to be the one misunderstood by students, is
the use of Fourier Transforms. A Fourier Transform in a very
basic sense is the transformation of one equation from the time
domain to the frequency domain. The result of the transform will
depict the frequencies of the original equation. Initially I had no
knowledge of Fourier techniques, therefore in order to properly
understand the algorithms of GalaxSeeHPC; I had to master the
concepts behind Fourier transforms and their applications.
Therefore, future students who wish to benefit from this paper
must first comprehend the concepts behind the simulation.

I also had to familiarize myself with MPI and ways of thinking
parallel in order to formulate the best algorithm. The training
provided by the NCSA allowed me to efficiently discover
algorithms in the code which would benefit by the application of
MPI and its parallel routines. However, before I actually
implemented any code changes, I had to first properly model and
profile the code. I began executing the code for many different
sets of initial conditions, and used Microsoft Excel and MATLAB
in order to make sense of these results. I also learned how to
efficiently use gprof (GNU Profiler) which aided in shedding light
on which method calls within the simulation actually were taking
up the most time. However, in order to analyze the code as
accurate as possible, I also implemented my own timing methods
into GalaxSeeHPC. Students must learn how to correctly profile
and analyze in order to locate the algorithms which are best-fit to
parallelize.

I was also fortunate enough to work in a team environment
throughout my research. During my training I had a chance to
collaborate with the other gifted students who were chosen as
Blue Waters Petascale interns, and continued to use them as
resources throughout my research by using OpenStudy, an online
study group. I also collaborated with my professors at Kean’s
NJCSTM and some of our graduate students. There is always
more than one way of implementing a problem in parallel and
having a team environment is very useful in discovering the
optimal solution.

This research experience can potentially be replicated by
professors for use in their research, as well as in undergraduate
education. The code itself can be used in classrooms, and can
execute scalable N-Body simulations for different boundary
conditions. Using the parallelized P3M algorithm within
GalaxSeeHPC, students and researchers can experience speedups
of 10-20x, and will have the ability to execute simulations for
very large N. Also students may benefit from the research

methods I used and how to successfully analyze algorithms, and
implement high performance computing techniques. There are
many different paths one could take in furthering this research,
depending on their field of study, and intended teaching
application. For instance, a computer scientist may consider
analyzing the Barnes-Hut method for parallelization, an
alternative N-body approximation using tree data structures.
However, a physicist may be more interested in using the
parallelized P3M methods in order to conduct research on the
organization of large scale universes, and how their formation.

6. ACKNOWLEDGMENTS
Thanks to Dr. David Joiner of Kean University, for the constant
support and mentorship throughout the process. Also thanks to
SHODOR and the NCSA for the support and education
experience.

7. REFERENCES
[1] Aarseth, S., Gravitational N-Body Simulation, Cambridge

Monographs of Mathematical Physics, 2003.

[2] Aluru, S., Prabhu, G.M., and Gustafson, J. Truly
Distribution Independent Algorithms for the N Body
Problems, Ames Laboratory Department of Energy, Ames,
Iowa, http://www.scl.ameslab.gov/Publications/Gus/N-
Body/N-Body.html.

[3] Binstock, A,. Data Decomposition: Sharing the Love and
the Data, http://software.intel.com/en-us/articles/data-
decomposition-sharing-the-love-and-the-data/, November 4th,
2009

[4] Board, J, and Toukmaji, A., Ewald Summation Techniques in
Perpestive: A Survey, Computer Physics Communications
Volume 95, Issues 2-3, June 1996, Pages 73-92, 1999

[5] Graps, A., N-Body Particle Simulation Methods,
http://www.amara.com/papers/nbody.html

[6] Shodor, GalaxSeeHPC,
http://shodor.org/petascale/materials/UPModules/NBody/,
2010

[7] Splinter, R., A Nested Grid Particle-Mesh Code for High
Resolution Simulations of Gravitational Instability in
Cosmology, ftp://asta.pa.uky.edu/cosmology/ngpms.ps

[8] Quinn, M., Parallel Programming in C with MPI and
OpenMP, 2004

Journal Of Computational Science Education Volume 1, Issue 1

December 2010 ISSN 2153-4136 43

